Low Current LED Driver

NUD4011

This device is designed to replace discrete solutions for driving LEDs in AC/DC high voltage applications (up to 200 V). An external resistor allows the circuit designer to set the drive current for different LED arrays. This discrete integration technology eliminates individual components by combining them into a single package, which results in a significant reduction of both system cost and board space. The device is a small surface mount package (SO-8).

Features

- Supplies Constant LED Current for Varying Input Voltages
- External Resistor Allows Designer to Set Current - up to 70 mA
- Offered in Surface Mount Package Technology (SO-8)
- This is a Pb -Free Device

Benefits

- Maintains a Constant Light Output During Battery Drain
- One Device can be used for Many Different LED Products
- Reduces Board Space and Component Count
- Simplifies Circuit and System Designs

Typical Applications

- Portables: For Battery Back-up Applications, also Simple Ni-CAD Battery Charging
- Industrial: General Lighting Applications and Small Appliances
- Automotive: Tail Lights, Directional Lights, Back-up Light, Dome Light

PIN FUNCTION DESCRIPTION

Pin	Symbol	Description
1	$\mathrm{~V}_{\text {in }}$	Positive input voltage to the device
2	Boost	This pin may be used to drive an external transistor as described in the App Note AND8198/D.
3	$\mathrm{R}_{\text {ext }}$	An external resistor between $\mathrm{R}_{\text {ext }}$ and $\mathrm{V}_{\text {in }}$ pins sets different current levels for different application needs
4	PWM	For high voltage applications (higher than 48 V), pin 4 is connected to the LEDs array. For low voltage applications (lower than 48 V), pin 4 is connected to ground.
$5,6,7,8$	$\mathrm{I}_{\text {out }}$	The LEDs are connected from these pins to ground

SO-8 CASE 751

MARKING DIAGRAM

A = Assembly Location
Y = Year
WW = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping †
NUD4011DR2G	SO-8 $(\mathrm{Pb}-\mathrm{Free})$	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Input Voltage	$\mathrm{V}_{\text {in }}$	200	V
Output Current (For $\mathrm{V}_{\text {drop }} \leq 16 \mathrm{~V}$) (Note 1)	$\mathrm{I}_{\text {out }}$	70	mA
Output Voltage	$\mathrm{V}_{\text {out }}$		
Human Body Model (HBM)	ESD	508	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $\mathrm{V}_{\text {drop }}=\mathrm{V}_{\text {in }}-0.7 \mathrm{~V}-\mathrm{V}_{\text {LEDs }}$.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Operating Ambient Temperature	T_{A}	-40 to +125	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Total Power Dissipation (Note 2)	P_{D}	1.13	W
Derating above 25 ${ }^{\circ} \mathrm{C}$ (Figure 3)		9.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction-to-Ambient (Note 2)	$\mathrm{R}_{\text {日JA }}$	110	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Lead (Note 2)	$\mathrm{R}_{\text {日JL }}$	77	${ }^{\circ} \mathrm{C} / \mathrm{W}$

2. Mounted on FR-4 board, 2 in sq pad, 1 oz coverage.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Current1 (Note 3) $\left(\mathrm{V}_{\mathrm{in}}=120 \mathrm{Vdc}, \mathrm{R}_{\mathrm{ext}}=24 \Omega, \mathrm{~V}_{\mathrm{LEDs}}=90 \mathrm{~V}\right)$	$\mathrm{l}_{\text {out1 }}$	26.0	27.5	29.5	mA
Output Current2 (Note 3) $\left(\mathrm{V}_{\mathrm{in}}=200 \mathrm{Vdc}, \mathrm{R}_{\mathrm{ext}}=68 \Omega, \mathrm{~V}_{\mathrm{LEDs}}=120 \mathrm{~V}\right)$	$\mathrm{l}_{\text {out2 }}$	11.5	14.0	15.5	mA
Bias Current $\left(\mathrm{V}_{\text {in }}=120 \mathrm{Vdc}, \mathrm{R}_{\text {ext }}=\right.$ Open, $\left.\mathrm{R}_{\text {shunt }}=80 \mathrm{k} \Omega\right)$	$\mathrm{I}_{\text {Bias }}$	-	1.1	2.0	mA
Voltage Overhead (Note 4)	$\mathrm{V}_{\text {over }}$	5.0	-	-	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Device's pin 4 connected to the LEDs array (as shown in Figure 5).
4. $\mathrm{V}_{\text {over }}=\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {LEDs }}$.

TYPICAL PERFORMANCE CURVES
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ UNLESS OTHERWISE NOTED)

Figure 1. Output Current (lout) vs. External Resistor ($\mathbf{R e x t}$)

Figure 3. Total Power Dissipation (P_{D}) vs. Ambient Temperature (T_{A})

Figure 2. $\mathbf{V}_{\text {sense }}$ vs. Junction Temperature

Figure 4. Current Regulation vs. Junction Temperature

APPLICATION INFORMATION

Design Guide for DC Applications

1. Define LED's current:

A $\mathrm{I}_{\text {LED }}=30 \mathrm{~mA}$
2. Calculate Resistor Value for $\mathrm{R}_{\text {ext }}$:
$A R_{\text {ext }}=V_{\text {sense }}$ (see Figure 2) $/ I_{\text {LED }}$
B R ext $=0.7\left(\mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right) / 0.030=24 \Omega$
3. Define V_{in} :

A Per example in Figure 5, $\mathrm{V}_{\mathrm{in}}=120 \mathrm{Vdc}$
4. Define $\mathrm{V}_{\text {LED }} @ \mathrm{I}_{\text {LED }}$ per LED supplier's data sheet: per example in Figure 5,
$A V_{\text {LED }}=3.0 \mathrm{~V}$ (30 LEDs in series $)$
B $V_{\text {LEDs }}=90 \mathrm{~V}$
5. Calculate Vdrop across the NUD4001 device:

A $V_{\text {drop }}=V_{\text {in }}-V_{\text {sense }}-V_{\text {LEDs }}$
B $\mathrm{V}_{\text {drop }}=120 \mathrm{~V}-0.7 \mathrm{~V}-90 \mathrm{~V}$
$\mathrm{C}_{\text {drop }}=29.3 \mathrm{~V}$
6. Calculate Power Dissipation on the NUD4001 device's driver:
A $P_{D_{D} \text { driver }}=V_{\text {drop }} * I_{\text {out }}$
B $\mathrm{P}_{\mathrm{D} \text { _driver }}=29.3 \mathrm{~V} \times 0.030 \mathrm{~A}$
C $\mathrm{P}_{\mathrm{D} \text { _driver }}=0.879 \mathrm{~W}$
7. Establish Power Dissipation on the NUD4001 device's control circuit per below formula:

$$
\begin{aligned}
& \mathrm{AP}_{\mathrm{D} _ \text {control }}=\left(\mathrm{V}_{\text {in }}-1.4-\mathrm{V}_{\mathrm{LEDs}}\right)^{2} / 20,000 \\
& \text { B P P } \mathrm{D}_{\text {_control }}=0.040 \mathrm{~W}
\end{aligned}
$$

8. Calculate Total Power Dissipation on the device:
$\mathrm{A}_{\mathrm{D}_{-} \text {total }}=\mathrm{P}_{\mathrm{D}_{-} \text {driver }}+\mathrm{P}_{\mathrm{D} _ \text {control }}$
B $\mathrm{P}_{\mathrm{D}_{-} \text {total }}=0.879 \mathrm{~W}+0.040 \mathrm{~W}=0.919 \mathrm{~W}$
9. If $\mathrm{P}_{\mathrm{D}_{\text {_total }}}>1.13 \mathrm{~W}$ (or derated value per

Figure 3), then select the most appropriate recourse and repeat steps $1-8$:
A Reduce $V_{\text {in }}$
B Reconfigure LED array to reduce $\mathrm{V}_{\text {drop }}$
C Reduce $\mathrm{I}_{\text {out }}$ by increasing $\mathrm{R}_{\text {ext }}$
D Use external resistors or parallel device's configuration
10. Calculate the junction temperature using the thermal information on Page 8 and refer to Figure 4 to check the output current drop due to the calculated junction temperature. If desired, compensate it by adjusting the value of $\mathrm{R}_{\text {ext }}$.

Figure 5. 120 V Application (Series LED's Array)

APPLICATION INFORMATION (CONTINUED)

Design Guide for AC Applications

1. Define LED's current:

A $\mathrm{I}_{\text {LED }}=30 \mathrm{~mA}$
2. Define V_{in} :

A Per example in Figure 5, $\mathrm{V}_{\mathrm{in}}=120$ Vac
3. Define $\mathrm{V}_{\text {LED }} @ \mathrm{I}_{\text {LED }}$ per LED supplier's data sheet:
A Per example in Figure 6,
$\mathrm{V}_{\text {LED }}=3.0 \mathrm{~V}$ (30 LEDs in series)
$\mathrm{V}_{\text {LEDs }}=90 \mathrm{~V}$
4. Calculate Resistor Value for $\mathrm{R}_{\text {ext }}$:

The calculation of the $\mathrm{R}_{\text {ext }}$ for AC applications is totally different than for DC. This is because current conduction only occurs during the time that the ac cycles' amplitude is higher than $\mathrm{V}_{\text {LEDs. }}$. Therefore $\mathrm{R}_{\text {ext }}$ calculation is now dependent on the peak current value and the conduction time.
A Calculate θ for $\mathrm{V}_{\text {LEDs }}=90 \mathrm{~V}$:

$$
\begin{aligned}
& V=V_{\text {peak }} \times \operatorname{Sin} \theta \\
& 90 \mathrm{~V}=(120 \times \sqrt{2}) \times \operatorname{Sin} \theta \\
& \theta=32.027^{\circ}
\end{aligned}
$$

B Calculate conduction time for $\theta=32.027^{\circ}$. For a sinuousoidal waveform Vpeak happens at $\theta=90^{\circ}$. This translates to 4.165 ms in time for a 60 Hz frequency, therefore 32.027° is 1.48 ms and finally:
Conduction time
$=(4.165 \mathrm{~ms}-1.48 \mathrm{~ms}) \times 2$
$=5.37 \mathrm{~ms}$
C Calculate the $\mathrm{I}_{\text {peak }}$ needed for $\mathrm{I}_{(\mathrm{avg})}=30 \mathrm{~mA}$ Since a full bridge rectifier is being used (per Figure 6), the frequency of the voltage signal applied to the NUD4011 device is now 120 Hz . To simplify the calculation, it is assumed that the 120 Hz waveform is square shaped so that the following formula can be used:

$$
I_{(\mathrm{avg})}=I_{\text {peak }} \times \text { duty cycle } ;
$$

If 8.33 ms is 100% duty cycle, then 5.37 ms is 64.46%, then:
$\mathrm{I}_{\text {peak }}=\mathrm{I}_{(\mathrm{avg})} /$ duty cycle
$\mathrm{I}_{\text {peak }}=30 \mathrm{~mA} / 0.645=46 \mathrm{~mA}$
D Calculate $\mathrm{R}_{\text {ext }}$
$\mathrm{R}_{\mathrm{ext}}=0.7 \mathrm{~V} / \mathrm{I}_{\text {peak }}$
$\mathrm{R}_{\mathrm{ext}}=15.21 \Omega$
5. Calculate $\mathrm{V}_{\text {drop }}$ across the NUD4011 device:

A $\mathrm{V}_{\text {drop }}=\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {sense }}-\mathrm{V}_{\text {LEDs }}$
$B \mathrm{~V}_{\text {drop }}=120 \mathrm{~V}-0.7 \mathrm{~V}-90 \mathrm{~V}$
$C V_{\text {drop }}=29.3 \mathrm{~V}$

Figure 6. 120 Vac Application (Series LED's array)
6. Calculate Power Dissipation on the NUD4011 device's driver:
A $\mathrm{P}_{\text {D_driver }}=\mathrm{V}_{\text {drop }} * \mathrm{I}_{\text {(avg })}$
B $\mathrm{P}_{\text {D_driver }}=29.3 \mathrm{~V} \times 0.030 \mathrm{~A}$
C $\mathrm{P}_{\text {D_driver }}=0.879 \mathrm{~W}$
7. Establish Power Dissipation on the NUD4011device's control circuit per below formula:
A $\mathrm{P}_{\mathrm{D} _ \text {control }}=\left(\mathrm{V}_{\text {in }}-1.4-\mathrm{V}_{\text {LEDs }}\right)^{2} / 20,000$
B P_{D} _control $=0.040 \mathrm{~W}$
8. Calculate Total Power Dissipation on the device:

A $\mathrm{P}_{\text {D_total }}=\mathrm{P}_{\mathrm{D} _ \text {driver }}+\mathrm{P}_{\mathrm{D} _ \text {control }}$
B $\mathrm{P}_{\text {D_total }}=0.8 \overline{7} 9 \mathrm{~W}+0.0 \overline{4} 0 \mathrm{~W}=0.919 \mathrm{~W}$
9. If $\mathrm{P}_{\mathrm{D}_{-} \text {total }}>1.13 \mathrm{~W}$ (or derated value per Figure 3), then select the most appropriate recourse and repeat steps $1-8$:
A Reduce $\mathrm{V}_{\text {in }}$
B Reconfigure LED array to reduce $\mathrm{V}_{\mathrm{drop}}$
C Reduce $\mathrm{I}_{\text {out }}$ by increasing $\mathrm{R}_{\text {ext }}$
D Use external resistors or parallel device's configuration
10. Calculate the junction temperature using the thermal information on Page 8 and refer to Figure 4 to check the output current drop due to the calculated junction temperature. If desired, compensate it by adjusting the value of $\mathrm{R}_{\mathrm{ext}}$.

TYPICAL APPLICATION CIRCUITS

Figure 7. 120 Vdc Application Circuit for a Series Array of 30 LEDs ($\mathbf{3 . 0} \mathrm{V}, 20 \mathrm{~mA}$)

Figure 8. 120 Vac Application Circuit for a Series Array of 30 LEDs ($3.0 \mathrm{~V}, 20 \mathrm{~mA}$)

TYPICAL APPLICATION CIRCUITS (continued)

Figure 9. 120 Vdc Application with PWM / Enable Function, 30 LEDs in Series ($\mathbf{3 . 0}$ V, 20 mA)

Figure 10. 120 Vac Application with PWM / Enable Function, 30 LEDs in Series ($\mathbf{3 . 0} \mathbf{~ V , ~} 20 \mathrm{~mA}$)

THERMAL INFORMATION

NUD4011 Power Dissipation

The power dissipation of the $\mathrm{SO}-8$ is a function of the pad size. This can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by $\mathrm{T}_{\mathrm{J}(\max)}$, the maximum rated junction temperature of the die, $\mathrm{R}_{\theta J A}$, the thermal resistance from the device junction to ambient, and the operating temperature, T_{A}. Using the values provided on the data sheet for the $\mathrm{SO}-8$ package, P_{D} can be calculated as follows:

$$
P_{D}=\frac{T_{J m a x}-T_{A}}{R_{\theta J A}}
$$

The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature T_{A} of $25^{\circ} \mathrm{C}$, one can calculate the power dissipation of the device which in this case is 1.13 W .

$$
\mathrm{PD}=\frac{150^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}{110^{\circ} \mathrm{C}}=1.13 \mathrm{~W}
$$

The $110^{\circ} \mathrm{C} / \mathrm{W}$ for the SO-8 package assumes the use of a FR-4 copper board with an area of 2 square inches with 2 oz coverage to achieve a power dissipation of 1.13 W . There are other alternatives to achieving higher dissipation from the SOIC package. One of them is to increase the copper area to
reduce the thermal resistance. Figure 11 shows how the thermal resistance changes for different copper areas. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad®. Using a board material such as Thermal Clad or an aluminum core board, the power dissipation can be even doubled using the same footprint.

Figure 11. $\theta \mathrm{JA}$ versus Board Area

Figure 12. Transient Thermal Response

[^0]

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
3. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
4. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
5. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	\circ	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC
MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L Wafer Lot
= Year
= Work Week
= Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^1] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
2. V2OUT

V1OUT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29:

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
7. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR, DIE,
2. COLLECTOR, \#1
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT
4. GROUND

GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14:
PIN 1. N-SOURCE
2. N-GATE

P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT
5. SOURCE

SOURCE
7. SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE

1. DRAIN, DIE
2. DRAIN, \#1
3. DRAIN, \#
4. DRAIN, \#2
5. DRAIN, \#2
6. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DA $\bar{S} I C \bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBUULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: Thermal Clad is a registered trademark of the Bergquist Company.

[^1]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

