RM0444 Reference manual # STM32G0x1 advanced Arm®-based 32-bit MCUs #### Introduction This reference manual complements the datasheets of the STM32G0x1 microcontrollers, providing information required for application and in particular for software development. It pertains to the superset of feature sets available on STM32G0x1 microcontrollers. For feature set, ordering information, and mechanical and electrical characteristics of a particular STM32G0x1 device, refer to its corresponding datasheet. For information on the Arm[®] Cortex[®]-M0+ core, refer to the Cortex[®]-M0+ technical reference manual. ### **Related documents** - "Cortex®-M0+ Technical Reference Manual", available from: http://infocenter.arm.com - PM0223 programming manual for Cortex[®]-M0+ core^(a) - STM32G0x1 datasheets^(a) - AN2606 application note on booting STM32 MCUs^(a) November 2020 RM0444 Rev 5 1/1390 a. Available on STMicroelectronics website www.st.com ### **Contents** | 1 | Docu | mentation conventions5 | 3 | |---|------|--|---| | | 1.1 | General information | 3 | | | 1.2 | List of abbreviations for registers 5 | 3 | | | 1.3 | Glossary | 4 | | | 1.4 | Availability of peripherals | 4 | | 2 | Mem | ory and bus architecture5 | 6 | | | 2.1 | System architecture 5 | 6 | | | 2.2 | Memory organization | 8 | | | | 2.2.1 Introduction | 8 | | | | 2.2.2 Memory map and register boundary addresses | 9 | | | 2.3 | Embedded SRAM | 4 | | | 2.4 | Flash memory overview | 5 | | | 2.5 | Boot configuration | 5 | | 3 | Emb | edded Flash memory (FLASH)68 | 8 | | | 3.1 | FLASH Introduction | 8 | | | 3.2 | FLASH main features | 8 | | | 3.3 | FLASH functional description | 9 | | | | 3.3.1 FLASH memory organization | 9 | | | | 3.3.2 FLASH empty check | 1 | | | | 3.3.3 FLASH error code correction (ECC) | 1 | | | | 3.3.4 FLASH read access latency | 2 | | | | 3.3.5 FLASH memory acceleration | 3 | | | | 3.3.6 FLASH program and erase operations | 4 | | | | 3.3.7 FLASH Main memory erase sequences | 4 | | | | 3.3.8 FLASH Main memory programming sequences | 6 | | | | 3.3.9 Read-while-write (RWW) function | 9 | | | 3.4 | FLASH option bytes | 0 | | | | 3.4.1 FLASH option byte description | 0 | | | | 3.4.2 FLASH option byte programming | 9 | | | 3.5 | FLASH memory protection | 1 | | | | 3.5.1 FLASH read protection (RDP) | 1 | | | 3.5.2 | FLASH proprietary code readout protection (PCROP) | 94 | |--------|----------|--|-----| | | 3.5.3 | FLASH write protection (WRP) | 96 | | | 3.5.4 | Securable memory area | 97 | | | 3.5.5 | Disabling core debug access | 98 | | | 3.5.6 | Forcing boot from Flash memory | 98 | | 3.6 | FLASH | interrupts | 98 | | 3.7 | FLASH | registers | 00 | | | 3.7.1 | FLASH access control register (FLASH_ACR) | 00 | | | 3.7.2 | FLASH key register (FLASH_KEYR) | | | | 3.7.3 | FLASH option key register (FLASH_OPTKEYR) | 01 | | | 3.7.4 | FLASH status register (FLASH_SR) | | | | 3.7.5 | FLASH control register (FLASH_CR) | 04 | | | 3.7.6 | FLASH ECC register (FLASH_ECCR) | 06 | | | 3.7.7 | FLASH ECC register 2 (FLASH_ECCR2) | 07 | | | 3.7.8 | FLASH option register (FLASH_OPTR) | 08 | | | 3.7.9 | FLASH PCROP area A start address register (FLASH_PCROP1ASR) | 10 | | | 3.7.10 | FLASH PCROP area A end address register (FLASH_PCROP1AER) | 10 | | | 3.7.11 | FLASH WRP area A address register (FLASH_WRP1AR) | 111 | | | 3.7.12 | FLASH WRP area B address register (FLASH_WRP1BR) 1 | 12 | | | 3.7.13 | FLASH PCROP area B start address register (FLASH_PCROP1BSR) | 12 | | | 3.7.14 | FLASH PCROP area B end address register (FLASH_PCROP1BER) | 13 | | | 3.7.15 | FLASH PCROP2 area A start address register (FLASH_PCROP2ASR) | 13 | | | 3.7.16 | FLASH PCROP2 area A end address register (FLASH_PCROP2AER) | 14 | | | 3.7.17 | FLASH WRP2 area A address register (FLASH_WRP2AR) 1 | 14 | | | 3.7.18 | FLASH WRP2 area B address register (FLASH_WRP2BR) 1 | 15 | | | 3.7.19 | FLASH PCROP2 area B start address register (FLASH_PCROP2BSR) | 15 | | | 3.7.20 | FLASH PCROP2 area B end address register (FLASH_PCROP2BER) | 16 | | | 3.7.21 | FLASH security register (FLASH_SECR) 1 | 16 | | | 3.7.22 | FLASH register map 1 | 17 | | 4 Powe | er contr | ol (PWR) | 19 | | 4.1 | Power | supplies | 119 | |-----|--------|---|-------| | | 4.1.1 | ADC and DAC reference voltage | 120 | | | 4.1.2 | Battery backup of RTC domain | 120 | | | 4.1.3 | Voltage regulator | 122 | | | 4.1.4 | Dynamic voltage scaling management | 123 | | 4.2 | Power | supply supervisor | . 124 | | | 4.2.1 | Power-on reset (POR) / power-down reset (PDR) / brown-out reset (BOR) | 124 | | | 4.2.2 | Programmable voltage detector (PVD) | 125 | | 4.3 | Low-po | ower modes | . 126 | | | 4.3.1 | Run mode | 131 | | | 4.3.2 | Low-power run mode (LP run) | 131 | | | 4.3.3 | Low-power modes | 132 | | | 4.3.4 | Sleep mode | 133 | | | 4.3.5 | Low-power sleep mode (LP sleep) | 134 | | | 4.3.6 | Stop 0 mode | 135 | | | 4.3.7 | Stop 1 mode | 138 | | | 4.3.8 | Standby mode | 139 | | | 4.3.9 | Shutdown mode | 141 | | | 4.3.10 | Auto-wakeup from low-power mode | 142 | | 4.4 | PWR re | egisters | . 143 | | | 4.4.1 | Power control register 1 (PWR_CR1) | 143 | | | 4.4.2 | Power control register 2 (PWR_CR2) | 144 | | | 4.4.3 | Power control register 3 (PWR_CR3) | 146 | | | 4.4.4 | Power control register 4 (PWR_CR4) | 147 | | | 4.4.5 | Power status register 1 (PWR_SR1) | 148 | | | 4.4.6 | Power status register 2 (PWR_SR2) | 149 | | | 4.4.7 | Power status clear register (PWR_SCR) | 151 | | | 4.4.8 | Power Port A pull-up control register (PWR_PUCRA) | 151 | | | 4.4.9 | Power Port A pull-down control register (PWR_PDCRA) | 152 | | | 4.4.10 | Power Port B pull-up control register (PWR_PUCRB) | 152 | | | 4.4.11 | Power Port B pull-down control register (PWR_PDCRB) | 153 | | | 4.4.12 | Power Port C pull-up control register (PWR_PUCRC) | 153 | | | 4.4.13 | Power Port C pull-down control register (PWR_PDCRC) | 154 | | | 4.4.14 | Power Port D pull-up control register (PWR_PUCRD) | 154 | | | 4.4.15 | Power Port D pull-down control register (PWR_PDCRD) | 155 | | | 4.4.16 | Power Port E pull-up control register (PWR_PUCRE) | 155 | | | | 4.4.17 | Power Port E pull-down control register (PWR_PDCRE) | 156 | |---|------|-----------|--|-----| | | | 4.4.18 | Power Port F pull-up control register (PWR_PUCRF) | 156 | | | | 4.4.19 | Power Port F pull-down control register (PWR_PDCRF) | 157 | | | | 4.4.20 | PWR register map | 158 | | 5 | Rese | et and cl | ock control (RCC) | 160 | | | 5.1 | Reset | | 160 | | | | 5.1.1 | Power reset | 160 | | | | 5.1.2 | System reset | 160 | | | | 5.1.3 | RTC domain reset | 162 | | | 5.2 | Clocks | | 163 | | | - | 5.2.1 | HSE clock | | | | | 5.2.2 | HSI16 clock | | | | | 5.2.3 | HSI48 clock | | | | | 5.2.4 | PLL | | | | | 5.2.5 | LSE clock | 170 | | | | 5.2.6 | LSI clock | 170 | | | | 5.2.7 | System clock (SYSCLK) selection | 171 | | | | 5.2.8 | Clock source frequency versus voltage scaling | | | | | 5.2.9 | Clock security system (CSS) | | | | | 5.2.10 | Clock security system for LSE clock (LSECSS) | | | | | 5.2.11 | ADC clock | | | | | 5.2.12 | RTC clock | 172 | | | | 5.2.13 | Timer clock | 173 | | | | 5.2.14 | Watchdog clock | 173 | | | | 5.2.15 | Clock-out capability | 173 | | | | 5.2.16 | Internal/external clock measurement with TIM14/TIM16/TIM17 | 174 | | | | 5.2.17 | Peripheral clock enable registers | 176 | | | 5.3 | Low-po | ower modes | 177 | | | 5.4 | RCC re | egisters | 178 | | | | 5.4.1 | Clock control register (RCC_CR) | | | | | 5.4.2 | Internal clock source calibration register (RCC_ICSCR) | | | | | 5.4.3 | Clock configuration register (RCC_CFGR) | | | | | 5.4.4 | PLL configuration register (RCC_PLLCFGR) | | | | | 5.4.5 | RCC clock recovery RC register (RCC_CRRCR) | | | | | 5.4.6 | Clock interrupt enable register (RCC_CIER) | | | | | 5.4.7 | Clock interrupt flag register (RCC_CIFR) | | | | | | | | | | | | | | | | | 5.4.8 | Clock interrupt clear register (RCC_CICR) | . 189 | |---|------|---------|---|-------| | | | 5.4.9 | I/O port reset register (RCC_IOPRSTR) | . 190 | | | | 5.4.10 | AHB peripheral reset register (RCC_AHBRSTR) | . 190 | | | | 5.4.11 | APB peripheral reset register 1 (RCC_APBRSTR1) | . 191 | | | | 5.4.12 | APB peripheral reset register 2 (RCC_APBRSTR2) | . 194 | | | | 5.4.13 | I/O port clock enable register (RCC_IOPENR) | . 196 | | | | 5.4.14 | AHB peripheral clock enable register (RCC_AHBENR) | . 197 | | | | 5.4.15 | APB peripheral clock enable register 1 (RCC_APBENR1) | . 198 | | | | 5.4.16 | APB peripheral clock enable register 2(RCC_APBENR2) | . 201 | | | | 5.4.17 | I/O port in Sleep mode clock enable register (RCC_IOPSMENR) | . 202 | | | | 5.4.18 | AHB peripheral clock enable in Sleep/Stop mode register (RCC_AHBSMENR) | . 203 | | | | 5.4.19 | APB peripheral clock enable in Sleep/Stop mode register 1 (RCC_APBSMENR1) | . 205 | | | | 5.4.20 | APB peripheral clock enable in Sleep/Stop mode register 2 (RCC_APBSMENR2) | . 208 | | | | 5.4.21 | Peripherals independent clock configuration register (RCC_CCIPR) | . 209 | | | | 5.4.22 | Peripherals independent clock configuration register 2 (RCC_CCIPR2) | . 212 | | | | 5.4.23 | RTC domain control register (RCC_BDCR) | . 213 | | | | 5.4.24 | Control/status register (RCC_CSR) | . 215 | | | | 5.4.25 | RCC register map | . 217 | | 6 | Cloc | k recov | ery system (CRS) | . 221 | | | 6.1 | Introdu | iction | . 221 | | | 6.2 | CRS m | nain features | . 221 | | | 6.3 | | nplementation | | | | 6.4 | | unctional description | | | | 0.1 | 6.4.1 | CRS block diagram | | | | | 6.4.2 | Synchronization input | | | | | 6.4.3 | Frequency error measurement | | | | | 6.4.4 | Frequency error evaluation and automatic trimming | | | | | 6.4.5 | CRS initialization and configuration | | | | 6.5 | |
ow-power modes | | | | 6.6 | | nterrupts | | | | 6.7 | | · | | | | 0.7 | | egisters | | | | | 6.7.1 | CRS control register (CRS_CR) | . 226 | | | | 6.7.2 | CRS configuration register (CRS_CFGR) | . 227 | |---|-----|----------|---|-------| | | | 6.7.3 | CRS interrupt and status register (CRS_ISR) | | | | | 6.7.4 | CRS interrupt flag clear register (CRS_ICR) | | | | | 6.7.5 | CRS register map | | | _ | | | uo (obio) | | | 7 | | | oose I/Os (GPIO) | | | | 7.1 | Introduc | ction | 232 | | | 7.2 | GPIO m | nain features | 232 | | | 7.3 | GPIO fu | unctional description | 232 | | | | 7.3.1 | General-purpose I/O (GPIO) | . 234 | | | | 7.3.2 | I/O pin alternate function multiplexer and mapping | . 234 | | | | 7.3.3 | I/O port control registers | . 235 | | | | 7.3.4 | I/O port data registers | . 235 | | | | 7.3.5 | I/O data bitwise handling | . 236 | | | | 7.3.6 | GPIO locking mechanism | . 236 | | | | 7.3.7 | I/O alternate function input/output | . 236 | | | | 7.3.8 | External interrupt/wakeup lines | . 237 | | | | 7.3.9 | Input configuration | . 237 | | | | 7.3.10 | Output configuration | . 238 | | | | 7.3.11 | Alternate function configuration | . 238 | | | | 7.3.12 | Analog configuration | . 239 | | | | 7.3.13 | Using the HSE or LSE oscillator pins as GPIOs | . 240 | | | | 7.3.14 | Using the GPIO pins in the RTC domain | . 240 | | | | 7.3.15 | USB PD / Dead battery support | . 240 | | | 7.4 | GPIO re | egisters | 241 | | | | 7.4.1 | GPIO port mode register (GPIOx_MODER) (x = A to F) | 2/1 | | | | 7.4.2 | GPIO port output type register (GPIOx OTYPER) | . 471 | | | | 1.4.2 | (x = A to F) | . 241 | | | | 7.4.3 | GPIO port output speed register (GPIOx_OSPEEDR) (x = A to F) | . 242 | | | | 7.4.4 | GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A to F) | . 242 | | | | 7.4.5 | GPIO port input data register (GPIOx_IDR) (x = A to F) | . 243 | | | | 7.4.6 | GPIO port output data register (GPIOx_ODR) (x = A to F) | . 243 | | | | 7.4.7 | GPIO port bit set/reset register (GPIOx_BSRR) (x = A to F) | 243 | | | | | (* 7.00.) | . 240 | | | | 7.4.8 | GPIO port configuration lock register (GPIOx_LCKR) (x = A to F) | |---|------|---------|---| | | | 7.4.9 | GPIO alternate function low register (GPIOx_AFRL) (x = A to F) | | | | 7.4.10 | GPIO alternate function high register (GPIOx_AFRH) (x = A to F) | | | | 7.4.11 | GPIO port bit reset register (GPIOx_BRR) (x = A to F) | | | | 7.4.12 | GPIO register map | | 8 | Syst | em conf | iguration controller (SYSCFG) 248 | | | 8.1 | SYSCF | G registers | | | | 8.1.1 | SYSCFG configuration register 1 (SYSCFG_CFGR1) | | | | 8.1.2 | SYSCFG configuration register 2 (SYSCFG_CFGR2) | | | | 8.1.3 | SYSCFG interrupt line 0 status register (SYSCFG_ITLINE0) 253 | | | | 8.1.4 | SYSCFG interrupt line 1 status register (SYSCFG_ITLINE1) 254 | | | | 8.1.5 | SYSCFG interrupt line 2 status register (SYSCFG_ITLINE2) 254 | | | | 8.1.6 | SYSCFG interrupt line 3 status register (SYSCFG_ITLINE3) 254 | | | | 8.1.7 | SYSCFG interrupt line 4 status register (SYSCFG_ITLINE4) 255 | | | | 8.1.8 | SYSCFG interrupt line 5 status register (SYSCFG_ITLINE5) 256 | | | | 8.1.9 | SYSCFG interrupt line 6 status register (SYSCFG_ITLINE6) 256 | | | | 8.1.10 | SYSCFG interrupt line 7 status register (SYSCFG_ITLINE7) 256 | | | | 8.1.11 | SYSCFG interrupt line 8 status register (SYSCFG_ITLINE8) 257 | | | | 8.1.12 | SYSCFG interrupt line 9 status register (SYSCFG_ITLINE9) 257 | | | | 8.1.13 | SYSCFG interrupt line 10 status register (SYSCFG_ITLINE10) 258 | | | | 8.1.14 | SYSCFG interrupt line 11 status register (SYSCFG_ITLINE11) 258 | | | | 8.1.15 | SYSCFG interrupt line 12 status register (SYSCFG_ITLINE12) 259 | | | | 8.1.16 | SYSCFG interrupt line 13 status register (SYSCFG_ITLINE13) 259 | | | | 8.1.17 | SYSCFG interrupt line 14 status register (SYSCFG_ITLINE14) 260 | | | | 8.1.18 | SYSCFG interrupt line 15 status register (SYSCFG_ITLINE15) 260 | | | | 8.1.19 | SYSCFG interrupt line 16 status register (SYSCFG_ITLINE16) 260 | | | | 8.1.20 | SYSCFG interrupt line 17 status register (SYSCFG_ITLINE17) 261 | | | | 8.1.21 | SYSCFG interrupt line 18 status register (SYSCFG_ITLINE18) 261 | | | | 8.1.22 | SYSCFG interrupt line 19 status register (SYSCFG_ITLINE19) 261 | | | | 8.1.23 | SYSCFG interrupt line 20 status register (SYSCFG_ITLINE20) 262 | | | | 8.1.24 | SYSCFG interrupt line 21 status register (SYSCFG_ITLINE21) 262 | | | | 8.1.25 | SYSCFG interrupt line 22 status register (SYSCFG_ITLINE22) 262 | | | | 8.1.26 | SYSCFG interrupt line 23 status register (SYSCFG_ITLINE23) 263 | | | | 8.1.27 | SYSCFG interrupt line 24 status register (SYSCFG_ITLINE24) 263 | **57**/ | register (SYSCFG_ITLINE25) | |---| | register (SYSCFG_ITLINE27) | | register (SYSCFG_ITLINE28) | | register (SYSCFG_ITLINE29) | | register (SYSCFG_ITLINE30) 265 register (SYSCFG_ITLINE31) 266 | | register (SYSCFG_ITLINE31) 266 | | | | | | | | | | | | IM15, TIM16, and TIM17,
TIM15 | | TIM15 | | · | | | | | | IM6, TIM7, TIM15, LPTIM1, LPTIM2, | | D2, RTC and TAMP, to TIM2, TIM14, | | MP2, and COMP3 to LPTIM1 | | nd TIM15, to COMP1, COMP2, | | ADC274 | | MP3 to TIM1, TIM2, TIM3, TIM4, TIM15, | | 2, TIM3, TIM4, TIM15, TIM16,
 | | nd USART4, to IRTIM276 | | M2, to DMAMUX | | 277 | | | | | | 278 | | 278 | | 278 | | | | | 10.4 | DMA fu | ınctional description | . 278 | |----|------|---------|--|-------| | | | 10.4.1 | DMA block diagram | . 278 | | | | 10.4.2 | DMA pins and internal signals | . 279 | | | | 10.4.3 | DMA transfers | . 279 | | | | 10.4.4 | DMA arbitration | . 280 | | | | 10.4.5 | DMA channels | . 281 | | | | 10.4.6 | DMA data width, alignment and endianness | . 284 | | | | 10.4.7 | DMA error management | . 286 | | | 10.5 | DMA in | terrupts | . 286 | | | 10.6 | DMA re | egisters | . 286 | | | | 10.6.1 | DMA interrupt status register (DMA_ISR) | . 287 | | | | 10.6.2 | DMA interrupt flag clear register (DMA_IFCR) | . 289 | | | | 10.6.3 | DMA channel x configuration register (DMA_CCRx) | . 290 | | | | 10.6.4 | DMA channel x number of data to transfer register (DMA_CNDTRx) | . 293 | | | | 10.6.5 | DMA channel x peripheral address register (DMA_CPARx) | . 294 | | | | 10.6.6 | DMA channel x memory address register (DMA_CMARx) | . 294 | | | | 10.6.7 | DMA register map | . 295 | | 11 | DMA | reques | t multiplexer (DMAMUX) | 298 | | | 11.1 | Introdu | ction | . 298 | | | 11.2 | DMAM | UX main features | . 299 | | | 11.3 | DMAM | UX implementation | . 299 | | | | 11.3.1 | DMAMUX instantiation | | | | | 11.3.2 | DMAMUX mapping | | | | 11.4 | DMAM | UX functional description | | | | | 11.4.1 | DMAMUX block diagram | | | | | 11.4.2 | DMAMUX signals | | | | | 11.4.3 | DMAMUX channels | | | | | 11.4.4 | DMAMUX request line multiplexer | . 303 | | | | 11.4.5 | DMAMUX request generator | | | | 11.5 | DMAM | UX interrupts | . 307 | | | 11.6 | | UX registers | | | | | 11.6.1 | DMAMUX request line multiplexer channel x configuration register (DMAMUX_CxCR) | | | | | 11.6.2 | DMAMUX request line multiplexer interrupt channel status register (DMAMUX_CSR) | | | | | 11.6.3 | DMAMUX request line multiplexer interrupt clear flag register (DMAMUX_CFR) | 309 | |----|------|----------|--|-----| | | | 11.6.4 | DMAMUX request generator channel x configuration register (DMAMUX_RGxCR) | 310 | | | | 11.6.5 | DMAMUX request generator interrupt status register (DMAMUX_RGSR) | 311 | | | | 11.6.6 | DMAMUX request generator interrupt clear flag register (DMAMUX_RGCFR) | 311 | | | | 11.6.7 | DMAMUX register map | 312 | | 12 | Nest | ed vecto | ored interrupt controller (NVIC) | 314 | | | 12.1 | Main fe | atures | 314 | | | 12.2 | SysTick | calibration value register | 314 | | | 12.3 | Interrup | ot and exception vectors | 314 | | 13 | Exte | nded int | errupt and event controller (EXTI) | 317 | | | 13.1 | EXTI m | ain features | 317 | | | 13.2 | EXTI bl | ock diagram | 317 | | | | 13.2.1 | EXTI connections between peripherals and CPU | 319 | | | 13.3 | EXTI fu | nctional description | 319 | | | | 13.3.1 | EXTI configurable event input wakeup | 320 | | | | 13.3.2 | EXTI direct event input wakeup | 321 | | | | 13.3.3 | EXTI mux | 321 | | | 13.4 | EXTI fu | nctional behavior | 323 | | | 13.5 | EXTI re | gisters | 324 | | | | 13.5.1 | EXTI rising trigger selection register (EXTI_RTSR1) | 324 | | | | 13.5.2 | EXTI falling trigger selection register 1 (EXTI_FTSR1) | 325 | | | | 13.5.3 | EXTI software interrupt event register 1 (EXTI_SWIER1) | 325 | | | | 13.5.4 | EXTI rising edge pending register 1 (EXTI_RPR1) | 326 | | | | 13.5.5 | EXTI falling edge pending register 1 (EXTI_FPR1) | 327 | | | | 13.5.6 | EXTI rising trigger selection register 2 (EXTI_RTSR2) | 328 | | | | 13.5.7 | EXTI falling trigger selection register 2 (EXTI_FTSR2) | 328 | | | | 13.5.8 | EXTI software interrupt event register 2 (EXTI_SWIER2) | 329 | | | | 13.5.9 | EXTI rising edge pending register 2 (EXTI_RPR2) | 329 | | | | 13.5.10 | EXTI falling edge pending register 2 (EXTI_FPR2) | 330 | | | | 13.5.11 | EXTI external interrupt selection register (EXTI_EXTICRx) | 330 | | | | 13.5.12 | EXTI CPU wakeup with interrupt mask register (EXTI_IMR1) | 332 | | | | 13.5.13 | EXTI CPU wakeup with event mask register (EXTI_EMR1) | 332 | |----|---------------|---
---|--| | | | 13.5.14 | EXTI CPU wakeup with interrupt mask register (EXTI_IMR2) | 333 | | | | 13.5.15 | EXTI CPU wakeup with event mask register (EXTI_EMR2) | 333 | | | | 13.5.16 | EXTI register map | 334 | | 14 | Cycli | c redun | dancy check calculation unit (CRC) | 336 | | | 14.1 | Introduc | ction | 336 | | | 14.2 | CRC ma | ain features | 336 | | | 14.3 | CRC fu | nctional description | 337 | | | | 14.3.1 | CRC block diagram | | | | | 14.3.2 | CRC internal signals | 337 | | | | 14.3.3 | CRC operation | 337 | | | 14.4 | CRC re | gisters | 339 | | | | 14.4.1 | CRC data register (CRC_DR) | 339 | | | | 14.4.2 | CRC independent data register (CRC_IDR) | 339 | | | | 14.4.3 | CRC control register (CRC_CR) | 340 | | | | 14.4.4 | CRC initial value (CRC_INIT) | 341 | | | | 14.4.5 | CRC polynomial (CRC_POL) | 341 | | | | 14.4.6 | CRC register map | 342 | | | | | | | | 15 | Analo | og-to-di | gital converter (ADC) | 343 | | 15 | Anal o | | gital converter (ADC) | | | 15 | | Introduc | - | 343 | | 15 | 15.1 | Introduc
ADC ma | ction | 343 | | 15 | 15.1
15.2 | Introduc
ADC ma | ctionain features | 343
344
345 | | 15 | 15.1
15.2 | Introduce
ADC ma | ctionain features | 343
344
345 | | 15 | 15.1
15.2 | ADC ma
ADC ful
15.3.1 | ction | 343
344
345
346 | | 15 | 15.1
15.2 | ADC fur
15.3.1
15.3.2 | ction ain features nctional description ADC pins and internal signals ADC voltage regulator (ADVREGEN) | 343
344
345
345
346 | | 15 | 15.1
15.2 | ADC fur
15.3.1
15.3.2
15.3.3 | ction ain features nctional description ADC pins and internal signals ADC voltage regulator (ADVREGEN) Calibration (ADCAL) | 343
344
345
345
346
347 | | 15 | 15.1
15.2 | ADC fur
15.3.1
15.3.2
15.3.3
15.3.4 | ction ain features nctional description ADC pins and internal signals ADC voltage regulator (ADVREGEN) Calibration (ADCAL) ADC on-off control (ADEN, ADDIS, ADRDY) | 343
344
345
346
347
348 | | 15 | 15.1
15.2 | ADC fur
15.3.1
15.3.2
15.3.3
15.3.4
15.3.5 | ction ain features nctional description ADC pins and internal signals ADC voltage regulator (ADVREGEN) Calibration (ADCAL) ADC on-off control (ADEN, ADDIS, ADRDY) ADC clock (CKMODE, PRESC[3:0]) | 343
344
345
345
347
348
350
352 | | 15 | 15.1
15.2 | ADC fur
15.3.1
15.3.2
15.3.3
15.3.4
15.3.5
15.3.6 | ction ain features nctional description ADC pins and internal signals ADC voltage regulator (ADVREGEN) Calibration (ADCAL) ADC on-off control (ADEN, ADDIS, ADRDY) ADC clock (CKMODE, PRESC[3:0]) ADC connectivity | 343
344
345
346
347
348
350
352 | | 15 | 15.1
15.2 | Introduct
ADC ma
ADC fur
15.3.1
15.3.2
15.3.3
15.3.4
15.3.5
15.3.6
15.3.7 | ction ain features nctional description ADC pins and internal signals ADC voltage regulator (ADVREGEN) Calibration (ADCAL) ADC on-off control (ADEN, ADDIS, ADRDY) ADC clock (CKMODE, PRESC[3:0]) ADC connectivity Configuring the ADC | 343
345
345
346
347
348
350
352
353 | | 15 | 15.1
15.2 | Introduct
ADC ma
ADC fur
15.3.1
15.3.2
15.3.3
15.3.4
15.3.5
15.3.6
15.3.7
15.3.8 | ction ain features nctional description ADC pins and internal signals ADC voltage regulator (ADVREGEN) Calibration (ADCAL) ADC on-off control (ADEN, ADDIS, ADRDY) ADC clock (CKMODE, PRESC[3:0]) ADC connectivity Configuring the ADC Channel selection (CHSEL, SCANDIR, CHSELRMOD) | 343
344
345
345
347
348
350
352
353
354 | | 15 | 15.1
15.2 | Introduct
ADC ma
ADC fur
15.3.1
15.3.2
15.3.3
15.3.4
15.3.5
15.3.6
15.3.7
15.3.8
15.3.9 | ction ain features nctional description ADC pins and internal signals ADC voltage regulator (ADVREGEN) Calibration (ADCAL) ADC on-off control (ADEN, ADDIS, ADRDY) ADC clock (CKMODE, PRESC[3:0]) ADC connectivity Configuring the ADC Channel selection (CHSEL, SCANDIR, CHSELRMOD) Programmable sampling time (SMPx[2:0]) | 343
345
345
346
347
348
350
353
353 | | 15 | 15.1
15.2 | Introduct
ADC ma
ADC fur
15.3.1
15.3.2
15.3.3
15.3.4
15.3.5
15.3.6
15.3.7
15.3.8
15.3.9
15.3.10 | ction ain features nctional description ADC pins and internal signals ADC voltage regulator (ADVREGEN) Calibration (ADCAL) ADC on-off control (ADEN, ADDIS, ADRDY) ADC clock (CKMODE, PRESC[3:0]) ADC connectivity Configuring the ADC Channel selection (CHSEL, SCANDIR, CHSELRMOD) Programmable sampling time (SMPx[2:0]) Single conversion mode (CONT = 0) Continuous conversion mode (CONT = 1) | 343 344 345 345 346 347 348 350 353 353 353 | | | 15.3.13 | Timings | 357 | |-------|---------|--|-------| | | 15.3.14 | Stopping an ongoing conversion (ADSTP) | 358 | | 15.4 | Convers | sion on external trigger and trigger polarity (EXTSEL, EXTEN) | . 358 | | | 15.4.1 | Discontinuous mode (DISCEN) | 359 | | | 15.4.2 | Programmable resolution (RES) - Fast conversion mode | 359 | | | 15.4.3 | End of conversion, end of sampling phase (EOC, EOSMP flags) | 360 | | | 15.4.4 | End of conversion sequence (EOS flag) | 360 | | | 15.4.5 | Example timing diagrams (single/continuous modes hardware/software triggers) | 361 | | | 15.4.6 | Low frequency trigger mode | 363 | | 15.5 | Data ma | anagement | . 363 | | | 15.5.1 | Data register and data alignment (ADC_DR, ALIGN) | 363 | | | 15.5.2 | ADC overrun (OVR, OVRMOD) | 363 | | | 15.5.3 | Managing a sequence of data converted without using the DMA | 365 | | | 15.5.4 | Managing converted data without using the DMA without overrun . | 365 | | | 15.5.5 | Managing converted data using the DMA | 365 | | 15.6 | Low-pov | wer features | . 366 | | | 15.6.1 | Wait mode conversion | 366 | | | 15.6.2 | Auto-off mode (AUTOFF) | 367 | | 15.7 | _ | window watchdog (AWD1EN, AWD1SGL, AWD1CH,
WDxCR, ADC_AWDxTR) | . 369 | | | 15.7.1 | Description of analog watchdog 1 | 369 | | | 15.7.2 | Description of analog watchdog 2 and 3 | 370 | | | 15.7.3 | ADC_AWDx_OUT output signal generation | 370 | | | 15.7.4 | Analog Watchdog threshold control | 372 | | 15.8 | Oversa | mpler | . 373 | | | 15.8.1 | ADC operating modes supported when oversampling | 375 | | | 15.8.2 | Analog watchdog | 375 | | | 15.8.3 | Triggered mode | 375 | | 15.9 | Temper | ature sensor and internal reference voltage | . 376 | | 15.10 | Battery | voltage monitoring | . 378 | | 15.11 | ADC int | errupts | . 379 | | 15.12 | ADC re | gisters | . 381 | | | 15.12.1 | ADC interrupt and status register (ADC_ISR) | 381 | | | 15.12.2 | ADC interrupt enable register (ADC_IER) | 383 | | | 15.12.3 | ADC control register (ADC_CR) | | | | 15.12.3 | | | | | | 15.12.4 | ADC configuration register 1 (ADC_CFGR1) | 387 | |----|--------|-----------|--|-----| | | | 15.12.5 | ADC configuration register 2 (ADC_CFGR2) | 391 | | | | 15.12.6 | ADC sampling time register (ADC_SMPR) | 392 | | | | 15.12.7 | ADC watchdog threshold register (ADC_AWD1TR) | 393 | | | | 15.12.8 | ADC watchdog threshold register (ADC_AWD2TR) | 394 | | | | 15.12.9 | ADC channel selection register [alternate] (ADC_CHSELR) | 395 | | | | 15.12.10 | ADC channel selection register [alternate] (ADC_CHSELR) | 396 | | | | 15.12.11 | ADC watchdog threshold register (ADC_AWD3TR) | 398 | | | | 15.12.12 | ADC data register (ADC_DR) | 398 | | | | 15.12.13 | ADC Analog Watchdog 2 Configuration register (ADC_AWD2CR) | 399 | | | | 15.12.14 | ADC Analog Watchdog 3 Configuration register (ADC_AWD3CR) | 399 | | | | 15.12.15 | ADC Calibration factor (ADC_CALFACT) | 400 | | | | 15.12.16 | ADC common configuration register (ADC_CCR) | 400 | | | 15.13 | ADC regi | ister map | 402 | | | | | | | | 16 | Digita | | og converter (DAC) | | | | 16.1 | Introduct | ion | 404 | | | 16.2 | DAC mai | n features | 404 | | | 16.3 | DAC imp | lementation | 405 | | | 16.4 | DAC fund | ctional description | 406 | | | | 16.4.1 I | DAC block diagram | 406 | | | | 16.4.2 I | DAC pins and internal signals | 407 | | | | 16.4.3 | DAC channel enable | 408 | | | | 16.4.4 I | DAC data format | 408 | | | | 16.4.5 I | DAC conversion | 410 | | | | 16.4.6 I | DAC output voltage | 410 | | | | 16.4.7 | DAC trigger selection | 410 | | | | 16.4.8 I | DMA requests | 411 | | | | 16.4.9 I | Noise generation | 411 | | | | 16.4.10 | Triangle-wave generation | 413 | | | | 16.4.11 I | DAC channel modes | 414 | | | | 16.4.12 | DAC channel buffer calibration | 417 | | | | | Dual DAC channel conversion modes (if dual channels are available) | 418 | | | 16.5 | | -power modes | | | | 16.6 | | rrupts | | | | . 5.5 | | | 0 | | | 16.7 | DAC registers | | | |----|-------|---------------|---|-----| | | | 16.7.1 | DAC control register (DAC_CR) | 424 | | | | 16.7.2 | DAC software trigger register (DAC_SWTRGR) | 427 | | | | 16.7.3 | DAC channel1 12-bit right-aligned data holding register (DAC_DHR12R1) | 428 | | | | 16.7.4 | DAC channel1 12-bit left aligned data holding register (DAC_DHR12L1) | 428 | | | | 16.7.5 | DAC channel1 8-bit right aligned data holding register (DAC_DHR8R1) | 429 | | | | 16.7.6 | DAC channel2 12-bit right aligned data holding register (DAC_DHR12R2) | 429 | | | | 16.7.7 | DAC channel2 12-bit left aligned data holding register (DAC_DHR12L2) | 430 | | | | 16.7.8 | DAC channel2 8-bit right-aligned
data holding register (DAC_DHR8R2) | 430 | | | | 16.7.9 | Dual DAC 12-bit right-aligned data holding register (DAC_DHR12RD) | 431 | | | | 16.7.10 | Dual DAC 12-bit left aligned data holding register (DAC_DHR12LD) | 431 | | | | 16.7.11 | Dual DAC 8-bit right aligned data holding register (DAC_DHR8RD) | 432 | | | | 16.7.12 | DAC channel1 data output register (DAC_DOR1) | 432 | | | | 16.7.13 | DAC channel2 data output register (DAC_DOR2) | 433 | | | | 16.7.14 | DAC status register (DAC_SR) | 433 | | | | 16.7.15 | DAC calibration control register (DAC_CCR) | 435 | | | | 16.7.16 | DAC mode control register (DAC_MCR) | 435 | | | | 16.7.17 | DAC channel1 sample and hold sample time register (DAC_SHSR1) | 437 | | | | 16.7.18 | DAC channel2 sample and hold sample time register (DAC_SHSR2) | 437 | | | | 16.7.19 | DAC sample and hold time register (DAC_SHHR) | 438 | | | | 16.7.20 | DAC sample and hold refresh time register (DAC_SHRR) | 438 | | | | 16.7.21 | DAC register map | 440 | | 17 | Volta | ge refer | rence buffer (VREFBUF) | 442 | | | 17.1 | Introduc | ction | 442 | | | 17.2 | VREFB | UF functional description | 442 | | | 17.3 | | UF registers | | | | | 17.3.1 | VREFBUF control and status register (VREFBUF_CSR) | | | | | 17.3.2 | VREFBUF calibration control register (VREFBUF_CCR) | | | | | | | | | | | 17.3.3 | VREFBUF register map | 444 | | | |----|------|--------------------|--|-----|--|--| | 18 | Com | parator | (COMP) | 445 | | | | | 18.1 | Introdu | ction | 445 | | | | | 18.2 | COMP | main features | 445 | | | | | 18.3 | COMP | functional description | 446 | | | | | | 18.3.1 | COMP block diagram | 446 | | | | | | 18.3.2 | COMP pins and internal signals | 446 | | | | | | 18.3.3 | COMP reset and clocks | 448 | | | | | | 18.3.4 | Comparator LOCK mechanism | 448 | | | | | | 18.3.5 | Window comparator | 449 | | | | | | 18.3.6 | Hysteresis | 449 | | | | | | 18.3.7 | Comparator output blanking function | 450 | | | | | | 18.3.8 | COMP power and speed modes | 450 | | | | | 18.4 | COMP | low-power modes | 451 | | | | | 18.5 | COMP interrupts | | | | | | | 18.6 | 8.6 COMP registers | | | | | | | | 18.6.1 | Comparator 1 control and status register (COMP1_CSR) | 451 | | | | | | 18.6.2 | Comparator 2 control and status register (COMP2_CSR) | 453 | | | | | | 18.6.3 | Comparator 3 control and status register (COMP3_CSR) | 455 | | | | | | 18.6.4 | COMP register map | 458 | | | | 19 | True | random | number generator (RNG) | 459 | | | | | 19.1 | Introdu | ction | 459 | | | | | 19.2 | RNG m | nain features | 459 | | | | | 19.3 | RNG fu | ınctional description | 460 | | | | | | 19.3.1 | RNG block diagram | | | | | | | 19.3.2 | RNG internal signals | | | | | | | 19.3.3 | Random number generation | 461 | | | | | | 19.3.4 | RNG initialization | 463 | | | | | | 19.3.5 | RNG operation | 464 | | | | | | 19.3.6 | RNG clocking | 465 | | | | | | 19.3.7 | Error management | 465 | | | | | | 19.3.8 | RNG low-power usage | 466 | | | | | 19.4 | RNG in | terrupts | 467 | | | | | 19.5 | RNG pı | rocessing time | 467 | | | | | | | | | | | | | 19.6 | RNG er | ntropy source validation | 467 | |----|------|----------|---|-----| | | | 19.6.1 | Introduction | 467 | | | | 19.6.2 | Validation conditions | 467 | | | | 19.6.3 | Data collection | 468 | | | 19.7 | RNG re | gisters | 469 | | | | 19.7.1 | RNG control register (RNG_CR) | 469 | | | | 19.7.2 | RNG status register (RNG_SR) | 470 | | | | 19.7.3 | RNG data register (RNG_DR) | 471 | | | | 19.7.4 | RNG register map | 472 | | 20 | AES | hardwai | re accelerator (AES) | 473 | | | 20.1 | Introduc | ction | 473 | | | 20.2 | AES ma | ain features | 473 | | | 20.3 | AES im | plementation | 474 | | | 20.4 | AES fur | nctional description | 474 | | | | 20.4.1 | AES block diagram | 474 | | | | 20.4.2 | AES internal signals | 474 | | | | 20.4.3 | AES cryptographic core | 475 | | | | 20.4.4 | AES procedure to perform a cipher operation | 480 | | | | 20.4.5 | AES decryption round key preparation | 483 | | | | 20.4.6 | AES ciphertext stealing and data padding | 483 | | | | 20.4.7 | AES task suspend and resume | 484 | | | | 20.4.8 | AES basic chaining modes (ECB, CBC) | 484 | | | | 20.4.9 | AES counter (CTR) mode | 489 | | | | 20.4.10 | AES Galois/counter mode (GCM) | 492 | | | | 20.4.11 | AES Galois message authentication code (GMAC) | 497 | | | | 20.4.12 | AES counter with CBC-MAC (CCM) | 499 | | | | 20.4.13 | AES data registers and data swapping | 505 | | | | 20.4.14 | AES key registers | 507 | | | | 20.4.15 | AES initialization vector registers | 507 | | | | 20.4.16 | AES DMA interface | 507 | | | | 20.4.17 | AES error management | 509 | | | 20.5 | AES int | errupts | 509 | | | 20.6 | AES pro | ocessing latency | 510 | | | 20.7 | AES reg | gisters | 511 | | | | 20.7.1 | AES control register (AES_CR) | 511 | | | | | | | | | | 20.7.2 | AES status register (AES_SR) | 513 | |----|------|--------------------|---|-------| | | | 20.7.3 | AES data input register (AES_DINR) | 514 | | | | 20.7.4 | AES data output register (AES_DOUTR) | 515 | | | | 20.7.5 | AES key register 0 (AES_KEYR0) | 516 | | | | 20.7.6 | AES key register 1 (AES_KEYR1) | . 516 | | | | 20.7.7 | AES key register 2 (AES_KEYR2) | . 517 | | | | 20.7.8 | AES key register 3 (AES_KEYR3) | . 517 | | | | 20.7.9 | AES initialization vector register 0 (AES_IVR0) | 517 | | | | 20.7.10 | AES initialization vector register 1 (AES_IVR1) | 518 | | | | 20.7.11 | AES initialization vector register 2 (AES_IVR2) | 518 | | | | 20.7.12 | AES initialization vector register 3 (AES_IVR3) | 518 | | | | 20.7.13 | AES key register 4 (AES_KEYR4) | 519 | | | | 20.7.14 | AES key register 5 (AES_KEYR5) | 519 | | | | 20.7.15 | AES key register 6 (AES_KEYR6) | . 519 | | | | 20.7.16 | AES key register 7 (AES_KEYR7) | 520 | | | | 20.7.17 | AES suspend registers (AES_SUSPxR) | 520 | | | | 20.7.18 | AES register map | . 521 | | 21 | Adva | nced-co | ontrol timer (TIM1) | 523 | | | 21.1 | | troduction | | | | 21.2 | | ain features | | | | 21.3 | | nctional description | | | | 21.0 | 21.3.1 | Time-base unit | | | | | 21.3.1 | Counter modes | | | | | 21.3.2 | Repetition counter | | | | | 21.3.4 | External trigger input | | | | | 21.3.5 | Clock selection | | | | | 21.3.6 | Capture/compare channels | | | | | 21.3.7 | Input capture mode | | | | | 21.3.7 | PWM input mode | | | | | 21.3.9 | Forced output mode | | | | | 21.3.9 | Output compare mode | | | | | 21.3.10 | PWM mode | | | | | 21.3.11 | Asymmetric PWM mode | | | | | 21.3.12 | Combined PWM mode | | | | | ∠1.3.13 | Combined F WIVI Mode | . 556 | | | | 21 2 14 | Combined 3 phase DWM mode | 557 | | | | 21.3.14 | Complementary outputs and doed time insertion | | | | | 21.3.14
21.3.15 | Combined 3-phase PWM mode | | | | 21.3.16 | Using the break function | 560 | | | |------|----------------|---|-----|--|--| | | 21.3.17 | Bidirectional break inputs | 566 | | | | | 21.3.18 | Clearing the OCxREF signal on an external event | 568 | | | | | 21.3.19 | 6-step PWM generation | 569 | | | | | 21.3.20 | One-pulse mode | 570 | | | | | 21.3.21 | Retriggerable one pulse mode | 571 | | | | | 21.3.22 | Encoder interface mode | 572 | | | | | 21.3.23 | UIF bit remapping | 574 | | | | | 21.3.24 | Timer input XOR function | 575 | | | | | 21.3.25 | Interfacing with Hall sensors | 575 | | | | | 21.3.26 | Timer synchronization | 578 | | | | | 21.3.27 | ADC synchronization | 582 | | | | | 21.3.28 | DMA burst mode | 582 | | | | | 21.3.29 | Debug mode | 583 | | | | 21.4 | TIM1 registers | | | | | | | 21.4.1 | TIM1 control register 1 (TIM1_CR1) | 584 | | | | | 21.4.2 | TIM1 control register 2 (TIM1_CR2) | 585 | | | | | 21.4.3 | TIM1 slave mode control register (TIM1_SMCR) | 588 | | | | | 21.4.4 | TIM1 DMA/interrupt enable register (TIM1_DIER) | 590 | | | | | 21.4.5 | TIM1 status register (TIM1_SR) | 592 | | | | | 21.4.6 | TIM1 event generation register (TIM1_EGR) | 594 | | | | | 21.4.7 | TIM1 capture/compare mode register 1 [alternate] (TIM1_CCMR1) | 595 | | | | | 21.4.8 | TIM1 capture/compare mode register 1 [alternate] (TIM1_CCMR1) | 596 | | | | | 21.4.9 | TIM1 capture/compare mode register 2 [alternate] (TIM1_CCMR2) | 599 | | | | | 21.4.10 | TIM1 capture/compare mode register 2 [alternate] (TIM1_CCMR2) | 600 | | | | | 21.4.11 | TIM1 capture/compare enable register (TIM1_CCER) | 602 | | | | | 21.4.12 | TIM1 counter (TIM1_CNT) | 605 | | | | | 21.4.13 | TIM1 prescaler (TIM1_PSC) | 605 | | | | | 21.4.14 | TIM1 auto-reload register (TIM1_ARR) | 605 | | | | | 21.4.15 | TIM1 repetition counter register (TIM1_RCR) | | | | | | 21.4.16 | TIM1 capture/compare register 1 (TIM1_CCR1) | 606 | | | | | 21.4.17 | TIM1 capture/compare register 2 (TIM1_CCR2) | 607 | | | | | 21.4.18 | TIM1 capture/compare register 3 (TIM1_CCR3) | 607 | | | | | | 21.4.19 | TIM1 capture/compare register 4 (TIM1_CCR4) 60 | 8 | |----|------|----------|---|----| | | | 21.4.20 | TIM1 break and dead-time register (TIM1_BDTR)60 | 8(| | | | 21.4.21 | TIM1 DMA control register (TIM1_DCR)61 | | | | | 21.4.22 | TIM1 DMA address for full transfer (TIM1_DMAR)61 | | | | | 21.4.23 | TIM1 option register 1 (TIM1_OR1) 61 | 4 | | | | 21.4.24 | TIM1 capture/compare mode register 3 (TIM1_CCMR3) | 4 | | | | 21.4.25 | TIM1 capture/compare register 5 (TIM1_CCR5) 61 | 5 | | | | 21.4.26 | TIM1 capture/compare register 6 (TIM1_CCR6) 61 | 6 | | | | 21.4.27 | TIM1 alternate function option register 1 (TIM1_AF1) 61 | 7 | | | | 21.4.28 | TIM1 Alternate function register 2 (TIM1_AF2)61 | 9 | | | | 21.4.29 | TIM1 timer input selection register (TIM1_TISEL) 62 | 20 | | | | 21.4.30 | TIM1 register map62 | 22 | | 22 | Gene | ral-nurn | ose timers (TIM2/TIM3/TIM4) | 5 | | | 22.1 | | M3/TIM4 introduction | | | | | | | | | | 22.2 | | M3/TIM4 main features | | | | 22.3 | | M3/TIM4
functional description | | | | | 22.3.1 | Time-base unit | | | | | 22.3.2 | Counter modes | | | | | 22.3.3 | Clock selection | 9 | | | | 22.3.4 | Capture/Compare channels | | | | | 22.3.5 | Input capture mode | | | | | 22.3.6 | PWM input mode | 6 | | | | 22.3.7 | Forced output mode | 7 | | | | 22.3.8 | Output compare mode | 7 | | | | 22.3.9 | PWM mode64 | 8 | | | | 22.3.10 | Asymmetric PWM mode65 | 2 | | | | 22.3.11 | Combined PWM mode | 2 | | | | 22.3.12 | Clearing the OCxREF signal on an external event | 3 | | | | 22.3.13 | One-pulse mode | 5 | | | | 22.3.14 | Retriggerable one pulse mode | 6 | | | | 22.3.15 | Encoder interface mode | 7 | | | | 22.3.16 | UIF bit remapping | 9 | | | | 22.3.17 | Timer input XOR function | 9 | | | | 22.3.18 | Timers and external trigger synchronization | 0 | | | | | | | | | 22.3.19 | Timer synchronization | . 663 | |------|---------|--|-------| | | 22.3.20 | DMA burst mode | . 668 | | | 22.3.21 | Debug mode | . 669 | | 22.4 | TIM2/TI | M3/TIM4 registers | 670 | | | 22.4.1 | TIMx control register 1 (TIMx_CR1)(x = 2 to 4) | . 670 | | | 22.4.2 | TIMx control register 2 (TIMx_CR2)(x = 2 to 4) | . 671 | | | 22.4.3 | TIMx slave mode control register (TIMx_SMCR)(x = 2 to 4) | . 673 | | | 22.4.4 | TIMx DMA/Interrupt enable register (TIMx_DIER)(x = 2 to 4) | . 676 | | | 22.4.5 | TIMx status register (TIMx_SR)(x = 2 to 4) | . 677 | | | 22.4.6 | TIMx event generation register (TIMx_EGR)($x = 2 \text{ to } 4$) | . 679 | | | 22.4.7 | TIMx capture/compare mode register 1 [alternate] (TIMx_CCMR1) (x = 2 to 4) | . 680 | | | 22.4.8 | TIMx capture/compare mode register 1 [alternate] (TIMx_CCMR1) (x = 2 to 4) | . 682 | | | 22.4.9 | TIMx capture/compare mode register 2 [alternate] (TIMx_CCMR2) (x = 2 to 4) | . 684 | | | 22.4.10 | TIMx capture/compare mode register 2 [alternate] (TIMx_CCMR2) (x = 2 to 4) | . 685 | | | 22.4.11 | TIMx capture/compare enable register (TIMx_CCER)(x = 2 to 4) | . 686 | | | 22.4.12 | TIMx counter [alternate] (TIMx_CNT)(x = 2 to 4) | . 687 | | | 22.4.13 | TIMx counter [alternate] (TIMx_CNT)(x = 2 to 4) | . 688 | | | 22.4.14 | TIMx prescaler (TIMx_PSC)(x = 2 to 4) | . 688 | | | 22.4.15 | TIMx auto-reload register (TIMx_ARR)(x = 2 to 4) | . 689 | | | 22.4.16 | TIMx capture/compare register 1 (TIMx_CCR1)(x = 2 to 4) | . 689 | | | 22.4.17 | TIMx capture/compare register 2 (TIMx_CCR2)(x = 2 to 4) | . 690 | | | 22.4.18 | TIMx capture/compare register 3 (TIMx_CCR3)(x = 2 to 4) | . 690 | | | 22.4.19 | TIMx capture/compare register 4 (TIMx_CCR4)(x = 2 to 4) | . 691 | | | 22.4.20 | TIMx DMA control register (TIMx_DCR)(x = 2 to 4) | . 692 | | | 22.4.21 | TIMx DMA address for full transfer (TIMx_DMAR)(x = 2 to 4) \dots . | . 692 | | | 22.4.22 | TIM2 option register 1 (TIM2_OR1) | . 692 | | | 22.4.23 | TIM3 option register 1 (TIM3_OR1) | . 693 | | | 22.4.24 | TIM4 option register 1 (TIM4_OR1) | . 694 | | | 22.4.25 | TIM2 alternate function option register 1 (TIM2_AF1) | . 694 | | | 22.4.26 | TIM3 alternate function option register 1 (TIM3_AF1) | . 695 | | | 22.4.27 | TIM4 alternate function option register 1 (TIM4_AF1) | . 695 | | | 22.4.28 | TIM2 timer input selection register (TIM2_TISEL) | . 696 | | | 22 4 29 | TIM3 timer input selection register (TIM3_TISEL) | 696 | | | | 22.4.30
22.4.31 | TIM4 timer input selection register (TIM4_TISEL) | | |----|-------|--------------------|---|-----| | 23 | Basic | timers | (TIM6/TIM7) | 702 | | | 23.1 | TIM6/TI | M7 introduction | 702 | | | 23.2 | TIM6/TI | M7 main features | 702 | | | 23.3 | TIM6/TI | M7 functional description | 703 | | | | 23.3.1 | Time-base unit | 703 | | | | 23.3.2 | Counting mode | 705 | | | | 23.3.3 | UIF bit remapping | 708 | | | | 23.3.4 | Clock source | 708 | | | | 23.3.5 | Debug mode | 709 | | | 23.4 | TIM6/TI | M7 registers | 709 | | | | 23.4.1 | TIMx control register 1 (TIMx_CR1)($x = 6 \text{ to } 7$) | 709 | | | | 23.4.2 | TIMx control register 2 (TIMx_CR2)(x = 6 to 7) | 711 | | | | 23.4.3 | TIMx DMA/Interrupt enable register (TIMx_DIER)($x = 6 \text{ to } 7$) | 711 | | | | 23.4.4 | TIMx status register (TIMx_SR)(x = 6 to 7) | 712 | | | | 23.4.5 | TIMx event generation register (TIMx_EGR)(x = 6 to 7) | 712 | | | | 23.4.6 | TIMx counter (TIMx_CNT)(x = 6 to 7) | 712 | | | | 23.4.7 | TIMx prescaler (TIMx_PSC)(x = 6 to 7) | 713 | | | | 23.4.8 | TIMx auto-reload register (TIMx_ARR)($x = 6 \text{ to } 7$) | 713 | | | | 23.4.9 | TIMx register map | 714 | | 24 | Gene | ral-purp | ose timers (TIM14) | 715 | | | 24.1 | TIM14 ii | ntroduction | 715 | | | 24.2 | TIM14 n | nain features | 715 | | | | 24.2.1 | TIM14 main features | 715 | | | 24.3 | TIM14 f | unctional description | 717 | | | | 24.3.1 | Time-base unit | 717 | | | | 24.3.2 | Counter modes | 719 | | | | 24.3.3 | Clock selection | 722 | | | | 24.3.4 | Capture/compare channels | 723 | | | | 24.3.5 | Input capture mode | 724 | | | | 24.3.6 | Forced output mode | 725 | | | | 24.3.7 | Output compare mode | 726 | | | | 24.3.8 | PWM mode | 727 | | | | 24.3.9 | One-pulse mode | . 728 | |----|------|----------|---|-------| | | | 24.3.10 | UIF bit remapping | . 728 | | | | 24.3.11 | Using timer output as trigger for other timers (TIM14) | . 729 | | | | 24.3.12 | Debug mode | . 729 | | | 24.4 | TIM14 r | registers | 730 | | | | 24.4.1 | TIM14 control register 1 (TIM14_CR1) | . 730 | | | | 24.4.2 | TIM14 Interrupt enable register (TIM14_DIER) | . 731 | | | | 24.4.3 | TIM14 status register (TIM14_SR) | . 731 | | | | 24.4.4 | TIM14 event generation register (TIM14_EGR) | . 732 | | | | 24.4.5 | TIM14 capture/compare mode register 1 [alternate] (TIM14_CCMR1) | 733 | | | | 24.4.6 | TIM14 capture/compare mode register 1 [alternate] (TIM14_CCMR1) | 734 | | | | 24.4.7 | TIM14 capture/compare enable register (TIM14_CCER) | . 736 | | | | 24.4.8 | TIM14 counter (TIM14_CNT) | . 737 | | | | 24.4.9 | TIM14 prescaler (TIM14_PSC) | . 738 | | | | 24.4.10 | TIM14 auto-reload register (TIM14_ARR) | . 738 | | | | 24.4.11 | TIM14 capture/compare register 1 (TIM14_CCR1) | . 738 | | | | 24.4.12 | TIM14 timer input selection register (TIM14_TISEL) | . 739 | | | | 24.4.13 | TIM14 register map | . 739 | | 25 | Gono | ral nurr | oose timers (TIM15/TIM16/TIM17) | 741 | | 23 | 25.1 | | • | | | | | | TIM16/TIM17 introduction | | | | 25.2 | | main features | | | | 25.3 | | TIM17 main features | | | | 25.4 | TIM15/ | TIM16/TIM17 functional description | 745 | | | | 25.4.1 | Time-base unit | . 745 | | | | 25.4.2 | Counter modes | . 747 | | | | 25.4.3 | Repetition counter | . 751 | | | | 25.4.4 | Clock selection | . 752 | | | | 25.4.5 | Capture/compare channels | . 754 | | | | 25.4.6 | Input capture mode | . 756 | | | | 25.4.7 | PWM input mode (only for TIM15) | . 757 | | | | 25.4.8 | Forced output mode | . 758 | | | | 25.4.9 | Output compare mode | . 759 | | | | 25.4.10 | PWM mode | . 760 | | | | 25.4.11 | Combined PWM mode (TIM15 only) | . 761 | | | | 25.4.12 | Complementary outputs and dead-time insertion | . 762 | | | | 25.4.13 | Using the break function | . 764 | | | | | | | | | 25.4.14 | Bidirectional break inputs | 769 | |------|---------|---|-------| | | 25.4.15 | One-pulse mode | 771 | | | 25.4.16 | Retriggerable one pulse mode (TIM15 only) | 773 | | | 25.4.17 | UIF bit remapping | 773 | | | 25.4.18 | Timer input XOR function (TIM15 only) | 775 | | | 25.4.19 | External trigger synchronization (TIM15 only) | 776 | | | 25.4.20 | Slave mode – combined reset + trigger mode | 778 | | | 25.4.21 | DMA burst mode | 778 | | | 25.4.22 | Timer synchronization (TIM15) | 780 | | | 25.4.23 | Using timer output as trigger for other timers (TIM16/TIM17) | 780 | | | 25.4.24 | Debug mode | 780 | | 25.5 | TIM15 r | egisters | . 781 | | | 25.5.1 | TIM15 control register 1 (TIM15_CR1) | 781 | | | 25.5.2 | TIM15 control register 2 (TIM15_CR2) | 782 | | | 25.5.3 | TIM15 slave mode control register (TIM15_SMCR) | 784 | | | 25.5.4 | TIM15 DMA/interrupt enable register (TIM15_DIER) | 785 | | | 25.5.5 | TIM15 status register (TIM15_SR) | 786 | | | 25.5.6 | TIM15 event generation register (TIM15_EGR) | 788 | | | 25.5.7 | TIM15 capture/compare mode register 1 [alternate] (TIM15_CCMR1) | 789 | | | 25.5.8 | TIM15 capture/compare mode register 1 [alternate] (TIM15_CCMR1) | 790 | | | 25.5.9 | TIM15 capture/compare enable register (TIM15_CCER) | 793 | | | 25.5.10 | TIM15 counter (TIM15_CNT) | 796 | | | 25.5.11 | TIM15 prescaler (TIM15_PSC) | 796 | | | 25.5.12 | TIM15 auto-reload register (TIM15_ARR) | 796 | | | 25.5.13 | TIM15 repetition counter register (TIM15_RCR) | 797 | | | 25.5.14 | TIM15 capture/compare register 1 (TIM15_CCR1) | 797 | | | 25.5.15 | TIM15 capture/compare register 2 (TIM15_CCR2) | 798 | | | 25.5.16 | TIM15 break and dead-time register (TIM15_BDTR) | 798 | | | 25.5.17 | TIM15 DMA control register (TIM15_DCR) | 801 | | | 25.5.18 | TIM15 DMA address for full transfer (TIM15_DMAR) | 801 | | | 25.5.19 | TIM15 alternate register 1 (TIM15_AF1) | 802 | | | 25.5.20 | TIM15 input selection register (TIM15_TISEL) | 803 | | | 25.5.21 | TIM15 register map | 804 | | 25.6 | TIM16/7 | ΓΙΜ17 registers | . 807 | | | 25 6 1 | TIMx control register 1 (TIMx, CR1)(x = 16 to 17) | 807 | | | | 25.6.2 | TIMx control register 2 (TIMx_CR2)(x = 16 to 17) | |----|------|----------|---| | | | 25.6.3 | TIMx DMA/interrupt enable register (TIMx_DIER)(x = 16 to 17) 809 | | | | 25.6.4 | TIMx status register (TIMx_SR)(x = 16 to 17) | | | | 25.6.5 | TIMx event generation register (TIMx_EGR)(x = 16 to 17) 811 | | | | 25.6.6 | TIMx capture/compare mode register 1 [alternate] (TIMx_CCMR1) (x = 16 to 17) | | | | 25.6.7 | TIMx capture/compare mode register 1 [alternate] (TIMx_CCMR1) (x = 16 to 17) |
| | | 25.6.8 | TIMx capture/compare enable register (TIMx_CCER)($x = 16 \text{ to } 17$) 815 | | | | 25.6.9 | TIMx counter (TIMx_CNT)(x = 16 to 17) | | | | 25.6.10 | TIMx prescaler (TIMx_PSC)(x = 16 to 17) | | | | 25.6.11 | TIMx auto-reload register (TIMx_ARR)(x = 16 to 17) | | | | 25.6.12 | TIMx repetition counter register (TIMx_RCR)(x = 16 to 17) 819 | | | | 25.6.13 | TIMx capture/compare register 1 (TIMx_CCR1)(x = 16 to 17)819 | | | | 25.6.14 | TIMx break and dead-time register (TIMx_BDTR)(x = 16 to 17) 820 | | | | 25.6.15 | TIMx DMA control register (TIMx_DCR)(x = 16 to 17) 823 | | | | 25.6.16 | TIMx DMA address for full transfer (TIMx_DMAR)(x = 16 to 17) 823 | | | | 25.6.17 | TIM16 alternate function register 1 (TIM16_AF1) | | | | 25.6.18 | TIM16 input selection register (TIM16_TISEL)825 | | | | 25.6.19 | TIM17 alternate function register 1 (TIM17_AF1) | | | | 25.6.20 | TIM17 input selection register (TIM17_TISEL)827 | | | | 25.6.21 | TIM16/TIM17 register map829 | | 26 | Low- | power t | imer (LPTIM) | | | 26.1 | Introduc | ction 831 | | | 26.2 | LPTIM : | main features | | | 26.3 | LPTIM i | implementation | | | 26.4 | LPTIM 1 | functional description | | | | 26.4.1 | LPTIM block diagram | | | | 26.4.2 | LPTIM pins and internal signals | | | | 26.4.3 | LPTIM input and trigger mapping833 | | | | 26.4.4 | LPTIM reset and clocks | | | | 26.4.5 | Glitch filter | | | | 26.4.6 | Prescaler | | | | 26.4.7 | Trigger multiplexer | | | | 26.4.8 | Operating mode | | | | 26.4.9 | Timeout function | | | | | | | | | 26.4.10 | Waveform generation | 839 | |----|--------|-----------|---|-----| | | | 26.4.11 | Register update | 840 | | | | 26.4.12 | Counter mode | 841 | | | | 26.4.13 | Timer enable | 841 | | | | 26.4.14 | Timer counter reset | 842 | | | | 26.4.15 | Encoder mode | 842 | | | | 26.4.16 | Debug mode | 844 | | | 26.5 | LPTIM I | low-power modes | 844 | | | 26.6 | LPTIM i | interrupts | 845 | | | 26.7 | LPTIM i | registers | 845 | | | | 26.7.1 | LPTIM interrupt and status register (LPTIM_ISR) | 846 | | | | 26.7.2 | LPTIM interrupt clear register (LPTIM_ICR) | 847 | | | | 26.7.3 | LPTIM interrupt enable register (LPTIM_IER) | 847 | | | | 26.7.4 | LPTIM configuration register (LPTIM_CFGR) | 848 | | | | 26.7.5 | LPTIM control register (LPTIM_CR) | 851 | | | | 26.7.6 | LPTIM compare register (LPTIM_CMP) | 852 | | | | 26.7.7 | LPTIM autoreload register (LPTIM_ARR) | 853 | | | | 26.7.8 | LPTIM counter register (LPTIM_CNT) | 853 | | | | 26.7.9 | LPTIM configuration register 2 (LPTIM_CFGR2) | 854 | | | | 26.7.10 | LPTIM register map | 855 | | 27 | Infrar | ed inter | face (IRTIM) | 857 | | | uı | ca iiitoi | idos (iittim) | | | 28 | Indep | endent | watchdog (IWDG) | 858 | | | 28.1 | Introduc | ction | 858 | | | 28.2 | IWDG n | nain features | 858 | | | 28.3 | IWDG f | unctional description | 858 | | | | 28.3.1 | IWDG block diagram | 858 | | | | 28.3.2 | Window option | 859 | | | | 28.3.3 | Hardware watchdog | 860 | | | | 28.3.4 | Register access protection | 860 | | | | 28.3.5 | Debug mode | 860 | | | 28.4 | IWDG r | egisters | 861 | | | | 28.4.1 | IWDG key register (IWDG_KR) | 861 | | | | 28.4.2 | IWDG prescaler register (IWDG_PR) | | | | | 28.4.3 | IWDG reload register (IWDG_RLR) | | | | | | | | | | | 28.4.4 | IWDG status register (IWDG_SR) | 864 | |----|-------|----------|--|-----| | | | 28.4.5 | IWDG window register (IWDG_WINR) | 865 | | | | 28.4.6 | IWDG register map | 866 | | 29 | Syste | em wind | low watchdog (WWDG) | 867 | | | 29.1 | Introduc | ction | 867 | | | 29.2 | WWDG | main features | 867 | | | 29.3 | WWDG | functional description | | | | | 29.3.1 | WWDG block diagram | 868 | | | | 29.3.2 | Enabling the watchdog | 868 | | | | 29.3.3 | Controlling the down-counter | 868 | | | | 29.3.4 | How to program the watchdog timeout | 868 | | | | 29.3.5 | Debug mode | 870 | | | 29.4 | WWDG | interrupts | 870 | | | 29.5 | WWDG | registers | 870 | | | | 29.5.1 | WWDG control register (WWDG_CR) | 870 | | | | 29.5.2 | WWDG configuration register (WWDG_CFR) | 871 | | | | 29.5.3 | WWDG status register (WWDG_SR) | 872 | | | | 29.5.4 | WWDG register map | 872 | | 30 | Real- | time clo | ock (RTC) | 873 | | | 30.1 | Introduc | ction | 873 | | | 30.2 | RTC ma | ain features | 873 | | | 30.3 | RTC fur | nctional description | 874 | | | | 30.3.1 | RTC block diagram | 874 | | | | 30.3.2 | RTC pins and internal signals | 875 | | | | 30.3.3 | GPIOs controlled by the RTC and TAMP | 876 | | | | 30.3.4 | Clock and prescalers | 878 | | | | 30.3.5 | Real-time clock and calendar | 879 | | | | 30.3.6 | Programmable alarms | 880 | | | | 30.3.7 | Periodic auto-wakeup | 880 | | | | 30.3.8 | RTC initialization and configuration | 881 | | | | 30.3.9 | Reading the calendar | 883 | | | | 30.3.10 | Resetting the RTC | 884 | | | | 30.3.11 | RTC synchronization | 884 | | | | 30.3.12 | RTC reference clock detection | 885 | | | | | | | | | | 30.3.13 | RTC smooth digital calibration | . 885 | |----|------|----------|---|-------| | | | 30.3.14 | Timestamp function | . 887 | | | | 30.3.15 | Calibration clock output | . 888 | | | | 30.3.16 | Tamper and alarm output | . 888 | | | 30.4 | RTC lov | v-power modes | 889 | | | 30.5 | RTC int | errupts | 890 | | | 30.6 | RTC reg | gisters | 890 | | | | 30.6.1 | RTC time register (RTC_TR) | . 890 | | | | 30.6.2 | RTC date register (RTC_DR) | . 891 | | | | 30.6.3 | RTC sub second register (RTC_SSR) | . 892 | | | | 30.6.4 | RTC initialization control and status register (RTC_ICSR) | . 892 | | | | 30.6.5 | RTC prescaler register (RTC_PRER) | . 894 | | | | 30.6.6 | RTC wakeup timer register (RTC_WUTR) | . 895 | | | | 30.6.7 | RTC control register (RTC_CR) | . 895 | | | | 30.6.8 | RTC write protection register (RTC_WPR) | . 898 | | | | 30.6.9 | RTC calibration register (RTC_CALR) | . 899 | | | | 30.6.10 | RTC shift control register (RTC_SHIFTR) | . 900 | | | | 30.6.11 | RTC timestamp time register (RTC_TSTR) | . 901 | | | | 30.6.12 | RTC timestamp date register (RTC_TSDR) | . 901 | | | | 30.6.13 | RTC timestamp sub second register (RTC_TSSSR) | . 902 | | | | 30.6.14 | RTC alarm A register (RTC_ALRMAR) | . 903 | | | | 30.6.15 | RTC alarm A sub second register (RTC_ALRMASSR) | . 904 | | | | 30.6.16 | RTC alarm B register (RTC_ALRMBR) | . 905 | | | | 30.6.17 | RTC alarm B sub second register (RTC_ALRMBSSR) | . 906 | | | | 30.6.18 | RTC status register (RTC_SR) | . 906 | | | | 30.6.19 | RTC masked interrupt status register (RTC_MISR) | . 907 | | | | 30.6.20 | RTC status clear register (RTC_SCR) | . 908 | | | | 30.6.21 | RTC register map | . 910 | | 24 | T | | bookup vogistova (TAMD) | 040 | | 31 | • | | backup registers (TAMP) | | | | 31.1 | | ction | | | | 31.2 | TAMP n | nain features | 912 | | | 31.3 | TAMP for | unctional description | 913 | | | | 31.3.1 | TAMP block diagram | . 913 | | | | 31.3.2 | TAMP pins and internal signals | . 914 | | | | 31.3.3 | TAMP register write protection | . 914 | | | | | | | | | | 31.3.4 | Tamper detection | 915 | |----|--------|------------------|---|-----| | | 31.4 | TAMP I | ow-power modes | 917 | | | 31.5 | TAMP i | nterrupts | 917 | | | 31.6 | TAMP r | egisters | 917 | | | | 31.6.1 | TAMP control register 1 (TAMP_CR1) | 918 | | | | 31.6.2 | TAMP control register 2 (TAMP_CR2) | 919 | | | | 31.6.3 | TAMP filter control register (TAMP_FLTCR) | 920 | | | | 31.6.4 | TAMP interrupt enable register (TAMP_IER) | 921 | | | | 31.6.5 | TAMP status register (TAMP_SR) | 922 | | | | 31.6.6 | TAMP masked interrupt status register (TAMP_MISR) | 923 | | | | 31.6.7 | TAMP status clear register (TAMP_SCR) | 924 | | | | 31.6.8 | TAMP backup x register (TAMP_BKPxR) | 925 | | | | 31.6.9 | TAMP register map | 926 | | 32 | Inter- | -integrat | ted circuit (I2C) interface | 927 | | ~_ | 32.1 | _ | ction | | | | 32.2 | | in features | | | | 32.3 | | elementation | | | | 32.4 | - | ctional description | | | | 32.4 | | | | | | | 32.4.1
32.4.2 | I2C1 block diagram | | | | | 32.4.2 | _ | | | | | 32.4.3 | I2C pins and internal signals | | | | | 32.4.5 | Mode selection | | | | | 32.4.6 | I2C initialization | | | | | 32.4.7 | Software reset | | | | | 32.4.8 | Data transfer | | | | | 32.4.9 | I2C slave mode | | | | | 32.4.10 | I2C master mode | | | | | 32.4.11 | I2C_TIMINGR register configuration examples | | | | | 32.4.12 | SMBus specific features | | | | | 32.4.13 | SMBus initialization | | | | | 32.4.14 | SMBus: I2C TIMEOUTR register configuration examples . | | | | | 32.4.15 | SMBus slave mode | | | | | 32.4.16 | Wakeup from Stop mode on address match | | | | | 32.4.17 | | | | | | | | | | | | 32.4.18 | DMA requests | 978 | |----|----------------------|---
--|---| | | | 32.4.19 | Debug mode | 979 | | | 32.5 | I2C low | -power modes | 979 | | | 32.6 | I2C inte | rrupts | 980 | | | 32.7 | I2C regi | isters | 981 | | | | 32.7.1 | I2C control register 1 (I2C_CR1) | 981 | | | | 32.7.2 | I2C control register 2 (I2C_CR2) | 984 | | | | 32.7.3 | I2C own address 1 register (I2C_OAR1) | 987 | | | | 32.7.4 | I2C own address 2 register (I2C_OAR2) | 988 | | | | 32.7.5 | I2C timing register (I2C_TIMINGR) | 989 | | | | 32.7.6 | I2C timeout register (I2C_TIMEOUTR) | 990 | | | | 32.7.7 | I2C interrupt and status register (I2C_ISR) | 991 | | | | 32.7.8 | I2C interrupt clear register (I2C_ICR) | 993 | | | | 32.7.9 | I2C PEC register (I2C_PECR) | 994 | | | | 32.7.10 | I2C receive data register (I2C_RXDR) | 995 | | | | 32.7.11 | I2C transmit data register (I2C_TXDR) | 995 | | | | 32.7.12 | I2C register map | 996 | | 00 | 11 | | and a management of the manage | 000 | | 33 | | _ | nchonous receiver transmitter (USART) | | | | 33.1 | | introduction | 000 | | | | | introduction | | | | 33.2 | | main features | | | | | USART | | 999 | | | 33.2 | USART
USART | main features | 999 | | | 33.2
33.3 | USART
USART
USART | main features extended features | 999 | | | 33.2
33.3
33.4 | USART
USART
USART | main features extended features implementation | 999
1000
1000 | | | 33.2
33.3
33.4 | USART
USART
USART
USART
33.5.1 | main features | 999
1000
1002
1002 | | | 33.2
33.3
33.4 | USART
USART
USART
USART
33.5.1 | main features extended features implementation functional description USART block diagram | 999 1000 1002 1002 1003 | | | 33.2
33.3
33.4 | USART
USART
USART
USART
33.5.1
33.5.2 | main features extended features implementation functional description USART block diagram USART signals | 999 1000 1002 1002 1003 | | | 33.2
33.3
33.4 | USART
USART
USART
USART
33.5.1
33.5.2
33.5.3 | main features extended features implementation functional description USART block diagram USART signals USART character description | 999 1000 1002 1002 1003 1004 1006 | | | 33.2
33.3
33.4 | USART
USART
USART
USART
33.5.1
33.5.2
33.5.3
33.5.4 | main features extended features implementation functional description USART block diagram USART signals USART character description USART FIFOs and thresholds | 999100010021002100310041006 | | | 33.2
33.3
33.4 | USART
USART
USART
33.5.1
33.5.2
33.5.3
33.5.4
33.5.5 | main features extended features implementation functional description USART block diagram USART signals USART character description USART FIFOs and thresholds USART transmitter | 999100010021003100410061006 | | | 33.2
33.3
33.4 | USART
USART
USART
USART
33.5.1
33.5.2
33.5.3
33.5.4
33.5.5
33.5.6 | main features extended features implementation functional description USART block diagram USART signals USART character description USART FIFOs and thresholds USART transmitter USART receiver | 999100010021003100410061006 | | | 33.2
33.3
33.4 | USART
USART
USART
USART
33.5.1
33.5.2
33.5.3
33.5.4
33.5.5
33.5.6
33.5.7 | main features extended features implementation functional description USART block diagram USART signals USART character description USART FIFOs and thresholds USART transmitter USART receiver USART baud rate generation | 999 1000 1002 1003 1004 1006 1010 1017 | | | 33.2
33.3
33.4 | USART
USART
USART
USART
33.5.1
33.5.2
33.5.3
33.5.4
33.5.5
33.5.6
33.5.7
33.5.8 | main features extended features implementation functional description USART block diagram USART signals USART character description USART flFOs and thresholds USART transmitter USART receiver USART baud rate generation Tolerance of the USART receiver to clock deviation | 999100010021002100310041006101010171018 | | | 33.2
33.3
33.4 | USART
USART
USART
USART
33.5.1
33.5.2
33.5.3
33.5.4
33.5.5
33.5.6
33.5.7
33.5.8
33.5.9 | main features extended features implementation functional description USART block diagram USART signals USART character description USART FIFOs and thresholds USART transmitter USART receiver USART baud rate generation Tolerance of the USART receiver to clock deviation USART Auto baud rate detection | 999100010021002100410061010101710181020 | | | 33.2
33.3
33.4 | USART
USART
USART
USART
33.5.1
33.5.2
33.5.3
33.5.4
33.5.5
33.5.6
33.5.7
33.5.8
33.5.9
33.5.10 | main features extended features implementation functional description USART block diagram USART signals USART character description USART flFOs and thresholds USART transmitter USART receiver USART baud rate generation Tolerance of the USART receiver to clock deviation USART Auto baud rate detection USART multiprocessor communication | 999 1000 1002 1003 1004 1006 1010 1017 1018 1020 1024 | | | | 33.5.13 | USART LIN (local interconnection network) mode | . 1026 | |----------------|------|--------------------|---|--------| | | | 33.5.14 | USART synchronous mode | . 1028 | | | | 33.5.15 | USART single-wire Half-duplex communication | . 1032 | | | | 33.5.16 | USART receiver timeout | . 1032 | | | | 33.5.17 | USART Smartcard mode | . 1033 | | | | 33.5.18 | USART IrDA SIR ENDEC block | . 1037 | | | | 33.5.19 | Continuous communication using USART and DMA | . 1040 | | | | 33.5.20 | RS232 Hardware flow control and RS485 Driver Enable | . 1042 | | | | 33.5.21 | USART low-power management | . 1045 | | | 33.6 | USART | in low-power modes | 1048 | | | 33.7 | USART | interrupts | 1049 | | | 33.8 | USART | registers | 1050 | | | | 33.8.1 | USART control register 1 [alternate] (USART_CR1) | . 1050 | | | | 33.8.2 | USART control register 1 [alternate] (USART_CR1) | . 1054 | | | | 33.8.3 | USART control register 2 (USART_CR2) | . 1057 | | | | 33.8.4 | USART control register 3 (USART_CR3) | . 1061 | | | | 33.8.5 | USART baud rate register (USART_BRR) | . 1066 | | | | 33.8.6 | USART guard time and prescaler register (USART_GTPR) | . 1066 | | | | 33.8.7 | USART receiver timeout register (USART_RTOR) | . 1067 | | | | 33.8.8 | USART request register (USART_RQR) | . 1068 | | | | 33.8.9 | USART interrupt and status register [alternate] (USART_ISR) | . 1069 | | | | 33.8.10 | USART interrupt and status register [alternate] (USART_ISR) | . 1075 | | | | 33.8.11 | USART interrupt flag clear register (USART_ICR) | . 1080 | | | | 33.8.12 | USART receive data register (USART_RDR) | . 1082 | | | | 33.8.13 | USART transmit data register (USART_TDR) | . 1082 | | | | 33.8.14 | USART prescaler register (USART_PRESC) | . 1083 | | | | 33.8.15 | USART register map | . 1084 | | 34 | Low | 201405 11 | niversal asynchronous receiver | | | J 4 | | | _PUART) | 1086 | | | 34.1 | - | T introduction | | | | 34.2 | LPUAR ² | T main features | 1087 | | | 34.3 | | T implementation | | | | 34.4 | | T functional description | | | | • | 34.4.1 | LPUART block diagram | | | | | 34.4.2 | LPUART signals | | | | | J7.4.Z | Li O, ti vi digitalo | . 1030 | | | | 34.4.3 | LPUART character description | . 1090 | |----|-------|----------|---|--------| | | | 34.4.4 | LPUART FIFOs and thresholds | . 1091 | | | | 34.4.5 | LPUART transmitter | . 1092 | | | | 34.4.6 | LPUART receiver | . 1095 | | | | 34.4.7 | LPUART baud rate generation | . 1099 | | | | 34.4.8 | Tolerance of the LPUART receiver to clock deviation | . 1100 | | | | 34.4.9 | LPUART multiprocessor communication | . 1101 | | | | 34.4.10 | LPUART parity control | . 1103 | | | | 34.4.11 | LPUART single-wire Half-duplex communication | . 1104 | | | | 34.4.12 | Continuous communication using DMA and LPUART | . 1104 | | | | 34.4.13 | RS232
Hardware flow control and RS485 Driver Enable | . 1107 | | | | 34.4.14 | LPUART low-power management | . 1109 | | | 34.5 | LPUAR' | T in low-power modes | . 1112 | | | 34.6 | LPUAR | T interrupts | . 1113 | | | 34.7 | LPUAR | T registers | . 1114 | | | | 34.7.1 | LPUART control register 1 [alternate] (LPUART_CR1) | . 1114 | | | | 34.7.2 | LPUART control register 1 [alternate] (LPUART_CR1) | | | | | 34.7.3 | LPUART control register 2 (LPUART_CR2) | . 1120 | | | | 34.7.4 | LPUART control register 3 (LPUART_CR3) | . 1122 | | | | 34.7.5 | LPUART baud rate register (LPUART_BRR) | . 1125 | | | | 34.7.6 | LPUART request register (LPUART_RQR) | . 1126 | | | | 34.7.7 | LPUART interrupt and status register [alternate] (LPUART_ISR) | . 1126 | | | | 34.7.8 | LPUART interrupt and status register [alternate] (LPUART_ISR) | . 1131 | | | | 34.7.9 | LPUART interrupt flag clear register (LPUART_ICR) | . 1134 | | | | 34.7.10 | LPUART receive data register (LPUART_RDR) | . 1135 | | | | 34.7.11 | LPUART transmit data register (LPUART_TDR) | . 1135 | | | | 34.7.12 | LPUART prescaler register (LPUART_PRESC) | . 1136 | | | | 34.7.13 | LPUART register map | . 1137 | | 35 | Seria | l periph | eral interface / integrated interchip sound (SPI/I2S) . | 1139 | | | 35.1 | Introduc | ction | .1139 | | | 35.2 | SPI mai | n features | .1139 | | | 35.3 | I2S mai | n features | .1140 | | | 35.4 | SPI/I2S | implementation | .1140 | | | 35.5 | | ctional description | | | | 00.0 | 35.5.1 | General description | | | | | 55.5.1 | Conoral accomption | | | | 35.5.2 | Communications between one master and one slave | 2 | |------|-----------|---|---| | | 35.5.3 | Standard multi-slave communication | 4 | | | 35.5.4 | Multi-master communication | 5 | | | 35.5.5 | Slave select (NSS) pin management | 6 | | | 35.5.6 | Communication formats | 7 | | | 35.5.7 | Configuration of SPI | 9 | | | 35.5.8 | Procedure for enabling SPI | 0 | | | 35.5.9 | Data transmission and reception procedures | 0 | | | 35.5.10 | SPI status flags | 0 | | | 35.5.11 | SPI error flags | 1 | | | 35.5.12 | NSS pulse mode | 2 | | | 35.5.13 | TI mode | 2 | | | 35.5.14 | CRC calculation | 3 | | 35.6 | SPI inte | rrupts | 5 | | 35.7 | I2S fund | ctional description | 6 | | | 35.7.1 | I2S general description | 6 | | | 35.7.2 | Supported audio protocols | 7 | | | 35.7.3 | Start-up description | 4 | | | 35.7.4 | Clock generator | 6 | | | 35.7.5 | I ² S master mode | 9 | | | 35.7.6 | I ² S slave mode | 0 | | | 35.7.7 | I2S status flags | 2 | | | 35.7.8 | I2S error flags | 3 | | | 35.7.9 | DMA features | 4 | | 35.8 | I2S inter | rrupts | 4 | | 35.9 | SPI and | I2S registers | 5 | | | 35.9.1 | SPI control register 1 (SPIx_CR1) | 5 | | | 35.9.2 | SPI control register 2 (SPIx_CR2) | 7 | | | 35.9.3 | SPI status register (SPIx_SR) | 9 | | | 35.9.4 | SPI data register (SPIx_DR) | 0 | | | 35.9.5 | SPI CRC polynomial register (SPIx_CRCPR) | 1 | | | 35.9.6 | SPI Rx CRC register (SPIx_RXCRCR) | 1 | | | 35.9.7 | SPI Tx CRC register (SPIx_TXCRCR) | 1 | | | 35.9.8 | SPIx_I2S configuration register (SPIx_I2SCFGR) | 2 | | | 35.9.9 | SPIx_I2S prescaler register (SPIx_I2SPR) | 4 | | | 35.9.10 | SPI/I2S register map | 5 | | 36 | FD co | ontrolle | r area network (FDCAN) | 1196 | |----|-------|----------|--|--------| | | 36.1 | Introduc | ction | .1196 | | | 36.2 | FDCAN | l main features | .1198 | | | 36.3 | FDCAN | I functional description | .1199 | | | | 36.3.1 | Bit timing | . 1200 | | | | 36.3.2 | Operating modes | . 1201 | | | | 36.3.3 | Message RAM | . 1211 | | | | 36.3.4 | FIFO acknowledge handling | . 1219 | | | | 36.3.5 | FDCAN Rx FIFO element | . 1220 | | | | 36.3.6 | FDCAN Tx Buffer element | . 1222 | | | | 36.3.7 | FDCAN Tx Event FIFO element | . 1224 | | | | 36.3.8 | FDCAN Standard message ID Filter element | . 1225 | | | | 36.3.9 | FDCAN Extended message ID filter element | . 1226 | | | 36.4 | FDCAN | l registers | 1227 | | | | 36.4.1 | FDCAN core release register (FDCAN_CREL) | . 1227 | | | | 36.4.2 | FDCAN endian register (FDCAN_ENDN) | . 1227 | | | | 36.4.3 | FDCAN data bit timing and prescaler register (FDCAN_DBTP) | . 1228 | | | | 36.4.4 | FDCAN test register (FDCAN_TEST) | . 1229 | | | | 36.4.5 | FDCAN RAM watchdog register (FDCAN_RWD) | . 1229 | | | | 36.4.6 | FDCAN CC control register (FDCAN_CCCR) | . 1230 | | | | 36.4.7 | FDCAN nominal bit timing and prescaler register (FDCAN_NBTP) | . 1232 | | | | 36.4.8 | FDCAN timestamp counter configuration register (FDCAN_TSCC) | . 1233 | | | | 36.4.9 | FDCAN timestamp counter value register (FDCAN_TSCV) | . 1234 | | | | 36.4.10 | FDCAN timeout counter configuration register (FDCAN_TOCC) | . 1235 | | | | 36.4.11 | FDCAN timeout counter value register (FDCAN_TOCV) | . 1235 | | | | 36.4.12 | FDCAN error counter register (FDCAN_ECR) | . 1236 | | | | 36.4.13 | FDCAN protocol status register (FDCAN_PSR) | . 1236 | | | | 36.4.14 | FDCAN transmitter delay compensation register (FDCAN_TDCR) | . 1239 | | | | 36.4.15 | FDCAN interrupt register (FDCAN_IR) | . 1239 | | | | 36.4.16 | FDCAN interrupt enable register (FDCAN_IE) | . 1242 | | | | 36.4.17 | FDCAN interrupt line select register (FDCAN_ILS) | . 1244 | | | | 36.4.18 | FDCAN interrupt line enable register (FDCAN_ILE) | . 1245 | | | | 36.4.19 | FDCAN global filter configuration register (FDCAN_RXGFC) | . 1245 | | | | 36.4.20 | FDCAN extended ID and mask register (FDCAN_XIDAM) | . 1247 | | | | 36.4.21 | FDCAN high-priority message status register (FDCAN_HPMS) | . 1247 | | | | 36.4.22 | FDCAN Rx FIFO 0 status register (FDCAN_RXF0S) | . 1248 | | | | 36.4.23 | CAN Rx FIFO 0 acknowledge register (FDCAN_RXF0A) 1249 | |----|-------|----------|--| | | | 36.4.24 | FDCAN Rx FIFO 1 status register (FDCAN_RXF1S) | | | | 36.4.25 | FDCAN Rx FIFO 1 acknowledge register (FDCAN_RXF1A) 1250 | | | | 36.4.26 | FDCAN Tx buffer configuration register (FDCAN_TXBC) | | | | 36.4.27 | FDCAN Tx FIFO/queue status register (FDCAN_TXFQS)1251 | | | | 36.4.28 | FDCAN Tx buffer request pending register (FDCAN_TXBRP) 1252 | | | | 36.4.29 | FDCAN Tx buffer add request register (FDCAN_TXBAR) | | | | 36.4.30 | FDCAN Tx buffer cancellation request register (FDCAN_TXBCR) 1253 | | | | 36.4.31 | FDCAN Tx buffer transmission occurred register (FDCAN_TXBTO) 1254 | | | | 36.4.32 | FDCAN Tx buffer cancellation finished register (FDCAN_TXBCF) 1254 | | | | 36.4.33 | FDCAN Tx buffer transmission interrupt enable register (FDCAN_TXBTIE) | | | | 36.4.34 | FDCAN Tx buffer cancellation finished interrupt enable register (FDCAN_TXBCIE)1255 | | | | 36.4.35 | FDCAN Tx event FIFO status register (FDCAN_TXEFS) 1256 | | | | 36.4.36 | FDCAN Tx event FIFO acknowledge register (FDCAN_TXEFA) 1256 | | | | 36.4.37 | FDCAN CFG clock divider register (FDCAN_CKDIV) | | | | 36.4.38 | FDCAN register map | | 37 | Unive | ersal se | rial bus full-speed host/device interface (USB) 1262 | | | 37.1 | Introduc | ction 1262 | | | 37.2 | USB ma | ain features | | | 37.3 | USB im | plementation | | | 37.4 | USB fui | nctional description | | | | 37.4.1 | Description of USB blocks used in both Device and Host modes 1265 | | | | 37.4.2 | Description of host frame scheduler (HFS) specific to Host mode 1266 | | | 37.5 | Progran | nming considerations for Device and Host modes | | | | 37.5.1 | Generic USB Device programming | | | | 37.5.2 | System and power-on reset | | | | 37.5.3 | Double-buffered endpoints and usage in Device mode 1274 | | | | 37.5.4 | Double buffered channels: usage in Host mode | | | | 37.5.5 | Isochronous transfers in Device mode | | | | 37.5.6 | Isochronous transfers in Host mode | | | | 37.5.7 | Suspend/resume events | | | 37.6 | USB an | nd USB SRAM registers | | | | 37.6.1 | Common registers | | | | 37.6.2 | Buffer descriptor table | | | | | · | | | | 37.6.3 | USB register map | 1306 | |----|------|----------|---|------| | 38 | USB | Type-C⊺ | [™] / USB Power Delivery interface (UCPD) | 1308 | | | 38.1 | Introduc | ction | 1308 | | | 38.2 | UCPD r | main features | 1308 | | | 38.3 | UCPD i | mplementation | 1308 | | | 38.4 | | unctional description | | | | • | 38.4.1 | UCPD block diagram | | | | | 38.4.2 | UCPD reset and clocks | | | | | 38.4.3 | Physical layer protocol | | | | | 38.4.4 | UCPD BMC transmitter | 1319 | | | | 38.4.5 | UCPD BMC receiver | 1320 | | | | 38.4.6 | UCPD Type-C pull-ups (Rp) and pull-downs (Rd) | 1322 | | | | 38.4.7 | UCPD Type-C voltage monitoring and de-bouncing | 1322 | | | | 38.4.8 | UCPD fast role swap (FRS) signaling and detection | 1322 | | | | 38.4.9 | UCPD DMA Interface | 1322 | | | | 38.4.10 | Wakeup from Stop mode | 1323 | | | | 38.4.11 | UCPD programming sequences | 1323 | | | 38.5 | UCPD I | ow-power modes | 1327 | | | 38.6 | UCPD i | nterrupts | 1328 | | | 38.7 | UCPD r | egisters | 1329 | | | | 38.7.1 | UCPD configuration register 1 (UCPD_CFGR1) | 1329 | | | | 38.7.2 | UCPD configuration register 2 (UCPD_CFGR2) | 1331 | | | | 38.7.3 | UCPD configuration register 3 (UCPD_CFGR3) | 1331 | | | | 38.7.4 | UCPD control register (UCPD_CR) | 1332 | | | | 38.7.5 | UCPD interrupt mask register (UCPD_IMR) | 1335 | | | | 38.7.6 | UCPD status register (UCPD_SR) | 1336 | | | | 38.7.7 | UCPD interrupt clear register (UCPD_ICR) | 1339 | | | | 38.7.8 | UCPD Tx ordered set type register (UCPD_TX_ORDSETR) . | 1340 | | | | 38.7.9 | UCPD Tx payload size register (UCPD_TX_PAYSZR) | 1341 | | | | 38.7.10 | UCPD Tx data register (UCPD_TXDR) | 1341 | | | | 38.7.11 | UCPD Rx ordered set register (UCPD_RX_ORDSETR) | 1342 | | | | 38.7.12 | UCPD Rx payload size register (UCPD_RX_PAYSZR) | 1343 | | | | 38.7.13 | UCPD receive data register (UCPD_RXDR) | 1343 | | | | 38.7.14 | UCPD Rx ordered set extension register 1 (UCPD_RX_ORDEXTR1) | 1344 | RM0444 Contents | | | 38.7.15 | UCPD Rx ordered set extension register 2
(UCPD_RX_ORDEXTR2) | 1344 | |----|-------|----------------|---|------| | | | 38.7.16 | UCPD register map | 1345 | | 39 | HDM | I-CEC co | ontroller (CEC) | 1347 | | | 39.1 | Introduc | ction | 1347 | | | 39.2 | HDMI-C | CEC controller main features | 1347 | | | 39.3 | | CEC functional description | | | | 00.0 | 39.3.1 | HDMI-CEC pin | | | | | 39.3.2 | HDMI-CEC block diagram | | | | | 39.3.3 | Message description | | | | | 39.3.4 | Bit timing | | | | 39.4 | Arbitrati | ion | | | | | 39.4.1 | SFT option bit | | | | 39.5 | Error ha | andling | | | | | 39.5.1 | Bit error | | | | | 39.5.2 | Message error | | | | | 39.5.3 | Bit rising error (BRE) | | | | | 39.5.4 | Short bit period error (SBPE) | | | | | 39.5.5 | Long bit period error (LBPE) | | | | | 39.5.6 | Transmission error detection (TXERR) | 1354 | | | 39.6 | HDMI-C | CEC interrupts | 1356 | | | 39.7 | | CEC registers | | | | | 39.7.1 | CEC control register (CEC_CR) | | | | | 39.7.2 | CEC configuration register (CEC_CFGR) | | | | | 39.7.3 | CEC Tx data register (CEC_TXDR) | | | | | 39.7.4 | CEC Rx data register (CEC_RXDR) | | | | | 39.7.5 | CEC interrupt and status register (CEC_ISR) | 1360 | | | | 39.7.6 | CEC interrupt enable register (CEC_IER) | 1362 | | | | 39.7.7 | HDMI-CEC register map | 1364 | | 40 | Debu | ıg suppo | ort (DBG) | 1365 | | | 40.1 | Overvie | | | | | 40.2 | Referer | nce Arm documentation | | | | 40.3 | | and debug port pins | | | | -₹0.0 | 40.3.1 | SWD port pins | | | | | ∓0.0. I | OTTO POR PINO | | | | | 40.3.2 | SW-DP pin assignment | 1366 | |----|-------|----------|---|------| | | | 40.3.3 | Internal pull-up & pull-down on SWD pins | 1367 | | | 40.4 | ID code | es and locking mechanism | | | | 40.5 | | ort | | | | | 40.5.1 | SWD protocol introduction | | | | | 40.5.2 | SWD protocol sequence | | | | | 40.5.3 | SW-DP state machine (reset, idle states, ID code) | | | | | 40.5.4 | DP and AP read/write accesses | | | | | 40.5.5 | SW-DP registers | | | | | 40.5.6 | SW-AP registers | | | | 40.6 | Core de | ebug | | | | 40.7 | | reak Point Unit) | | | | | 40.7.1 | BPU functionality | | | | 40.8 | DWT (E | Data Watchpoint) | | | | | 40.8.1 | DWT functionality | | | | | 40.8.2 | DWT Program Counter Sample Register | | | | 40.9 | MCU de | ebug component (DBG) | | | | | 40.9.1 | Debug support for low-power modes | | | | | 40.9.2 | Debug support for timers, watchdog and I ² C | | | | 40.10 | DBG re | gisters | 1373 | | | | 40.10.1 | DBG device ID code register (DBG_IDCODE) | | | | | 40.10.2 | | | | | | 40.10.3 | | | | | | 40.10.4 | DBG APB freeze register 2 (DBG_APB_FZ2) | 1376 | | | | 40.10.5 | DBG register map | 1377 | | 41 | Devic | e electi | ronic signature | 1379 | | | 41.1 | Unique | device ID register (96 bits) | 1379 | | | 41.2 | Flash m | nemory size data register | 1380 | | | 41.3 | | e data register | | | 42 | Revis | sion his | tory | 1382 | | | | | | | RM0444 List of tables # List of tables | Table 1. | Peripherals versus products | | |------------------------|--|-----| | Table 2. | STM32G0B1xx and STM32G0C1xx memory boundary addresses | | | Table 3. | STM32G071xx and STM32G081xx memory boundary addresses | | | Table 4. | STM32G051xx and STM32G061xx memory boundary addresses | | | Table 5. | STM32G031xx and STM32G041xx memory boundary addresses | | | Table 6. | STM32G0x1 peripheral register boundary addresses | 62 | | Table 7. | SRAM size | 64 | | Table 8. | Boot modes | 65 | | Table 9. | Flash memory organization for single-bank devices | 69 | | Table 10. | Flash memory organization for 256 Kbytes dual-bank devices | 70 | | Table 11. | Flash memory organization for 512 Kbytes dual-bank devices | | | Table 12. | Number of wait states according to Flash memory clock (HCLK) frequency | | | Table 13. | Page erase overview | | | Table 14. | Mass erase overview | | | Table 15. | Option byte format | | | Table 16. | Organization of option bytes | | | Table 17. | Flash memory read protection status | | | Table 17. | Access status versus protection level and execution modes | | | Table 19. | | | | | Securable memory erase at RDP Level 1 to Level 0 change | | | Table 23. | FLASH interrupt requests | | | Table 24. | FLASH register map and reset values | | | Table 25. | Low-power mode summary | | | Table 26. | Functionalities depending on the working mode | | | Table 27. | Low-power run | | | Table 28. | Sleep mode summary | | | Table 29. | Low-power sleep mode summary | | | Table 30. | Stop 0 mode summary | | | Table 31. | Stop 1 mode summary | 138 | | Table 32. | Standby mode summary | | | Table 33. | Shutdown mode summary | 142 | | Table 34. | PWR register map and reset values | 158 | | Table 35. | Clock source frequency | 171 | | Table 36. | RCC register map and reset values | 217 | | Table 37. | CRS features | | | Table 38. | CRS internal input/output signals | | | Table 39. | Effect of low-power modes on CRS | | | Table 40. | Interrupt control bits | | | Table 41. | CRS register map and reset values | | | Table 42. | Port bit configuration table | | | Table 43. | GPIO register map and reset values | | | Table 44. | SYSCFG register map and reset values | | | Table 45. | Interconnect matrix | | | Table 45. | | | | Table 46.
Table 47. | DMA implementation | | | | DMA internal input/output signals | | | Table 48. | Programmable data width and endian behavior (when PINC = MINC = 1) | | | Table 49. | DMA interrupt requests | | | Table 50. | DMA register map and reset values | | | Table 51. | DMAMUX instantiation | 299 | RM0444 Rev 5 39/1390 | Table 52. | DMAMUX: assignment of multiplexer inputs to resources | | |------------|---|-------| | Table 53. | DMAMUX: assignment of trigger inputs to resources | | | Table 54. | DMAMUX: assignment of synchronization inputs to resources | | | Table 55. | DMAMUX signals | | | Table 56. | DMAMUX interrupts | | | Table 57. | DMAMUX register map and reset values | | | Table 58. | Vector table | | | Table 59. | EXTI signal overview | | | Table 60. | EVG pin overview | | | Table 61. | EXTI event input configurations and register control | | | Table 62. | EXTI line connections | | | Table 63. | Masking functionality | | | Table 64. | EXTI register map sections | | | Table 65. | EXTI controller register map and reset values | | | Table 66. | CRC internal input/output signals | | | Table 67. | CRC register map and reset values | | | Table 68. | ADC input/output pins | | | Table 69. | ADC internal input/output signals | | | Table 70. | External triggers | . 346 | | Table 71. | Latency between trigger and start of conversion | | | Table 72. | Configuring the trigger polarity | | | Table 73. | tSAR timings depending on resolution | | | Table 74. | Analog watchdog comparison | | | Table 75. | Analog watchdog 1 channel selection | | | Table 76. | Maximum output results vs N and M. Grayed values indicates truncation | | | Table 77. | ADC interrupts | | | Table 78. | ADC register map and reset values | | | Table 79. | DAC features | | | Table 80. | DAC input/output pins | | | Table 81. | DAC internal input/output signals | | | Table 82. | DAC interconnection | | | Table 83. | Sample and refresh timings | | | Table 84. | Channel output modes summary | | | Table 85. | Effect of low-power modes on DAC | | | Table 86. | DAC interrupts | | | Table 87. | DAC register map and reset values | | | Table 88. | VREF buffer modes | | | Table 89. | VREFBUF register map and reset values | | | Table 90. | COMP1 non-inverting input assignment | | | Table 91. | COMP1 inverting input assignment | | | Table 92. | COMP2 non-inverting input assignment | | | Table 93. | COMP2 inverting input assignment | | | Table 94. | COMP3 non-inverting input assignment | | | Table 95. | COMP3 inverting input assignment | | | Table 96. | Comparator behavior in the low power modes | | | Table 97. | Interrupt control bits | | | Table 98. | COMP register map and reset values | | | Table 99. | RNG internal input/output signals | | | Table 100. | RNG interrupt requests | | | Table 101. | RNG register map and reset map | | | Table 102. | AES internal input/output signals | | | Table 103. | CTR mode initialization vector definition | . 491 | RM0444 List of tables | Table 104. | GCM last block definition | | |-------------|---|----------------| | Table 105. | GCM mode IVI bitfield initialization | | | Table 106. | Initialization of AES_IVRx registers in CCM mode | . 501 | | Table 107. | Key endianness in AES_KEYRx registers (128- or 256-bit key length) | | | Table 108. | AES interrupt requests | | | Table 109. | Processing latency for ECB, CBC and CTR | | | Table 110. | Processing latency for GCM and CCM (in clock cycles) | | | Table 111. | AES register map and reset values | . 521 | | Table 112. | Behavior of timer outputs versus BRK/BRK2 inputs | | | Table 113. | Break protection disarming conditions | | | Table 114. | Counting direction versus encoder signals | | | Table 115. | TIM1 internal trigger connection | | | Table 116. | Output control bits for complementary OCx and OCxN channels with break feature | | | Table 117. | TIM1 register map and reset values | | | Table 118. | Counting direction versus encoder signals | | | Table 119. | TIMx internal trigger connection | | | Table 120. | Output control bit for standard OCx channels | | | Table 121. | TIM2/TIM3/TIM4 register map and reset values | | | Table 122. | TIMx register map and reset values | | | Table 123. | Output control bit for standard OCx channels | | | Table 124. | TIM14 register map and reset values | | | Table 125. | Break protection disarming conditions | | | Table 126. | TIMx Internal trigger connection | . 785 | | Table 127. | Output control bits
for complementary OCx and OCxN channels with break feature | 705 | | T. I.I. 400 | (TIM15) | | | Table 128. | TIM15 register map and reset values | . 804 | | Table 129. | Output control bits for complementary OCx and OCxN channels with break feature (TIM16/17) | Ω17 | | Table 130. | TIM16/TIM17 register map and reset values | | | Table 130. | STM32G0x1 LPTIM features | | | Table 131. | LPTIM input/output pins | | | Table 133. | LPTIM internal signals | | | Table 134. | LPTIM1 external trigger connection | | | Table 135. | LPTIM2 external trigger connection | | | Table 136. | LPTIM1 input 1 connection | | | Table 137. | LPTIM1 input 2 connection | | | Table 138. | LPTIM2 input 1 connection | | | Table 139. | Prescaler division ratios | | | Table 140. | Encoder counting scenarios | | | Table 141. | Effect of low-power modes on the LPTIM | | | Table 142. | Interrupt events | | | Table 143. | LPTIM register map and reset values | | | Table 144. | IWDG register map and reset values | | | Table 145. | WWDG register map and reset values | | | Table 146. | RTC input/output pins | | | Table 147. | RTC internal input/output signals | | | Table 148. | RTC interconnection. | | | Table 149. | PC13 configuration | | | Table 150. | | | | Table 151. | RTC OUT mapping | . 878 | | Tubic To I. | RTC_OUT mapping | | | Table 152. | RTC_OUT mapping | . 889 | | | Effect of low-power modes on RTC | . 889
. 889 | RM0444 Rev 5 41/1390 | Table 154. | RTC register map and reset values | | |------------|--|--------| | Table 155. | TAMP input/output pins | | | Table 156. | TAMP internal input/output signals | | | Table 157. | TAMP interconnection | | | Table 158. | Effect of low-power modes on TAMP | | | Table 159. | Interrupt requests | | | Table 160. | TAMP register map and reset values | 926 | | Table 161. | STM32G0x1 I2C implementation | | | Table 162. | I2C input/output pins | | | Table 163. | I2C internal input/output signals | | | Table 164. | Comparison of analog vs. digital filters | | | Table 165. | I2C-SMBus specification data setup and hold times | 936 | | Table 166. | I2C configuration | | | Table 167. | I2C-SMBus specification clock timings | | | Table 168. | Examples of timing settings for fl2CCLK = 8 MHz | | | Table 169. | Examples of timings settings for fl2CCLK = 16 MHz | 961 | | Table 170. | Examples of timings settings for fl2CCLK = 48 MHz | | | Table 171. | SMBus timeout specifications | 964 | | Table 172. | SMBus with PEC configuration | 966 | | Table 173. | Examples of TIMEOUTA settings for various I2CCLK frequencies | | | | (max t _{TIMEOUT} = 25 ms) | 967 | | Table 174. | Examples of TIMEOUTB settings for various I2CCLK frequencies | 967 | | Table 175. | Examples of TIMEOUTA settings for various I2CCLK frequencies | | | | $(\max t_{IDLE} = 50 \mu s)$ | 968 | | Table 176. | Effect of low-power modes on the I2C | 979 | | Table 177. | I2C Interrupt requests | 980 | | Table 178. | I2C register map and reset values | 996 | | Table 179. | STM32G0x1 features | . 1000 | | Table 180. | USART / LPUART features | 1001 | | Table 181. | Noise detection from sampled data | | | Table 182. | Tolerance of the USART receiver when BRR [3:0] = 0000 | 1019 | | Table 183. | Tolerance of the USART receiver when BRR[3:0] is different from 0000 | | | Table 184. | USART frame formats | | | Table 185. | Effect of low-power modes on the USART | 1048 | | Table 186. | USART interrupt requests | | | Table 187. | USART register map and reset values | 1084 | | Table 188. | STM32G0x1 features | 1088 | | Table 189. | USART / LPUART features | 1088 | | Table 190. | Error calculation for programmed baud rates at lpuart_ker_ck_pres = 32,768 KHz | . 1099 | | Table 191. | Error calculation for programmed baud rates at fCK = 100 MHz | | | Table 192. | Tolerance of the LPUART receiver | 1101 | | Table 194. | Effect of low-power modes on the LPUART | 1112 | | Table 195. | LPUART interrupt requests | 1113 | | Table 196. | LPUART register map and reset values | 1137 | | Table 197. | STM32G0x1 SPI and SPI/I2S implementation | | | Table 198. | SPI interrupt requests | | | Table 199. | Audio-frequency precision using standard 8 MHz HSE | | | Table 200. | I2S interrupt requests | | | Table 201. | SPI/I2S register map and reset values | | | Table 202. | CAN subsystem I/O signals | | | Table 203. | DLC coding in FDCAN | | | Table 204. | Possible configurations for Frame transmission | | RM0444 List of tables | Table 205. | Rx FIFO element | | |--------------------------|---|------| | Table 206. | Rx FIFO element description | | | Table 207. | Tx Buffer and FIFO element | | | Table 208. | Tx Buffer element description | | | Table 209. | Tx Event FIFO element | | | Table 210. | Tx Event FIFO element description | | | Table 211. | Standard Message ID Filter element | | | Table 212. | Standard Message ID Filter element Field description | | | Table 213. | Extended Message ID Filter element | | | Table 214. | Extended Message ID Filter element field description | | | Table 215. | FDCAN register map and reset values | | | Table 216. | STM32G0x1 USB implementation | | | Table 217. | Double-buffering buffer flag definition | | | Table 218. | Bulk double-buffering memory buffers usage (Device mode) | | | Table 219. | Bulk double-buffering memory buffers usage (Host mode) | | | Table 220. | Isochronous memory buffers usage | | | Table 221. | Isochronous memory buffers usage | | | Table 222. | Resume event detection | | | Table 223. | Resume event detection for host | | | Table 224. | Reception status encoding | | | Table 225. | Endpoint/channel type encoding | | | Table 226. | Endpoint/channel kind meaning | | | Table 227. | Transmission status encoding | | | Table 228. | Definition of allocated buffer memory | | | Table 229. | USB register map and reset values | | | Table 230. | UCPD implementation | | | Table 231. | UCPD signals on pins | | | Table 232. | UCPD internal signals | | | Table 233. | 4b5b Symbol Encoding Table | | | Table 234. | Ordered sets | | | Table 235. | Validation of ordered sets | | | Table 236. | Data size | | | Table 237. | Coding for ANAMODE, ANASUBMODE and link with TYPEC_VSTATE_CCx | | | Table 238. | Type-C sequence (source: 3A); cable/sink connected (Rd on CC1; Ra on CC2) | | | Table 239. | Effect of low power modes on the UCPD | | | Table 240. | UCPD interrupt requests | | | Table 241. | UCPD register map and reset values | | | Table 242. | HDMI pin | | | Table 243. | Error handling timing parameters | | | Table 244. | TXERR timing parameters | | | Table 245. | HDMI-CEC interrupts | | | Table 246. | HDMI-CEC register map and reset values | | | Table 247. | SW debug port pins | | | Table 248. | Packet request (8-bits) | | | Table 249. | ACK response (3 bits) | | | Table 250. | DATA transfer (33 bits) | | | Table 251. | SW-DP registers | | | Table 252. | 32-bit debug port registers addressed through the shifted value A[3:2] | | | Table 253. | Core debug registers | | | Table 254.
Table 255. | DEV_ID and REV_ID field values | | | | DBG register map and reset values | | | Table 256. | Document revision history | 1302 | RM0444 Rev 5 43/1390 List of figures RM0444 # List of figures | Figure 1. | System architecture | 56 | |------------|---|-----| | Figure 2. | Memory map | 59 | | Figure 3. | Changing read protection (RDP) level | 94 | | Figure 4. | Example of disabling core debug access | 98 | | Figure 5. | Power supply overview | 120 | | Figure 6. | POR, PDR, and BOR thresholds | 124 | | Figure 7. | PVD thresholds | 125 | | Figure 8. | Low-power modes state diagram | 127 | | Figure 9. | Simplified diagram of the reset circuit | 161 | | Figure 10. | Clock tree | 166 | | Figure 11. | HSE/ LSE clock sources | 167 | | Figure 12. | Frequency measurement with TIM14 in capture mode | 174 | | Figure 13. | Frequency measurement with TIM16 in capture mode | 175 | | Figure 14. | Frequency measurement with TIM17 in capture mode | 175 | | Figure 15. | CRS block diagram | 222 | | Figure 16. | CRS counter behavior | 223 | | Figure 17. | Basic structure of an I/O port bit | 233 | | Figure 18. | Input floating/pull up/pull down configurations | 237 | | Figure 19. | Output configuration | | | Figure 20. | Alternate function configuration | | | Figure 21. | High impedance-analog configuration | | | Figure 22. | DMA block diagram | | | Figure 23. | DMAMUX block diagram | | | Figure 24. | Synchronization mode of the DMAMUX request line multiplexer channel | | | Figure 25. | Event generation of the DMA request line multiplexer channel | | | Figure 26. | EXTI block diagram | | | Figure 27. | Configurable event trigger logic CPU wakeup | | | Figure 28. | Direct event trigger logic CPU wakeup | | | Figure 29. | EXTI GPIO mux | | | Figure 30. | CRC calculation unit block diagram | | | Figure 31. | ADC block diagram | | | Figure 32. | ADC calibration | | | Figure 33. | Calibration factor forcing | | | Figure 34. | Enabling/disabling the ADC | | | Figure 35. | ADC clock scheme | | | Figure 36. | ADC connectivity | | | Figure 37. | Analog to digital conversion time | | | Figure 38. | ADC conversion timings | | | Figure 39. | Stopping an ongoing conversion | | | Figure 40. | Single conversions of a sequence, software trigger | | | Figure 41. | Continuous conversion of a sequence, software trigger | | | Figure 42. | Single conversions of a sequence, hardware trigger | | | Figure 43. | Continuous conversions of a sequence, hardware trigger | | | Figure 44. | Data alignment and resolution (oversampling disabled: OVSE = 0) | | | Figure 45. | Example of overrun (OVR) | | | Figure 46. | Wait mode conversion (continuous mode, software trigger) | | | Figure 47. | Behavior with WAIT = 0, AUTOFF = 1 | | | Figure 48. | Behavior with WAIT = 1, AUTOFF = 1 | | | | | | |
Figure 49. | Analog watchdog guarded area | | |-------------|--|-----| | Figure 50. | ADC_AWDx_OUT signal generation | 371 | | Figure 51. | ADC_AWDx_OUT signal generation (AWDx flag not cleared by software) | 371 | | Figure 52. | ADC_AWDx_OUT signal generation (on a single channel) | | | Figure 53. | Analog watchdog threshold update | | | Figure 54. | 20-bit to 16-bit result truncation | | | Figure 55. | Numerical example with 5-bits shift and rounding | 374 | | Figure 56. | Triggered oversampling mode (TOVS bit = 1) | | | Figure 57. | Temperature sensor and VREFINT channel block diagram | | | Figure 58. | VBAT channel block diagram | | | Figure 59. | Dual-channel DAC block diagram | | | Figure 60. | Data registers in single DAC channel mode | | | Figure 61. | Data registers in dual DAC channel mode | | | Figure 62. | Timing diagram for conversion with trigger disabled TEN = 0 | | | Figure 63. | DAC LFSR register calculation algorithm | | | Figure 64. | DAC conversion (SW trigger enabled) with LFSR wave generation | | | Figure 65. | DAC triangle wave generation | 413 | | Figure 66. | DAC conversion (SW trigger enabled) with triangle wave generation | | | Figure 67. | DAC Sample and hold mode phase diagram | | | Figure 68. | Comparator block diagram | | | Figure 69. | Window mode | | | Figure 70. | Comparator hysteresis | | | Figure 71. | Comparator output blanking | | | Figure 72. | RNG block diagram | | | Figure 73. | Entropy source model | | | Figure 74. | RNG initialization overview | | | Figure 75. | AES block diagram | | | Figure 76. | ECB encryption and decryption principle | | | Figure 77. | CBC encryption and decryption principle | | | Figure 78. | CTR encryption and decryption principle | | | Figure 79. | GCM encryption and authentication principle | | | Figure 80. | GMAC authentication principle | | | Figure 81. | CCM encryption and authentication principle | | | Figure 82. | Example of suspend mode management | | | Figure 83. | ECB encryption | | | Figure 84. | ECB decryption | | | Figure 85. | CBC encryption | | | Figure 86. | CBC decryption. | | | Figure 87. | ECB/CBC encryption (Mode 1) | | | Figure 88. | ECB/CBC decryption (Mode 3) | | | Figure 89. | Message construction in CTR mode | | | Figure 90. | CTR encryption | | | Figure 91. | CTR decryption | | | Figure 92. | Message construction in GCM | | | Figure 93. | GCM authenticated encryption | | | Figure 94. | Message construction in GMAC mode | | | Figure 95. | GMAC authentication mode | | | Figure 96. | Message construction in CCM mode | | | Figure 97. | CCM mode authenticated encryption | | | Figure 98. | 128-bit block construction with respect to data swap | | | Figure 99. | DMA transfer of a 128-bit data block during input phase | | | Figure 100. | DMA transfer of a 128-bit data block during output phase | 508 | RM0444 Rev 5 45/1390 List of figures RM0444 | Figure 101. | Advanced-control timer block diagram | 525 | |-------------|---|-----| | Figure 102. | Counter timing diagram with prescaler division change from 1 to 2 | 527 | | Figure 103. | Counter timing diagram with prescaler division change from 1 to 4 | 527 | | Figure 104. | Counter timing diagram, internal clock divided by 1 | 529 | | Figure 105. | Counter timing diagram, internal clock divided by 2 | 529 | | Figure 106. | Counter timing diagram, internal clock divided by 4 | 530 | | | Counter timing diagram, internal clock divided by N | | | - | Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) | | | | Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) | | | | Counter timing diagram, internal clock divided by 1 | | | - | Counter timing diagram, internal clock divided by 2 | | | - | Counter timing diagram, internal clock divided by 4 | | | • | Counter timing diagram, internal clock divided by N | | | - | Counter timing diagram, update event when repetition counter is not used | | | - | Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6 | | | | Counter timing diagram, internal clock divided by 2 | | | | Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 | | | | Counter timing diagram, internal clock divided by N | | | • | Counter timing diagram, update event with ARPE=1 (counter underflow) | | | - | Counter timing diagram, Update event with ARPE=1 (counter overflow) | | | | Update rate examples depending on mode and TIMx_RCR register settings | | | - | External trigger input block | | | | TIM1 ETR input circuitry | | | • | · | | | | TI2 external clock connection example | | | | External trigger input block | | | | Control circuit in external clock mode 2 | | | • | Capture/compare channel (example: channel 1 input stage) | | | | Capture/compare channel 1 main circuit | | | | Output stage of capture/compare channel (channel 1, idem ch. 2 and 3) | | | - | Output stage of capture/compare channel (channel 4) | | | | Output stage of capture/compare channel (channel 5, idem ch. 6) | | | - | PWM input mode timing | | | | Output compare mode, toggle on OC1 | | | | Edge-aligned PWM waveforms (ARR=8) | | | | Center-aligned PWM waveforms (ARR=8) | | | • | Generation of 2 phase-shifted PWM signals with 50% duty cycle | | | - | Combined PWM mode on channel 1 and 3 | | | | 3-phase combined PWM signals with multiple trigger pulses per period | | | • | Complementary output with dead-time insertion | | | | Dead-time waveforms with delay greater than the negative pulse | | | - | Dead-time waveforms with delay greater than the positive pulse | | | Figure 144. | Break and Break2 circuitry overview | 562 | | Figure 145. | Various output behavior in response to a break event on BRK (OSSI = 1) | 564 | | | PWM output state following BRK and BRK2 pins assertion (OSSI=1) | | | Figure 147. | PWM output state following BRK assertion (OSSI=0) | 566 | | | Output redirection (BRK2 request not represented) | | | | Clearing TIMx OCxREF | | | | 6-step generation, COM example (OSSR=1) | | | | Example of one pulse mode | | | Figure 152. | Retriggerable one pulse mode | 572 | | Figure 153. | Example of counter operation in encoder interface mode | 573 | |-------------|---|-----| | | Example of encoder interface mode with TI1FP1 polarity inverted | | | | Measuring time interval between edges on 3 signals | | | | Example of Hall sensor interface | | | - | Control circuit in reset mode | | | • | Control circuit in Gated mode | | | | Control circuit in trigger mode | | | | Control circuit in external clock mode 2 + trigger mode | | | | General-purpose timer block diagram | | | | Counter timing diagram with prescaler division change from 1 to 2 | | | | Counter timing diagram with prescaler division change from 1 to 4 | | | - | Counter timing diagram, internal clock divided by 1 | | | • | Counter timing diagram, internal clock divided by 2 | | | - | Counter timing diagram, internal clock divided by 4 | | | | Counter timing diagram, Internal clock divided by N | | | - | Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not preloaded) | | | | Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded) Counter timing diagram, internal clock divided by 1 | | | • | Counter timing diagram, internal clock divided by 2 | | | | Counter timing diagram, internal clock divided by 4 | | | • | Counter timing diagram, internal clock divided by N | | | | Counter timing diagram, Update event when repetition counter | 054 | | riguic 174. | is not used | 635 | | Figure 175 | Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6 | | | - | Counter timing diagram, internal clock divided by 2 | | | | Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 | | | | Counter timing diagram, internal clock divided by N | | | | Counter timing diagram, Update event with ARPE=1 (counter underflow) | | | - | Counter timing diagram, Update event with ARPE=1 (counter overflow) | | | - | Control circuit in normal mode, internal clock divided by 1 | | | - | TI2 external clock connection example | | | Figure 183. | Control circuit in external clock mode 1 | 641 | | | External trigger input block | | | Figure 185. | Control circuit in external clock mode 2 | 643 | | Figure 186. | Capture/Compare channel (example: channel 1 input stage) | 643 | | 0 | Capture/Compare channel 1 main circuit | | | - | Output stage of Capture/Compare channel (channel 1) | | | | PWM input mode timing | | | | Output compare mode, toggle on OC1 | | | 0 | Edge-aligned PWM waveforms (ARR=8) | | | • | Center-aligned PWM waveforms (ARR=8) | | | | Generation of 2 phase-shifted PWM signals with 50% duty cycle | | | | Combined PWM mode on channels 1 and 3 | | | | Clearing TIMx OCxREF | | | | Example of one-pulse mode | | | | Retriggerable one-pulse mode. | | | | Example of counter operation in encoder interface mode | | | | Example of encoder interface mode with TI1FP1 polarity inverted | | | • | Control circuit in reset mode | | | | Control circuit in gated mode | | | | Control circuit in trigger mode | | | rigure 203. | Control circuit in external clock mode 2 + trigger mode | 003 | RM0444 Rev 5 47/1390 | Figure 204. | Master/Slave timer example | . 663 | |--------------|---|-------| | | Master/slave connection example with 1 channel only timers | | | | Gating TIM2 with OC1REF of TIM3 | | | • | Gating TIM2 with Enable of TIM3 | | | | Triggering TIM2 with update of TIM3 | | | | Triggering TIM2 with Enable of TIM3 | | | | Triggering TIM3 and TIM2 with TIM3 TI1 input | | | | Basic timer block diagram | | | - | Counter timing diagram with prescaler division change from 1 to 2 | | | - | Counter timing diagram with prescaler division change from 1 to 4 | | | |
Counter timing diagram, internal clock divided by 1 | | | | Counter timing diagram, internal clock divided by 2 | | | - | Counter timing diagram, internal clock divided by 4 | | | | Counter timing diagram, internal clock divided by N | . 707 | | Figure 218. | Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not | 707 | | Ciaura 210 | preloaded) | . 707 | | rigure 219. | Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) | 700 | | Figure 220 | Control circuit in normal mode, internal clock divided by 1 | | | | General-purpose timer block diagram (TIM14) | | | | Counter timing diagram with prescaler division change from 1 to 2 | | | | Counter timing diagram with prescaler division change from 1 to 4 | | | | Counter timing diagram, internal clock divided by 1 | | | | Counter timing diagram, internal clock divided by 1 | | | • | Counter timing diagram, internal clock divided by 4 | | | - | Counter timing diagram, internal clock divided by N | | | | Counter timing diagram, update event when ARPE=0 (TIMx_ARR not | . , , | | . igaio 220. | preloaded) | . 721 | | Figure 229. | Counter timing diagram, update event when ARPE=1 (TIMx_ARR | – . | | Ü | preloaded) | . 722 | | Figure 230. | Control circuit in normal mode, internal clock divided by 1 | . 723 | | Figure 231. | Capture/compare channel (example: channel 1 input stage) | . 723 | | Figure 232. | Capture/compare channel 1 main circuit | . 724 | | Figure 233. | Output stage of capture/compare channel (channel 1) | . 724 | | Figure 234. | Output compare mode, toggle on OC1 | . 727 | | | Edge-aligned PWM waveforms (ARR=8) | | | Figure 236. | TIM15 block diagram | . 743 | | | TIM16/TIM17 block diagram | | | | Counter timing diagram with prescaler division change from 1 to 2 | | | | Counter timing diagram with prescaler division change from 1 to 4 | | | | Counter timing diagram, internal clock divided by 1 | | | • | Counter timing diagram, internal clock divided by 2 | | | | Counter timing diagram, internal clock divided by 4 | | | • | Counter timing diagram, internal clock divided by N | . 749 | | Figure 244. | Counter timing diagram, update event when ARPE=0 (TIMx_ARR not | | | | preloaded) | . 750 | | Figure 245. | Counter timing diagram, update event when ARPE=1 (TIMx_ARR | | | | preloaded) | | | | Update rate examples depending on mode and TIMx_RCR register settings | | | | Control circuit in normal mode, internal clock divided by 1 | | | | TI2 external clock connection example | | | Figure 249. | Control circuit in external clock mode 1 | . 754 | | | Capture/compare channel (example: channel 1 input stage) | | |-------------|---|-----| | | Capture/compare channel 1 main circuit | | | - | Output stage of capture/compare channel (channel 1) | | | | Output stage of capture/compare channel (channel 2 for TIM15) | | | | PWM input mode timing | | | | Output compare mode, toggle on OC1 | | | | Edge-aligned PWM waveforms (ARR=8) | | | | Combined PWM mode on channel 1 and 2 | | | | Complementary output with dead-time insertion | | | - | Dead-time waveforms with delay greater than the negative pulse | | | - | Dead-time waveforms with delay greater than the positive pulse | | | | Break circuitry overview | | | | Output behavior in response to a break | | | | Output redirection | | | | Example of one pulse mode | | | | Retriggerable one pulse mode | | | - | Measuring time interval between edges on 2 signals | | | • | Control circuit in reset mode | | | • | Control circuit in gated mode | | | Figure 269. | Control circuit in trigger mode | 110 | | Figure 270. | Low-power timer block diagram (LPTIM1 and LPTIM2 ⁽¹⁾) | 032 | | | Glitch filter timing diagram | | | - | LPTIM output waveform, single counting mode configuration | 837 | | Figure 273. | LPTIM output waveform, Single counting mode configuration | 020 | | Ciguro 274 | and Set-once mode activated (WAVE bit is set) | | | | LPTIM output waveform, Continuous counting mode configuration | | | • | Encoder mode counting sequence | | | - | IRTIM internal hardware connections | | | - | Independent watchdog block diagram | | | | Watchdog block diagram | | | | Window watchdog timing diagram | | | | RTC block diagram | | | - | TAMP block diagram | | | | I2C1 block diagram | | | | I2C2 block diagram | | | | I2C bus protocol | | | | Setup and hold timings | | | | I2C initialization flowchart | | | - | Data reception | | | - | Data transmission | | | • | Slave initialization flowchart | | | • | Transfer sequence flowchart for I2C slave transmitter, | • | | 9 | NOSTRETCH= 0 | 944 | | Figure 292. | Transfer sequence flowchart for I2C slave transmitter, | | | Ü | NOSTRETCH= 1 | 945 | | Figure 293. | Transfer bus diagrams for I2C slave transmitter | | | | Transfer sequence flowchart for slave receiver with NOSTRETCH=0 | | | | Transfer sequence flowchart for slave receiver with NOSTRETCH=1 | | | | Transfer bus diagrams for I2C slave receiver | | | | Master clock generation | | | Figure 298. | Master initialization flowchart | 952 | | | | | RM0444 Rev 5 49/1390 | • | 10-bit address read access with HEAD10R=0 | | |--------------|--|------| | • | 10-bit address read access with HEAD10R=1 | | | • | Transfer sequence flowchart for I2C master transmitter for N≤255 bytes | | | | Transfer sequence flowchart for I2C master transmitter for N>255 bytes | | | | Transfer bus diagrams for I2C master transmitter | | | | Transfer sequence flowchart for I2C master receiver for N≤255 bytes | | | | Transfer sequence flowchart for I2C master receiver for N >255 bytes | | | - | Transfer bus diagrams for I2C master receiver | | | Figure 307. | Timeout intervals for t _{LOW:SEXT} , t _{LOW:MEXT} | 965 | | | Transfer sequence flowchart for SMBus slave transmitter N bytes + PEC | | | | Transfer bus diagrams for SMBus slave transmitter (SBC=1) | | | | Transfer sequence flowchart for SMBus slave receiver N Bytes + PEC | | | | Bus transfer diagrams for SMBus slave receiver (SBC=1) | | | | Bus transfer diagrams for SMBus master transmitter | | | - | Bus transfer diagrams for SMBus master receiver | | | | USART block diagram | | | - | Word length programming | | | | Configurable stop bits | | | | TC/TXE behavior when transmitting | | | - | Start bit detection when oversampling by 16 or 8 | | | | usart_ker_ck clock divider block diagram | | | | Data sampling when oversampling by 16 | | | - | Data sampling when oversampling by 8 | | | | Mute mode using Idle line detection | | | | Mute mode using address mark detection | | | | Break detection in LIN mode (11-bit break length - LBDL bit is set) | | | | Break detection in LIN mode vs. Framing error detection | | | | USART example of synchronous master transmission | 1029 | | Figure 327. | USART data clock timing diagram in synchronous master mode | 4000 | | Figure 200 | (M bits = 00) | 1028 | | rigure 326. | USART data clock timing diagram in synchronous master mode (M bits = 01) | 1030 | | Figure 320 | USART data clock timing diagram in synchronous slave mode | 1030 | | i igule 329. | (M bits = 00) | 1031 | | Figure 330 | ISO 7816-3 asynchronous protocol | | | | Parity error detection using the 1.5 stop bits | | | | IrDA SIR ENDEC block diagram | | | | IrDA data modulation (3/16) - Normal mode | | | • | Transmission using DMA | | | • | Reception using DMA | | | | Hardware flow control between 2 USARTs | | | • | RS232 RTS flow control | | | | RS232 CTS flow control | | | | Wakeup event verified (wakeup event = address match, FIFO disabled) | | | - | Wakeup event not verified (wakeup event = address match, | 1047 | | rigure 040. | FIFO disabled) | 1047 | | Figure 341 | LPUART block diagram | | | - | LPUART word length programming | | | | Configurable stop bits | | | | TC/TXE behavior when transmitting | | | | lpuart_ker_ck clock divider block diagram | | | - | Mute mode using Idle line detection | 1102 | | Figure 347. | Mute mode using address mark detection | . 1103 | |--------------------------|--|--------| | - | Transmission using DMA | | | Figure 349. | Reception using DMA | . 1106 | | Figure 350. | Hardware flow control between 2 LPUARTs | . 1107 | | Figure 351. | RS232 RTS flow control | . 1107 | | Figure 352. | RS232 CTS flow control | . 1108 | | Figure 353. | Wakeup event verified (wakeup event = address match, | | | | FIFO disabled) | . 1111 | | Figure 354. | Wakeup event not verified (wakeup event = address match, | | | | FIFO disabled) | . 1111 | | | SPI block diagram | . 1141 | | Figure 356. | Full-duplex single master/ single slave application | . 1142 | | | Half-duplex single master/ single slave application | . 1143 | | Figure 358. | Simplex single master/single slave application (master in transmit-only/ | | | | slave in receive-only mode) | | | | Master and three independent slaves | | | | Multi-master application | | | | Hardware/software slave select management | | | | Data clock timing diagram | | | | Data alignment when data length is not equal to 8-bit or 16-bit | | | | Packing data in FIFO for transmission and reception | | | • | Master full-duplex communication | | | | Slave full-duplex communication | | | • | Master full-duplex communication with CRC | | | | Master full-duplex communication in packed mode | | | | NSSP pulse generation in Motorola SPI master mode | | | • | TI mode transfer | | | | I2S block diagram | | | | I ² S Philips protocol waveforms (16/32-bit full accuracy) | | | | I ² S Philips standard waveforms (24-bit frame) | | | • | Transmitting 0x8EAA33 | | | | Receiving 0x8EAA33 | | | | I ² S Philips standard (16-bit extended to 32-bit packet frame) | | | | Example of 16-bit data frame extended to 32-bit channel frame | | | • | MSB Justified 16-bit or 32-bit full-accuracy length | | | | MSB justified 24-bit frame length | | | | MSB justified
16-bit extended to 32-bit packet frame | | | - | LSB justified 16-bit or 32-bit full-accuracy | | | | LSB justified 24-bit frame length | | | • | Operations required to transmit 0x3478AE | | | | Operations required to receive 0x3478AE | | | | LSB justified 16-bit extended to 32-bit packet frame | | | - | Example of 16-bit data frame extended to 32-bit channel frame | | | | PCM standard waveforms (16-bit) | | | | PCM standard waveforms (16-bit extended to 32-bit packet frame) | | | | Start sequence in master mode | | | | Audio sampling frequency definition | | | - | I ² S clock generator architecture | | | - | CAN subsystem | | | - | FDCAN block diagram | | | | Bit timing | | | ı iyul e 393. | Transcerver delay incasurement | . 1200 | RM0444 Rev 5 51/1390 List of figures RM0444 | Figure 396. | Pin control in Bus Monitoring mode | |-------------|---| | Figure 397. | Pin control in Loop Back mode | | Figure 398. | Message RAM configuration | | Figure 399. | Standard Message ID filter path | | Figure 400. | Extended Message ID filter path1215 | | Figure 401. | USB peripheral block diagram | | Figure 402. | Packet buffer areas with examples of buffer description table locations | | | UCPD block diagram | | Figure 404. | Clock division and timing elements1311 | | | K-code transmission | | Figure 406. | Transmit order for various sizes of data | | | Packet format | | Figure 408. | Line format of Hard Reset | | Figure 409. | Line format of Cable Reset | | | BIST test data frame | | Figure 411. | BIST Carrier Mode 2 frame | | Figure 412. | UCPD BMC transmitter architecture | | Figure 413. | UCPD BMC receiver architecture | | Figure 414. | HDMI-CEC block diagram | | Figure 415. | Message structure | | Figure 416. | Blocks | | Figure 417. | Bit timings | | Figure 418. | Signal free time | | | Arbitration phase | | Figure 420. | SFT of three nominal bit periods | | Figure 421. | Error bit timing | | Figure 422. | Error handling | | | TXERR detection | | Figure 424. | Block diagram of STM32G0x1 MCU and Cortex®-M0+-level debug support 1365 | ## 1 Documentation conventions ### 1.1 General information The STM32G0x1 devices have an Arm®(a) Cortex®-M0+ core. # 1.2 List of abbreviations for registers The following abbreviations(b) are used in register descriptions: Software can read and write to this bit. read/write (rw) read-only (r) Software can only read this bit. write-only (w) Software can only write to this bit. Reading this bit returns the reset value. read/clear write0 (rc_w0) Software can read as well as clear this bit by writing 0. Writing 1 has no effect on the bit value. read/clear write1 (rc w1) Software can read as well as clear this bit by writing 1. Writing 0 has no effect on the bit value. read/clear write (rc w) Software can read as well as clear this bit by writing to the register. The value written to this bit is not important. read/clear by read (rc_r) Software can read this bit. Reading this bit automatically clears it to 0. Writing this bit has no effect on the bit value. read/set by read (rs r) Software can read this bit. Reading this bit automatically sets it to 1. Writing this bit has no effect on the bit value. read/set (rs) Software can read as well as set this bit. Writing 0 has no effect on the bit read/write once (rwo) Software can only write once to this bit and can also read it at any time. Only a reset can return the bit to its reset value. toggle (t) The software can toggle this bit by writing 1. Writing 0 has no effect. read-only write trigger (rt_w1) Software can read this bit. Writing 1 triggers an event but has no effect on the bit value. Reserved bit, must be kept at reset value. b. This is an exhaustive list of all abbreviations applicable to STMicroelectronics microcontrollers, some of them may not be used in the current document. . Reserved (Res.) a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. # 1.3 Glossary This section gives a brief definition of acronyms and abbreviations used in this document: - Word: data of 32-bit length. - Half-word: data of 16-bit length. - Byte: data of 8-bit length. - **SWD-DP (SWD DEBUG PORT)**: SWD-DP provides a 2-pin (clock and data) interface based on the Serial Wire Debug (SWD) protocol. Please refer to the Cortex[®]-M0+ technical reference manual. - **IAP (in-application programming)**: IAP is the ability to re-program the Flash memory of a microcontroller while the user program is running. - **ICP (in-circuit programming)**: ICP is the ability to program the Flash memory of a microcontroller using the SWD protocol or the bootloader while the device is mounted on the user application board. - Option bytes: product configuration bits stored in the Flash memory. - OBL: option byte loader. - AHB: advanced high-performance bus. - APB: advanced peripheral bus. # 1.4 Availability of peripherals For availability of peripherals and their number across all sales types, refer to the particular device datasheet. The following table shows per-product availability of peripherals that are not common to all STM32G0x1 products. | Feature | STM32G0
31 | STM32G0
41 | STM32G0
51 | STM32G0
61 | STM32G0
71 | STM32G0
81 | STM32G0
B1 | STM32G0
C1 | |------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------| | CRS | No | No | No | No | No | No | Yes | Yes | | RNG | No | Yes | No | Yes | No | Yes | No | Yes | | AES | No | Yes | No | Yes | No | Yes | No | Yes | | DAC | No | No | Yes | Yes | Yes | Yes | Yes | Yes | | COMP1,
COMP2 | No | No | Yes | Yes | Yes | Yes | Yes | Yes | | COMP3 | No | No | No | No | No | No | Yes | Yes | | TIM4 | No | No | No | No | No | No | Yes | Yes | | TIM6 and
TIM7 | No | No | Yes | Yes | Yes | Yes | Yes | Yes | | TIM15 | No | No | Yes | Yes | Yes | Yes | Yes | Yes | | I2C3 | No | No | No | No | No | No | Yes | Yes | Table 1. Peripherals versus products 54/1390 RM0444 Rev 5 Table 1. Peripherals versus products (continued) | Feature | STM32G0
31 | STM32G0
41 | STM32G0
51 | STM32G0
61 | STM32G0
71 | STM32G0
81 | STM32G0
B1 | STM32G0
C1 | |-------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------| | I2C2
independent
clock sel. | No | No | No | No | No | No | Yes | Yes | | SPI3 | No | No | No | No | No | No | Yes | Yes | | 12S2 | No | No | No | No | No | No | Yes | Yes | | USART3,
USART4 | No | No | No | No | Yes | Yes | Yes | Yes | | USART5,
USART6 | No | No | No | No | No | No | Yes | Yes | | USART2
independent
clock sel. | No | No | No | No | Yes | Yes | Yes | Yes | | USART3
independent
clock sel. | N/A | N/A | N/A | N/A | No | No | Yes | Yes | | LPUART2 | No | No | No | No | No | No | Yes | Yes | | USB | No | No | No | No | No | No | Yes | Yes | | UCPD1,
UCPD2 | No | No | No | No | Yes | Yes | Yes | Yes | | FDCAN1,
FDCAN2 | No | No | No | No | No | No | Yes | Yes | | CEC | No | No | No | No | Yes | Yes | Yes | Yes | | DMA2 | No | No | No | No | No | No | Yes | Yes | | MCO2 | No | No | No | No | No | No | Yes | Yes | | HSI48 RC | No | No | No | No | No | No | Yes | Yes | | CRS | No | No | No | No | No | No | Yes | Yes | | GPIO port E | No | No | No | No | No | No | Yes | Yes | | Switchable
I/O clamping
diode | Yes | Yes | Yes | Yes | No | No | Yes | Yes | | V _{DDIO2}
monitor | No | No | No | No | No | No | Yes | Yes | RM0444 Rev 5 55/1390 # 2 Memory and bus architecture # 2.1 System architecture The main system consists of: - Two masters: - Cortex[®]-M0+ core - General-purpose DMA - Three slaves: - Internal SRAM - Internal Flash memory - AHB with AHB-to-APB bridge that connects all the APB peripherals These are interconnected using a multilayer AHB bus architecture as shown in Figure 1. GPIO Ports A,B,C,D,E,F Flash memory Flash memory interface TIOPORT **SRAM** $\mathsf{Arm}^{\scriptscriptstyle{\circledR}}$ Bus matrix Cortex®-M0+ System bus AHB-to-APB core APB AHB bridge DMA1/2 DMA bus SYSCFG, ADC, DAC, **DMAMUX** channels 1 to 12 COMP1, COMP2, COMP3 TIM1, TIM2, TIM3, TIM4 TIM6, TIM7, **CRC** TIM14 to TIM17, LPTIM1, LPTIM2, UCPD1, UCPD2, **RCC AES** IWDG, WWDG, RTC, PWR, I2C1, I2C2, I2C3 **RNG EXTI** USART1 to USART6, LPUART1, LPUART2 SPI1/I2S1, SPI2/I2S2, SPI3 DMA requests USB **FDCAN** HDMI-CEC **DBGMCU** Figure 1. System architecture #### System bus (S-bus) This bus connects the system bus of the Cortex[®]-M0+ core (peripheral bus) to a bus matrix that manages the arbitration between the core and the DMA. #### **DMA** bus This bus connects the AHB master interface of the DMA to the bus matrix that manages the access of CPU and DMA to SRAM, Flash memory and AHB/APB peripherals. 56/1390 RM0444 Rev 5 #### **Bus matrix** The bus matrix manages the access arbitration between the core system bus and the DMA master bus. The arbitration uses a Round Robin algorithm. The bus matrix is composed of masters (CPU, DMA) and slaves (Flash memory interface, SRAM and AHB-to-APB bridge). AHB peripherals are connected on system bus through the bus matrix to allow DMA access. ### AHB-to-APB bridge (APB) The AHB-to-APB bridge provides full synchronous connections between the AHB and the APB bus. Refer to *Section 2.2: Memory organization* for the address mapping of the peripherals connected to this bridge. After each device reset, all peripheral clocks are disabled (except for the SRAM and Flash memory). Before using a peripheral its clock in the RCC_AHBENR, RCC_APBENRx or RCC_IOPENR register must first be enabled. Note: When a 16- or 8-bit access is performed on an APB register, the access is transformed into a 32-bit access: the bridge duplicates the 16- or 8-bit data to feed the 32-bit vector. RM0444 Rev 5 57/1390 # 2.2 Memory organization ### 2.2.1
Introduction Program memory, data memory, registers and I/O ports are organized within the same linear 4-Gbyte address space. The bytes are coded in memory in Little Endian format. The lowest numbered byte in a word is considered the word's least significant byte and the highest numbered byte the most significant. The addressable memory space is divided into eight main blocks, of 512 Mbytes each. ### 2.2.2 Memory map and register boundary addresses Figure 2. Memory map All the memory map areas that are not allocated to on-chip memories and peripherals are considered as reserved. For the detailed mapping of available memory and register areas, refer to the following tables. 60/1391 RM0444 Rev 5 STM32G0B1xx and STM32G0C1xx: 0x0007 FFFF; STM32G071xx and STM32G081xx: 0x0001 FFFF; STM32G051xx and STM32G061xx, STM32G031xx and STM32G041xx: 0x0000 FFFF. STM32G0B1xx and STM32G0C1xx: 0x0807 FFFF; STM32G071xx and STM32G081xx: 0x0801 FFFF; STM32G051xx and STM32G061xx, STM32G031xx and STM32G041xx: 0x0800 FFFF. ^{3.} Depends on boot configuration Table 2. STM32G0B1xx and STM32G0C1xx memory boundary addresses | Туре | Boundary address | Size | Memory Area | Register description | |---------|---------------------------|---------|--|--------------------------| | SRAM | 0x2002 4000 - 0x3FFF FFFF | ~512 MB | Reserved | - | | SIVAIVI | 0x2000 0000 - 0x2002 3FFF | 144 KB | SRAM | Section 2.3 on page 65 | | | 0x1FFF 7880- 0x1FFF FFFF | ~34 KB | Reserved | - | | | 0x1FFF 7800 - 0x1FFF 787F | 128 B | Option bytes | Section 3.4 on page 81 | | | 0x1FFF 7500 - 0x1FFF 77FF | 768 B | Engineering bytes | - | | | 0x1FFF 7400- 0x1FFF 74FF | 256 B | Reserved | - | | | 0x1FFF 7000 - 0x1FFF 73FF | 1 KB | OTP | - | | Code | 0x1FFF 0000 - 0x1FFF 6FFF | 28 KB | System memory | - | | | 0x0808 0000 - 0x1FFF D7FF | ~384 MB | Reserved | - | | | 0x0800 0000 - 0x0807 FFFF | 512 KB | Main Flash memory | Section 3.3.1 on page 70 | | | 0x0008 0000 - 0x07FF FFFF | ~7.5 MB | Reserved | - | | | 0x0000 0000 - 0x0007 FFFF | 512 KB | Main Flash memory, system memory or SRAM depending on BOOT configuration | - | Table 3. STM32G071xx and STM32G081xx memory boundary addresses | Туре | Boundary address | Size | Memory Area | Register description | |------|---------------------------|---------|--|--------------------------| | SRAM | 0x2000 9000 - 0x3FFF FFFF | ~512 MB | Reserved | - | | | 0x2000 0000 - 0x2000 8FFF | 36 KB | SRAM | Section 2.3 on page 65 | | | 0x1FFF 7880- 0x1FFF FFFF | ~34 KB | Reserved | - | | | 0x1FFF 7800 - 0x1FFF 787F | 128 B | Option bytes | Section 3.4 on page 81 | | | 0x1FFF 7500 - 0x1FFF 77FF | 768 B | Engineering bytes | - | | | 0x1FFF 7400- 0x1FFF 74FF | 256 B | Reserved | - | | | 0x1FFF 7000 - 0x1FFF 73FF | 1 KB | OTP | - | | Code | 0x1FFF 0000 - 0x1FFF 6FFF | 28 KB | System memory | - | | | 0x0802 0000 - 0x1FFF D7FF | ~384 MB | Reserved | - | | | 0x0800 0000 - 0x0801 FFFF | 128 KB | Main Flash memory | Section 3.3.1 on page 70 | | | 0x0002 0000 - 0x07FF FFFF | ~8 MB | Reserved | - | | | 0x0000 0000 - 0x0001 FFFF | 128 KB | Main Flash memory, system memory or SRAM depending on BOOT configuration | - | Table 4. STM32G051xx and STM32G061xx memory boundary addresses | Туре | Boundary address | Size | Memory Area | Register description | |------|---------------------------|---------|-------------|------------------------| | SRAM | 0x2000 4800 - 0x3FFF FFFF | ~512 MB | Reserved | - | | | 0x2000 0000 - 0x2000 47FF | 18 KB | SRAM | Section 2.3 on page 65 | RM0444 Rev 5 61/1391 Table 4. STM32G051xx and STM32G061xx memory boundary addresses (continued) | Туре | Boundary address | Size | Memory Area | Register description | |------|---------------------------|---------|--|--------------------------| | | 0x1FFF 7880- 0x1FFF FFFF | ~34 KB | Reserved | - | | | 0x1FFF 7800 - 0x1FFF 787F | 128 B | Option bytes | Section 3.4 on page 81 | | | 0x1FFF 7500 - 0x1FFF 77FF | 768 B | Engineering bytes | - | | | 0x1FFF 7400- 0x1FFF 74FF | 256 B | Reserved | - | | | 0x1FFF 7000 - 0x1FFF 73FF | 1 KB | OTP | - | | | 0x1FFF 2000 - 0x1FFF 6FFF | ~20 KB | Reserved | - | | Code | 0x1FFF 0000 - 0x1FFF 1FFF | 8 KB | System memory | - | | | 0x0801 0000 - 0x1FFF D7FF | ~384 MB | Reserved | - | | | 0x0800 0000 - 0x0800 FFFF | 64 KB | Main Flash memory | Section 3.3.1 on page 70 | | | 0x0001 0000 - 0x07FF FFFF | ~8 MB | Reserved | - | | | 0x0000 0000 - 0x0000 FFFF | 64 KB | Main Flash memory, system memory or SRAM depending on BOOT configuration | - | Table 5. STM32G031xx and STM32G041xx memory boundary addresses | Туре | Boundary address | Size | Memory Area | Register description | |------|---------------------------|---------|--|--------------------------| | SRAM | 0x2000 2000 - 0x3FFF FFFF | ~512 MB | Reserved | - | | | 0x2000 0000 - 0x2000 1FFF | 8 KB | SRAM | Section 2.3 on page 65 | | | 0x1FFF 7880- 0x1FFF FFFF | ~34 KB | Reserved | - | | | 0x1FFF 7800 - 0x1FFF 787F | 128 B | Option bytes | Section 3.4 on page 81 | | | 0x1FFF 7500 - 0x1FFF 77FF | 768 B | Engineering bytes | - | | | 0x1FFF 7400- 0x1FFF 74FF | 256 B | Reserved | - | | | 0x1FFF 7000 - 0x1FFF 73FF | 1 KB | OTP | - | | | 0x1FFF 2000 - 0x1FFF 6FFF | ~20 KB | Reserved | - | | Code | 0x1FFF 0000 - 0x1FFF 1FFF | 8 KB | System memory | - | | | 0x0801 0000 - 0x1FFF D7FF | ~384 MB | Reserved | - | | | 0x0800 0000 - 0x0800 FFFF | 64 KB | Main Flash memory | Section 3.3.1 on page 70 | | | 0x0001 0000 - 0x07FF FFFF | ~8 MB | Reserved | - | | | 0x0000 0000 - 0x0000 FFFF | 64 KB | Main Flash memory, system memory or SRAM depending on BOOT configuration | - | 62/1391 RM0444 Rev 5 The following table gives the boundary addresses of the peripherals. Table 6. STM32G0x1 peripheral register boundary addresses | Bus | Boundary address | Size | Peripheral | Peripheral register map | |--------|---------------------------|---------|---|------------------------------| | - | 0xE000 0000 - 0xE00F FFFF | 1MB | Cortex [®] -M0+ internal peripherals | - | | | 0x5000 1800 - 0x5FFF FFFF | ~256 MB | Reserved | - | | | 0x5000 1400 - 0x5000 17FF | 1 KB | GPIOF | Section 7.4.12 on page 248 | | | 0x5000 1000 - 0x5000 13FF | 1 KB | GPIOE | Section 7.4.12 on page 248 | | IOPORT | 0x5000 0C00 - 0x5000 0FFF | 1 KB | GPIOD | Section 7.4.12 on page 248 | | | 0x5000 0800 - 0x5000 0BFF | 1 KB | GPIOC | Section 7.4.12 on page 248 | | | 0x5000 0400 - 0x5000 07FF | 1 KB | GPIOB | Section 7.4.12 on page 248 | | | 0x5000 0000 - 0x5000 03FF | 1 KB | GPIOA | Section 7.4.12 on page 248 | | | 0x4002 6400 - 0x4FFF FFFF | ~256 MB | Reserved | - | | | 0x4002 6000 - 0x4002 63FF | 1 KB | AES | Section 20.7.18 on page 522 | | | 0x4002 5400 - 0x4002 5FFF | 3 KB | Reserved | - | | | 0x4002 5000 - 0x4002 53FF | 1 KB | RNG | Section 19.7.4 on page 473 | | | 0x4002 3400 - 0x4002 4FFF | 3 KB | Reserved | - | | | 0x4002 3000 - 0x4002 33FF | 1 KB | CRC | Section 14.4.6 on page 343 | | | 0x4002 2400 - 0x4002 2FFF | 3 KB | Reserved | - | | AHB | 0x4002 2000 - 0x4002 23FF | 1 KB | FLASH | Section 3.7.22 on page 118 | | And | 0x4002 1C00 - 0x4002 1FFF | 3 KB | Reserved | - | | | 0x4002 1800 - 0x4002 1BFF | 1 KB | EXTI | Section 13.5.16 on page 335 | | | 0x4002 1400 - 0x4002 17FF | 1 KB | Reserved | - | | | 0x4002 1000 - 0x4002 13FF | 1 KB | RCC | Section 5.4.25 on page 218 | | | 0x4002 0C00 - 0x4002 0FFF | 1 KB | Reserved | - | | | 0x4002 0800 - 0x4002 0BFF | 2 KB | DMAMUX | Section 11.6.7 on page 313 | | | 0x4002 0400 - 0x4002 07FF | 1 KB | DMA2 | Section 10.6.7 on page 296 | | | 0x4002 0000 - 0x4002 03FF | 1 KB | DMA1 | Section 10.6.7 on page 296 | | | 0x4001 5C00 - 0x4001 FFFF | 32 KB | Reserved | - | | | 0x4001 5800 - 0x4001 5BFF | 1 KB | DBG | Section 40.10.5 on page 1378 | | APB | 0x4001 4C00 - 0x4001 57FF | 3 KB | Reserved | - | | | 0x4001 4800 - 0x4001 4BFF | 1 KB | TIM17 | Section 25.6.21 on page 830 | | | 0x4001 4400 - 0x4001 47FF | 1 KB | TIM16 | Section 25.6.21 on page 830 | Table 6. STM32G0x1 peripheral register boundary addresses (continued) | Bus | Boundary address | Size | Peripheral | Peripheral register map | |-----|---------------------------|-------|------------------------|------------------------------| | | 0x4001 4000 - 0x4001 43FF | 1 KB | TIM15 | Section 25.6.21 on page 830 | | | 0x4001 3C00 - 0x4001 3FFF | 1 KB | USART6 | Section 33.8.15 on page 1086 | | | 0x4001 3800 - 0x4001 3BFF | 1 KB | USART1 | Section 33.8.15 on page 1086 | | | 0x4001 3400 - 0x4001 37FF | 1 KB | Reserved | - | | | 0x4001 3000 - 0x4001 33FF | 1 KB | SPI1/I2S1 | Section 35.9.10 on page 1197 | | | 0x4001 2C00 - 0x4001 2FFF | 1 KB | TIM1 | Section 21.4 on page 585 | | | 0x4001 2800 - 0x4001 2BFF | 1 KB | Reserved | - | | | 0x4001 2400 - 0x4001 27FF | 1 KB | ADC | Section 15.13 on page 403 | | | 0x4001 0400 - 0x4001 23FF | 8 KB | Reserved | - | | | 0x4001 0200 - 0x4001 03FF | | COMP | Section 18.6.4 on page 459 | | | 0x4001 0080 - 0x4001 01FF | 4 KD | SYSCFG(ITLINE)(1) | Section 8.1.35 on page 267 | | | 0x4001 0030 - 0x4001 007F | 1 KB | VREFBUF | Section 17.3.3 on page 445 | | | 0x4001 0000 - 0x4001 002F | | SYSCFG | Section 8.1.35 on page 267 | | | 0x4000 BC00- 0x4000 FFFF | 17 KB | Reserved | - | | | 0x4000 B400- 0x4000 BBFF | 2 KB | FDCAN message RAM | - | | | 0x4000 B000 - 0x4000 B3FF | 1 KB | TAMP (+ BKP registers) | Section 31.6.9 on page 928 | | | 0x4000 A800 - 0x4000 AFFF | 2 KB | Reserved | - | | APB | 0x4000 A400 - 0x4000 A7FF | 1 KB | UCPD2 | Section 38.7.16 on page 1346 | | | 0x4000 A000 - 0x4000 A3FF | 1 KB | UCPD1 | Section 38.7.16 on page 1346 | | | 0x4000 9C00 - 0x4000 9FFF | 1 KB | USB RAM2 | - | | | 0x4000 9800 - 0x4000 9BFF | 1 KB | USB RAM1 | - | | | 0x4000 9400 - 0x4000 97FF | 1 KB | LPTIM2 | Section 26.7.10 on page 856 | | | 0x4000
8C00 - 0x4000 93FF | 2 KB | Reserved | - | | | 0x4000 8800 - 0x4000 8BFF | 1 KB | I2C3 | Section 32.7.12 on page 998 | | | 0x4000 8400 - 0x4000 87FF | 1 KB | LPUART2 | Section 33.8.15 on page 1086 | | | 0x4000 8000 - 0x4000 83FF | 1 KB | LPUART1 | Section 33.8.15 on page 1086 | | | 0x4000 7C00 - 0x4000 7FFF | 1 KB | LPTIM1 | Section 26.7.10 on page 856 | | | 0x4000 7800 - 0x4000 7BFF | 1 KB | CEC | Section 39.7.7 on page 1365 | | | 0x4000 7400 - 0x4000 77FF | 1 KB | DAC | Section 16.7.21 on page 441 | | | 0x4000 7000 - 0x4000 73FF | 1 KB | PWR | Section 4.4.20 on page 159 | | | 0x4000 6C00 - 0x4000 6FFF | 1 KB | CRS | Section 6.7.5 on page 232 | | | 0x4000 6800 - 0x4000 6BFF | 1 KB | FDCAN2 | Section 36.4.38 on page 1259 | | | 0x4000 6400 - 0x4000 67FF | 1 KB | FDCAN1 | Section 36.4.38 on page 1259 | | | 0x4000 6000 - 0x4000 63FF | 1 KB | Reserved | - | | | 0x4000 5C00 - 0x4000 5FFF | 1 KB | USB | Section 37.6.3 on page 1307 | 64/1391 RM0444 Rev 5 Table 6. STM32G0x1 peripheral register boundary addresses (continued) | Bus | Boundary address | Size | Peripheral | Peripheral register map | |------|---------------------------|------|------------|------------------------------| | | 0x4000 5800 - 0x4000 5BFF | 1 KB | I2C2 | Section 32.7.12 on page 998 | | | 0x4000 5400 - 0x4000 57FF | 1 KB | I2C1 | Section 32.7.12 on page 998 | | | 0x4000 5000 - 0x4000 53FF | 1 KB | USART5 | Section 33.8.15 on page 1086 | | | 0x4000 4C00 - 0x4000 4FFF | 1 KB | USART4 | Section 33.8.15 on page 1086 | | | 0x4000 4800 - 0x4000 4BFF | 1 KB | USART3 | Section 33.8.15 on page 1086 | | | 0x4000 4400 - 0x4000 47FF | 1 KB | USART2 | Section 33.8.15 on page 1086 | | | 0x4000 4000 - 0x4000 43FF | 1 KB | Reserved | - | | | 0x4000 3C00 - 0x4000 3FFF | 1 KB | SPI3 | Section 35.9.10 on page 1197 | | | 0x4000 3800 - 0x4000 3BFF | 1 KB | SPI2/I2S2 | Section 35.9.10 on page 1197 | | | 0x4000 3400 - 0x4000 37FF | 1 KB | Reserved | - | | APB | 0x4000 3000 - 0x4000 33FF | 1 KB | IWDG | Section 28.4.6 on page 868 | | AI D | 0x4000 2C00 - 0x4000 2FFF | 1 KB | WWDG | Section 29.5.4 on page 874 | | | 0x4000 2800 - 0x4000 2BFF | 1 KB | RTC | Section 30.6.21 on page 912 | | | 0x4000 2400 - 0x4000 27FF | 1 KB | Reserved | - | | | 0x4000 2000 - 0x4000 23FF | 1 KB | TIM14 | Section 24.4.13 on page 740 | | | 0x4000 1800 - 0x4000 1FFF | 2 KB | Reserved | - | | | 0x4000 1400 - 0x4000 17FF | 1 KB | TIM7 | Section 23.4.9 on page 715 | | | 0x4000 1000 - 0x4000 13FF | 1 KB | TIM6 | Section 23.4.9 on page 715 | | | 0x4000 0C00 - 0x4000 0FFF | 1 KB | Reserved | - | | | 0x4000 0800 - 0x4000 0BFF | 1 KB | TIM4 | Section 22.4.31 on page 700 | | | 0x4000 0400 - 0x4000 07FF | 1 KB | TIM3 | Section 22.4.31 on page 700 | | | 0x4000 0000 - 0x4000 03FF | 1 KB | TIM2 | Section 22.4.31 on page 700 | ^{1.} SYSCFG (ITLINE) registers use 0x4001 0000 as reference peripheral base address. ## 2.3 Embedded SRAM The following table summarizes the SRAM resources on the devices, with parity check enabled and disabled. Table 7. SRAM size | Device | SRAM with parity enabled (Kbyte) | SRAM with parity disabled (Kbyte) | |-----------------------------|----------------------------------|-----------------------------------| | STM32G0B1xx and STM32G0C1xx | 128 | 144 | | STM32G071xx and STM32G081xx | 32 | 36 | | STM32G051xx and STM32G061xx | 16 | 18 | | STM32G031xx and STM32G041xx | 8 | 8 | 65/1391 The SRAM can be accessed by bytes, half-words (16 bits) or full words (32 bits), at maximum system clock frequency without wait state and thus by both CPU and DMA. #### Parity check The user can enable the parity check using the option bit RAM_PARITY_CHECK in the user option byte (refer to Section 3.4: FLASH option bytes). The data bus width is 36 bits because 4 bits are available for parity check (1 bit per byte) in order to increase memory robustness, as required for instance by Class B or SIL norms. The parity bits are computed and stored when writing into the SRAM. Then, they are automatically checked when reading. If one bit fails, an NMI is generated. The same error can also be linked to the BRK_IN Break input of TIM1/15/16/17, with the SRAM_PARITY_LOCK control bit in the SYSCFG configuration register 2 (SYSCFG_CFGR2). The SRAM Parity Error flag (SRAM_PEF) is available in the SYSCFG configuration register 2 (SYSCFG_CFGR2). Note: When enabling the SRAM parity check, it is advised to initialize by software the whole SRAM at the beginning of the code, to avoid getting parity errors when reading non-initialized locations. # 2.4 Flash memory overview The Flash memory is composed of two distinct physical areas: - The main Flash memory block. It contains the application program and user data if necessary. - The information block. It is composed of three parts: - Option bytes for hardware and memory protection user configuration. - System memory which contains the proprietary boot loader code. - OTP (one-time programmable) area Refer to Section 3: Embedded Flash memory (FLASH) for more details. The Flash interface implements instruction access and data access based on the AHB protocol. It implements the prefetch buffer that speeds up CPU code execution. It also implements the logic necessary to carry out the Flash memory operations (Program/Erase) controlled through the Flash registers. # 2.5 Boot configuration In the STM32G0x1, three different boot modes can be selected through the BOOT0 pin, BOOT_LOCK bit in FLASH_SECR register, and boot configuration bits nBOOT1, BOOT_SEL and nBOOT0 in the User option byte, as shown in the following table. **Boot mode configuration** Selected boot area nBOOT1 BOOT BOOT0 nBOOT SEL nBOOT0 LOCK bit bit pin bit bit 0 х 0 0 Х Main Flash memory 0 1 0 1 System memory Х Table 8. Boot modes 66/1391 RM0444 Rev 5 | | rable of Boot modes (continued) | | | | | | | | |-------------------|---------------------------------|--------------|------------------|---------------|--------------------|--|--|--| | | Boot | | | | | | | | | BOOT_
LOCK bit | nBOOT1
bit | BOOT0
pin | nBOOT_SEL
bit | nBOOT0
bit | Selected boot area | | | | | 0 | 0 | 1 | 0 | х | Embedded SRAM | | | | | 0 | х | х | 1 | 1 | Main Flash memory | | | | | 0 | 1 | х | 1 | 0 | System memory | | | | | 0 | 0 | х | 1 | 0 | Embedded SRAM | | | | Table 8. Boot modes (continued) The boot mode configuration is latched on the 4th rising edge of SYSCLK after a reset. It is up to the user to set boot mode configuration related to the required boot mode. Main Flash memory forced The boot mode configuration is also re-sampled when exiting from Standby mode. Consequently they must be kept in the required Boot mode configuration in Standby mode. After this startup delay has elapsed, the CPU fetches the top-of-stack value from address 0x0000 0000, then starts code execution from the boot memory at 0x0000 0004. Depending on the selected boot mode, main Flash memory, system memory or SRAM is accessible as follows: - Boot from main Flash memory: the main Flash memory is aliased in the boot memory space (0x0000 0000), but still accessible from its original memory space (0x0800 0000). In other words, the Flash memory contents can be accessed starting from address 0x0000 0000 or 0x0800 0000. - Boot from system memory: the system memory is aliased in the boot memory space (0x0000 0000), but still accessible from its original memory space 0x1FFF0000. - Boot from the embedded SRAM: the SRAM is aliased in the boot memory space (0x0000 0000), but it is still accessible from its original memory space (0x2000 0000). #### Forcing boot from user Flash memory The BOOT_LOCK bit allows forcing a unique entry point in the main Flash memory for boot, regardless of the other boot mode configuration bits. See section *Forcing boot from Flash memory*. ### **Empty check** 1 Internal empty check flag (the EMPTY bit of the *FLASH* access control register (*FLASH_ACR*)) is implemented to allow easy programming of virgin devices by the boot loader. This flag is used when BOOT0 pin is defining Main Flash memory as the target boot area. When the flag is set, the device is considered as empty and System memory (boot loader) is selected instead of the Main Flash as a boot area to allow user to program the Flash memory. This flag is updated only during Option bytes loading: it is set when the content of the address 0x0800 0000 is read as 0xFFFF FFFF, otherwise it is cleared. It means a power reset or setting of OBL_LAUNCH bit in FLASH_CR register is needed to clear this flag after programming of a virgin device to execute user code after System reset. The EMPTY bit can also directly be written by software. RM0444 Rev 5 67/1391 Note: If the device is programmed for a first time but the Option bytes are not reloaded, the device still selects System memory as a boot area after a System reset. #### Physical remap Once the boot mode is selected, the application software can modify the memory accessible in the code area. This modification is performed by programming the MEM_MODE bits in the SYSCFG configuration register 1 (SYSCFG_CFGR1). #### **Embedded boot loader** The embedded boot loader is located in the System memory, programmed by ST during production. It is used to reprogram the Flash memory using one of the following serial interfaces: - USART1, USART2, I2C1 and I2C2 (applies to all devices) - USART3, SPI1, and SPI2 (applies to STM32G071xx and STM32G081xx and to STM32G0B1xx and STM32G0C1xx) - USB (DFU) and FDCAN2 (applies to STM32G0B1xx and STM32G0C1xx) For further details, refer to the device data sheets and AN2606. # 3 Embedded Flash memory (FLASH) ### 3.1 FLASH Introduction The Flash memory interface manages CPU (Cortex[®]-M0+) AHB to the Flash memory. It implements erase and program Flash memory operations, read and write protection, and security mechanisms. The Flash memory interface accelerates code execution with a system of instruction prefetch and cache lines. ### 3.2 FLASH main features - Up to 512 Kbytes of Flash memory (Main memory): - up to
64 Kbytes for STM32G031xx and STM32G041xx / STM32G051xx and STM32G061xx - up to 128 Kbytes for STM32G071xx and STM32G081xx - up to 512 Kbytes for STM32G0B1xx and STM32G0C1xx - Memory organization: - 1 bank (products with up to 128 Kbytes of Flash memory) - 2 banks (products with more than 128 Kbytes of Flash memory) - Page size: 2 Kbytes - Subpage size: 512 bytes - 72-bit wide data read (64 bits plus 8 ECC bits) - 72-bit wide data write (64 bits plus 8 ECC bits) - Page erase (2 Kbytes), bank (single-bank) erase, and mass (all-bank) erase #### Flash memory interface features: - Flash memory read operations - Flash memory program/erase operations - Read protection activated by option (RDP) - Two write protection areas per bank, selected by option (WRP) - Two proprietary code read protection areas per bank, selected by option (PCROP) - Securable memory area - Flash memory empty check - Prefetch buffer - CPU instruction cache: two cache lines of 64 bits (16 bytes RAM) - Error code correction (ECC): eight bits for 64 bits - Option byte loader 68/1390 RM0444 Rev 5 # 3.3 FLASH functional description ## 3.3.1 FLASH memory organization The Flash memory is organized as 72-bit-wide memory cells (64 bits plus 8 ECC bits) that can be used for storing both code and data constants. The Flash memory is organized as follows: - A Main memory block containing 128 pages of 2 Kbytes, each page with eight rows of 256 bytes. - An Information block containing: - System memory from which the CPU boots in System memory boot mode. The area is reserved and contains the boot loader used to reprogram the Flash memory through one of the following interfaces: USART1, USART2, I2C1, and I2C2 (applies to all devices), USART3, SPI1, and SPI2 (applies to STM32G071xx and STM32G081xx and to STM32G0B1xx and STM32G0C1xx), and through USB (DFU) and FDCAN2 (applies to STM32G0B1xx and STM32G0C1xx). On the manufacturing line, the devices are programmed and protected against spurious write/erase operations. For further details, refer to the AN2606 available from www.st.com. - 1 Kbyte (128 double words) OTP (one-time programmable) for user data. The OTP data cannot be erased and can be written only once. If only one bit is at 0, the entire double word (64 bits) cannot be written anymore, even with the value 0x0000 0000 0000 0000. - The OTP area cannot be read when RDP level is 1 and boot source is not the Main Flash memory area. - Option bytes for user configuration. The following tables show the mapping of the Flash memory into Information block and Main memory area. The mapping for Table 9. Flash memory organization for single-bank devices | Area | Addresses | Size
(bytes) | 16 Kbyte
devices | 32 Kbyte
devices | 64 Kbyte
devices | 128 Kbyte
devices | |---------------------------------|---|---|---------------------|---------------------|---------------------|----------------------| | | 0x1FFF 7800 - 0x1FFF 787F | 128 | | Option b | oytes | | | | 0x1FFF 7500 - 0x1FFF 77FF | 0x1FFF 7500 - 0x1FFF 77FF 768 Engineering bytes | | g bytes | | | | | Information 0x1FFF 7000 - 0x1FFF 73FF 1 K | | | OTP a | rea | | | block 0x1FFF 2000 - 0x1FFF 6FFF | | 20 K | - | | | System memory | | | 0x1FFF 0000 - 0x1FFF 1FFF | 8 K | System memory | | | | Table 9. Flash memory organization for single-bank devices (continued) | Area | Addresses | Size
(bytes) | 16 Kbyte
devices | 32 Kbyte
devices | 64 Kbyte
devices | 128 Kbyte
devices | |--------|---------------------------|-----------------|---------------------|---------------------|---------------------|----------------------| | | 0x0801 F800 - 0x0801 FFFF | 2 K | | | | Page 63 | | | | | | | | | | | 0x0801 0000 - 0x0801 07FF | 2 K | | | | Page 32 | | | 0x0800 F800 - 0x0800 FFFF | 2 K | | - | Page | 31 | | | | | | | | | | | 0x0800 8000 - 0x0800 87FF | 2 K | | | Page 16 | | | Main | 0x0800 7800 - 0x0800 7FFF | 2 K | | Page 15 | Page 15 | | | memory | | | | | | | | | 0x0800 4000 - 0x0800 47FF | 2 K | | Page 8 | Page | 8 | | | 0x0800 3800 - 0x0800 3FFF | 2 K | Pag | je 7 | Page | · 7 | | | | | •• | | | | | | 0x0800 1000 - 0x0800 17FF | 2 K | Page 2 | | Page | : 2 | | | 0x0800 0800 - 0x0800 0FFF | 2 K | Page 1 | | Page | : 1 | | | 0x0800 0000 - 0x0800 07FF | 2 K | Pag | ge 0 | Page | : 0 | Table 10. Flash memory organization for 256 Kbytes dual-bank devices | Area | | Addresses | Size (bytes) | Memory
type | |-------------------|--------|---------------------------|--------------|----------------| | | Bank 1 | 0x1FFF 7800 - 0x1FFF 787F | 128 | Option bytes | | Information block | Bank 1 | 0x1FFF 7000 - 0x1FFF 73FF | 1 K | OTP area | | | Bank 1 | 0x1FFF 0000 - 0x1FFF 6FFF | 28 K | System memory | | | | 0x0803 F800 - 0x0803 FFFF | 2 K | Page 319 | | | Bank 2 | | | | | | | 0x0802 1000 - 0x0802 17FF | 2 K | Page 258 | | | | 0x0802 0800 - 0x0802 0FFF | 2 K | Page 257 | | Main | | 0x0802 0000 - 0x0802 07FF | 2 K | Page 256 | | memory | | 0x0801 F800 - 0x0801 FFFF | 2 K | Page 63 | | | | | | | | | Bank 1 | 0x0800 1000 - 0x0800 17FF | 2 K | Page 2 | | | | 0x0800 0800 - 0x0800 0FFF | 2 K | Page 1 | | | | 0x0800 0000 - 0x0800 07FF | 2 K | Page 0 | 70/1390 RM0444 Rev 5 | Area | | Addresses | Size (bytes) | Memory
type | |----------------------|--------|---------------------------|--------------|----------------| | | Bank 1 | 0x1FFF 7800 - 0x1FFF 787F | 128 | Option bytes | | Information
block | Bank 1 | 0x1FFF 7000 - 0x1FFF 73FF | 1 K | OTP area | | | Bank 1 | 0x1FFF 0000 - 0x1FFF 6FFF | 28 K | System memory | | | | 0x0807 F804 - 0x0807 FFFF | 2 K | Page 383 | | | Bank 2 | | | | | | | 0x0804 1000 - 0x0804 17FF | 2 K | Page 258 | | | | 0x0804 0800 - 0x0804 0FFF | 2 K | Page 257 | | Main | | 0x0804 0000 - 0x0804 07FF | 2 K | Page 256 | | memory | | 0x0803 F800 - 0x0803 FFFF | 2 K | Page 127 | | | | | | | | | Bank 1 | 0x0800 1000 - 0x0800 17FF | 2 K | Page 2 | | | | 0x0800 0800 - 0x0800 0FFF | 2 K | Page 1 | | | | 0x0800 0000 - 0x0800 07FF | 2 K | Page 0 | Table 11. Flash memory organization for 512 Kbytes dual-bank devices ### 3.3.2 FLASH empty check During the OBL phase, after loading all options, the Flash memory interface checks whether the first location of the Main memory is programmed. The result of this check in conjunction with the boot0 and boot1 information is used to determine where the system has to boot from. It prevents the system to boot from Main Flash memory area when i.e. no user code has been programmed. The Main Flash memory empty check status can be read from the EMPTY bit in *FLASH* access control register (*FLASH_ACR*). Software can modify the Main Flash memory empty status by writing an appropriate value to the EMPTY bit. ### 3.3.3 FLASH error code correction (ECC) Data in Flash memory words are 72-bits wide: eight bits are added per each double word (64 bits). The ECC mechanism supports: - One error detection and correction - Two errors detection When one error is detected and corrected, the flag ECCC (ECC correction) is set in *FLASH ECC register (FLASH_ECCR)*. If ECCCIE is set, an interrupt is generated. When two errors are detected, a flag ECCD (ECC detection) is set in *FLASH ECC register* (*FLASH_ECCR*). In this case, a NMI is generated. When an ECC error is detected, the address of the failing double word is saved in ADDR_ECC[16:0] bitfield of the FLASH_ECCR register. ADDR_ECC[2:0] are always cleared. The bus-ID of the CPU accessing the address is saved in CPUID[2:0]. While ECCC or ECCD is set, FLASH_ECCR is not updated if a new ECC error occurs. FLASH_ECCR is updated only when ECC flags are cleared. RM0444 Rev 5 71/1390 Note: For a virgin data: 0xFF FFFF FFFF FFFF, one error is detected and corrected, but two errors detection is not supported. When an ECC error is reported, a new read at the failing address may not generate an ECC error if the data is still present in the current buffer, even if ECCC and ECCD are cleared. If this is not the desired behavior, the user must reset the cache. ### 3.3.4 FLASH read access latency To correctly read data from Flash memory, the number of wait states (LATENCY) must be correctly programmed in the *FLASH access control register (FLASH_ACR)* according to the frequency of the Flash (HCLK) memory clock and the internal voltage range of the device V_{CORE}. Refer to *Section 4.1.4: Dynamic voltage scaling management. Table 12* shows the correspondence between wait states and Flash memory clock frequency. Table 12. Number of wait states according to Flash memory clock (HCLK) frequency | Wait states (WS) | HCLK (MHz) | | | | |----------------------|---------------------------|---------------------------|--|--| | (LATENCY) | V _{CORE} Range 1 | V _{CORE} Range 2 | | | | 0 WS (1 HCLK cycles) | ≤ 24 | ≤ 8 | | | | 1 WS (2 HCLK cycles) | ≤ 48 | ≤ 16 | | | | 2 WS (3 HCLK cycles) | ≤ 64 | - | | | After power reset, the HCLK clock frequency is 16 MHz in Range 1 and 0 wait state (WS) is configured in the FLASH_ACR register. When wakeup from Standby, the HCLK clock frequency is 16 MHz in Range 1 and 0 wait state (WS) is configured in the FLASH_ACR register. When changing the Flash memory clock frequency or Range, the following software sequences must be applied in order to tune the number of wait states needed to access the Flash memory: ### Increasing the CPU frequency - 1. Program the new number of wait states to the LATENCY bits of the *FLASH access* control register (*FLASH_ACR*). - 2. Check that the new number of wait states is taken into account to access the Flash memory by reading back the LATENCY bits of the *FLASH access control register* (*FLASH ACR*), and wait until the programmed new number is read. - 3. Modify the system cock source by writing the SW bits of the RCC CFGR register. - 4. If needed, modify the core clock prescaler by writing the HPRE bits of RCC_CFGR register. - Optionally, check that the new system clock source or/and the new core clock
prescaler value is/are taken into account by reading the clock source status (SWS bits) of the RCC_CFGR register, or/and the AHB prescaler value (HPREF bit), of the RCC_CFGR register. 72/1390 RM0444 Rev 5 # **Decreasing the CPU frequency** - 1. Modify the system clock source by writing the SW bits of the RCC_CFGR register. - 2. If needed, modify the core clock prescaler by writing the HPRE bits of RCC_CFGR. - 3. Check that the new system clock source or/and the new core clock prescaler value is/are taken into account by reading the clock source status (SWS bits) of the RCC_CFGR register, or/and the AHB prescaler value (HPREF bit), of the RCC_CFGR register, and wait until the programmed new system clock source or/and new Flash memory clock prescaler value is/are read. - 4. Program the new number of wait states to the LATENCY bits of the *FLASH access* control register (*FLASH_ACR*). - Optionally, check that the new number of wait states is used to access the Flash memory by reading back the LATENCY bits of the FLASH access control register (FLASH ACR). ## 3.3.5 FLASH memory acceleration ## Instruction prefetch Each Flash memory read operation provides 64 bits from either two instructions of 32 bits or four instructions of 16 bits according to the program launched. This 64-bits current instruction line is saved in a current buffer. So, in case of sequential code, at least two CPU cycles are needed to execute the previous read instruction line. Prefetch on the CPU S-bus can be used to read the next sequential instruction line from the Flash memory while the current instruction line is being requested by the CPU. Prefetch is enabled by setting the PRFTEN bit of the *FLASH access control register* (*FLASH_ACR*). This feature is useful if at least one wait state is needed to access the Flash memory. When the code is not sequential (branch), the instruction may not be present in the currently used instruction line or in the prefetched instruction line. In this case (miss), the penalty in terms of number of cycles is at least equal to the number of wait states. If a loop is present in the current buffer, no new access is performed. ### **Cache memory** To limit the time lost due to jumps, it is possible to retain two cache lines of 64 bits (16 bytes) in the instruction cache memory. This feature can be enabled by setting the instruction cache enable (ICEN) bit of the *FLASH access control register (FLASH_ACR)*. Each time a miss occurs (requested data not present in the currently used instruction line, in the prefetched instruction line or in the instruction cache memory), the line read is copied into the instruction cache memory. If some data contained in the instruction cache memory are requested by the CPU, they are provided without inserting any delay. Once all the instruction cache memory lines are filled, the LRU (least recently used) policy is used to determine the line to replace in the instruction memory cache. This feature is particularly useful in case of code containing loops. The Instruction cache memory is enabled after system reset. No data cache is available on Cortex®-M0+. RM0444 Rev 5 73/1390 # 3.3.6 FLASH program and erase operations The device-embedded Flash memory can be programmed using in-circuit programming or in-application programming. The **in-circuit programming (ICP)** method is used to update the entire contents of the Flash memory, using SWD protocol or the supported interfaces by the system boot loader, to load the user application for the CPU, into the microcontroller. ICP offers quick and efficient design iterations and eliminates unnecessary package handling or socketing of devices. In contrast to the ICP method, **in-application programming (IAP)** can use any communication interface supported by the microcontroller (I/Os, UART, I²C, SPI, etc.) to download programming data into memory. IAP allows the user to re-program the Flash memory while the application is running. Nevertheless, part of the application has to have been previously programmed in the Flash memory using ICP. The success of a data word programming operation and a page/bank erase operation is not guaranteed if aborted due to device reset or power loss. During a program/erase operation to the Flash memory, any attempt to read the Flash memory stalls the bus. The read operation proceeds correctly once the program/erase operation has completed. ## **Unlocking the Flash memory** After reset, write into the *FLASH control register* (*FLASH_CR*) is not allowed so as to protect the Flash memory against possible unwanted operations due, for example, to electric disturbances. The following sequence unlocks these registers: - 1. Write KEY1 = 0x4567 0123 in the FLASH key register (FLASH KEYR) - 2. Write KEY2 = 0xCDEF 89AB in the FLASH key register (FLASH_KEYR). Any wrong sequence locks the FLASH_CR registers until the next system reset. In the case of a wrong key sequence, a bus error is detected and a Hard Fault interrupt is generated. The FLASH_CR registers can be locked again by software by setting the LOCK bit in one of these registers. Note: The FLASH_CR register cannot be written when the BSY1 bit of the FLASH status register (FLASH_SR) is set. Any attempt to write to this register with the BSY1 bit set causes the AHB bus to stall until the BSY1 bit is cleared. # 3.3.7 FLASH Main memory erase sequences The Flash memory erase operation can be performed at page level (page erase), or on the whole memory (mass erase). Mass erase does not affect the Information block (system Flash memory, OTP and option bytes). ### Flash memory page erase When a page is protected by PCROP or WRP, it is not erased and the WRPERR bit is set. AT/ | SEC_PROT | PCROP | WRP | PCROP_RDP | Comment | WRPERR | CPU bus error | |----------|-------|-----|-----------|--|--------|---------------| | | No | No | | Page is erased | No | | | 0 | No | Yes | v | | | No | | U | Yes | No | Х | Page erase aborted (no page erase started) | Yes | NO | | | Yes | Yes | | | | | | 1 | | х | | Protected pages only | No | Yes | Table 13. Page erase overview To erase a page (2 Kbytes), follow the procedure below: - Check that no Flash memory operation is ongoing by checking the BSY1 bit of the FLASH status register (FLASH_SR). - Check and clear all error programming flags due to a previous programming. If not, PGSERR is set. - Set the PER bit and select the page to erase (PNB) in the FLASH control register (FLASH CR). - Set the STRT bit of the FLASH control register (FLASH_CR). - 5. Wait until the BSY1 bit of the FLASH status register (FLASH_SR) is cleared. Note: The internal oscillator HSI16 (16 MHz) is enabled automatically when STRT bit is set, and disabled automatically when STRT bit is cleared, except if the HSI16 is previously enabled with HSION in RCC_CR register. ## Flash memory bank or mass erase When PCROP or WRP is enabled, the Flash memory mass erase is aborted, no erase starts, and the WRPERR bit is set. | SEC_PROT | PCROP | WRP | PCROP_RDP | Comment | WRPERR | CPU bus error | |----------|-------|-----|-----------|----------------------------------|--------|---------------| | | No | No | | Memory is erased | No | | | 0 | No | Yes | v | | | No | | | Yes | No | Х | Erase aborted (no erase started) | Yes | NO | | | Yes | Yes | | | | | | 1 | | х | | Erase aborted (no erase started) | No | Yes | **Table 14. Mass erase overview** To perform a mass erase, follow the procedure below: - 1. Check that no Flash memory operation is ongoing by checking the BSY1 bit of the FLASH status register (FLASH_SR). - 2. Check and clear all error programming flags due to a previous programming. If not, PGSERR is set. - 3. Set the MER1 (for Bank 1 or single-bank device) and/or MER2 (for Bank 2) bit of the FLASH control register (FLASH CR). - 4. Set the STRT bit of the FLASH control register (FLASH_CR). - 5. Wait until the BSY1 bit ofthe FLASH status register (FLASH_SR) is cleared. RM0444 Rev 5 75/1390 Note: The internal oscillator HSI16 (16 MHz) is enabled automatically when STRT bit is set, and disabled automatically when STRT bit is cleared, except if the HSI16 is previously enabled with HSION in RCC_CR register. # 3.3.8 FLASH Main memory programming sequences The Flash memory is programmed 72 bits (64-bit data plus 8-bit ECC) at a time. Programming a previously programmed address with a non-zero data is not allowed. Any such attempt sets PROGERR flag of the *FLASH status register (FLASH_SR)*. It is only possible to program a double word (2 x 32-bit data). - Any attempt to write byte (8 bits) or half-word (16 bits) sets SIZERR flag of the FLASH status register (FLASH_SR). - Any attempt to write a double word that is not aligned with a double word address sets PGAERR flag of the FLASH status register (FLASH_SR). ## Standard programming The Flash memory programming sequence in standard mode is as follows: - 1. Check that no Main Flash memory operation is ongoing by checking the BSY1 bit of the FLASH status register (FLASH_SR)... - Check and clear all error programming flags due to a previous programming. If not, PGSERR is set. - 3. Set the PG bit of the FLASH control register (FLASH_CR). - 4. Perform the data write operation at the desired memory address, inside Main memory block or OTP area. Only double word (64 bits) can be programmed. - a) Write a first word in an address aligned with double word - b) Write the second word. - 5. Wait until the BSY1 bit of the FLASH status register (FLASH_SR) is cleared. - 6. Check that EOP flag of the *FLASH status register (FLASH_SR)* is set (programming operation succeeded), and clear it by software. - 7. Clear the PG bit of the *FLASH control register* (*FLASH_CR*) if there no more programming request anymore. Note: When the Flash memory interface has received a good sequence (a double word), programming is automatically launched and BSY1 bit is set. The internal oscillator HSI16 (16 MHz) is enabled
automatically when PG bit is set, and disabled automatically when PG bit is cleared, except if the HSI16 is previously enabled with HSION in RCC_CR register. ECC is calculated from the double word to program. ### Fast programming The main purpose of this mode is to reduce the page programming time. It is achieved by eliminating the need for verifying the Flash memory locations before they are programmed, thus saving the time of high voltage ramping and falling for each double word. This mode allows programming a row (32 double words = 256 bytes). During fast programming, the Flash memory clock (HCLK) frequency must be at least 8 MHz. Only the Main memory can be programmed in Fast programming mode. 57 The Main Flash memory programming sequence in standard mode is described below: - 1. Perform a mass or page erase. If not, PGSERR is set. - 2. Check that no Main Flash memory operation is ongoing by checking the BSY1 bit of the FLASH status register (FLASH SR).. - 3. Check and clear all error programming flag due to a previous programming. - Set the FSTPG bit in FLASH control register (FLASH_CR). - 5. Write 32 double words to program a row (256 bytes). - 6. Wait until the BSY1 bit of the FLASH status register (FLASH_SR) is cleared. - 7. Check that EOP flag of the *FLASH status register (FLASH_SR)* is set (programming operation succeeded), and clear it by software. - 8. Clear the FSTPG bit of the *FLASH status register (FLASH_SR)* if there are no more programming requests anymore. Note: When attempting to write in Fast programming mode while a read operation is on going, the programming is aborted without any system notification (no error flag is set). When the Flash memory interface has received the first double word, programming is automatically launched. The BSY1 bit is set when the high voltage is applied for the first double word, and it is cleared when the last double word has been programmed or in case of error. The internal oscillator HSI16 (16 MHz) is enabled automatically when FSTPG bit is set, and disabled automatically when FSTPG bit is cleared, except if the HSI16 is previously enabled with HSION in RCC CR register. The 32 double words must be written successively. The high voltage is kept on the Flash memory for all the programming. Maximum time between two double words write requests is the time programming (around 20 µs). If a second double word arrives after this time programming, fast programming is interrupted and MISSERR is set. High voltage must not exceed 8 ms for a full row between two erases. This is guaranteed by the sequence of 32 double words successively written with a clock system greater or equal to 8 MHz. An internal time-out counter counts 7 ms when Fast programming is set and stops the programming when time-out is over. In this case the FASTERR bit is set. If an error occurs, high voltage is stopped and next double word to programmed is not programmed. Anyway, all previous double words have been properly programmed. ## **Programming errors** Several kind of errors can be detected. In case of error, the Flash memory operation (programming or erasing) is aborted. - PROGERR: Programming Error - In standard programming: PROGERR is set if the word to write is not previously erased (except if the value to program is full zero). - SIZERR: Size Programming Error - In standard programming or in fast programming: only double word can be programmed, and only 32-bit data can be written. SIZERR is set if a byte or an half-word is written. - PGAERR: Alignment Programming error - PGAERR is set if one of the following conditions occurs: - In standard programming: the first word to be programmed is not aligned with a double word address, or the second word doesn't belong to the same double word address. RM0444 Rev 5 77/1390 - In fast programming: the data to program doesn't belong to the same row than the previous programmed double words, or the address to program is not greater than the previous one. - PGSERR: Programming Sequence Error PGSERR is set if one of the following conditions occurs: - In the standard programming sequence or the fast programming sequence: a data is written when PG and FSTPG are cleared. - In the standard programming sequence or the fast programming sequence: MER1 and PER are not cleared when PG or FSTPG is set. - In the fast programming sequence: the Mass erase is not performed before setting the FSTPG bit. - In the mass erase sequence: PG, FSTPG, and PER are not cleared when MER1 is set. - In the page erase sequence: PG, FSTPG and MER1 are not cleared when PER is set. - PGSERR is set also if PROGERR, SIZERR, PGAERR, WRPERR, MISSERR, FASTERR or PGSERR is set due to a previous programming error. - WRPERR: Write Protection Error WRPERR is set if one of the following conditions occurs: - Attempt to program or erase in a write protected area (WRP) or in a PCROP area. - Attempt to perform a mass erase when one page or more is protected by WRP or PCROP. - The debug features are connected or the boot is executed from SRAM or from system Flash memory when the read protection (RDP) is set to Level 1. - Attempt to modify the option bytes when the read protection (RDP) is set to Level 2. - MISSERR: Fast Programming Data Miss Error In fast programming: all the data must be written successively. MISSERR is set if the previous data programmation is finished and the next data to program is not written yet. FASTERR: Fast Programming Error In fast programming: FASTERR is set if one of the following conditions occurs: - when FSTPG bit is set for more than 8 ms, which generates a time-out detection - when the row fast programming has been interrupted by a MISSERR, PGAERR, WRPERR or SIZERR If an error occurs during a program or erase operation, one of the following error flags of the *FLASH status register (FLASH SR)* is set: - PROGERR, SIZERR, PGAERR, PGSERR, MISSERR (program error flags) - WRPERR (protection error flag) In this case, if the error interrupt enable bit ERRIE of the *FLASH control register* (*FLASH_CR*) is set, an interrupt is generated and the operation error flag OPERR of the *FLASH status register* (*FLASH_SR*) is set. Note: If several successive errors are detected (for example, in case of DMA transfer to the Flash memory), the error flags cannot be cleared until the end of the successive write request. ## Programming and cache If an erase operation in Flash memory also concerns data in the instruction cache, the user has to ensure that these data are rewritten before they are accessed during code execution. Note: The cache should be flushed only when it is disabled (ICEN = 0). # 3.3.9 Read-while-write (RWW) function Dual-bank devices support read-while-write function that allows reading from one bank while erasing or programming within the other bank. Note: Write-while-write operation, such as erasing within one bank while programming the other, is not allowed. # Reading while page erasing To erase a page in one bank while executing the code in the other bank, proceed as follows: - Check that the busy flag of the bank to erase (BSY1 or BSY2) in the FLASH status register (FLASH_SR) is low (no erase/programming in progress). - 2. Set up the page erase, by setting the PER, PSB, and BKER bitfileds of the *FLASH* control register (*FLASH_CR*). - 3. Trigger the erase operation by setting the STRT bit of the *FLASH control register* (*FLASH_CR*). This sets the corresponding busy flag BSY1 or BSY2. The erase operation is completed when the corresponding busy flag (BSY1 or BSY2) is back to low. The EOP interrupt can be used to indicate that event to the application software. ## Reading while bank erasing To erase a bank while executing the code in the other bank, proceed as follows: - Check that the busy flag of the bank to erase (BSY1 or BSY2) in the FLASH status register (FLASH_SR) is low (no erase/programming in progress). - 2. Set the mass-erasure bit of the bank to erase (MER1 or MER2) in the *FLASH control* register (FLASH_CR). - 3. Trigger the erase operation by setting the STRT bit of the *FLASH control register* (*FLASH_CR*). This sets the corresponding busy flag BSY1 or BSY2. The erase operation is completed when the corresponding busy flag (BSY1 or BSY2) is back to low. The EOP interrupt can be used to indicate that event to the application software. # Reading while programming To program a bank while executing the code in the other bank, proceed as follows: - 1. Check that the busy flag of the bank to program (BSY1 or BSY2) in the *FLASH status* register (FLASH_SR) is low (no erase/programming in progress). - 2. Set the PG bit of the FLASH control register (FLASH_CR). - 3. Write a word at a desired address within the bank to program. This sets the corresponding busy flag (BSY1 or BSY2). - 4. When the corresponding busy flag (BSY1 or BSY2) is back to low an there is more data to write, go to the step 3 577 RM0444 Rev 5 79/1390 The word write operation is completed when the corresponding busy flag (BSY1 or BSY2) is back to low. The EOP interrupt can be used to indicate that event to the application software. # 3.4 FLASH option bytes # 3.4.1 FLASH option byte description The option bytes are configured by the end user depending on the application requirements. As a configuration example, the watchdog may be selected in hardware or software mode (refer to Section 3.4.2: FLASH option byte programming). A double word is split up in option bytes as indicated in *Table 15*. **Table 15. Option byte format** | 63-56 | 55-48 | 47-40 | 39-32 | 31-24 | 23-16 | 15 -8 | 7-0 | |----------------------------|----------------------------|----------------------------|----------------------------|---------------|---------------|---------------|------------------| | Complemented option byte 3 | Complemented option byte 2 | Complemented option byte 1 | Complemented option byte 0 | Option byte 3 | Option byte 2 | Option byte 1 | Option
byte 0 | The organization of these bytes in the
information block is shown in *Table 16* (superset for single-bank and dual-bank devices). The option bytes can be read from the Flash memory locations listed in *Table 16* or from the Option byte registers: - FLASH option register (FLASH_OPTR) - FLASH PCROP area A start address register (FLASH_PCROP1ASR) - FLASH PCROP area A end address register (FLASH_PCROP1AER) - FLASH PCROP area B start address register (FLASH_PCROP1BSR) - FLASH PCROP area B end address register (FLASH_PCROP1BER) - FLASH PCROP2 area A start address register (FLASH_PCROP2ASR) - FLASH PCROP2 area A end address register (FLASH_PCROP2AER) - FLASH PCROP2 area B start address register (FLASH_PCROP2BSR) - FLASH PCROP2 area B end address register (FLASH_PCROP2BER) - FLASH WRP area A address register (FLASH_WRP1AR) - FLASH WRP area B address register (FLASH_WRP1BR) - FLASH WRP2 area A address register (FLASH_WRP2AR) - FLASH WRP2 area B address register (FLASH_WRP2BR) - FLASH security register (FLASH SECR) Table 16. Organization of option bytes | Address ⁽¹⁾ | 31 | 29 | 28
27 | 26 | 25 | 24 | 23 | 22 | 7.7 | 20 | 2 8 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | ∞ | 7 | 9 | 2 | 4 | ~ | 7 | 1 | 0 | |------------------------|-----------|-------|-----------|--------|--------|-----------|---------|------------------|-----|------------|---------|-----------|-----------|-----------|------------|-----------|----------|------|----------|------|----------|--|-----|-----|-----|-----|-----|----|---| | 0x1FFF7800 | Reserved | IRHEN | NRST_MODE | nBOOT0 | nBOOT1 | nBOOT_SEL | Reserve | RAM_PARITY_CHECK | | NSWAP_BANK | | IWDG_STOP | WDG_SW | nRST_SHDW | nRST_STDBY | nRST_STOP | BORF LEV | I | BORR LEV |
 | BOR_EN | | | | | | | | | | 0x1FFF7808 | | | | | | | | F | es | erve | d | | | | | | | | | | | _ | | | | T | | | | | 0x1FFF7810 | PCROP_RDP | | | | | | | | Re | eser | ved | | | | | | | | | | | F | PCF | ROI | P1. | A_ | ENI |) | | | 0x1FFF7818 | | | Reser | ved | l | | | ' | WF | RP1/ | 4_E | ND | | | | | Res | serv | /ed | | | PCROP1A_STRT PCROP1A_END WRP1A_STR WRP1B_STR PCROP1B_STRT PCROP1B_END | | | RT | | | | | | 0x1FFF7820 | | | Reser | ved | 1 | | | , | WF | RP1I | 3_E | ND | | | | | Res | serv | /ed | | | PCROP1A_END WRP1A_STR WRP1B_STR PCROP1B_STRT | | | RT | | | | | | 0x1FFF7828 | | | | | | | | R | es | erve | ed | | | | | | | | | | | Р | CR | ROF | P1E | 3_8 | STR | Т | | | 0x1FFF7830 | | | | | | | | F | es | erve | ed | | | | | | | | | | | F | PCF | ROI | P1 | B_ | ENE |) | | | 0x1FFF7838 | | | | | | | | F | es | erve | ed | 0x1FFF7840 | | | | | | | | F | les | erve | ed | | | | | | | | | | | | | | | _ | | | | | 0x1FFF7848 | | | Reser | ved | ı | | | , | WF | RP2 | 4_E | ND | | | | | Res | serv | /ed | l | | | | | | _ | | | _ | | 0x1FFF7850 | | | Reser | ved | l | | | , | WF | RP2I |
B_E | ND | | | | | Res | serv | /ed | | | | | WF | RP: | 2B | ST | RT | | | 0x1FFF7858 | | | | | | | | R | es | erve | ed | | | 1 | | | | | | | | Р | CF | ROF | P2E | 3_8 | STR | Т | | | 0x1FFF7860 | | | | | | | | F | es | erve | ed | | | | | | | | | | | F | PCF | ROI | P2 | B_ | ENI |) | | | 0x1FFF7870 | Rese | erve | ed | | SE | C_: | SIZ | E2 | | | Re | S. | BOOT_LOCK | | | R | ese | rve | d | l | | | | SE | EC_ | _S | ZE | | | ^{1.} The upper 32-bits of the double-word address contain the inverted data from the lower 32 bits. # User and read protection option bytes Flash memory address: 0x1FFF 7800 Reset value: 0xFFFF FEAA (ST production value) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |---------------|----------------|---------------|--------|-------------|------------|------------|---------------|------|-------------------------|---------------|----------------|-------------|---------------------|---------------|-------------| | Res. | Res. | IRHEN | | MODE
:0] | n
BOOT0 | n
BOOT1 | nBOOT
SEL | Res. | RAM
PARITY
CHĒCK | DUAL_
BANK | nSWAP
_BANK | WWDG
_SW | IWGD
_STDB
_Y | IWDG
_STOP | IWDG
SW | | | | r | r | r | r | r | r | | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | nRST
SHDW | nRST_
STDBY | nRST_
STOP | BORF_I | LEV[1:0] | BORR_I | LEV[1:0] | BOR_
EN | | | | RDP | [7:0] | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | 47/ RM0444 Rev 5 81/1390 - Bits 31:30 Reserved, must be kept at reset value. - Bit 29 IRHEN: Internal reset holder enable bit - 0: Internal resets are propagated as simple pulse on NRST pin - 1: Internal resets drives NRST pin low until it is seen as low level #### Bits 28: 27 NRST_MODE[1:0] - 00: Reserved - 01: Reset Input only: a low level on the NRST pin generates system reset, internal RESET not propagated to the NSRT pin - 10: GPIO: standard GPIO pad functionality, only internal RESET possible - 11: Bidirectional reset: NRST pin configured in reset input/output mode (legacy mode) - Bit 26 nBOOT0: nBOOT0 option bit - 0: nBOOT0 = 0 1: nBOOT0 = 1 - Bit 25 nBOOT1: Boot configuration Together with the BOOT0 pin or option bit nBOOT0 (depending on nBOOT_SEL option bit configuration), this bit selects boot mode from the Main Flash memory, SRAM or the System memory. Refer to *Section 2.5: Boot configuration*. Bit 24 nBOOT_SEL: BOOT0 signal source selection This option bit defines the source of the BOOT0 signal. 0: BOOT0 pin (legacy mode) 1: nBOOT0 option bit - Bit 23 Reserved, must be kept at reset value. - Bit 22 RAM_PARITY_CHECK: SRAM parity check control enable - 0: Enable - 1: Disable - Bit 21 DUAL_BANK: Dual-bank on 512 Kbytes or 256 Kbytes Flash memory devices - 0: 256 Kbytes/512 Kbytes single-bank Flash memory, contiguous addresses in Bank 1 - 1: 256 Kbytes/512 Kbytes dual-bank Flash memory, Refer to Table 10 and Table 11 - Bit 20 nSWAP_BANK: Empty check boot configuration This bit selects the bank that is the subject of empty check upon boot. - 0: Bank 1 - 1: Bank 2 This bit pertains to dual-bank devices only. In single-bank devices, it is reserved. - Bit 19 WWDG SW: Window watchdog selection - 0: Hardware window watchdog - 1: Software window watchdog - Bit 18 IWDG_STDBY: Independent watchdog counter freeze in Standby mode - 0: Independent watchdog counter is frozen in Standby mode - 1: Independent watchdog counter is running in Standby mode - Bit 17 IWDG_STOP: Independent watchdog counter freeze in Stop mode - 0: Independent watchdog counter is frozen in Stop mode - 1: Independent watchdog counter is running in Stop mode - Bit 16 IDWG_SW: Independent watchdog selection - 0: Hardware independent watchdog - 1: Software independent watchdog ### Bit 15 nRSTS_SHDW - 0: Reset generated when entering the Shutdown mode - 1: No reset generated when entering the Shutdown mode ### Bit 14 nRST_STDBY - 0: Reset generated when entering the Standby mode - 1: No reset generate when entering the Standby mode ### Bit 13 nRST_STOP - 0: Reset generated when entering the Stop mode - 1: No reset generated when entering the Stop mode # Bits12:11 $BORF_LEV[1:0]$: BOR threshold at falling V_{DD} supply Falling V_{DD} crossings this threshold activates the reset signal. - 00: BOR falling level 1 with threshold around 2.0 V - 01: BOR falling level 2 with threshold around 2.2 V - 10: BOR falling level 3 with threshold around 2.5 V - 11: BOR falling level 4 with threshold around 2.8 V ### Bits10:9 BORR_LEV[1:0]: BOR threshold at rising V_{DD} supply Rising V_{DD} crossings this threshold releases the reset signal. - 00: BOR rising level 1 with threshold around 2.1 V - 01: BOR rising level 2 with threshold around 2.3 V - 10: BOR rising level 3 with threshold around 2.6 V - 11: BOR rising level 4 with threshold around 2.9 V #### Bit 8 BOR_EN: Brown out reset enable - 0: Configurable brown out reset disabled, power-on reset defined by POR/PDR levels - 1: Configurable brown out reset enabled, values of BORR_LEV and BORF_LEV taken into account ## Bits 7:0 RDP[7:0]: Read protection level 0xAA: Level 0, read protection not active 0xCC: Level 2, chip read protection active Others: Level 1, memories read protection active ## PCROP1A start address option bytes Flash memory address: 0x1FFF 7808 Reset value: 0xFFFF FFFF (ST production value) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|------|------|------|-----------|-------------|--------------|------|------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8 | 7 | 6 | 5
PCRC | 4
P1A_ST | 3
RT[8:0] | 2 | 1 | 0 | Bits 31:9 Reserved, must be kept at reset value. ## Bits 8:0 PCROP1A_STRT[8:0]: PCROP1A area start offset (Bank 1) PCROP1A_STRT contains the offset of the first PCROP subpage of the PCROP1A area (in Bank 1 for dual-bank devices). Note: Values corresponding to addresses outside the Main memory are not allowed. RM0444 Rev 5 83/1390 # PCROP1A end address option bytes Flash memory address: 0x1FFF 7810 Reset value: 0x0000 0000 (ST production value) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-----------|------|------|------|------|------|------|------|------|------|------|--------|---------|------|------|------| | PCROP_RDP | Res. | r | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | PCRC | P1A_EN | ID[8:0] | | | | | | | | | | | | _ | _ | _ | _ | _ | _ | | _ | _ | ### Bit 31 PCROP_RDP: PCROP area erase upon RDP level regression This bit determines whether the PCROP area (and the totality of the PCROP area boundary pages) is erased by the mass erase triggered by the RDP level
regression from Level 1 to Level 0: 0: Not erased 1: Erased The software can only set this bit. It is automatically reset upon mass erase following the RDP regression from Level 1 to Level 0. Bits 30:9 Reserved, must be kept at reset value. #### Bits 8:0 PCROP1A END[8:0]: PCROP1A area end offset (Bank 1) PCROP1A_END contains the address of the last subpage of the PCROP1A area (in Bank 1 for dual-bank devices). Note: Values corresponding to addresses outside the Main memory are not allowed. ## WRP1A address option bytes Flash memory address: 0x1FFF 7818 Reset value: 0x0000 00FF (ST production value) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|----|----|-----|---------|--------|----|----| | Res. | | WRI | P1A_END | 0[6:0] | | | | | | | | | | | | | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | WRF | 1A_STR | T[6:0] | | | | | | | | | | | | | r | r | r | r | r | r | r | Bits 31:23 Reserved, must be kept at reset value. ### Bits 22:16 WRP1A_END[6:0]: WRP area A end offset (Bank 1) WRP1A_END contains the offset of the last page of the WRP area A (in Bank 1 for dual-bank devices). Note: Values corresponding to addresses outside the Main memory are not allowed. Bits 15:7 Reserved, must be kept at reset value. ## Bits 6:0 WRP1A_STRT[6:0]: WRP area A start offset (Bank 1) WRP1A_STRT contains the offset of the first page of the WRP area A (in Bank 1 for dual-bank devices). Note: Values corresponding to addresses outside the Main memory are not allowed. # WRP1B address option bytes Flash memory address: 0x1FFF 7820 Reset value: 0x0000 00FF (ST production value) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|----|----|-----|---------|--------|----|----| | Res. | | WRI | P1B_END | 0[6:0] | | | | | | | | | | | | | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | WRF | 1B_STR | T[6:0] | Bits 31:23 Reserved, must be kept at reset value. Bits 22:16 WRP1B_END[6:0]: WRP area B end offset (Bank 1) WRP1B_END contains the offset of the last page of the WRP area B (in Bank 1 for dual-bank devices). Note: Values corresponding to addresses outside the Main memory are not allowed. Bits 15:7 Reserved, must be kept at reset value. Bits 6:0 WRP1B_STRT[6:0]: WRP area B start offset (Bank 1) WRP1B_STRT contains the offset of the first page of the WRP area B (in Bank 1 for dual-bank devices). Note: Values corresponding to addresses outside the Main memory are not allowed. ## PCROP1B start address option bytes Flash memory address: 0x1FFF 7828 Reset value: 0xFFFF FFFF (ST production value) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|--------|---------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | PCRC | P1B_ST | RT[8:0] | | | | | | | | | | | | r | r | r | r | r | r | r | r | r | Bits 31:9 Reserved, must be kept at reset value. Bits 8:0 PCROP1B_STRT[8:0]: PCROP1B area start offset (Bank 1) PCROP1B_STRT contains the offset of the first PCROP subpage of the PCROP1B area (in Bank 1 for dual-bank devices). Note: Values corresponding to addresses outside the Main memory are not allowed. ## PCROP1B end address option bytes Flash memory address: 0x1FFF 7830 Reset value: 0x0000 0000 (ST production value) RM0444 Rev 5 85/1390 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|--------|--------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | PCRC | P1B_EN | D[8:0] | | | | | | | | | | | | r | r | r | r | r | r | r | r | r | Bits 31:9 Reserved, must be kept at reset value. ### Bits 8:0 PCROP1B_END[8:0]: PCROP1B area end offset (Bank 1) PCROP1B_END contains the offset of the last PCROP subpage of the PCROP1B area (in Bank 1 for dual-bank devices). Note: Values corresponding to addresses outside the Main memory are not allowed. ## PCROP2A start address option bytes Flash memory address: 0x1FFF 7838 Reset value: 0xFFFF FFFF (ST production value) The register pertains to dual-bank devices only. In single-bank devices, it is reserved. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|--------|---------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | PCRC | P2A_ST | RT[8:0] | | | | | | | | | | | | r | r | r | r | r | r | r | r | r | Bits 31:9 Reserved, must be kept at reset value. ## Bits 8:0 PCROP2A_STRT[8:0]: PCROP2A area start offset, Bank 2 PCROP2A_STRT contains the offset of the first PCROP subpage of the PCROP2A area in Bank 2 of dual-bank devices. Note: Values corresponding to addresses outside the Main memory are not allowed. ## PCROP2A end address option bytes Flash memory address: 0x1FFF 7840 Reset value: 0x0000 0000 (ST production value) The register pertains to dual-bank devices only. In single-bank devices, it is reserved. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------------------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. PCROP2A_END[8:0] | | | | | | | | | | | | | | | | | r | r | r | r | r | r | r | r | r | Bits 31:9 Reserved, must be kept at reset value. Bits 8:0 PCROP2A_END[8:0]: PCROP2A area end offset, Bank 2 PCROP2A_END contains the offset of the last PCROP subpage of the PCROP2A area in Bank 2 of dual-bank devices. Note: Values corresponding to addresses outside the Main memory are not allowed. ## WRP2A address option bytes Flash memory address: 0x1FFF 7848 Reset value: 0x0000 00FF (ST production value) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|----|----|-----|---------|--------|----|----| | Res. | | WRF | P2A_END | [6:0] | | | | | | | | | | | | | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | | | - | • | | - | _ | | • | | Res. | | WRP | 2A_STR | T[6:0] | | | Bits 31:23 Reserved, must be kept at reset value. Bits 22:16 WRP2A_END[6:0]: WRP area A end offset, Bank 2 WRP2A_END contains the offset of the last page of the WRP area A in Bank 2 of dual-bank devices. Note: Values corresponding to addresses outside the Main memory are not allowed. Bits 15:7 Reserved, must be kept at reset value. Bits 6:0 WRP2A_STRT[6:0]: WRP area A start offset, Bank 2 WRP2A_STRT contains the offset of the first page of the WRP area A in BAnk 2 of dual-bank devices. Note: Values corresponding to addresses outside the Main memory are not allowed. ## WRP2B address option bytes Flash memory address: 0x1FFF 7850 Reset value: 0x0000 00FF (ST production value) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|-----------------|----|-----|---------|--------|----|----| | Res. | | WRI | P2B_END | 0[6:0] | | | | | | | | | | | | | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. WRP2B_STRT[6:0] | | | | | | | | | | | | | | | | | r | r | r | r | r | r | r | Bits 31:23 Reserved, must be kept at reset value. ### Bits 22:16 WRP2B_END[6:0]: WRP area B end offset, Bank 2 WRP2B_END contains the offset of the last page of the WRP area B in Bank 2 of dual-bank devices. Note: Values corresponding to addresses outside the Main memory are not allowed. Bits 15:7 Reserved, must be kept at reset value. # Bits 6:0 WRP2B_STRT[6:0]: WRP area B start offset WRP2B STRT contains the offset of the first page of the WRP area B in Bank 2 of dual- Note: Values corresponding to addresses outside the Main memory are not allowed. # PCROP2B start address option bytes Flash memory address: 0x1FFF 7858 Reset value: 0xFFFF FFFF (ST production value) The register pertains to dual-bank devices only. In single-bank devices, it is reserved. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | | |------|------|------|------|------|------|------|-------------------|------|------|------|------|------|------|------|------|--| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | Res. PCROP2B_STRT[8:0] | | | | | | | | | | | | | | | | | | | r | r | r | r | r | r | r | r | | Bits 31:9 Reserved, must be kept at reset value. ## Bits 8:0 PCROP2B_STRT[8:0]: PCROP2B area start offset, Bank 2 PCROP2B STRT contains the offset of the first PCROP subpage of the PCROP2B area in Bank 2 of dual-bank devices. Note: Values corresponding to addresses outside the Main memory are not allowed. ## PCROP2B end address option bytes Flash memory address: 0x1FFF 7860 Reset value: 0x0000 0000 (ST production value) The register pertains to dual-bank devices only. In single-bank devices, it is reserved. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|---------|---------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | |
PCRC | DP2B_EN | ID[8:0] | Bits 31:9 Reserved, must be kept at reset value. Bits 8:0 PCROP2B_END[8:0]: PCROP2B area end offset, Bank 2 PCROP2B_END contains the offset of the last PCROP subpage of the PCROP2B area in Bank 2 of dual-bank devices. Note: Values corresponding to addresses outside the Main memory are not allowed. ## Security option bytes Flash memory address: 0x1FFF 7870 Reset value: 0x0000 0000 (ST production value) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|--------|----------|----|----|-----|------|------|------|-----------| | Res. | Res. | Res. | Res. | | | | SEC_SI | ZE2[7:0] | | | | Res. | Res. | Res. | BOOT_LOCK | | | | | | r | r | r | r | r | r | | r | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | :0] | | | | | | | | | | | | | | r | r | r | r | r | r | r | r | Bits 31:28 Reserved, must be kept at reset value. Bits 27:20 SEC_SIZE2[7:0]: Securable memory area size, Bank 2 Contains the number of securable Flash memory pages in Bank 2 of dual-bank devices. In single-bank devices, the bitfield is reserved. Note: Values corresponding to addresses outside the Main memory are not allowed. Bit 16 BOOT_LOCK: used to force boot from user area 0: Boot based on the pad/option bit configuration 1: Boot forced from Main Flash memory **Caution:** If BOOT_LOCK is set in association with RDP Level 1, the debug capabilities of the device are stopped and the reset value of the DBG_SWEN bit of the FLASH_ACR register becomes zero. If DBG_SWEN bit is not set by the application code after reset, there is no way to recover from this situation. Bits 15:8 Reserved, must be kept at reset value. Bits 7:0 **SEC_SIZE[7:0]**: Securable memory area size (Bank 1) Contains the number of securable Flash memory pages (in Bank 1 for dual-bank devices). *Note: Values corresponding to addresses outside the Main memory are not allowed.* # 3.4.2 FLASH option byte programming After reset, the options related bits of the *FLASH control register (FLASH_CR)* are write-protected. To run any operation on the option bytes page, the option lock bit OPTLOCK of the *FLASH control register (FLASH_CR)* must be cleared. The following sequence is used to unlock this register: - Unlock the FLASH_CR with the LOCK clearing sequence (refer to *Unlocking the Flash memory*) - 2. Write OPTKEY1=0x08192A3B of the FLASH option key register (FLASH_OPTKEYR) - Write OPTKEY2=0x4C5D6E7F of the FLASH option key register (FLASH_OPTKEYR) RM0444 Rev 5 89/1390 Any wrong sequence locks up the Flash memory option registers until the next system reset. In the case of a wrong key sequence, a bus error is detected and a Hard Fault interrupt is generated. The user options can be protected against unwanted erase/program operations by setting the OPTLOCK bit by software. Note: If LOCK is set by software, OPTLOCK is automatically set as well. ## Modifying user options The option bytes are programmed differently from a Main memory user address. To modify the value of user options, follow the procedure below: - 1. Clear OPTLOCK option lock bit with the clearing sequence described above - 2. Write the desired values in the FLASH option registers. - 3. Check that no Flash memory operation is ongoing, by checking the BSY1 bit of the *FLASH status register (FLASH_SR)*.. - Set the Options Start bit OPTSTRT of the FLASH control register (FLASH_CR). - 5. Wait for the BSY1 bit to be cleared. Note: Any modification of the value of one option is automatically performed by erasing user option byte pages first, and then programming all the option bytes with the values contained in the Flash memory option registers. The complementary values are automatically computed and written into the complemented option bytes upon setting the OPTSTRT bit. Caution: Upon an option byte programming failure (for any reason, such as loss of power or a reset during the option byte change sequence), the mismatch values of the option bytes are loaded after reset. Those mismatch values force a secure configuration that might permanently lock the device. To prevent this, only program option bytes in a safe environment – safe supply, no pending watchdog, and clean reset line. ### Option byte loading After the BSY1 bit is cleared, all new options are updated into the Flash memory, but not applied to the system. A read from the option registers still returns the last loaded option byte values, the new options has effect on the system only after they are loaded. Option bytes loading is performed in two cases: - when OBL_LAUNCH bit of the FLASH control register (FLASH_CR) is set - after a power reset (BOR reset or exit from Standby/Shutdown modes) Option byte loader performs a read of the options block and stores the data into internal option registers. These internal registers configure the system and can be read by software. Setting OBL_LAUNCH generates a reset so the option byte loading is performed under system reset. Each option bit has also its complement in the same double word. During option loading, a verification of the option bit and its complement allows to check the loading has correctly taken place. During option byte loading, the options are read by double word. ECC on option words is not taken into account during OBL, but only during direct SW read of option area. If the word and its complement are matching, the option word/byte is copied into the option register. If the comparison between the word and its complement fails, a status bit OPTVERR is set. Mismatch values are forced into the option registers: - For USR OPT option, the value of mismatch is 1 for all option bits, except the BOR EN bit that is 0 (BOR disabled). - For WRP option, the value of mismatch is the default value "No protection". - For RDP option, the value of mismatch is the default value "Level 1". - For PCROP, the value of mismatch is "all memory protected". - For BOOT_LOCK, the value of mismatch is "boot forced from Main Flash memory". Upon system reset, the option bytes are copied into the following option registers that can be read and written by software: - FLASH OPTR - FLASH_PCROPyxSR (x = A or B, y = 1 or 2) - FLASH_PCROPyxER (x = A or B, y = 1 or 2) - FLASH_WRPyxR (x = A or B, y = 1 or 2) - FLASH_SECR These registers are also used to modify options. If these registers are not modified by user, they reflect the options states of the system. See *Modifying user options* for more details. # 3.5 FLASH memory protection The Main Flash memory can be protected against external accesses with the read protection (RDP). The pages can also be protected against unwanted write (WRP) due to loss of program counter context. The write-protection WRP granularity is 2 Kbytes. Apart from the RDP and WRP, the Flash memory can also be protected against read and write by third party (PCROP). The PCROP granularity (subpage size) is 512 bytes. # 3.5.1 FLASH read protection (RDP) The read protection is activated by setting the RDP option byte and then, by applying a system reset to reload the new RDP option byte. The read protection protects the Main Flash memory, the option bytes, the backup registers (TAMP_BKPxR in TAMP) and the SRAM. Note: If the read protection is set while the debugger is still connected through SWD, apply power reset instead of system reset. There are three levels of read protection from no protection (Level 0) to maximum protection or no debug (Level 2). The Flash memory is protected when the RDP option byte and its complement contain the pair of values shown in *Table 17*. 57 RM0444 Rev 5 91/1390 RDP byte value OxAA Ox55 Level 0 Any values except the combinations [0xAA, 0x55] and [0xCC, 0x33] OxCC Ox33 Level 2 Table 17. Flash memory read protection status The System memory area is read-accessible whatever the protection level. It is never accessible for program/erase operation. ## Level 0: no protection Read, program and erase operations within the Main Flash memory area are possible. The option bytes and the backup registers are also accessible by all operations. ## **Level 1: Read protection** Level 1 read protection is set when the RDP byte and the RDP complemented byte contain any value combinations other than [0xAA, 0x55] and [0xCC, 0x33]. Level 1 is the default protection level when RDP option byte is erased. - **User mode:** Code executing in user mode (boot from user Flash memory) can access Main Flash memory, option bytes and backup registers with all operations. - Debug, boot from SRAM, and boot from System memory modes: In debug mode or when code boots from SRAM or System memory, the Main Flash memory and the backup registers (TAMP_BKPxR in TAMP) are totally inaccessible. In these modes, a read or write access to the Flash memory generates a bus error and a Hard Fault interrupt. #### Caution: Note: In Level 1 with no PCROP areas defined, it is mandatory to set PCROP_RDP bit to 1 (full mass erase when the RDP level is decreased from Level 1 to Level 0). In Level 1 with a PCROP area defined, user code to protect by RDP but not by PCROP must be placed outside pages containing a PCROP-protected subpage. ## Level 2: No debug In this level, the protection Level 1 is guaranteed. In addition, the CPU debug port, the boot from RAM (boot RAM mode) and the boot from System memory (boot loader mode) are no more available. In user execution mode (boot FLASH mode), all operations are allowed on the Main Flash memory. Note: The CPU debug port is also disabled under reset. STMicroelectronics is not able to perform analysis on defective parts on which the Level 2 protection has been set. ## Changing the read protection level The read protection level can change: - from Level 0 to Level 1, upon changing the value of the RDP byte to any value except 0xCC - from Level 0 or Level 1 to Level 2, upon changing the value of the RDP byte to 0xCC - from Level 1 to
Level 0, upon changing the value of the RDP byte to 0xAA Once in Level 2, it is no more possible to modify the read protection level. With the PCROP_RDP bit of the *FLASH PCROP area A end address register* (*FLASH_PCROP1AER*) set, the change from Level 1 to Level 0 triggers full mass erase of the Main Flash memory. The backup registers (TAMP_BKPxR) are also erased. The user options except PCROP protection are set to their previous values copied from FLASH_OPTR and FLASH_WRPyxR (x = A or B, y = 1 or 2). PCROP is disabled. The OTP area is not affected by mass erase and remains unchanged. With the PCROP_RDP bit cleared, a partial mass erase occurs, only erasing Flash memory pages that do not overlap with PCROP area (do not contain any PCROP-protected subpage). The option bytes are re-programmed with their previous values. This is also true for FLASH_PCROP1xSR and FLASH_PCROP1xER registers (x = A or B). **PCROP** PCROP_RDP Mass erase area None Х Full (Flash memory and backup register) 1 Part of Partial Flash (Flash memory pages not overlapping with PCROP area, and backup memory registers) 0 Full Flash None memory Table 18: Mass erase upon RDP regression from Level 1 to Level 0 Note: Mass erase (full or partial) is only triggered by the RDP regression from Level 1 to Level 0. RDP level increase (Level 0 to Level 1, 1 to 2, or 0 to 2) does not cause any mass erase. To validate the protection level change, the option bytes must be reloaded by setting the OBL_LAUNCH bit of the FLASH control register (FLASH_CR). RM0444 Rev 5 93/1390 Figure 3. Changing read protection (RDP) level Table 19. Access status versus protection level and execution modes | Area | Protection | U | ser execution (Boot | | Debug/ BootFromRam/
BootFromLoader | | | | | |-----------------------|------------|------|---------------------|-------|---------------------------------------|--------------------|--------------------|--|--| | | level | Read | Write | Erase | Read | Write | Erase | | | | Main Flash | 1 | Yes | Yes | Yes | No | No | No ⁽³⁾ | | | | memory | 2 | Yes | Yes | Yes | N/A ⁽¹⁾ | N/A ⁽¹⁾ | N/A ⁽¹⁾ | | | | System | 1 | Yes | No | No | Yes | No | No | | | | memory ⁽²⁾ | 2 | Yes | No | No | N/A ⁽¹⁾ | N/A ⁽¹⁾ | N/A ⁽¹⁾ | | | | Ontion buton | 1 | Yes | Yes ⁽³⁾ | Yes | Yes | Yes ⁽³⁾ | Yes | | | | Option bytes | 2 | Yes | No | No | N/A ⁽¹⁾ | N/A ⁽¹⁾ | N/A ⁽¹⁾ | | | | Backup | 1 | Yes | Yes | N/A | No | No | No ⁽⁴⁾ | | | | registers | 2 | Yes | Yes | N/A | N/A ⁽¹⁾ | N/A ⁽¹⁾ | N/A ⁽¹⁾ | | | | ОТР | 1 | Yes | Yes | N/A | No | No | N/A | | | | OIP | 2 | Yes | Yes | N/A | N/A ⁽¹⁾ | N/A ⁽¹⁾ | N/A ⁽¹⁾ | | | ^{1.} When the protection Level 2 is active, the Debug port, the boot from RAM and the boot from System memory are disabled. # 3.5.2 FLASH proprietary code readout protection (PCROP) Two areas of the Flash memory (Flash memory bank for dual-bank devices) can be protected against unwanted read and/or write by a third party. ^{2.} The System memory is only read-accessible, whatever the protection level (0, 1 or 2) and execution mode. ^{3.} The Flash Main memory is erased when the RDP option byte is programmed with all level of protections disabled (0xAA). ^{4.} The backup registers are erased when RDP changes from Level 1 to Level 0. The protected area is execute-only: it can only be reached by the STM32 CPU, with an instruction code, while all other accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited. The PCROP areas have subpage (512-byte) granularity. An additional option bit (PCROP_RDP) allows to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0 (refer to *Changing the read protection level*). Each PCROP area is defined by a start subpage offset and an end subpage offset into the Flash memory. These offsets are defined with the corresponding bitfields of the PCROP address registers FLASH PCROP area A start address register (FLASH_PCROP1ASR), FLASH PCROP area A end address register (FLASH_PCROP1AER), FLASH PCROP area B start address register (FLASH_PCROP1BSR), and FLASH PCROP area B end address register (FLASH_PCROP1BER) for single-bank devices or for Bank 1 of dual-bank devices, and in FLASH PCROP2 area A start address register (FLASH_PCROP2ASR), FLASH PCROP2 area B end address register (FLASH_PCROP2AER), FLASH PCROP2 area B start address register (FLASH_PCROP2BSR), and FLASH PCROP2 area B end address register (FLASH_PCROP2BER) for Bank 2 of dual-bank devices. A PCROP area x (A or B) of Flash memory Bank y (1 or 2) is defined from the address: Flash memory base address + [PCROPyx_STRT x 0x200] (included) to the address: Flash memory base address + [(PCROPyx_END + 1) x 0x200] (excluded). The minimum PCROP area size is two PCROP subpages (2 x 512 bytes): When PCROPyx_END = PCROPyx_STRT, the full Flash memory (or bank y for dual-bank devices) is PCROP-protected. For example, to PCROP-protect the address area from 0x0800 0800 to 0x0800 13FF, set the PCROP start subpage bitfield of the FLASH_PCROP1xSR register and the PCROP end subpage bitfield of the FLASH_PCROP1xER register (x = A or B) as follows: - PCROP1x STRT = 0x04 (PCROP area start address 0x0800 0800) - PCROP1x END = 0x09 (PCROP area end address 0x0800 13FF) Data read access to a PCROP-protected address raises the RDERR flag. PCROP-protected addresses are also write protected. Write access to a PCROP-protected address raises the WRPERR flag. PCROP-protected areas are also erase protected. Attempts to erase a page including at least one PCROP-protected subpage fails. Moreover, software mass erase cannot be performed if a PCROP-protected area is defined. Deactivation of PCROP can only occur upon the RDP change from Level 1 to Level 0. Modification of user options to clear PCROP or to decrease the size of a PCROP-protected area do not have any effect to the PCROP areas. On the contrary, it is possible to increase the size of the PCROP-protected areas. With the option bit PCROP_RDP cleared, the change of RDP from Level 1 to Level 0 triggers a partial mass erase that preserves the contents of the Flash memory pages overlapping with PCROP-protected areas. Refer to section *Changing the read protection level* for details. RM0444 Rev 5 95/1390 | PCROP register values
(x = A or B, y = 1 or 2) | PCROP-protected area | |---|--| | PCROPyx_STRT = PCROPyx_END | Full Flash memory | | PCROPyx_STRT > PCROPyx_END | None (unprotected) | | PCROPyx_STRT < PCROPyx_END | Subpages from PCROPyx_STRT to PCROPyx_END (read-, write-, and erase-protected); PCROP area boundary pages (erase-protected). | **Table 20: PCROP protection** Note: With PCROP_RDP cleared, it is recommended to either define the PCROP area start and end onto Flash memory page boundaries (2-Kbyte granularity), or to keep reserved and empty the PCROP-unprotected memory space of the PCROP area boundary pages (pages inside which the PCROP area starts and ends). ## 3.5.3 FLASH write protection (WRP) The user area in Flash memory can be protected against unwanted write operations. Two write-protected (WRP) areas can be defined, with page (2-Kbyte) granularity. Each area is defined by a start page offset and an end page offset related to the physical Flash memory base address. These offsets are defined in the WRP address registers FLASH WRP area A address register (FLASH_WRP1AR) and FLASH WRP area B address register (FLASH_WRP1BR), and, for dual-bank devices, also FLASH WRP2 area A address register (FLASH_WRP2AR) and FLASH WRP2 area B address register (FLASH_WRP2BR). The WRP \mathbf{x} area (x = A, B) of bank \mathbf{y} (y = 1 or 2) is defined from the address Flash memory Base address + [WRPyx_STRT x 0x0800] (included) to the address Flash memory Base address + [(WRPyx_END+1) x 0x0800] (excluded). The minimum WRP area size is one WRP page (2 Kbytes): WRPyx END = WRPyx STRT. For example, to protect the Bank 1 of Flash memory by WRP from the address 0x0800 1000 (included) to the address 0x0800 3FFF (included): If boot in Flash memory is selected, FLASH_WRP1AR register must be programmed with: - WRP1A_STRT = 0x02. - WRP1A END = 0x07. WRP1B_STRT and WRP1B_END in FLASH_WRP1BR can be used instead (area B in Flash memory). When WRP is active, it cannot be erased or programmed. Consequently, a software mass erase cannot be performed if one area is write-protected. If an erase/program operation to a write-protected part of the Flash memory is attempted, the write protection error flag (WRPERR) of the FLASH_SR register is set. This flag is also set for any write access to: - OTP area - part of the Flash memory that can never be written like the ICP - PCROP area Note: When the Flash memory read protection level is selected (RDP level = 1), it is not possible to program or erase the memory if the CPU debug features are connected (single wire) or boot code is being executed from SRAM or system Flash memory, even if WRP is not activated. Any attempt generates a hard fault (BusFault). Table 21: WRP protection | WRP registers values (x = A or B, y= 1 or 2) | WRP-protected area | |--|------------------------------------| | WRPyx_STRT = WRPyx_END | Page WRPyx | | WRPyx_STRT > WRPyx_END | None (unprotected) | | WRPyx_STRT < WRPyx_END | Pages from WRPyx_STRT to WRPyx_END | Note: To validate the WRP options, the option bytes must be reloaded by setting the OBL_LAUNCH bit in Flash memory control register. # 3.5.4 Securable memory area The main purpose of the securable memory area is to protect a specific part of Flash memory against undesired access. After system reset, the code in the securable memory area can only be executed until the securable area becomes secured and never again until the next system reset. This allows implementing software security services such as
secure key storage or safe boot. Securable memory area is located in the Main Flash memory. It is dedicated to executing trusted code. When not secured, the securable memory behaves like the rest of Main Flash memory. When secured (the SEC_PROT and SEC_PROT2 bits of the FLASH_CR register set, the latter pertaining to Bank 2 in dual-bank devices), any access to securable memory area (fetch, read, programming, erase) is rejected, generating a bus error. The securable area can only be unsecured by a system reset. The size of the securable memory area is defined by the SEC_SIZE[7:0] and SEC_SIZE2[7:0] (the latter for dual-bank devices only) bitfields of the FLASH_SECR register. It can be modified only in RDP Level 0. Its content is erased upon changing from RDP Level 1 to Level 0, even if it overlaps with PCROP subpages. Note: The securable memory area start address is 0x0800 0000. Before activating the securable memory area, move the vector table outside the page 0 if necessary. Upon change from RDP Level 1 to Level 0 while the PCROP_RDP bit is cleared, the securable memory area is erased even if it overlaps with the PCROP subpages. The PCROP subpages not overlapping with the securable memory area are not erased. See Table 22. 4 Note: RM0444 Rev 5 Securable memory size PCROP_RDP **Erased pages** (SEC_SIZEx[7:0]) 0 1 All (mass erase) All but PCROP 0 0 > 0 1 All (mass erase) All but PCROP outside the > 0 0 securable memory area Table 22. Securable memory erase at RDP Level 1 to Level 0 change # 3.5.5 Disabling core debug access For executing sensitive code or manipulating sensitive data in securable memory area, the debug access to the core can temporarily be disabled. *Figure 4* gives an example of managing DBG_SWEN and SEC_PROT (or SEC_PROT2, for Bank 2 in dual-bank devices) bits. $SEC_PROT = 0$ SEC_PROT = 1 Securable memory not secured Securable memory secured Debug enabled Debug disabled enabled Option Execution of code Execution of code byte outside securable memory within securable memory loading timeline SEC PROT = 1 DBG SWEN = 0 DBG SWEN = 1 Power up -Software management-MSv42192V1 Figure 4. Example of disabling core debug access # 3.5.6 Forcing boot from Flash memory To increase the security and establish a chain of trust, the BOOT_LOCK option bit of the FLASH_SECR register allows forcing the system to boot from the Main Flash memory regardless the other boot options. It is always possible to set the BOOT_LOCK bit. However, it is possible to reset it only when: - RDP is set to Level 0, or - RDP is set to Level 1, while Level 0 is requested and a full mass-erase is performed. # 3.6 FLASH interrupts Table 23. FLASH interrupt requests | Interrupt event | Event flag | Event flag/interrupt clearing method | Interrupt enable control bit | |---|----------------------|--------------------------------------|------------------------------| | End of operation | EOP ⁽¹⁾ | Write EOP=1 | EOPIE | | Operation error | OPERR ⁽²⁾ | Write OPERR=1 | ERRIE | | Read protection error | RDERR | Write RDERR=1 | RDERRIE | | Write protection error | WRPERR | Write WRPERR=1 | N/A | | Size error | SIZERR | Write SIZERR=1 | N/A | | Programming sequential error | PROGERR | Write PROGERR=1 | N/A | | Programming alignment error | PGAERR | Write PGAERR=1 | N/A | | Programming sequence error | PGSERR | Write PGSERR=1 | N/A | | Data miss during fast programming error | MISSERR | Write MISSERR=1 | N/A | | Fast programming error | FASTERR | Write FASTERR=1 | N/A | | ECC error correction | ECCC | Write ECCC=1 | ECCCIE | | ECC double error (NMI) | ECCD | Write ECCD=1 | N/A | ^{1.} EOP is set only if EOPIE is set. RM0444 Rev 5 99/1390 ^{2.} OPERR is set only if ERRIE is set. # 3.7 FLASH registers # 3.7.1 FLASH access control register (FLASH_ACR) Address offset: 0x000 Reset value: 0x0004 0600 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|-------|------|------|--------|------|------|------|------|------|--------------|------|-------| | Res. DBG
_SWEN | Res. | EMPTY | | | | | | | | | | | | | | | rw | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | ICRST | Res. | ICEN | PRFTEN | Res. | Res. | Res. | Res. | Res. | LATENCY[2:0] | | 2:0] | | | | | | rw | | rw | rw | | | | | | rw | rw | rw | Bits 31:19 Reserved, must be kept at reset value. Bit 18 DBG_SWEN: Debug access software enable Software may use this bit to enable/disable the debugger read access. 0: Debugger disabled 1: Debugger enabled Bit 17 Reserved, must be kept at reset value. Bit 16 **EMPTY**: Main Flash memory area empty This bit indicates whether the first location of the Main Flash memory area is erased or has a programmed value. 0: Main Flash memory area programmed 1: Main Flash memory area empty The bit can be set and reset by software.. Bits 15:12 Reserved, must be kept at reset value. Bit 11 ICRST: CPU Instruction cache reset 0: CPU Instruction cache is not reset 1: CPU Instruction cache is reset This bit can be written only when the instruction cache is disabled. Bit 10 Reserved, must be kept at reset value. Bit 9 ICEN: CPU Instruction cache enable 0: CPU Instruction cache is disabled 1: CPU Instruction cache is enabled Bit 8 PRFTEN: CPU Prefetch enable 0: CPU Prefetch disabled1: CPU Prefetch enabled Bits 7:3 Reserved, must be kept at reset value. ### Bits 2:0 LATENCY[2:0]: Flash memory access latency The value in this bitfield represents the ratio of the HCLK clock period to the Flash memory access time. 000: Zero wait states 001: One wait state 010: Two wait states Others: Reserved A a new write into the bitfield becomes effective when it returns the same value upon read. # 3.7.2 FLASH key register (FLASH_KEYR) Address offset: 0x008 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|---------------------------|----|----|----|----|----|-----|--------|----|----|----|----|----|----|----| | | KEY[31:16] | | | | | | | | | | | | | | | | w | w w w w w w w w w w w w w | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | KEY | [15:0] | | | | | | | | | w | W | W | W | W | W | W | W | W | W | W | W | W | W | W | W | Bits 31:0 KEY[31:0]: FLASH key The following values must be written consecutively to unlock the *FLASH control register* (*FLASH_CR*), thus enabling programming/erasing operations: KEY1: 0x4567 0123 KEY2: 0xCDEF 89AB # 3.7.3 FLASH option key register (FLASH_OPTKEYR) Address offset: 0x00C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|---------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----| | | OPTKEY[31:16] | | | | | | | | | | | | | | | | w | w | W | W | W | W | W | W | W | W | W | W | W | W | W | w | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | OPTKEY[15:0] | | | | | | | | | | | | | | | | w | W | W | W | W | W | W | W | W | W | W | W | W | W | W | W | Bits 31:0 OPTKEY[31:0]: Option byte key The following values must be written consecutively to unlock the Flash memory option registers, enabling option byte programming/erasing operations: KEY1: 0x0819 2A3B KEY2: 0x4C5D 6E7F RM0444 Rev 5 101/1390 #### 3.7.4 FLASH status register (FLASH_SR) Address offset: 0x010 Reset value: 0x000X 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------------|-----------|------|------|------|------|-------------|-------------|------------|------------|------------|------------|-------------|--------|-----------|-------| | Res. CFGBSY | BSY2 | BSY1 | | | | | | | | | | | | | | | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | OPTV
ERR | RD
ERR | Res. | Res. | Res. | Res. | FAST
ERR | MISS
ERR | PGS
ERR | SIZ
ERR | PGA
ERR | WRP
ERR | PROG
ERR | Res. | OP
ERR | EOP | | rc_w1 | rc_w1 | | | | | rc_w1 | rc_w1 | rc_w1 | Bits 31:19 Reserved, must be kept at reset value. ### Bit 18 CFGBSY: Programming or erase configuration busy. This flag is set and reset by hardware. (set when first word is sent and reset when program operation completes or is interrupted by an error.) When set to 1 the programming and erase settings in PB and PNB bits requested by FLASH control register (FLASH_CR) are used (busy), and cannot be changed (a programming or erase operation is ongoing). When reset to 0 programming and erase settings in PB and PNB bits in FLASH control register (FLASH CR) can be modified. #### Bit 17 BSY2: Busy This flag indicates that a Flash memory Bank 2 operation requested by FLASH control register (FLASH_CR) is in progress. This bit is set at the beginning of the Flash memory operation, and cleared when the operation finishes or when an error occurs. ## Bit 16 BSY1: Busy This flag indicates that a Flash memory (Bank 1 for dual-bank devices) operation requested by FLASH control register (FLASH_CR) is in progress. This bit is set at the beginning of the Flash memory operation, and cleared when the operation finishes or when an error occurs. # Bit 15 OPTVERR: Option and Engineering bits loading validity error Set by hardware when the options and engineering bits read may not be the one configured by the user or production. If options and engineering bits haven't been properly loaded, OPTVERR is set again after each system reset. Option bytes that fail loading are forced to a safe value, see Section 3.4.2: FLASH option byte programming. Cleared by writing 1. ### Bit 14 RDERR: PCROP read error Set by hardware when an address to be read belongs to a read protected area of the Flash memory (PCROP protection). An interrupt is generated if RDERRIE is set in FLASH CR. Cleared by writing 1. ### Bits 13:10 Reserved, must be kept at reset value. ### Bit 9 **FASTERR**: Fast programming error Set by
hardware when a fast programming sequence (activated by FSTPG) is interrupted due to an error (alignment, size, write protection or data miss). The corresponding status bit (PGAERR, SIZERR, WRPERR or MISSERR) is set at the same time. Cleared by writing 1. #### Bit 8 MISSERR: Fast programming data miss error In Fast programming mode, 32 double words (256 bytes) must be sent to Flash memory successively, and the new data must be sent to the logic control before the current data is fully programmed. MISSERR is set by hardware when the new data is not present in time. Cleared by writing 1. ### Bit 7 PGSERR: Programming sequence error Set by hardware when a write access to the Flash memory is performed by the code while PG or FSTPG have not been set previously. Set also by hardware when PROGERR, SIZERR, PGAERR, WRPERR, MISSERR or FASTERR is set due to a previous programming error. Cleared by writing 1. ### Bit 6 SIZERR: Size error Set by hardware when the size of the access is a byte or half-word during a program or a fast program sequence. Only double word programming is allowed (consequently: word access). Cleared by writing 1. ### Bit 5 PGAERR: Programming alignment error Set by hardware when the data to program cannot be contained in the same double word (64-bit) Flash memory in case of standard programming, or if there is a change of page during fast programming. Cleared by writing 1. ### Bit 4 WRPERR: Write protection error Set by hardware when an address to be erased/programmed belongs to a write-protected part (by WRP, PCROP or RDP Level 1) of the Flash memory. Cleared by writing 1. O BROOFER D # Bit 3 **PROGERR**: Programming error Set by hardware when a double-word address to be programmed contains a value different from '0xFFFF FFFF' before programming, except if the data to write is '0x0000 0000'. Cleared by writing 1. ### Bit 2 Reserved, must be kept at reset value. ## Bit 1 **OPERR**: Operation error Set by hardware when a Flash memory operation (program / erase) completes unsuccessfully. This bit is set only if error interrupts are enabled (ERRIE=1). Cleared by writing '1'. ## Bit 0 EOP: End of operation Set by hardware when one or more Flash memory operation (programming / erase) has been completed successfully. This bit is set only if the end of operation interrupts are enabled (EOPIE=1). Cleared by writing 1. RM0444 Rev 5 103/1390 #### 3.7.5 FLASH control register (FLASH CR) Address offset: 0x014 Reset value: 0xC000 0000 Access: no wait state when no Flash memory operation is on going, word, half-word and byte access This register cannot be modified when CFGBSY in FLASH status register (FLASH SR) is set | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|-------------|---------------|--------------|----------------|-------------|-------|-------|------|------|------|------|------|-------|-------------|------| | LOCK | OPT
LOCK | SEC_
PROT2 | SEC_
PROT | OBL_
LAUNCH | RD
ERRIE | ERRIE | EOPIE | Res. | Res. | Res. | Res. | Res. | FSTPG | OPT
STRT | STRT | | rs | rs | rw | rw | rc_w1 | rw | rw | rw | | | | | | rw | rs | rs | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | MER2 | Res. | BKER | | PNB[9:0] | | | | | | | | | | | PG | | rw | | rw ### Bit 31 LOCK: FLASH CR Lock This bit is set only. When set, the FLASH_CR register is locked. It is cleared by hardware after detecting the unlock sequence. In case of an unsuccessful unlock operation, this bit remains set until the next system reset. ### Bit 30 OPTLOCK: Options Lock This bit is set only. When set, all bits concerning user option in FLASH CR register and so option page are locked. This bit is cleared by hardware after detecting the unlock sequence. The LOCK bit must be cleared before doing the unlock sequence for OPTLOCK bit. In case of an unsuccessful unlock operation, this bit remains set until the next reset. ### Bit 29 **SEC_PROT2**: Securable memory area protection enable, Bank 2 This bit enables the protection on securable area in Bank 2, provided that a non-null securable memory area size (SEC_SIZE2[7:0]) is defined in option bytes. - 0: Disable (securable area accessible) - 1: Enable (securable area not accessible) This bit is possible to set only by software and to clear only through a system reset. ## Bit 28 **SEC PROT**: Securable memory area protection enable (Bank 1) This bit enables the protection on securable area (in Bank 1 for dual-bank devices), provided that a non-null securable memory area size (SEC_SIZE[7:0]) is defined in option bytes. - 0: Disable (securable area accessible) - 1: Enable (securable area not accessible) This bit is possible to set only by software and to clear only through a system reset. ### Bit 27 **OBL LAUNCH**: Option byte load launch When set, this bit triggers the load of option bytes into option registers. It is automatically cleared upon the completion of the load. The high state of the bit indicates pending option byte load. The bit cannot be cleared by software. It cannot be written as long as OPTLOCK is set. ### Bit 26 RDERRIE: PCROP read error interrupt enable This bit enables the interrupt generation upon setting the RDERR flag in the FLASH SR register. - 0: Disable - 1: Enable ### Bit 25 ERRIE: Error interrupt enable This bit enables the interrupt generation upon setting the OPERR flag in the FLASH_SR register. - 0: Disable - 1: Enable ### Bit 24 EOPIE: End-of-operation interrupt enable This bit enables the interrupt generation upon setting the EOP flag in the FLASH_SR register. - 0: Disable - 1: Enable ### Bits 23:19 Reserved, must be kept at reset value. ## Bit 18 FSTPG: Fast programming enable - 0: Disable - 1: Enable ## Bit 17 **OPTSTRT**: Start of modification of option bytes This bit triggers an options operation when set. This bit is set only by software, and is cleared when the BSY1 bit is cleared in FLASH_SR. ## Bit 16 STRT: Start erase operation This bit triggers an erase operation when set. This bit is possible to set only by software and to clear only by hardware. The hardware clears it when one of BSY1 and BSY2 flags in the FLASH_SR register transits to zero. ### Bit 15 MER2: Mass erase, Bank 2 When set, this bit triggers the mass erase of Bank 2 (all user pages). ### Bits 14 Reserved, must be kept at reset value. ## Bit 13 BKER: Bank selection for erase operation This bit selects the target of erase operation (Bank 1 or Bank 2). - 0: Bank 1 - 1: Bank 2 The bit has no effect on the single-bank devices. ## Bits 12:3 PNB[9:0]: Page number selection These bits select the page to erase: 0x00: page 0 0x01: page 1 ... 0x17F: page 383 Note: Values corresponding to addresses outside the Main memory are not allowed. ## Bit 2 MER1: Mass erase (Bank 1) When set, this bit triggers the mass erase, that is, all user pages (of Bank 1 for dual-bank devices). ### Bit 1 PER: Page erase enable - 0: Disable - 1: Enable ### Bit 0 PG: Flash memory programming enable - 0: Disable - 1: Enable # 3.7.6 FLASH ECC register (FLASH_ECCR) Address offset: 0x018 Reset value: 0x0000 0000 Access: no wait state when no Flash memory operation is on going, word, half-word and byte access This register applies to single-bank products and to Bank 1 of dual-bank products. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------|-------|----------------|------|------|------|------|--------|------|------|------|--------------|------|------|------|------| | ECCD | ECCC | Res. | Res. | Res. | Res. | Res. | ECCCIE | Res. | Res. | Res. | SYSF_
ECC | Res. | Res. | Res. | Res. | | rc_w1 | rc_w1 | | | | | | rw | | | | r | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | ADDR_ECC[13:0] | | | | | | | | | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | #### Bit 31 ECCD: ECC detection Set by hardware when two ECC errors have been detected. When this bit is set, a NMI is generated. Cleared by writing 1. ### Bit 30 ECCC: ECC correction Set by hardware when one ECC error has been detected and corrected. An interrupt is generated if ECCIE is set. Cleared by writing 1. Bits 29:25 Reserved, must be kept at reset value. Bit 24 ECCCIE: ECC correction interrupt enable 0: ECCC interrupt disabled1: ECCC interrupt enabled Bits 23:21 Reserved, must be kept at reset value. ## Bit 20 SYSF_ECC: System Flash memory ECC fail This bit indicates that the ECC error correction or double ECC error detection is located in the system Flash memory. Bits 19:14 Reserved, must be kept at reset value. # Bits 13:0 ADDR_ECC[13:0]: ECC fail double-word address offset In case of ECC error or ECC correction detected, this bitfield contains double-word offset (multiple of 64 bits) to Main Flash memory. # 3.7.7 FLASH ECC register 2 (FLASH_ECCR2) Address offset: 0x01C Reset value: 0x0000 0000 Access: no wait state when no Flash memory operation is on going, word, half-word and byte access This register applies to Bank 2 of dual-bank products. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------|-------|----------------|------|------|------|------|--------|------|------|------|--------------|------|------|------|------| | ECCD | ECCC | Res. | Res. | Res. | Res. | Res. | ECCCIE | Res. | Res. | Res. | SYSF_
ECC | Res. | Res. | Res. | Res. | | rc_w1 | rc_w1 | | | | | | rw | | | | r | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | ADDR_ECC[13:0] | | | | | | | | | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | #### Bit 31 ECCD: ECC detection Set by hardware when two ECC errors have been detected. When this bit is set, a NMI is generated. Cleared by writing 1. ### Bit 30 ECCC: ECC correction Set by hardware when one ECC error has been detected and corrected. An interrupt is generated if ECCIE is set. Cleared by writing 1. Bits 29:25 Reserved, must be kept at reset value. Bit 24
ECCCIE: ECC correction interrupt enable 0: ECCC interrupt disabled 1: ECCC interrupt enabled Bits 23:21 Reserved, must be kept at reset value. ## Bit 20 SYSF_ECC: System Flash memory ECC fail This bit indicates that the ECC error correction or double ECC error detection is located in the system Flash memory. Bits 19:14 Reserved, must be kept at reset value. ### Bits 13:0 ADDR_ECC[13:0]: ECC fail double-word address offset In case of ECC error or ECC correction detected, this bitfield contains double-word offset (multiple of 64 bits) to Main Flash memory. # 3.7.8 FLASH option register (FLASH_OPTR) Address offset: 0x020 loaded with values from Flash memory at power-on reset release.) Access: no wait state when no Flash memory operation is on going, word, half-word and byte access | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |---------------|----------------|---------------|--------------------|----------|------------|------------|---------------|----------|------------------|---------------|---------------|-------------|---------------|---------------|-------------| | Res. | Res. | IRHEN | NRST_MODE
[1:0] | | n
BOOT0 | n
BOOT1 | nBOOT
SEL | Res. | RAM PARITY CHĒCK | DUAL
BANK | SWAP
_BANK | WWDG
_SW | IWGD
STDBY | IWDG
_STOP | IWDG
SW | | | | rw | rw | rw | rw | rw | rw | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | nRST
SHDW | nRST_
STDBY | nRST_
STOP | BORF_L | LEV[1:0] | BORR_I | LEV[1:0] | BOR_
EN | RDP[7:0] | | | | | | | | | rw Bits 31:30 Reserved, must be kept at reset value. Bit 29 IRHEN: Internal reset holder enable bit 0: Internal resets are propagated as simple pulse on NRST pin 1: Internal resets drives NRST pin low until it is seen as low level ### Bits 28:27 NRST_MODE[1:0] 00: Reserved 01: Reset Input only: a low level on the NRST pin generates system reset, internal RESET not propagated to the NSRT pin 10: GPIO: standard GPIO pad functionality, only internal RESET possible 11: Bidirectional reset: NRST pin configured in reset input/output mode (legacy mode) ### Bit 26 nBOOT0: nBOOT0 option bit 0: nBOOT0=0 1: nBOOT0=1 ### Bit 25 **nBOOT1:** Boot configuration Together with the BOOT0 pin or option bit nBOOT0 (depending on nBOOT_SEL option bit configuration), this bit selects boot mode from the Main Flash memory, SRAM or the System memory. Refer to Section 2.5: Boot configuration # Bit 24 nBOOT_SEL 0: BOOT0 signal is defined by BOOT0 pin value (legacy mode) 1: BOOT0 signal is defined by nBOOT0 option bit Bit 23 Reserved, must be kept at reset value. ### Bit 22 RAM_PARITY_CHECK: SRAM parity check control 0: SRAM parity check enable 1: SRAM parity check disable ### Bit 21 DUAL_BANK: Dual-bank on 512 Kbytes or 256 Kbytes Flash memory devices 0: 256 Kbytes/512 Kbytes single-bank Flash memory, contiguous addresses in Bank 1 1: 256 Kbytes/512 Kbytes dual-bank Flash memory, Refer to Table 10 and Table 11 #### Bit 20 nSWAP_BANK: Empty check boot configuration This bit selects the bank that is the subject of empty check upon boot. 0: Bank 1 1: Bank 2 The bit is ignored when the BOOT LOCK bit is set. #### Bit 19 WWDG_SW: Window watchdog selection - 0: Hardware window watchdog - 1: Software window watchdog #### Bit 18 IWDG_STDBY: Independent watchdog counter freeze in Standby mode - 0: Independent watchdog counter is frozen in Standby mode - 1: Independent watchdog counter is running in Standby mode #### Bit 17 IWDG_STOP: Independent watchdog counter freeze in Stop mode - 0: Independent watchdog counter is frozen in Stop mode - 1: Independent watchdog counter is running in Stop mode #### Bit 16 IDWG SW: Independent watchdog selection - 0: Hardware independent watchdog - 1: Software independent watchdog #### Bit 15 nRSTS_SHDW - 0: Reset generated when entering the Shutdown mode - 1: No reset generated when entering the Shutdown mode #### Bit 14 nRST STDBY - 0: Reset generated when entering the Standby mode - 1: No reset generated when entering the Standby mode #### Bit 13 nRST STOP - 0: Reset generated when entering the Stop mode - 1: No reset generated when entering the Stop mode #### Bits 12:11 BORF_LEV[1:0]: BOR threshold at falling V_{DD} supply Falling V_{DD} crossings this threshold activates the reset signal. - 00: BOR falling level 1 with threshold around 2.0 V - 01: BOR falling level 2 with threshold around 2.2 V - 10: BOR falling level 3 with threshold around 2.5 V - 11: BOR falling level 4 with threshold around 2.8 V ## Bits 10:9 BORR_LEV[1:0]: BOR threshold at rising V_{DD} supply Rising V_{DD} crossings this threshold releases the reset signal. - 00: BOR rising level 1 with threshold around 2.1 V - 01: BOR rising level 2 with threshold around 2.3 V - 10: BOR rising level 3 with threshold around 2.6 V - 11: BOR rising level 4 with threshold around 2.9 V #### Bit 8 BOR EN: Brown out reset enable - 0: Configurable brown out reset disabled, power-on reset defined by POR/PDR levels - 1: Configurable brown out reset enabled, values of BORR_LEV_RISING and BORF LEV FALLING taken into account #### Bits 7:0 RDP[7:0]: Read protection level Note: 0xAA: Level 0, read protection not active 0xCC: Level 2, chip read protection active Others: Level 1, memories read protection active RM0444 Rev 5 109/1390 # 3.7.9 FLASH PCROP area A start address register (FLASH_PCROP1ASR) Address offset: 0x024 Reset value: 0b0000 0000 0000 0000 0000 000X XXXX XXXX (The option bits are loaded with values from Flash memory at power-on reset release.) Access: no wait state when no Flash memory operation is on going, word, half-word access This register applies to single-bank devices and to Bank 1 of dual-bank devices. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|-------|---------|--------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | PCROF | P1A_STR | T[8:0] | | | | | | | | | | | | rw Bits 31:9 Reserved, must be kept cleared Bits 8:0 PCROP1A_STRT[8:0]: PCROP1A area start offset (Bank 1) Contains the offset of the first subpage of the PCROP1A area (in Bank 1 for dual-bank devices). (1) 1. The number of effective bits depends on the size of Flash memory in the device. # 3.7.10 FLASH PCROP area A end address register (FLASH_PCROP1AER) Address offset: 0x028 Reset value: 0bX000 0000 0000 0000 0000 000X XXXX XXXX (The option bits are loaded with values from Flash memory at power-on reset release.) Access: no wait state when no Flash memory operation is on going, word, half-word access. PCROP_RDP bit can be accessed with byte access | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-----------|------|------|------|------|------|------|------|------|------|------|--------|---------|------|------|------| | PCROP_RDP | Res. | rs | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | PCRC | P1A_EN | ND[8:0] | | | | | | | | | | | | rw #### Bit 31 PCROP_RDP: PCROP area erase upon RDP level regression This bit determines whether the PCROP area (and the totality of the PCROP area boundary pages) is erased by the mass erase triggered by the RDP level regression from Level 1 to Level 0: 0: Not erased 1: Erased The software can only set this bit. It is automatically reset upon mass erase following the RDP regression from Level 1 to Level 0. Bits 30:9 Reserved, must be kept cleared ### Bits 8:0 PCROP1A_END[8:0]: PCROP1A area end offset (Bank 1) Contains the offset of the last subpage of the PCROP1A area (in Bank 1 for dual-bank devices). $^{(1)}$ 1. The number of effective bits depends on the size of Flash memory in the device. ## 3.7.11 FLASH WRP area A address register (FLASH WRP1AR) Address offset: 0x02C Reset value: 0x00XX 00XX (The option bits are loaded with values from Flash memory at power-on reset release.) Access: no wait state when no Flash memory operation is on going, word, half-word and byte access. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|----|----|-----|---------|--------|----|----| | Res. | | WR | P1A_END | 0[6:0] | | | | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | WRF | P1A_STR | T[6:0] | Bits 31:23 Reserved, must be kept at reset value. #### Bits 22:16 WRP1A_END[6:0]: WRP area A end offset (Bank 1) This bitfield contains the offset of the last page of the WRP area A (in Bank 1 for dual-bank devices). (1) Bits 15:6 Reserved, must be kept at reset value. #### Bits 6:0 WRP1A_STRT[6:0]: WRP area A start offset (Bank 1) This bitfield contains the offset of the first page of the WRP area A (in Bank 1 for dual-bank devices). $^{(1)}$ 1. The number of effective bits depends on the size of Flash memory in the device. RM0444 Rev 5 111/1390 ## 3.7.12 FLASH WRP area B address register (FLASH_WRP1BR) Address offset: 0x030 Reset value: 0b0000 0000 0XXX XXXX 0000 0000 0XXX XXXX (The option bits are loaded with values from Flash memory at power-on reset release.) Access: no wait state when no Flash memory operation is on going, word, half-word and byte access. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|----|----|-----|---------|--------|----|----| | Res. | | WRI | P1B_END | 0[6:0] | | | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | WRF | 1B_STR | T[6:0] | | | | | | | | | | | | rw Bits 31:23 Reserved, must be kept at reset value. #### Bits 22:16 WRP1B END[6:0]: WRP area B end offset (Bank 1) This bitfield contains the offset of the last page of the WRP area B (in Bank 1 for
dual-bank devices). (1) Bits 15:7 Reserved, must be kept at reset value. #### Bits 6:0 WRP1B_STRT[6:0]: WRP area B start offset (Bank 1) This bitfield contains the offset of the first page of the WRP area B (in Bank 1 for dual-bank devices).⁽¹⁾ 1. The number of effective bits depends on the size of Flash memory in the device. # 3.7.13 FLASH PCROP area B start address register (FLASH_PCROP1BSR) Address offset: 0x034 Reset value: 0b0000 0000 0000 0000 0000 000X XXXX XXXX (The option bits are loaded with values from Flash memory at power-on reset release.) Access: no wait state when no Flash memory operation is on going, word, half-word access | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|--------|---------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | PCRC | P1B_ST | RT[8:0] | Bits 31:9 Reserved, must be kept cleared #### Bits 8:0 PCROP1B STRT[8:0]: PCROP1B area start offset (Bank 1) Contains the offset of the first subpage of the PCROP1B area (in Bank 1 for dual-bank devices)⁽¹⁾. 1. The number of effective bits depends on the size of Flash memory in the device. # 3.7.14 FLASH PCROP area B end address register (FLASH_PCROP1BER) Address offset: 0x038 Access: no wait state when no Flash memory operation is on going, word, half-word access | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|--------|---------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | PCRC | P1B_EN | ID[8:0] | | | | | | | | | | | | rw Bits 31:9 Reserved, must be kept cleared Bits 8:0 PCROP1B END[8:0]: PCROP1B area end offset (Bank 1) Contains the offset of the last subpage of the PCROP1B area (in Bank 1 for dual-bank devices) $^{(1)}$. 1. The number of effective bits depends on the size of Flash memory in the device. # 3.7.15 FLASH PCROP2 area A start address register (FLASH_PCROP2ASR) Address offset: 0x044 Reset value: 0b0000 0000 0000 0000 0000 000X XXXX XXXX (The option bits are loaded with values from Flash memory at power-on reset release.) Access: no wait state when no Flash memory operation is on going, word, half-word access | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|-------|---------|--------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | PCROF | P2A_STR | T[8:0] | | | | | | | | | | | | rw Bits 31:9 Reserved, must be kept cleared Bits 8:0 PCROP2A_STRT[8:0]: PCROP2A area start offset, Bank 2 Contains the offset of the first subpage of the PCROP2A area in Bank 2.⁽¹⁾ 1. The number of effective bits depends on the size of Flash memory in the device. RM0444 Rev 5 113/1390 ## 3.7.16 FLASH PCROP2 area A end address register (FLASH PCROP2AER) Address offset: 0x048 Reset value: 0bX000 0000 0000 0000 0000 000X XXXX XXXX (The option bits are loaded with values from Flash memory at power-on reset release.) Access: no wait state when no Flash memory operation is on going, word, half-word access. PCROP_RDP bit can be accessed with byte access | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|---------|---------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | PCRO | DP2A_EN | ID[8:0] | | | | | | | | | | | | rw Bits 31:9 Reserved, must be kept cleared Bits 8:0 **PCROP2A_END[8:0]:** PCROP2A area end offset, Bank 2 Contains the offset of the last subpage of the PCROP2A area in Bank 2.⁽¹⁾ 1. The number of effective bits depends on the size of Flash memory in the device. ## 3.7.17 FLASH WRP2 area A address register (FLASH_WRP2AR) Address offset: 0x04C Reset value: 0b0000 0000 0XXX XXXX 0000 0000 0XXX XXXX (The option bits are loaded with values from Flash memory at power-on reset release.) Access: no wait state when no Flash memory operation is on going, word, half-word and byte access. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|----|----|-----|---------|--------|----|----| | Res. | | WR | P2A_ENI | 0[6:0] | | | | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | WRF | P2A_STR | T[6:0] | | | | | | | | | | | | | rw Bits 31:23 Reserved, must be kept at reset value. Bits 22:16 WRP2A_END[6:0]: WRP area A end offset, Bank 2 This bitfield contains the offset of the last page of the WRP area A in Bank 2. (1) Bits 15:7 Reserved, must be kept at reset value. Bits 6:0 WRP2A_STRT[6:0]: WRP area A start offset, Bank 2 This bitfield contains the offset of the first page of the WRP area A in Bank 2.⁽¹⁾ 1. The number of effective bits depends on the size of Flash memory in the device. ## 3.7.18 FLASH WRP2 area B address register (FLASH_WRP2BR) Address offset: 0x050 Reset value: 0b0000 0000 0XXX XXXX 0000 0000 0XXX XXXX (The option bits are loaded with values from Flash memory at power-on reset release.) Access: no wait state when no Flash memory operation is on going, word, half-word and byte access. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|----|----|-----|---------|--------|----|----| | Res. | | WRI | P2B_END | [6:0] | | | | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | WRF | 2B_STR | T[6:0] | | | | | | | | | | | | | rw Bits 31:23 Reserved, must be kept at reset value. Bits 22:16 WRP2B_END[6:0]: WRP area B end offset, Bank 2 This bitfield contains the offset of the last page of the WRP area B in Bank 2.⁽¹⁾ Bits 15:7 Reserved, must be kept at reset value. Bits 6:0 WRP2B_STRT[6:0]: WRP area B start offset, Bank 2 This bitfield contains the offset of the first page of the WRP area B in Bank 2.⁽¹⁾ 1. The number of effective bits depends on the size of Flash memory in the device. # 3.7.19 FLASH PCROP2 area B start address register (FLASH_PCROP2BSR) Address offset: 0x054 Reset value: 0b0000 0000 0000 0000 0000 000X XXXX XXXX (The option bits are loaded with values from Flash memory at power-on reset release.) Access: no wait state when no Flash memory operation is on going, word, half-word access | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|--------|---------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | PCRC | P2B_ST | RT[8:0] | | | | | | | | | | | | rw Bits 31:9 Reserved, must be kept cleared Bits 8:0 PCROP2B_STRT[8:0]: PCROP2B area start offset, Bank 2 Contains the offset of the first subpage of the PCROP2B area in Bank 2.⁽¹⁾ 1. The number of effective bits depends on the size of Flash memory in the device. RM0444 Rev 5 115/1390 # 3.7.20 FLASH PCROP2 area B end address register (FLASH_PCROP2BER) Address offset: 0x058 Access: no wait state when no Flash memory operation is on going, word, half-word access | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|------|------|------|------|--------------|------|------|------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8 | 7 | 6 | | 4
)P2B_EN | | 2 | 1 | 0 | Bits 31:9 Reserved, must be kept cleared Bits 8:0 PCROP2B_END[8:0]: PCROP2B area end offset, Bank 2 Contains the offset of the last subpage of the PCROP2B area in Bank 2.⁽¹⁾ 1. The number of effective bits depends on the size of Flash memory in the device. ## 3.7.21 FLASH security register (FLASH SECR) Address offset: 0x080 Reset value: 0x0000 0000 (The option bits are loaded with values from Flash memory at power-on reset release.) Access: no wait state when no Flash memory operation is on going, word, half-word access | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|--------|----------|----|----|----|----------|--------------|------|-----------| | Res. | Res. | Res. | Res. | | | | SEC_SI | ZE2[7:0] | | | | Res. | Res. | Res. | BOOT_LOCK | | | | | | rw | | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | SE | C_SIZE[7 | ' :0] | | | | | | | | | | | | rw Bits 31:27 Reserved, must be kept at reset value Bits 27:20 SEC_SIZE2[7:0]: Securable memory area size, Bank 2 Contains the number of securable Flash memory pages and Bank 1 of dual-bank devices). (1) Bit 16 BOOT LOCK: used to force boot from user area - 0: Boot based on the pad/option bit configuration - 1: Boot forced from Main Flash memory Bits 15:8 Reserved, must be kept at reset value Bits 7:0 SEC_SIZE[7:0]: Securable memory area size (Bank 1) Contains the number of securable Flash memory pages (for single-bank devices and Bank 1 of dual-bank devices).⁽¹⁾ 1. The number of effective bits depends on the size of Flash memory in the device. ## 3.7.22 FLASH register map Table 24. FLASH register map and reset values | Offset | Register | 31 | 30 | 59 | 28 | 27 | 26 | 25 | 24 |
23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | က | 2 | - 0 | |--------|---------------------------|-----------|---------|--|----------|----------------|----------|----------|-----------|------|--|-----------|------------|---------|-----------|-----------|--------|-----------|------------|-----------|----------|---------------|----------|-------------|--------|--------|----------|--------|----------|----------|-------|----------------| | 0x000 | FLASH_ACR | Res. DBG_SWEN | Res. | EMPTY | Res. | Res. | Res. | Res. | ICRST | Res. | ICEN | PRFTEN | Res. | Res. | Res. | Res. | Res. | | ΓENC\
[2:0] | | | Reset value | | | | | | | | | | | | | | 1 | | Χ | | | | | 0 | | 1 | 0 | | | | | | 0 | 0 0 | | 0x004 | Reserved | Res. | | Reset value
FLASH KEYR | | | | | | | | | | | | | | | I/I | EYF | 101 | .01 | | | | | | | | | | | | | | | 0x008 | Reset value | 0 0 | | 0x00C | FLASH_OPT
KEYR | | | <u>. </u> | | | | | | | <u>. </u> | | | | | | TKE | <u> </u> | | | <u> </u> | <u> </u> | <u> </u> | <u> </u> | | | <u> </u> | | <u> </u> | <u> </u> | | | | | Reset value | 0 0 | | 0x010 | FLASH_SR | Res. CFGBSY | BSY2 | BSY1 | OPTVERR | RDERR | Res. | Res. | Res. | Res. | FASTERR | MISERR | PGSERR | SIZERR | PGAERR | WRPERR | PROGERR | Res. | OPERR | | | Reset value | | | | | | | | | | | | | | 0 | 0 | 0 | Х | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 0 | | 0x014 | FLASH_CR | LOCK | OPTLOCK | SEC_PROT2 | SEC_PROT | OBL_LAUNCH | RDERRIE | ERRIE | EOPIE | Res. | Res. | Res. | Res. | Res. | FSTPG | OPTSTRT | STRT | MER2 | Res. | BKER | | | | ı | PNB | [9:0 |)] | | | | MER1 | PER | | | Reset value | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | 0x018 | FLASH_ECCR | ECCD | ECCC | Res. | Res. | Res. | Res. | Res. | ECCCIE | Res. | Res. | Res. | SYSF_ECC | Res. | Res. | Res. | Res. | Res. | Res. | | I | I | I | Α | .DDI | R_E | :CC | [13:0 | 0] | I | | | | | Reset value | 0 | 0 | | | | | | 0 | | | | 0 | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | 0x020 | FLASH_OPTR | Res. | Res. | IRHEN | C. ETION | NRSI_MODE[1:0] | nBOOT0 | nBOOT1 | nBOOT_SEL | Res. | RAM_PARITY_CHECK | DUAL_BANK | nSWAP_BANK | WWDG_SW | IWDG_STBY | IWDG_STOP | WDG_SW | nRST_SHDW | nRST_STDBY | nRST_STOP | | DORF_LEV[1:0] | 10.17.7 | מראבין ויין | BOR_EN | | | F | RDF | P[7:0 |)] | • | | | Reset value | | | Х | Х | Χ | Х | Х | Х | | X | Χ | Х | Х | Х | Χ | Х | Х | Х | Х | Х | Х | Х | Х | Х | Χ | Х | Χ | Х | Х | Χ | ХХ | | 0x024 | FLASH_
PCROP1ASR | Res. | Р | CRO | DP1 | A_5 | STR | T[8: | | | | Reset value | Х | Χ | Х | Χ | Χ | Χ | Χ | X X | | 0x028 | FLASH_
PCROP1AER | PCROP_RDP | Res. | F | PCR | OP1 | 1A_ | ENE |)[8:0 |)] | | | Reset value | Χ | Х | Χ | Χ | Χ | Χ | Χ | Χ | X X | | 0x02C | FLASH_
WRP1AR | Res. | | | | ND[| | | Res. | | | | | [6:0] | | | Reset value | <u> </u> | | _ | _ | | <u> </u> | <u> </u> | | | Х | Х | Х | Х | Х | Х | Х | | <u> </u> | | | | | | | | Х | Х | Х | Х | Х | XX | | 0x030 | FLASH_
WRP1BR | Res | WF | RP1I | 3_E | ND[| | | Res | | | | | [6:0] | | | Reset value | | | <u> </u> | <u> </u> | | | | | | Х | Х | Х | Х | Х | Х | Х | | | | | | | | | | Χ | Χ | Х | Х | Χ | X | | 0x034 | FLASH_
PCROP1BSR | Res. | | CRO | | | | | | | | Reset value | Χ | Х | Х | Х | Х | Х | Х | X X | RM0444 Rev 5 117/1390 Table 24. FLASH register map and reset values (continued) | | | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | Ť | | | T . | | 1 | 1 | 1 | 1 | 1 | 1 | r | | | | | | | - 1 | | | | | \neg | |------------------|---------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|--------| | Offset | Register | 31 | 30 | 53 | 28 | 27 | 56 | 22 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 1 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 2 | 1 | 0 | | 0x038 | FLASH_
PCROP1BER | Res. | F | CR | OP1 | B_E | END | [8:0 |)] | | | | Reset value | Х | Χ | Х | Χ | Χ | Х | Χ | Χ | Χ | | 0x03C -
0x043 | Reserved | Res. | 0x044 | FLASH_
PCROP2ASR | Res. | Р | CRO |)P2/ | A_S | TR | Γ[8: | 0] | | | | Reset value | Х | Χ | Х | Χ | Χ | Х | Χ | Χ | Χ | | 0x048 | FLASH_
PCROP2AER | Res. | F | CR | OP2 | A_E | END | [8:0 |)] | | | | Reset value | Х | Χ | Х | Χ | Χ | Х | Χ | Χ | Χ | | 0x04C | FLASH_
WRP2AR | Res. | WF | RP2 | 4_E | ND[| [6:0] | | Res. ١ | NRF | P2A | _ST | RT | [6:0] | | | | Reset value | | | | | | | | | | Х | Х | Х | Х | Х | Х | Х | | | | | | | | | | Х | Χ | Χ | Х | Χ | Χ | Χ | | 0x050 | FLASH_
WRP2BR | Res. | WF | RP2I | 3_E | ND[| [6:0] | | Res. ١ | NRF | P2B | _ST | RT | [6:0] | | | | Reset value | | | | | | | | | | Х | Х | Х | Х | Х | Х | Х | | | | | | | | | | Х | Χ | Χ | Х | Χ | Χ | Χ | | 0x054 | FLASH_
PCROP2BSR | Res. | Р | CRC |)P2E | B_S | TR | Γ[8: | 0] | | | | Reset value | Х | Χ | Х | Χ | Χ | Х | Χ | Χ | Χ | | 0x058 | FLASH_
PCROP2BER | Res. | F | CR | OP2 | B_E | END | [8:0 |)] | | | | Reset value | Х | Χ | Х | Χ | Χ | Х | Χ | Χ | Χ | | 0x05C -
0x07F | Reserved | Res. | 0x080 | FLASH_SECR | Res. | Res. | Res. | Res. | | ; | SEC | _SI | ZE2 | [7:0 |)] | | Res. | Res. | Res. | BOOT_LOCK | Res. | ; | SEC | SI | IZE[| 7:0] | | | | | Reset value | | | | | Х | Х | Х | Х | Х | Х | Х | Х | | | | Х | | | | | | | | | Χ | Х | Χ | Χ | Х | Χ | Χ | Х | Refer to Section 2.2 on page 58 for the register boundary addresses. ## 4.1 Power supplies The STM32G0x1 devices require a 1.7 V to 3.6 V operating supply voltage (V_{DD}). Several different power supplies are provided to specific peripherals: V_{DD} = 1.7 V (1.60 V) to 3.6 V V_{DD} is the external power supply for the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through VDD/VDDA pin. Note that the minimum voltage of 1.7 V corresponds to power-on reset release threshold $V_{POR(MAX)}$. Once this threshold is crossed and power-on reset is released, the functionality is guaranteed down to power-down reset threshold $V_{PDR(MIN)}$. - V_{DDA} = 1.62 V (ADC and COMP) / 1.8 V (DAC) / 2.4 V (VREFBUF) to 3.6 V V_{DDA} is the analog power supply for the A/D converter, D/A converters, voltage reference buffer and comparators. V_{DDA} voltage level is identical to V_{DD} voltage as it is provided externally through VDD/VDDA pin. - $V_{DDIO1} = V_{DD}$ V_{DDIO1} is the power supply for the I/Os. V_{DDIO1} voltage level is identical to V_{DD} voltage as it is provided externally through VDD/VDDA pin. - V_{DDIO2} = 1.6 to 3.6 V (only available on STM32G0B1xx and STM32G0C1xx) V_{DDIO2} is the power supply from VDDIO2 pin for selected I/Os. Although V_{DDIO2} is independent of V_{DD} or V_{DDA}, it must not be applied without valid V_{DD}. - V_{BAT} = 1.55 V to 3.6 V V_{BAT} is the power supply (through a power switch) for RTC, TAMP, low-speed external 32.768 kHz oscillator and backup registers when V_{DD} is not present. V_{BAT} is provided externally through VBAT pin. When this pin is not available on the package, it is internally bonded to VDD/VDDA. V_{REF+} is the input reference voltage for the ADC and DAC, or the output of the internal voltage reference buffer (when enabled). When V_{DDA} < 2 V, V_{REF+} must be equal to V_{DDA}. When V_{DDA} ≥ 2 V, V_{REF+} must be between 2 V and V_{DDA}. It can be grounded when the ADC and DAC are not active. The internal voltage reference buffer supports two output voltages, which is configured with VRS bit of the VREFBUF_CSR register: - V_{REF+} around 2.048 V (requiring V_{DDA} equal to or higher than 2.4 V) - V_{REF+} around 2.5 V (requiring V_{DDA} equal to or higher than 2.8 V) V_{REF+} is delivered through VREF+ pin. On packages without VREF+ pin, V_{REF+} is internally connected with V_{DD} , and the internal voltage reference buffer must be kept disabled (refer to datasheets for package pinout description). V_{CORE} An embedded linear voltage regulator is used to supply the V_{CORE} internal digital power. V_{CORE} is the power supply for digital peripherals, SRAM and Flash memory. The Flash memory is also supplied by V_{DD} . 4 RM0444 Rev 5 119/1390 Figure 5. Power supply overview ## 4.1.1 ADC and DAC reference voltage To ensure a better accuracy on low-voltage inputs and outputs, the user can connect to V_{REF+} a separate reference voltage lower than V_{DDA} . V_{REF+} is the highest voltage, represented by the full scale value, for an analog input (ADC) or output (DAC) signal. V_{REF+} can be provided either by an external reference of by an internal buffered voltage reference (VREFBUF). The internal buffered voltage reference is enabled by setting the ENVR bit in the *VREFBUF control and status register (VREFBUF_CSR)*. The internal buffered voltage reference is set to 2.5 V when the VRS bit is set and to 2.048 V when the VRS bit is cleared. The internal buffered voltage reference can also provide the voltage to external components through V_{REF+} pin. Refer to the device datasheet and to *Section 17: Voltage reference buffer (VREFBUF)* for further information. ## 4.1.2 Battery backup of RTC domain To retain the
content of the backup registers and supply the RTC and TAMP functions when V_{DD} is turned off, the VBAT pin can be connected to an optional backup voltage supplied by a battery or by another source. The VBAT pin powers the RTC and TAMP units, the LSE oscillator and the PC13 to PC15 I/Os, allowing the RTC and TAMP to operate even when the main power supply is turned off. The switch to the V_{BAT} supply is controlled by the power-down reset embedded in the Reset block. #### Warning: During $t_{RSTTEMPO}$ (temporization at V_{DD} startup) or after a PDR has been detected, the power switch between V_{BAT} and V_{DD} remains connected to V_{BAT} . During the startup phase, if V_{DD} is established in less than $t_{RSTTEMPO}$ (refer to the datasheet for the value of $t_{RSTTEMPO}$) and $V_{DD} > V_{BAT} + 0.6$ V, a current may be injected into V_{BAT} through an internal diode connected between V_{DD} and the power switch (V_{BAT}) . If the power supply/battery connected to the VBAT pin cannot support this current injection, it is recommended to connect an external low-drop diode between this power supply and the VBAT pin. If no external battery is used in the user application, it is recommended to connect VBAT pin externally to VDD/VDDA pin with a 100 nF external ceramic decoupling capacitor. When the RTC domain is supplied by V_{DD} (power switch connected to V_{DD}), all the related pin functions are available: When the RTC domain is supplied by V_{BAT} (power switch connected to V_{BAT} because V_{DD} is not present), only the following functions are available: - PC13, PC14 and PC15 can be controlled only by RTC, TAMP or LSE (refer to Section 30.3: RTC functional description) - RTC OUT1 function on PC13 - RTC TS function on PC13 or PA4 - TAMP_IN1 function on PC13 or PA4 and TAMP_IN2 function on PA0 Note: Due to the fact that the power switch can transfer only a limited amount of current (3 mA), the use of GPIO PC13 to PC15 in output mode is restricted: the speed has to be limited to 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive a LED). #### RTC domain access After a system reset, the RTC domain (RTC registers and backup registers) is protected against possible unwanted write accesses. To enable access to the RTC domain, proceed as follows: - 1. Enable the power interface clock by setting the PWREN bits of the *APB peripheral* clock enable register 1 (RCC APBENR1). - Set the DBP bit of the Power control register 1 (PWR_CR1) to enable access to the RTC domain. - 3. Select the RTC clock source in the RTC domain control register (RCC BDCR). - 4. Enable the RTC clock by setting the RTCEN bit in the *RTC domain control register* (*RCC_BDCR*). RM0444 Rev 5 121/1390 ## **VBAT** battery charging When V_{DD} is present, it is possible to charge the external battery on VBAT through an internal resistance. The VBAT charging is done either through a 5 k Ω resistor or through a 1.55 k Ω resistor depending on the VBRS bit value in the PWR_CR4 register. The battery charging is enabled by setting VBE bit in the PWR_CR4 register. It is automatically disabled in VBAT mode. ## 4.1.3 Voltage regulator Two embedded linear voltage regulators supply all the digital circuitries, except for the Standby circuitry and the RTC domain. The main regulator output voltage (V_{CORE}) can be programmed by software to two different power ranges (Range 1 and Range 2) in order to optimize the consumption depending on the system maximum operating frequency (refer to Section 5.2.8: Clock source frequency versus voltage scaling and to Section 3.3.4: FLASH read access latency. The voltage regulators are always enabled after a reset. Depending on the user application modes, the V_{CORE} supply is provided either by the main regulator (MR) or by the low-power regulator (LPR). - In Run, Sleep and Stop 0 modes, both regulators are enabled and the main regulator (MR) supplies full power to the V_{CORE} domain (core, memories and digital peripherals). - In Low-power run and Low-power sleep modes, the main regulator is off and the low-power regulator (LPR) supplies low-power to the V_{CORE} domain, preserving the contents of the registers and SRAM. - In Stop 1 mode, the main regulator is off and the low-power regulator (LPR) supplies low-power to the V_{CORE} domain, preserving the contents of the registers and SRAM. - In Standby mode with SRAM content preserved (RRS bit is set in the PWR_CR3 register), the main regulator (MR) is off and the low-power regulator (LPR) provides the supply to SRAM only. The core and digital peripherals (except Standby circuitry and RTC domain) are powered off. - In Standby mode, both regulators are powered off. The contents of the registers and SRAM is lost except for the Standby circuitry and the RTC domain. - In Shutdown mode, both regulators are powered off. When exiting Shutdown mode, a power-on reset is generated. Consequently, the contents of the registers and SRAM is lost, except for the RTC domain. ## 4.1.4 Dynamic voltage scaling management The dynamic voltage scaling is a power management technique which consists in increasing or decreasing the voltage used for the digital peripherals (V_{CORE}), according to the application performance and power consumption needs. Dynamic voltage scaling to increase V_{CORE} is known as overvolting. It allows to improve the device performance. Dynamic voltage scaling to decrease V_{CORE} is known as undervolting. It is performed to save power, particularly in laptop and other mobile devices where the energy comes from a battery and is thus limited. Two voltage ranges are available: - Range 1: High-performance range - The main regulator provides a typical output voltage at 1.2 V. The system clock frequency can be up to 64 MHz. The Flash access time for read access is minimum, write and erase operations are possible. - Range 2: Low-power range The main regulator provides a typical output voltage at 1.0 V. The system clock frequency can be up to 16 MHz. The Flash memory access time for a read access is increased as compared to Range 1; write and erase operations are not possible. The voltage scaling is selected through the VOS bit in the PWR CR1 register. The sequence to go from Range 1 to Range 2 is: - 1. Reduce the system frequency to a value lower than 16 MHz - 2. Adjust number of wait states according new frequency target in Range 2 (LATENCY bits in the FLASH_ACR). - 3. Program the VOS[1:0] bits to 10 in the *Power control register 1 (PWR_CR1)*. The sequence to go from Range 2 to Range 1 is: - 1. Program the VOS[1:0] bits to 01 in the *Power control register 1 (PWR_CR1)*. - 2. Wait until the VOSF flag is cleared in the Power status register 2 (PWR_SR2). - 3. Adjust number of wait states according new frequency target in Range 1 (LATENCY bits in the *FLASH* access control register (*FLASH_ACR*). - 4. Increase the system frequency. ## 4.2 Power supply supervisor # 4.2.1 Power-on reset (POR) / power-down reset (PDR) / brown-out reset (BOR) The device features an integrated power-on reset (POR) / power-down reset (PDR), coupled with a brown-out reset (BOR) circuitry. The POR/PDR is active in all power modes. The BOR can be enabled or disabled only through option bytes. It is not available in Shutdown mode. When the BOR is enabled, four BOR levels can be selected through option bytes, with independent configuration for rising and falling thresholds. During power-on, the BOR keeps the device under reset until the V_{DD} supply voltage reaches the specified BOR rising threshold (V_{BORRx}). At this point, the device reset is released and the system can start. During power-down, when V_{DD} drops below the selected BOR falling threshold (V_{BORFx}), the device is put under reset again. Warning: It is not allowed to configure BOR falling threshold (V_{BORFx}) to a value higher than BOR rising threshold (V_{BORRx}) . Figure 6. POR, PDR, and BOR thresholds The reset temporization t_{RSTTEMPO} starts when V_{DD} crosses V_{POR} threshold, indifferently from the configuration of the BOR Option bits. For more details on the brown-out reset thresholds, refer to the electrical characteristics section in the datasheet. ## 4.2.2 Programmable voltage detector (PVD) The PVD can be used to monitor the V_{DD} power supply by comparing it to the thresholds selected through PVDRT[2:0] bits (rising thresholds) and PVDFT[2:0] bits (falling thresholds) in the *Power control register 2 (PWR_CR2)*. V_{PVDFx} should always be set to a lower voltage level than V_{PVDRx} . The PVD is enabled by setting the PVDE bit. A PVDO flag is available in the *Power status register 2 (PWR_SR2)*. It indicates if V_{DD} is higher or lower than the PVD threshold. This event is internally connected to the EXTI line16 and can generate an interrupt if enabled through the EXTI registers. The PVD output interrupt can be generated when V_{DD} drops below the PVD threshold and/or when V_{DD} rises above the PVD threshold depending on EXTI line16 rising/falling edge configuration. As an example, the service routine could perform emergency shutdown tasks. Figure 7. PVD thresholds ## 4.3 Low-power modes By default, the microcontroller is in Run mode after a system or a power Reset. Several low-power modes are available to save power when the CPU does not need to be kept running, for example when waiting for an external event. It is up to the user to select the mode that gives the best compromise between low-power consumption, short startup time and available wakeup sources. The device features seven low-power modes: - Sleep mode: CPU clock off, all peripherals including Cortex[®]-M0+ core peripherals such as NVIC, SysTick, etc. can run and wake up the CPU when an interrupt or an event occurs. Refer to *Section 4.3.4: Sleep mode*. - Low-power run mode: This mode is achieved when the system clock frequency
is reduced below 2 MHz. The code is executed from the SRAM or the Flash memory. The regulator is in low-power mode to minimize the regulator's operating current. Refer to Section 4.3.2: Low-power run mode (LP run). - Low-power sleep mode: This mode is entered from the Low-power run mode: Cortex[®]-M0+ is off. Refer to Section 4.3.5: Low-power sleep mode (LP sleep). - Stop 0 and Stop 1 modes: SRAM and all registers content are retained. All clocks in the V_{CORE} domain are stopped, the PLL, the HSI16 and the HSE are disabled. The LSI and the LSE can be kept running. The RTC and TAMP can remain active (Stop mode with RTC, Stop mode without RTC). Some peripherals with the wakeup capability can enable the HSI16 RC during the Stop mode to detect their wakeup condition. In Stop 0 mode, the main regulator remains ON, which allows the fastest wakeup time but with higher consumption. The active peripherals and wakeup sources are the same as in Stop 1 mode. The system clock, when exiting Stop 0 or Stop 1 mode, is the HSISYS clock. If the device is configured to wake up in Low-power run mode, the HSIDIV bits in RCC_CR register must be configured prior to entering Stop mode to provide a frequency not greater than 2 MHz. Refer to Section 4.3.6: Stop 0 mode for details on Stop 0 mode. • Standby mode: V_{CORE} domain is powered off. However, it is possible to preserve SRAM content: - Standby mode with SRAM retention when the bit RRS is set in PWR_CR3 register. In this case, SRAM is supplied by the low-power regulator. - Standby mode when the bit RRS is cleared in PWR_CR3 register. In this case the main regulator and the low-power regulator are powered off. All clocks in the V_{CORE} domain are stopped and the PLL, the HSI16, and the HSE oscillators are disabled. The LSI and the LSE oscillators can be kept running. The RTC can remain active (Standby mode with RTC, Standby mode without RTC). The system clock, when exiting Standby modes, is the HSI16 oscillator clock. Refer to Section 4.3.8: Standby mode. Shutdown mode: V_{CORE} domain is powered off. All clocks in the V_{CORE} domain are stopped, the PLL, the HSI16, the LSI and the HSE oscillators are disabled. The LSE can be kept running. The system clock, when exiting Shutdown mode, is the HSI16 oscillator clock. In this mode, the supply voltage monitoring is disabled and the product behavior is not guaranteed in case of a power voltage drop. Refer to *Section 4.3.9: Shutdown mode*. In addition, the power consumption in Run mode can be reduced by one of the following means: - Slowing down the system clocks - Gating the clocks to the APB and AHB peripherals when they are unused. Figure 8. Low-power modes state diagram Table 25. Low-power mode summary | Mode name | Entry | Wakeup
source ⁽¹⁾ | Wakeup | Effect on clocks | | tage
ators | |------------------------|--|--|--|--|-----|---------------| | | | Source | system clock | | MR | LPR | | Sleep
(Sleep-now or | WFI or Return
from ISR | Any interrupt | Same as before entering Sleep | CPU clock OFF no effect on other clocks | ON | | | Sleep-on-exit) | WFE | Wakeup event | mode | or analog clock sources | | | | Low-power
run | Set LPR bit | Clear LPR bit | No change | None | | | | Low-power
sleep | Set LPR bit +
WFI or Return
from ISR | Any interrupt | Same as before
entering Low-
power sleep | CPU clock OFF
no effect on other clocks | OFF | | | Сюбр | Set LPR bit +
WFE | Wakeup event | mode | or analog clock sources | | | | Stop 0 | LPMS="000" +
SLEEPDEEP bit
+ WFI or Return
from ISR or WFE | Any EXTI line (configured in the EXTI registers) | | | ON | ON | | Stop 1 | LPMS="001" +
SLEEPDEEP bit
+ WFI or Return
from ISR or WFE | Specific
peripherals
events | | | | | | Standby with
SRAM | LPMS="011"+
Set RRS bit +
SLEEPDEEP bit
+ WFI or Return
from ISR or WFE | WKUP pin edge,
RTC event, TAMP
event, external | HSISYS | All clocks OFF except
LSI and LSE | | | | Standby | LPMS="011" +
Clear RRS bit +
SLEEPDEEP bit
+ WFI or Return
from ISR or WFE | reset on NRST
pin, IWDG reset | | | OFF | OFF | | Shutdown | LPMS="1" + | WKUP pin edge,
RTC event, TAMP
event, external
reset on NRST
pin | | All clocks OFF except
LSE | | | ^{1.} Refer to Table 26: Functionalities depending on the working mode. Table 26. Functionalities depending on the working mode⁽¹⁾ | | lionanti | | | | p 0/1 | Stan | | Shut | down | | | |-------------------|----------|------------------|------------------|------------------|------------------|-------------------|------------------|-------------------|------|-------------------|------| | Function | Run | Sleep | Low-power run | Low-power sleep | - | Wakeup capability | , | Wakeup capability | - | Wakeup capability | VBAT | | CPU | Υ | - | Υ | - | - | - | ı | - | - | - | - | | Flash memory | Y | Υ | O ⁽²⁾ | O ⁽²⁾ | O ⁽²⁾ | - | ı | - | - | - | - | | SRAM | Y | Y ⁽³⁾ | Υ | Y ⁽³⁾ | Υ | • | O ⁽⁴⁾ | - | - | - | - | | Backup Registers | Υ | Υ | Υ | Υ | Υ | • | Υ | - | Υ | - | Υ | | BOR | Y | Υ | Υ | Υ | Υ | Υ | Υ | Υ | - | - | - | | PVD | 0 | 0 | 0 | 0 | 0 | 0 | ı | - | - | - | - | | DMA1/2 | 0 | 0 | 0 | 0 | - | • | ı | - | - | - | - | | HSI16 | 0 | 0 | 0 | 0 | (5) | - | ı | - | - | - | - | | HSI48 | 0 | 0 | - | - | - | - | - | - | - | - | - | | HSE | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | | LSI | 0 | 0 | 0 | 0 | 0 | - | 0 | - | - | - | - | | LSE | 0 | 0 | 0 | 0 | 0 | 1 | 0 | - | 0 | - | 0 | | PLL | 0 | 0 | - | - | - | - | - | - | - | - | - | | CSS | 0 | 0 | O ⁽⁶⁾ | O ⁽⁶⁾ | - | - | - | - | - | - | - | | CSS on LSE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | | RTC / Auto wakeup | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TAMP1/2/3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | USART1/2 | 0 | 0 | 0 | 0 | O ⁽⁷⁾ | O ⁽⁷⁾ | - | - | - | - | - | | USART3/4/5/6 | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | | LPUART1/2 | 0 | 0 | 0 | 0 | O ⁽⁷⁾ | O ⁽⁷⁾ | ı | - | - | - | - | | I2C1 | 0 | 0 | 0 | 0 | O ⁽⁸⁾ | O ⁽⁸⁾ | - | - | - | - | - | | I2C2/3 | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | | SPI1/2/3 | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | | ADC | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | | DAC | 0 | 0 | 0 | 0 | 0 | - | - | - | - | - | - | | VREFBUF | 0 | 0 | 0 | 0 | 0 | - | - | - | - | - | - | | COMP1/2/3 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | - | - | Table 26. Functionalities depending on the working mode⁽¹⁾ (continued) | 105.0 20.1 0. | | | | | l | p 0/1 | l | ndby | | down | | |--------------------|-----|-------|---------------|-----------------|---|-------------------|------|----------------------------|------|----------------------------|------| | Function | Run | Sleep | Low-power run | Low-power sleep | - | Wakeup capability | - | Wakeup capability | , | Wakeup capability | VBAT | | Temperature sensor | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | | TIMx | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | | LPTIM1/2 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | - | - | - | | IWDG | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ı | - | - | | WWDG | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | | SysTick timer | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | | RNG ⁽⁹⁾ | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | | AES | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | | CRC | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | | USB | 0 | 0 | - | ı | - | - | - | - | - | - | - | | FDCAN1/2 | 0 | 0 | - | - | - | - | - | - | - | - | - | | GPIOs | 0 | 0 | 0 | 0 | 0 | 0 | (10) | up to
5
pins
(11) | (12) | up to
5
pins
(11) | - | - 1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). = Not available. - 2. The Flash can be configured in power-down mode. By default, it is not in power-down mode. - 3. The SRAM clock can be gated ON or OFF. - 4. SRAM content is preserved when the bit RRS is set in PWR_CR3 register. - Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put OFF when the peripheral does not need it anymore. - 6. If CSS is used on HSE clock in Low power run or Low power sleep modes, configure HSIDIV such as not to drive SYSCLK clock above the maximum frequency for either mode, in case of external clock failure detection. - 7. USART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event. - 8. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match. - 9. Not functional in Range 2. - 10. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode. - 11. I/Os with wakeup from Standby/Shutdown mode capability (WKUPx). - 12. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting Shutdown mode. ## **Debug mode** By default, the debug connection is lost if the user application puts the MCU in Stop 0, Stop1, Shutdown, or Standby mode while the debug features are used. This is due to the fact that the Cortex[®]-M0+ core is no longer clocked. However, by setting some configuration bits in the DBGMCU_CR register, the software can be debugged even when using the low-power modes extensively. For more details, refer to Section 40.9.1: Debug support for low-power modes. #### 4.3.1 Run mode #### Slowing down system clocks In Run mode, the speed of the system clocks (SYSCLK, HCLK, PCLK) can be reduced by programming the prescaler registers. These prescalers can also be used to slow down the peripherals before entering Sleep mode. For more details, refer to Section 5.4.3: Clock
configuration register (RCC_CFGR). #### Peripheral clock gating In Run mode, the HCLK and PCLK for individual peripherals and memories can be stopped at any time to reduce the power consumption. To further reduce the power consumption in Sleep mode, the peripheral clocks can be disabled prior to executing the WFI or WFE instructions. The peripheral clock gating is controlled by the RCC_AHBENR and RCC_APBENRx registers. Disabling the peripherals clocks in Sleep mode can be performed automatically by resetting the corresponding bit in the RCC AHBSMENR and RCC APBSMENRx registers. ## 4.3.2 Low-power run mode (LP run) To further reduce the consumption when the system is in Run mode, the regulator can be configured in low-power mode. In this mode, the system frequency should not exceed 2 MHz. Refer to the product datasheet for more details on voltage regulator and peripherals operating conditions. #### I/O states in Low-power run mode In Low-power run mode, all I/O pins keep the same state as in Run mode. #### **Entering Low-power run mode** To enter Low-power run mode, proceed as follows: - 1. Optional: Jump into the SRAM and power-down the Flash memory by setting the FPD_LPRUN bit in the *Power control register 1 (PWR_CR1)*. - Decrease the system clock frequency below 2 MHz. - Force the regulator in low-power mode by setting the LPR bit in the PWR_CR1 register. Refer to *Table 27: Low-power run* on how to enter Low-power run mode. RM0444 Rev 5 131/1390 ## **Exiting Low-power run mode** To exit Low-power run mode, proceed as follows: - Force the regulator in main mode by clearing the LPR bit in the Power control register 1 (PWR_CR1). - 2. Wait until REGLPF bit is cleared in the *Power status register 2 (PWR_SR2)*. - Increase the system clock frequency. Refer to Table 27: Low-power run on how to exit Low-power run mode. Low-power run mode Description Mode entry Decrease the system clock frequency below 2 MHz LPR = 1 LPR = 0 Wait until REGLPF = 0 Increase the system clock frequency Wakeup latency Regulator wakeup time from low-power mode Table 27. Low-power run ## 4.3.3 Low-power modes #### **Entering low-power modes** The MCU enters low-power modes by executing the WFI (wait for interrupt), or WFE (wait for event) instructions, or when the SLEEPONEXIT bit in the Cortex[®]-M0+ system control register is set on return from ISR. Entering low-power mode through WFI or WFE is executed only if no interrupt is pending or no event is pending. ### **Exiting low-power modes** The MCU exits Sleep and Stop low-power modes in a way depending on how the low-power mode was entered: - If the WFI instruction or Return from ISR was used to enter low-power mode, any peripheral interrupt acknowledged by the NVIC can wake up the device. - If the WFE instruction is used to enter low-power mode, the MCU exits low-power mode as soon as an event occurs. The wakeup event can be generated either by: - NVIC IRQ interrupt. When SEVONPEND = 0 in the Cortex $^{\$}$ -M0+ system control register: by enabling an interrupt in the peripheral control register and in the NVIC. When the MCU resumes from WFE, the peripheral interrupt pending bit and the NVIC peripheral IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be cleared. When SEVONPEND = 1 in the Cortex[®]-M0+ system control register: by enabling an interrupt in the peripheral control register and optionally in the NVIC. When the MCU resumes from WFE, the peripheral interrupt pending bit and when enabled the NVIC peripheral IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be cleared. All NVIC interrupts wake the MCU up, even the disabled ones. #### Event Configuring a EXTI line in event mode. When the CPU resumes from WFE, it is not necessary to clear the EXTI peripheral interrupt pending bit or the NVIC IRQ channel pending bit as the pending bits corresponding to the event line is not set. It may be necessary to clear the interrupt flag in the peripheral. The MCU exits Standby and Shutdown low-power modes upon an external reset (NRST pin), an IWDG reset, a rising or falling edge on one of enabled WKUPx pins, or upon an RTC event. See *Figure 281: RTC block diagram*. After waking up from Standby or Shutdown mode, program execution restarts in the same way as after a reset (boot pin sampling, option bytes loading, reset vector is fetched, etc.). ## 4.3.4 Sleep mode ### I/O states in Sleep mode In Sleep mode, all I/O pins keep the same state as in Run mode. ## **Entering Sleep mode** The MCU enters Sleep mode according to section *Entering low-power modes*, when the SLEEPDEEP bit in the Cortex[®]-M0+ System Control register is clear. Refer to Table 28: Sleep mode summary for details on how to enter Sleep mode. ## **Exiting Sleep mode** The MCU exits Sleep mode according to Exiting low-power modes. Refer to Table 28: Sleep mode summary for more details on how to exit Sleep mode. Table 28. Sleep mode summary | Characteristic | Description | |----------------|---| | | WFI (Wait for Interrupt) or WFE (Wait for Event) while: - SLEEPDEEP = 0 - No interrupt (for WFI) or event (for WFE) is pending Refer to the Cortex [®] -M0+ system control register. | | Mode entry | On return from ISR while: - SLEEPDEEP = 0 and - SLEEPONEXIT = 1 - No interrupt is pending Refer to the Cortex [®] -M0+ system control register. | | Characteristic | Description | |----------------|---| | | If WFI or return from ISR was used for entry Interrupt: refer to <i>Table 58: Vector table</i> | | Mode exit | If WFE was used for entry and SEVONPEND = 0: Wakeup event: refer to Section 13.3.2: EXTI direct event input wakeup | | | If WFE was used for entry and SEVONPEND = 1:
Interrupt even when disabled in NVIC: refer to <i>Table 58: Vector table</i> or
Wakeup event: refer to <i>Section 13.3.2: EXTI direct event input wakeup</i> | | Wakeup latency | None | Table 28. Sleep mode summary (continued) ## 4.3.5 Low-power sleep mode (LP sleep) Refer to the product datasheet for more details on voltage regulator and peripherals operating conditions. ## I/O states in Low-power sleep mode In Low-power sleep mode, all I/O pins keep the same state as in Run mode. ### **Entering Low-power sleep mode** The MCU enters Low-power sleep mode from Low-power run mode according to *Entering low-power modes*, when the SLEEPDEEP bit in the Cortex[®]-M0+ System Control register is clear. Refer to *Table 29: Low-power sleep mode summary* for details on how to enter Low-power sleep mode. ## **Exiting Low-power sleep mode** The MCU exits Low-power sleep mode according to *Exiting low-power modes*. When exiting Low-power sleep mode by issuing an interrupt or an event, the MCU is in Low-power run mode. Refer to *Table 29: Low-power sleep mode summary* for details on how to exit Low-power sleep mode. Characteristic Description Low-power sleep mode is entered from the Low-power run mode. WFI (Wait for Interrupt) or WFE (Wait for Event) while: - SLEEPDEEP = 0 - No interrupt (for WFI) or event (for WFE) is pending Refer to the Cortex®-M0+ System Control register. Mode entry Low-power sleep mode is entered from the Low-power run mode. On return from ISR while: SLEEPDEEP = 0 and - SLEEPONEXIT = 1 No interrupt is pending Refer to the Cortex®-M0+ System Control register. If WFI or Return from ISR was used for entry Interrupt: refer to Table 58: Vector table If WFE was used for entry and SEVONPEND = 0: Wakeup event: refer to Section 13.3.2: EXTI direct event input wakeup Mode exit If WFE was used for entry and SEVONPEND = 1: Interrupt even when disabled in NVIC: refer to Table 58: Vector table Wakeup event: refer to Section 13.3.2: EXTI direct event input wakeup After exiting Low-power sleep mode, the MCU is in Low-power run mode. None Wakeup latency Table 29. Low-power sleep mode summary ## 4.3.6 Stop 0 mode The Stop 0 mode is based on the Cortex $^{\$}$ -M0+ deepsleep mode combined with the peripheral clock gating. The voltage regulator is configured in main regulator mode. In Stop 0 mode, all clocks in the V_{CORE} domain are stopped; the PLL, the HSI16 and the HSE oscillators are disabled. Some peripherals with the wakeup capability (I2C1, USART1, USART2, and LPUART1) can switch on the HSI16 to receive a frame, and switch off the HSI16 after receiving the frame if it is not a wakeup frame. In this case, the HSI16 clock is propagated only to the peripheral requesting it. SRAM and register contents are preserved. The BOR is available in Stop 0 mode. The BOR and PDR can be activated to sample periodically the supply voltage. This option enabled by setting the ENB_ULP bit of the PWR_CR3 register allows decreasing the current consumption in this mode, but any drop of the voltage below the operating conditions between two active periods of the supply detector results in a non-generation of PDR reset. #### I/O states in Stop 0 mode In the Stop 0 mode, all I/O pins keep the same state as in the Run mode. ## **Entering Stop 0 mode** The MCU enters Stop 0 mode according to section *Entering low-power modes*, when the SLEEPDEEP bit in the Cortex[®]-M0+ System Control register is set. Refer to Table 30: Stop 0 mode summary for details on how to enter Stop 0 mode. If Flash memory programming is ongoing, the Stop 0 mode entry is delayed until the memory access is finished. If an access to the APB domain is ongoing, The Stop 0 mode entry is delayed until the APB access is finished. In Stop 0 mode, the following features can be selected by programming individual control bits: - Independent watchdog (IWDG): the IWDG is started by
writing to its Key register or by hardware option. Once started, it cannot be stopped except upon a reset. See Section 28.3: IWDG functional description. - real-time clock (RTC): this is configured by the RTCEN bit in the *RTC domain control register (RCC_BDCR)*. - Internal RC oscillator (LSI): this is configured by the LSION bit in the Control/status register (RCC_CSR). - External 32.768 kHz oscillator (LSE): this is configured by the LSEON bit in the RTC domain control register (RCC_BDCR). Several peripherals can be used in Stop 0 mode and can add consumption if they are enabled and clocked by LSI or LSE, or when they request the HSI16 clock: LPTIM1, LPTIM2, USART1, USART2, LPUART, and I2C1. The DAC, the comparators, and the PVD can be used in Stop 0 mode. The ADC, the VREFBUF buffer, and the temperature sensor can consume power during the Stop 0 mode, unless they are disabled before entering this mode. ### **Exiting Stop 0 mode** The MCU exits Stop 0 mode according to section *Entering low-power modes*. Refer to *Table 30: Stop 0 mode summary* for details on how to exit Stop 0 mode. When exiting Stop 0 mode by issuing an interrupt or a wakeup event, the HSISYS oscillator is selected as system clock. If the device is configured to wake up in Low-power run mode, the HSIDIV bits in RCC_CR register must be configured prior to entering Stop 0 mode to provide a frequency not greater than 2 MHz. When exiting Stop 0 mode, the MCU is either in Run mode (Range 1 or Range 2 depending on VOS bit in PWR_CR1) or in Low-power run mode if the bit LPR is set in the *Power control register 1 (PWR_CR1)*. Table 30. Stop 0 mode summary | Characteristic | Description | |----------------|--| | | WFI (Wait for Interrupt) or WFE (Wait for Event) while: - SLEEPDEEP bit is set in Cortex®-M0+ System Control register - No interrupt (for WFI) or event (for WFE) is pending - LPMS = "000" in PWR_CR1 | | Mode entry | On Return from ISR while: - SLEEPDEEP bit is set in Cortex®-M0+ System Control register - SLEEPONEXIT = 1 - No interrupt is pending - LPMS = "000" in PWR_CR1 | | | Note: To enter Stop 0 mode, all EXTI Line pending bits (in EXTI rising edge pending register 1 (EXTI_RPR1) and EXTI falling edge pending register 1 (EXTI_FPR1)), and the peripheral flags generating wakeup interrupts must be cleared. Otherwise, the Stop 0 mode entry procedure is ignored and program execution continues. | | Mode exit | If WFI or Return from ISR was used for entry Any EXTI Line configured in Interrupt mode (the corresponding EXTI Interrupt vector must be enabled in the NVIC). The interrupt source can be external interrupts or peripherals with wakeup capability. Refer to Table 58: Vector table. If WFE was used for entry and SEVONPEND = 0: Any EXTI Line configured in event mode. Refer to Section 13.3.2: EXTI direct event input wakeup. If WFE was used for entry and SEVONPEND = 1: Any EXTI Line configured in Interrupt mode (even if the corresponding | | Wakeup latency | EXTI Interrupt vector is disabled in the NVIC). The interrupt source can be external interrupts or peripherals with wakeup capability. Refer to <i>Table 58: Vector table</i> . Wakeup event: refer to <i>Section 13.3.2: EXTI direct event input wakeup</i> Longest wakeup time between HSI16 wakeup time and Flash wakeup time from Stop 0 mode. | ## 4.3.7 Stop 1 mode The Stop 1 mode is the same as Stop 0 mode except that the main regulator is off, and only the low-power regulator is on. Stop 1 mode can be entered from Run mode and from Low-power run mode. Refer to Table 31: Stop 1 mode summary for details on how to enter and exit Stop 1 mode. Table 31. Stop 1 mode summary | Characteristic | Description | |----------------|---| | | WFI (Wait for Interrupt) or WFE (Wait for Event) while: — SLEEPDEEP bit is set in Cortex®-M0+ System Control register — No interrupt (for WFI) or event (for WFE) is pending — LPMS = "001" in PWR_CR1 | | Mode entry | On Return from ISR while: — SLEEPDEEP bit is set in Cortex®-M0+ System Control register — SLEEPONEXIT = 1 — No interrupt is pending — LPMS = "001" in PWR_CR1 | | | Note: To enter Stop 1 mode, all EXTI Line pending bits (in EXTI rising edge pending register 1 (EXTI_RPR1) and EXTI falling edge pending register 1 (EXTI_FPR1)), and the peripheral flags generating wakeup interrupts must be cleared. Otherwise, the Stop 1 mode entry procedure is ignored and program execution continues. | | Mode exit | If WFI or Return from ISR was used for entry Any EXTI Line configured in Interrupt mode (the corresponding EXTI Interrupt vector must be enabled in the NVIC). The interrupt source can be external interrupts or peripherals with wakeup capability. Refer to Table 58: Vector table. If WFE was used for entry and SEVONPEND = 0: Any EXTI Line configured in event mode. Refer to Section 13.3.2: EXTI direct event input wakeup. If WFE was used for entry and SEVONPEND = 1: Any EXTI Line configured in Interrupt mode (even if the corresponding) | | Wakeup latency | EXTI Interrupt vector is disabled in the NVIC). The interrupt source can be external interrupts or peripherals with wakeup capability. Refer to <i>Table 58: Vector table</i> . Wakeup event: refer to <i>Section 13.3.2: EXTI direct event input wakeup</i> Longest wakeup time between HSI16 wakeup time and regulator wakeup time from Low-power mode + Flash wakeup time from Stop 1 mode. | ## 4.3.8 Standby mode The Standby mode allows to achieve the lowest power consumption with BOR. It is based on the Cortex[®]-M0+ deepsleep mode, with the voltage regulators disabled (except when the SRAM content is preserved). The PLL, the HSI16 and the HSE oscillators are also switched off. The content of the registers is lost except for the registers in the RTC domain and Standby circuitry (see *Figure 5*). The SRAM content is lost except if the RRS bit is set in the PWR_CR3 register. In this case the low-power regulator is on and provides the supply to the SRAM only. The BOR is available in Standby mode. The BOR and PDR can be activated to sample periodically the supply voltage. This option enabled by setting the ENB_ULP bit of the PWR_CR3 register allows to decrease the current consumption in this mode, but any drop of the voltage below the operating conditions between two active periods of the supply detector results in a non-generation of PDR reset. #### I/O states in Standby mode In the Standby mode, the I/Os can be configured either with a pull-up (refer to PWR_PUCRx registers (x=A, B, C, D, F), or with a pull-down (refer to PWR_PDCRx registers (x=A, B, C, D, F)), or can be kept in analog mode. The RTC outputs on PC13 and PA4 are functional in Standby mode. PC14 and PC15 used for LSE are also functional. Five wakeup pins (WKUPx, x=1,2,4,5,6) and the two tampers are available. ### **Entering Standby mode** The MCU enters Standby mode according to *Entering low-power modes*, when the SLEEPDEEP bit in the Cortex[®]-M0+ System Control register is set. Refer to Table 32: Standby mode summary for details on how to enter Standby mode. In Standby mode, the following features can be selected by programming individual control bits: - Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by hardware option. Once started it cannot be stopped except by a reset. See Section 28.3: IWDG functional description. - Real-time clock (RTC) and tamper (TAMP): this is configured by the RTCEN bit in the RTC domain control register (RCC_BDCR) - Internal RC oscillator (LSI): this is configured by the LSION bit in the Control/status register (RCC CSR). - External 32.768 kHz oscillator (LSE): this is configured by the LSEON bit in the RTC domain control register (RCC BDCR) RM0444 Rev 5 139/1390 ## **Exiting Standby mode** The MCU exits Standby mode according to section *Entering low-power modes*. The SBF status flag in the *Power control register 3 (PWR_CR3)* indicates that the MCU was in Standby mode. All registers are reset after wakeup from Standby except for *Power control register 3 (PWR_CR3)*. Refer to Table 32: Standby mode summary for more details on how to exit Standby mode. Table 32. Standby mode summary | Characteristic | Description | |----------------|--| | | WFI (Wait for Interrupt) or WFE (Wait for Event) while: - SLEEPDEEP bit is set in Cortex®-M0+ System Control register - No interrupt (for WFI) or event (for WFE) is pending - LPMS = "011" in Power control register 1 (PWR_CR1) - WUFx bits are cleared in Power status register 1 (PWR_SR1) On return from ISR while:
| | Mode entry | SLEEPDEEP bit is set in Cortex®-M0+ System Control register SLEEPONEXIT = 1 No interrupt is pending LPMS = "011" in Power control register 1 (PWR_CR1) WUFx bits are cleared in Power status register 1 (PWR_SR1) The RTC flag corresponding to the chosen wakeup source (RTC Alarm A, RTC Alarm B, RTC wakeup, tamper or timestamp flags) is cleared | | Mode exit | WKUPx pin edge, RTC event, TAMP event, external reset on NRST pin, IWDG reset, BOR | | Wakeup latency | Reset phase | #### 4.3.9 Shutdown mode The Shutdown mode allows to achieve the lowest power consumption. It is based on the deepsleep mode, with the voltage regulator disabled. The V_{CORE} domain is consequently powered off. The PLL, the HSI16, the LSI and the HSE oscillators are also switched off. SRAM and register contents are lost except for registers in the RTC domain. The POR/PDR and BOR are not available in Shutdown mode. No power voltage monitoring is possible in this mode. As a result, the switch of the RTC domain to V_{BAT} supply when V_{DD} supply is lost is not supported. #### I/O states in Shutdown mode In the Shutdown mode, the I/Os can be configured either with a pull-up (refer to PWR_PUCRx registers (x=A, B, C, D, F), or with a pull-down (refer to PWR_PDCRx registers (x=A, B, C, D, F)), or can be kept in analog state. However this configuration is lost when exiting Shutdown mode due to the power-on reset. The RTC outputs on PC13 are functional in Shutdown mode. PC14 and PC15 used for LSE are also functional. Five wakeup pins (WKUPx, x=1,2,4,5,6) and the two tampers are available. ### **Entering Shutdown mode** The MCU enters Shutdown mode according to section *Entering low-power modes*, when the SLEEPDEEP bit in the Cortex[®]-M0+ System Control register is set. Refer to Table 33: Shutdown mode summary for details on how to enter Shutdown mode. In Shutdown mode, the following features can be selected by programming individual control bits: - Real-time clock (RTC) and tamper (TAMP): this is configured by the RTCEN bit in the RTC domain control register (RCC BDCR). - External 32.768 kHz oscillator (LSE): this is configured by the LSEON bit in the RTC domain control register (RCC_BDCR). **Caution:** The RTC domain content is lost when V_{DD} is powered down under Shutdown mode. RM0444 Rev 5 141/1390 ## **Exiting Shutdown mode** The MCU exits Shutdown mode according to section *Exiting low-power modes*. A power-on reset occurs when exiting from Shutdown mode. All registers (except for the ones in the RTC domain) are reset after wakeup from Shutdown. Refer to *Table 33: Shutdown mode summary* for more details on how to exit Shutdown mode. | Characteristic | Description | |----------------|---| | | WFI (Wait for Interrupt) or WFE (Wait for Event) while: - SLEEPDEEP bit is set in Cortex®-M0+ system control register - No interrupt (for WFI) or event (for WFE) is pending - LPMS[2:0] = 1XX in Power control register 1 (PWR_CR1) - WUFx bits are cleared in Power status register 1 (PWR_SR1) | | Mode entry | On return from ISR while: - SLEEPDEEP bit is set in Cortex®-M0+ system control register - SLEEPONEXT = 1 - No interrupt is pending - LPMS[2:0] = 1XX in <i>Power control register 1 (PWR_CR1)</i> - WUFx bits are cleared in <i>Power status register 1 (PWR_SR1)</i> - The RTC flag corresponding to the chosen wakeup source (RTC Alarm A, RTC Alarm B, RTC wakeup, tamper or timestamp flags) is cleared | | Mode exit | WKUPx pin edge, RTC event, external Reset on NRST pin | | Wakeup latency | Reset phase | Table 33. Shutdown mode summary ## 4.3.10 Auto-wakeup from low-power mode The RTC can be used to wakeup the MCU from low-power mode without depending on an external interrupt (Auto-wakeup mode). The RTC provides a programmable time base for waking up from Stop (0, 1), Shutdown or Standby modes at regular intervals. For this purpose, two of the three alternative RTC clock sources can be selected by programming the RTCSEL[1:0] bits in the *RTC domain control register (RCC_BDCR)*: - Low-power 32.768 kHz external crystal oscillator (LSE OSC) This clock source provides a precise time base with very low-power consumption. - Low-power internal RC Oscillator (LSI) This clock source has the advantage of saving the cost of the 32.768 kHz crystal. This internal RC Oscillator is designed to add minimum power consumption. To wake up from Stop mode with an RTC alarm or an RTC wakeup event, it is necessary to: - Configure the EXTI Line 19 to be sensitive to rising edge. - Configure the RTC to generate the wakeup event. To wake up from Standby or Shutdown mode, there is no need to configure the EXTI line 19. ## 4.4 PWR registers The peripheral registers can be accessed by half-words (16-bit) or words (32-bit). ## 4.4.1 Power control register 1 (PWR_CR1) Address offset: 0x00 Reset value: 0x0000 0208. This register is reset after wakeup from Standby mode. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|----------|------|------|------|------|---------------|---------------|--------------|-----------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | LPR | Res. | Res. | Res. | VOS[1:0] | | DBP | Res. | Res. | FPD_
LPSLP | FPD_
LPRUN | FPD_
STOP | LPMS[2:0] | |] | | | rw | | | | rw | rw | rw | | | rw | rw | rw | rw | rw | rw | Bits 31:15 Reserved, must be kept at reset value. Bit 14 LPR: Low-power run When this bit is set, the regulator is switched from main mode (MR) to low-power mode (LPR). Bits 13:11 Reserved, must be kept at reset value. Bits 10:9 VOS: Voltage scaling range selection 00: Cannot be written (forbidden by hardware) 01: Range 1 10: Range 2 11: Cannot be written (forbidden by hardware) Bit 8 DBP: Disable RTC domain write protection In reset state, the RTC and backup registers are protected against parasitic write access. This bit must be set to enable write access to these registers. 0: Access to RTC and backup registers disabled 1: Access to RTC and backup registers enabled Bits 7:6 Reserved, must be kept at reset value. Bit 5 FPD_LPSLP: Flash memory powered down during Low-power sleep mode This bit determines whether the Flash memory is put in power-down mode or remains in idle mode when the device enters Low-power sleep mode. 0: Flash memory idle 1: Flash memory powered down #### Bit 4 FPD_LPRUN: Flash memory powered down during Low-power run mode This bit determines whether the Flash memory is put in power-down mode or remains in idle mode when the device enters Low-power run mode. The Flash memory can be put in power-down mode only when the user code is executed from SRAM. 0: Flash memory idle 1: Flash memory powered down #### Bit 3 FPD_STOP: Flash memory powered down during Stop mode This bit determines whether the Flash memory is put in power-down mode or remains in idle mode when the device enters Stop mode. 0: Flash memory idle 1: Flash memory powered down #### Bits 2:0 LPMS[2:0]: Low-power mode selection These bits select the low-power mode entered when CPU enters deepsleep mode. 000: Stop 0 mode 001: Stop 1 mode 010: Reserved 011: Standby mode 1xx: Shutdown mode Note: In Standby mode, SRAM contents are retained or not, depending on RRS bit setting in PWR CR3. ## 4.4.2 Power control register 2 (PWR_CR2) 27 26 25 Address offset: 0x04 28 29 31 30 Reset value: 0x0000 0000. This register is reset when exiting Standby mode. 23 22 21 20 19 18 17 16 24 | Res. |------|------|------|------|------|------|------|--------------|--------------|------------|------|------|------------|------|------|------| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | USV | IOSV | PVMEN
USB | PVMEN
DAC | PVDRT[2:0] | | | PVDFT[2:0] | | | PVDE | | | | | | | rw Bits 31:11 Reserved, must be kept at reset value. Bit 10 USV: USB supply enable 0: Disable 1: Enable The bit must be set for the USB peripheral to operate. Bit 9 **IOSV**: V_{DDIO2} monitoring enable 0: Disable 1: Enable Setting the bit allows monitoring the V_{DDIO2} supply voltage through the PVMOUT flag in the PWR_SR2 register. #### Bit 8 PVMENUSB: USB supply voltage monitoring enable This bit enables the monitoring of the USB supply with respect to 1.2 V threshold. - 0: Disable - 1: Enable #### Bit 7 **PVMENDAC**: DAC supply voltage monitoring enable This bit enables the monitoring of the DAC supply with respect to 1.8 V threshold. - 0: Disable - 1: Enable #### Bits 6:4 PVDRT[2:0]: Power voltage detector rising threshold selection. These bits select the PVD rising threshold: 000: V_{PVDR0} (around 2.1 V) 001: V_{PVDR1} (around 2.2 V) 010: V_{PVDR2} (around 2.5 V) 011: V_{PVDR3} (around 2.6 V) 100: V_{PVDR4} (around 2.7 V) 101: V_{PVDR5} (around 2.9 V) 110: V_{PVDR6} (around 3.0 V) 111: PVD_IN pin voltage Note: If this bitfield is set to 111, the voltage on PVD_IN pin is internally compared with V_{REFINT} for both rising and falling threshold and the PVDFT[2:0] bitfield has no effect. Note: These bits are write-protected when the PVD_LOCK bit is set in the SYSCFG_CFGR2 register. The protection can be reset only by a system reset. #### Bits 3:1 PVDFT[2:0]: Power voltage detector falling threshold selection. These bits select the PVD falling threshold: 000: V_{PVDF0} (around 2.0 V) 001: V_{PVDF1} (around 2.2 V) 010: V_{PVDF2} (around 2.4 V) 011: V_{PVDF3} (around 2.5 V) 100: V_{PVDF4} (around 2.6 V) 101: V_{PVDF5}
(around 2.8 V) 110: V_{PVDF6} (around 2.9 V) 111: Not used Note: The setting of this bitfield is ignored as long as the bitfield PVDRT[2:0] is set to 111. Note: These bits are write-protected when the PVD_LOCK bit is set in the SYSCFG_CFGR2 register. The protection can be reset only by a system reset. ## Bit 0 PVDE: Power voltage detector enable - 0: Power voltage detector disable. - 1: Power voltage detector enable. Note: This bit is write-protected when the PVD_LOCK bit is set in the SYSCFG_CFGR2 register. The protection can be reset only by a system reset. Power control (PWR) RM0444 # 4.4.3 Power control register 3 (PWR_CR3) Address offset: 0x08 Reset value: 0x0000 8000. This register is not reset when exiting Standby modes and with the PWRRST bit in the *APB peripheral reset register 1 (RCC_APBRSTR1)*. Access: Additional APB cycles are needed to access this register vs. a standard APB access (3 for a write and 2 for a read). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------|------|------|------|------|------|-------------|------|------|------|-----------|-----------|-----------|-----------|------|-----------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | • | U | , | U | J | 7 | 3 | 2 | | U | | EIWUL | Res. | Res. | Res. | Res. | APC | ENB_
ULP | RRS | Res. | Res. | EWUP
6 | EWUP
5 | EWUP
4 | EWUP
3 | EWUP | EWUP
1 | Bits 31:16 Reserved, must be kept at reset value. Bit 15 EIWUL: Enable internal wakeup line 0: Disable 1: Enable Bits 14:11 Reserved, must be kept at reset value. Bit 10 APC: Apply pull-up and pull-down configuration This bit determines whether the I/O pull-up and pull-down configurations defined in the PWR_PUCRx and PWR_PDCRx registers are applied. 0: Not applied 1: Applied #### Bit 9 ENB ULP: Ultra-low-power enable Enable/disable periodical sampling of supply voltage in Stop and Standby modes for detecting condition of PDR and BOR reset. 0: Disable (the supply voltage is monitored continuously) 1: Enable When set, the supply voltage is sampled for PDR/BOR reset condition only periodically and not continuously, in order to save power. **Caution:** When enabled, and if the supply voltage drops below the minimum operating condition between two supply voltage samples, the reset condition is missed and no reset is generated. #### Bit 8 RRS: SRAM retention in Standby mode The bit determines whether the SRAM is powered (from low-power regulator) and retains its contents, or unpowered and loses its contents. 0: Unpowered - contents lost 1: Powered - contents retained Bits 7:6 Reserved, must be kept at reset value. #### Bit 5 EWUP6: Enable WKUP6 wakeup pin When this bit is set, the WKUP6 external wakeup pin is enabled and triggers a wakeup from Standby or Shutdown mode when a rising or a falling edge occurs. The active edge is configured through WP6 bit in the PWR CR4 register. #### Bit 4 EWUP5: Enable WKUP5 wakeup pin When this bit is set, the WKUP5 external wakeup pin is enabled and triggers a wakeup from Standby or Shutdown mode when a rising or a falling edge occurs. The active edge is configured via the WP5 bit in the PWR_CR4 register. #### Bit 3 **EWUP4**: Enable WKUP4 wakeup pin When this bit is set, the WKUP4 external wakeup pin is enabled and triggers a wakeup from Standby or Shutdown mode when a rising or a falling edge occurs. The active edge is configured via the WP4 bit in the PWR_CR4 register. #### Bit 2 EWUP3: Enable WKUP3 wakeup pin When this bit is set, the WKUP3 external wakeup pin is enabled and triggers a wakeup from Standby or Shutdown mode when a rising or a falling edge occurs. The active edge is configured via the WP3 bit of the PWR CR4 register. ## Bit 1 EWUP2: Enable WKUP2 wakeup pin When this bit is set, the WKUP2 external wakeup pin is enabled and triggers a wakeup from Standby or Shutdown mode when a rising or a falling edge occurs. The active edge is configured via the WP2 bit of the PWR CR4 register. #### Bit 0 EWUP1: Enable WKUP1 wakeup pin When this bit is set, the WKUP1 external wakeup pin is enabled and triggers a wakeup from Standby or Shutdown mode when a rising or a falling edge occurs. The active edge is configured via the WP1 bit of the PWR_CR4 register. # 4.4.4 Power control register 4 (PWR CR4) Address offset: 0x0C Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with the PWRRST bit in the *APB peripheral reset register 1 (RCC_APBRSTR1*). Access: Additional APB cycles are needed to access this register vs. a standard APB access (3 for a write and 2 for a read). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | Res. | VBRS | VBE | Res. | Res. | WP6 | WP5 | WP4 | WP3 | WP2 | WP1 | | | | | | | | rw | rw | | | rw | rw | rw | rw | rw | rw | Bits 31:10 Reserved, must be kept at reset value. Bit 9 VBRS: V_{BAT} battery charging resistor selection 0: 5 kΩ 1: 1.5 kΩ Bit 8 VBE: V_{BAT} battery charging enable 0: Disable 1: Enable Bits 7:6 Reserved, must be kept at reset value. RM0444 Rev 5 147/1390 Power control (PWR) RM0444 #### Bit 5 WP6: WKUP6 wakeup pin polarity WKUP6 external wakeup signal polarity (level or edge) triggering wakeup event: 0: High level or rising edge 1: Low level or falling edge ## Bit 4 WP5: WKUP5 wakeup pin polarity WKUP5 external wakeup signal polarity (level or edge) triggering wakeup event: 0: High level or rising edge 1: Low level or falling edge #### Bit 3 WP4: WKUP4 wakeup pin polarity WKUP4 external wakeup signal polarity (level or edge) triggering wakeup event: 0: High level or rising edge 1: Low level or falling edge #### Bit 1 WP3: WKUP3 wakeup pin polarity WKUP3 external wakeup signal polarity (level or edge) triggering wakeup event: 0: High level or rising edge 1: Low level or falling edge #### Bit 1 WP2: WKUP2 wakeup pin polarity WKUP2 external wakeup signal polarity (level or edge) triggering wakeup event: 0: High level or rising edge 1: Low level or falling edge #### Bit 0 WP1: WKUP1 wakeup pin polarity WKUP1 external wakeup signal polarity (level or edge) triggering wakeup event: 0: High level or rising edge 1: Low level or falling edge # 4.4.5 Power status register 1 (PWR SR1) Address offset: 0x10 Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with the PWRRST bit in the *APB peripheral reset register 1 (RCC_APBRSTR1)*. Access: 2 additional APB cycles are needed to read this register vs. a standard APB read. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | WUFI | Res. | Res. | Res. | Res. | Res. | Res. | SBF | Res. | Res. | WUF6 | WUF5 | WUF4 | WUF3 | WUF2 | WUF1 | | r | | | | | | | r | | | r | r | r | r | r | r | Bits 31:16 Reserved, must be kept at reset value. ## Bit 15 WUFI: Wakeup flag internal This bit is set when a wakeup is detected on the internal wakeup line. It is cleared when all internal wakeup sources are cleared. Bits 14:9 Reserved, must be kept at reset value. #### Bit 8 SBF: Standby flag This bit is set by hardware when the device enters Standby mode and is cleared by setting the CSBF bit in the PWR_SCR register, or by a power-on reset. It is not cleared by the system reset. 0: The device did not enter Standby mode 1: The device entered Standby mode #### Bits 7:6 Reserved, must be kept at reset value. #### Bit 5 WUF6: Wakeup flag 6 This bit is set when a wakeup event is detected on WKUP6 wakeup pin. It is cleared by writing 1 in the CWUF6 bit of the PWR SCR register. #### Bit 4 WUF5: Wakeup flag 5 This bit is set when a wakeup event is detected on WKUP5 wakeup pin. It is cleared by writing 1 in the CWUF5 bit of the PWR SCR register. #### Bit 3 WUF4: Wakeup flag 4 This bit is set when a wakeup event is detected on WKUP4 wakeup pin. It is cleared by writing 1 in the CWUF4 bit of the PWR SCR register. #### Bit 2 WUF3: Wakeup flag 3 This bit is set when a wakeup event is detected on WKUP3 wakeup pin. It is cleared by writing 1 in the CWUF3 bit of the PWR_SCR register. #### Bit 1 WUF2: Wakeup flag 2 This bit is set when a wakeup event is detected on WKUP2 wakeup pin. It is cleared by writing 1 in the CWUF2 bit of the PWR_SCR register. #### Bit 0 WUF1: Wakeup flag 1 This bit is set when a wakeup event is detected on WKUP1 wakeup pin. It is cleared by writing 1 in the CWUF1 bit of the PWR SCR register. # 4.4.6 Power status register 2 (PWR_SR2) Address offset: 0x14 Reset value: 0x0000 0000. This register is partially reset when exiting Standby/Shutdown modes. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------------|------|------|-------------|------|------|------------|------------|---------------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | PVMO
DAC | Res. | Res. | PVMO
USB | PVDO | VOSF | REGLP
F | REGLP
S | FLASH
RDY | Res. | r | | | r | r | r | r | r | r | | | | | | | | RM0444 Rev 5 149/1390 Power control (PWR) RM0444 - Bits 31:16 Reserved, must be kept at reset value. - Bit 15 **PVMODAC**: V{DDA} monitoring output flag This flag indicates the readiness of the V_{DDA} supply voltage (excess of PVM threshold of about 1.8 V). 0: V_{DDA} not ready 1: V_{DDA} ready Note: PVMODAC is cleared when PVMDAC is disabled (PVMENDAC = 0). After enabling PVMDAC, PVMODAC is valid after PVMDAC wakeup time. - Bits 14:13 Reserved, must be kept at reset value. - Bit 12
PVMOUSB: USB supply voltage monitoring output flag This flag indicates the readiness of the USB supply voltage (excess of 1.2 V). 0: USB supply voltage not ready 1: USB supply voltage ready Note: PVMOUSB is cleared when PVMUSB is disabled (PVMENUSB = 0). After enabling PVMUSB, PVMOUSB is valid after the PVMUSB wakeup time. - Bit 11 PVDO: Power voltage detector output - 0: V_{DD} is above the selected PVD threshold - 1: V_{DD} is below the selected PVD threshold - Bit 10 VOSF: Voltage scaling flag A delay is required for the internal regulator to be ready after the voltage scaling has been changed. VOSF indicates that the regulator reached the voltage level defined with VOS bits of the PWR CR1 register. - 0: The regulator is ready in the selected voltage range - 1: The regulator output voltage is changing to the required voltage level - Bit 9 REGLPF: Low-power regulator flag This bit is set by hardware when the MCU is in Low-power run mode. When the MCU exits the Low-power run mode, this bit remains at 1 until the regulator is ready in main mode. A polling on this bit must be done before increasing the product frequency. This bit is cleared by hardware when the regulator is ready. - 0: The regulator is ready in main mode (MR) - 1: The regulator is in low-power mode (LPR) - Bit 8 REGLPS: Low-power regulator started This bit provides the information whether the low-power regulator is ready after a power-on reset or Standby/Shutdown. If the Standby mode is entered while REGLPS bit is still cleared, the wakeup from Standby mode time may be increased. - 0: The low-power regulator is not ready - 1: The low-power regulator is ready - Bit 7 FLASH_RDY: Flash ready flag This bit is set by hardware to indicate when the Flash memory is ready to be accessed after wakeup from power-down. To place the Flash memory in power-down, set either FPD_LPRUN, FPD_LPSLP or FPD_STP bits. - 0: Flash memory in power-down - 1: Flash memory ready to be accessed Note: If the system boots from SRAM, the user application must wait till FLASH_RDY bit is set, prior to jumping to Flash memory. Bits 6:0 Reserved, must be kept at reset value. # 4.4.7 Power status clear register (PWR_SCR) Address offset: 0x18 Reset value: 0x0000 0000. Access: three additional APB cycles are needed to write this register, compared to a standard APB write. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|----------------|----------------|----------------|----------------|----------------|----------------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
CSBF | 7
Res. | 6
Res. | 5
CWUF
6 | 4
CWUF
5 | 3
CWUF
4 | 2
CWUF
3 | 1
CWUF
2 | 0
CWUF
1 | Bits 31:9 Reserved, must be kept at reset value. Bit 8 CSBF: Clear standby flag Setting this bit clears the SBF flag in the PWR_SR1 register. Bits 7:6 Reserved, must be kept at reset value. Bit 5 CWUF6: Clear wakeup flag 6 Setting this bit clears the WUF6 flag in the PWR_SR1 register. Bit 4 CWUF5: Clear wakeup flag 5 Setting this bit clears the WUF5 flag in the PWR_SR1 register. Bit 3 CWUF4: Clear wakeup flag 4 Setting this bit clears the WUF4 flag in the PWR_SR1 register. Bit 2 CWUF3: Clear wakeup flag 3 Setting this bit clears the WUF3 flag in the PWR_SR1 register. Bit 1 CWUF2: Clear wakeup flag 2 Setting this bit clears the WUF2 flag in the PWR_SR1 register. Bit 0 CWUF1: Clear wakeup flag 1 Setting this bit clears the WUF1 flag in the PWR_SR1 register. # 4.4.8 Power Port A pull-up control register (PWR PUCRA) Address offset: 0x20 Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with PWRRST bit in the *APB peripheral reset register 1 (RCC_APBRSTR1)*. Access: Additional APB cycles are needed to access this register vs. a standard APB access (3 for a write and 2 for a read). Power control (PWR) RM0444 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
PU15 | 14
PU14 | 13
PU13 | 12
PU12 | 11
PU11 | 10
PU10 | 9
PU9 | 8
PU8 | 7
PU7 | 6
PU6 | 5
PU5 | 4
PU4 | 3
PU3 | 2
PU2 | 1
PU1 | 0
PU0 | Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 **PUy**: Port A pull-up bit y (y = 0 to 15) Setting PUy bit while the corresponding PDy bit is zero and the APC bit of the PWR_CR3 register is set activates a pull-up device on the PA[y] I/O. # 4.4.9 Power Port A pull-down control register (PWR_PDCRA) Address offset: 0x24 Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with PWRRST bit in the *APB peripheral reset register 1 (RCC_APBRSTR1)*. Access: Additional APB cycles are needed to access this register vs. a standard APB access (3 for a write and 2 for a read). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | PD15 | PD14 | PD13 | PD12 | PD11 | PD10 | PD9 | PD8 | PD7 | PD6 | PD5 | PD4 | PD3 | PD2 | PD1 | PD0 | | rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 **PDy**: Port A pull-down bit y (y = 0 to 15) Setting PDy bit while the APC bit of the PWR_CR3 register is set activates a pull-down device on the PA[y] I/O. # 4.4.10 Power Port B pull-up control register (PWR_PUCRB) Address offset: 0x28 Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with PWRRST bit in the *APB peripheral reset register 1 (RCC_APBRSTR1)*. Access: Additional APB cycles are needed to access this register vs. a standard APB access (3 for a write and 2 for a read). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
PU15 | 14
PU14 | 13
PU13 | 12
PU12 | 11
PU11 | 10
PU10 | 9
PU9 | 8
PU8 | 7
PU7 | 6
PU6 | 5
PU5 | 4
PU4 | 3
PU3 | 2
PU2 | 1
PU1 | 0
PU0 | Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 **PUy**: Port B pull-up bit y (y = 0 to 15) Setting PUy bit while the corresponding PDy bit is zero and the APC bit of the PWR_CR3 register is set activates a pull-up device on the PB[y] I/O. # 4.4.11 Power Port B pull-down control register (PWR_PDCRB) Address offset: 0x2C Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with PWRRST bit in the *APB peripheral reset register 1 (RCC_APBRSTR1)*. Access: Additional APB cycles are needed to access this register vs. a standard APB access (3 for a write and 2 for a read). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
PD15 | 14
PD14 | 13
PD13 | 12
PD12 | 11
PD11 | 10
PD10 | 9
PD9 | 8
PD8 | 7
PD7 | 6
PD6 | 5
PD5 | 4
PD4 | 3
PD3 | 2
PD2 | 1
PD1 | 0
PD0 | Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 **PDy**: Port B pull-down bit y (y = 0 to 15) Setting PDy bit while the APC bit of the PWR_CR3 register is set activates a pull-down device on the PB[y] I/O. # 4.4.12 Power Port C pull-up control register (PWR_PUCRC) Address offset: 0x30 Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with PWRRST bit in the *APB peripheral reset register 1 (RCC_APBRSTR1)*. Access: Additional APB cycles are needed to access this register vs. a standard APB access (3 for a write and 2 for a read). RM0444 Rev 5 153/1390 Power control (PWR) RM0444 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
PU15 | 14
PU14 | 13
PU13 | 12
PU12 | 11
PU11 | 10
PU10 | 9
PU9 | 8
PU8 | 7
PU7 | 6
PU6 | 5
PU5 | 4
PU4 | 3
PU3 | 2
PU2 | 1
PU1 | 0
PU0 | Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 **PUy**: Port C pull-up bit y (y = 0 to 15)⁽¹⁾ Setting PUy bit while the corresponding PDy bit is zero and the APC bit of the PWR_CR3 register is set activates a pull-up device on the PC[y] I/O. In STM32G031xx and STM32G041xx as well as STM32G051xx and STM32G061xx devices, the bits PD0 to PD5 and PD8 to PD12 are reserved. # 4.4.13 Power Port C pull-down control register (PWR PDCRC) Address offset: 0x34 Reset value: 0x0000 0000. This register is not reset
when exiting Standby modes and with PWRRST bit in the *APB peripheral reset register 1 (RCC APBRSTR1*). Access: Additional APB cycles are needed to access this register vs. a standard APB access (3 for a write and 2 for a read). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
PD15 | 14
PD14 | 13
PD13 | 12
PD12 | 11
PD11 | 10
PD10 | 9
PD9 | 8
PD8 | 7
PD7 | 6
PD6 | 5
PD5 | 4
PD4 | 3
PD3 | 2
PD2 | 1
PD1 | 0
PD0 | Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 **PDy**: Port C pull-down bit y (y = 0 to 15)⁽¹⁾ Setting PDy bit while the APC bit of the PWR_CR3 register is set activates a pull-down device on the PC[y] I/O. In STM32G031xx and STM32G041xx as well as STM32G051xx and STM32G061xx devices, the bits PD0 to PD5 and PD8 to PD12 are reserved. # 4.4.14 Power Port D pull-up control register (PWR_PUCRD) Address offset: 0x38 Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with PWRRST bit in the *APB peripheral reset register 1 (RCC_APBRSTR1)*. Access: Additional APB cycles are needed to access this register vs. a standard APB access (3 for a write and 2 for a read). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
PU15 | 14
PU14 | 13
PU13 | 12
PU12 | 11
PU11 | 10
PU10 | 9
PU9 | 8
PU8 | 7
PU7 | 6
PU6 | 5
PU5 | 4
PU4 | 3
PU3 | 2
PU2 | 1
PU1 | 0
PU0 | Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 **PUy**: Port D pull-up bit y (y = 0 to 15)⁽¹⁾ Setting PUy bit while the corresponding PDy bit is zero and the APC bit of the PWR_CR3 register is set activates a pull-up device on the PD[y] I/O. In STM32G071xx and STM32G081xx devices, the bits PU15 to PU10 and PU7 are reserved. In STM32G031xx and STM32G041xx as well as in STM32G051xx and STM32G061xx devices, PU15 to PU4 are reserved. # 4.4.15 Power Port D pull-down control register (PWR PDCRD) Address offset: 0x3C Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with PWRRST bit in the *APB peripheral reset register 1 (RCC_APBRSTR1)*. Access: Additional APB cycles are needed to access this register vs. a standard APB access (3 for a write and 2 for a read). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | PD15 | PD14 | PD13 | PD12 | PD11 | PD10 | PD9 | PD8 | PD7 | PD6 | PD5 | PD4 | PD3 | PD2 | PD1 | PD0 | | rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 **PDy**: Port D pull-down bit y (y = 0 to 15)⁽¹⁾ Setting PDy bit while the APC bit of the PWR_CR3 register is set activates a pull-down device on the PD[y] I/O. In STM32G071xx and STM32G081xx devices, the bits PD15 to PD10 and PD7 are reserved. In STM32G031xx and STM32G041xx as well as in STM32G051xx and STM32G061xx devices, PD15 to PD4 are reserved. # 4.4.16 Power Port E pull-up control register (PWR_PUCRE) Address offset: 0x40 Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with PWRRST bit in the *APB peripheral reset register 1 (RCC_APBRSTR1*). Access: Additional APB cycles are needed to access this register vs. a standard APB access (3 for a write and 2 for a read). RM0444 Rev 5 155/1390 Power control (PWR) RM0444 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
PU15 | 14
PU14 | 13
PU13 | 12
PU12 | 11
PU11 | 10
PU10 | 9
PU9 | 8
PU8 | 7
PU7 | 6
PU6 | 5
PU5 | 4
PU4 | 3
PU3 | 2
PU2 | 1
PU1 | 0
PU0 | Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 **PUy**: Port E pull-up bit y (y = 0 to 15)⁽¹⁾ Setting PUy bit while the corresponding PDy bit is zero and the APC bit of the PWR_CR3 register is set activates a pull-up device on the PE[y] I/O. 1. Only applies to STM32G0B1xx and STM32G0C1xx devices. Reserved for the other devices. # 4.4.17 Power Port E pull-down control register (PWR_PDCRE) Address offset: 0x44 Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with PWRRST bit in the *APB peripheral reset register 1 (RCC_APBRSTR1)*. Access: Additional APB cycles are needed to access this register vs. a standard APB access (3 for a write and 2 for a read). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------------|------------|------------|------------|------|------|------|------|------|------|------|------|------|------| | Res. | 15 | 44 | - 10 | 40 | | 40 | _ | | _ | | _ | | | | | | | 10 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | PD15 | PD14 | 13
PD13 | 12
PD12 | 11
PD11 | 10
PD10 | PD9 | PD8 | PD7 | PD6 | PD5 | PD4 | PD3 | PD2 | PD1 | PD0 | Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 **PDy**: Port E pull-down bit y (y = 0 to 15)⁽¹⁾ Setting PDy bit while the APC bit of the PWR_CR3 register is set activates a pull-down device on the PE[y] I/O. 1. Only applies to STM32G0B1xx and STM32G0C1xx devices. Reserved for the other devices. # 4.4.18 Power Port F pull-up control register (PWR PUCRF) Address offset: 0x48 Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with PWRRST bit in the *APB peripheral reset register 1 (RCC_APBRSTR1)*. Access: Additional APB cycles are needed to access this register vs. a standard APB access (3 for a write and 2 for a read). 157/1390 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Res. | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
PU13 | 12
PU12 | 11
PU11 | 10
PU10 | 9
PU9 | 8
PU8 | 7
PU7 | 6
PU6 | 5
PU5 | 4
PU4 | 3
PU3 | 2
PU2 | 1
PU1 | 0
PU0 | Bits 31:14 Reserved, must be kept at reset value. Bits 13:0 **PUy**: Port F pull-up bit y (y = 0 to 13)⁽¹⁾ Setting PUy bit while the corresponding PDy bit is zero and the APC bit of the PWR_CR3 register is set activates a pull-up device on the PF[y] I/O. Bits PU13 to PU3 only applies to STM32G0B1xx and STM32G0C1xx devices. Reserved for the other devices. # 4.4.19 Power Port F pull-down control register (PWR_PDCRF) Address offset: 0x4C. Reset value: 0x0000 0000. This register is not reset when exiting Standby modes and with PWRRST bit in the *APB peripheral reset register 1 (RCC_APBRSTR1)*. Access: Additional APB cycles are needed to access this register vs. a standard APB access (3 for a write and 2 for a read). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
PD13 | 12
PD12 | 11
PD11 | 10
PD10 | 9
PD9 | 8
PD8 | 7
PD7 | 6
PD6 | 5
PD5 | 4
PD4 | 3
PD3 | 2
PD2 | 1
PD1 | 0
PD0 | Bits 31:14 Reserved, must be kept at reset value. Bits 13:0 **PDy**: Port F pull-down bit y (y = 0 to 13)⁽¹⁾ Setting PDy bit while the APC bit of the PWR_CR3 register is set activates a pull-down device on the PF[y] I/O. Bits PU13 to PU3 only applies to STM32G0B1xx and STM32G0C1xx devices. Reserved for the other devices. RM0444 Rev 5 Power control (PWR) RM0444 # 4.4.20 PWR register map Table 34. PWR register map and reset values | | | 1 | 1 | Ι | ī i | ī | ī | 1 | Т | 1 | 1 | 1 | ī | Т | T | Ė | <u> </u> | 1 | Т | | | | | | | | | | | | 1 | | | |--------|------------------------|------|------|------|------|------|----------|----------|----------|------|----------|------|------|------|----------|------|----------|---------|--------|--------|---------------|--------|--------|-----------|----------|-----------|-------|--------------|-----------|----------|-------------|---------------|--------| | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 2 | - | 0 | | 0x000 | PWR_CR1 | Res. LPR | Res. | Res. | Res. | V(| OS
:0] | DBP | Res. | Res. | FPD_LPSLP | FPD_LPRUN | FPD_STOP | | .PM:
[2:0] | | | | Reset value | | | | | | | | | | | | | | | | | | 0 | | | | 0 | 1 | 0 | | | 0 | 0 | 1 | 0 | 0 | 0 | | 0x004 | PWR_CR2 | Res. NSN | ASOI |
PVMENUSB | PVMENDAC | | VDF
[2:0 | | | VDF
[2:0 | | PVDE | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x008 | PWR_CR3 | Res. EIWUL | Res. | Res. | Res. | Res. | APC | ENB_ULP | RRS | Res. | Res. | EWUP6 | EWUP5 | EWUP4 | Res. | EWUP2 | EWUP1 | | | Reset value | | | | | | | | | | | | | | | | | 1 | | | | | 0 | 0 | 0 | | | 0 | 0 | 0 | | 0 | 0 | | 0x00C | PWR_CR4 | Res. VBRS | VBE | Res. | Res. | WP6 | WP5 | WP4 | Res. | WP2 | WP1 | | | Reset value | 0 | 0 | | | 0 | 0 | 0 | | 0 | 0 | | 0x010 | PWR_SR1 | Res. WUFI | Res. | Res. | Res. | Res. | Res. | Res. | SBF | Res. | Res. | WUF6 | WUF5 | WUF4 | Res. | WUF2 | o WUF1 | | | Reset value | | | | | | | | | | | | | | | | | 0 | | | | | | | 0 | | | 0 | 0 | 0 | | 0 | 0 | | 0x014 | PWR_SR2 | Res. PVMODAC | Res. | Res. | BSNOWA | PVDO | JSOA | REGLPF | REGLPS | FLASH_RDY | Res. | | Reset value | | | | | | | | | | | | | | | | | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | 0x018 | PWR_SCR | Res. CSBF | Res. | Res. | CWUF6 | CWUF5 | CWUF4 | Res. | CWUF2 | CWUF1 | | | Reset value | 0 | | | 0 | 0 | 0 | | 0 | 0 | | 0x020 | PWR_PUCRA | Res. PU15 | PU14 | PU13 | PU12 | PU11 | PU10 | PU9 | PU8 | PU7 | PU6 | PU5 | PU4 | PU3 | PU2 | PU1 | PU0 | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x024 | PWR_PDCRA | Res. PD15 | PD14 | PD13 | PD12 | PD11 | PD10 | PD9 | PD8 | PD7 | PD6 | PD5 | PD4 | PD3 | PD2 | PD1 | PD0 | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x028 | PWR_PUCRB | Res. PU15 | PU14 | | PU12 | PU11 | | _ | _ | PU7 | PU6 | PU5 | | PU3 | PU2 | - | _ | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x02C | PWR_PDCRB | Res. , PD15 | PD14 | PD13 | PD12 | PD11 | | | PD8 | PD7 | PD6 | PD5 | | PD3 | PD2 | PD1 | PD0 | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x030 | PWR_PUCRC | Res. > PU15 | PU14 | PU13 | PU12 | o PU11 | | _ | PU8 | o PU7 | PU6 | PU5 | | PU3 | PU2 | - | PU0 | | | Reset value | | | | 1 | ļ . | <u> </u> | <u> </u> | <u> </u> | ļ . | <u> </u> | ļ . | 1 | - | <u> </u> | | | 2 | 0 | 0 | 2 | | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x034 | PWR_PDCRC Reset value | Res. o PD15 | o PD14 | o PD13 | o PD12 | O PD11 | o PD10 | o PD9 | o PD8 | o PD7 | o PD6 | o PD5 | | o PD3 | o PD2 | o PD1 | o PD0 | | | 1 tooot value | | | _ | 1 | | | | | | | | 1 | | | | | ľ | ľ | Ŭ | Š | ŭ | Ľ | Ŭ | Ŭ | ľ | Ĭ | Ĭ | Ĭ | Ĭ | ľ | Ľ | Ŭ | Table 34. PWR register map and reset values (continued) | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 9 | 4 | 3 | 2 | 1 | 0 | |--------|-------------|-----|-----|-----|--------------|-----|-----|-----|-----|-----|-----| | 0x038 | PWR_PUCRD | Res. PU15 | PU14 | PU13 | PU12 | PU11 | PU10 | PU9 | PU8 | PU7 | PU6 | PU5 | PU4 | PU3 | PU2 | PU1 | PU0 | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x03C | PWR_PDCRD | Res. PD15 | PD14 | PD13 | PD12 | PD11 | PD10 | PD9 | PD8 | PD7 | PD6 | PD5 | PD4 | PD3 | PD2 | PD1 | PD0 | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x040 | PWR_PUCRE | Res. PU15 | PU14 | PU13 | PU12 | PU11 | PU10 | PU9 | PU8 | PU7 | PU6 | PU5 | PU4 | PU3 | PU2 | PU1 | PU0 | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x044 | PWR_PDCRE | Res. PD15 | PD14 | PD13 | PD12 | PD11 | PD10 | РБ9 | 8ОА | PD7 | 9 □ d | SQ4 | PD4 | ЕПЧ | PD2 | PD1 | PD0 | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x048 | PWR_PUCRF | Res. PU13 | PU12 | PU11 | PU10 | PU9 | PU8 | PU7 | PU6 | PU5 | PU4 | PU3 | PU2 | PU1 | PU0 | | | Reset value | | | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x04C | PWR_PDCRF | Res. PD13 | PD12 | PD11 | PD10 | 6ПА | 8ОА | PD7 | 9 □ d | S∏4 | PD4 | εαа | PD2 | PD1 | PD0 | | | Reset value | | | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Refer to Section 2.2 on page 58 for the register boundary addresses. # 5 Reset and clock control (RCC) ## 5.1 Reset There are three types of reset, defined as system reset, power reset and RTC domain reset. ### 5.1.1 Power reset A power reset is generated when one of the following events occurs: - power-on reset (POR) or brown-out reset (BOR) - exit from Standby mode - exit from Shutdown mode Power and brown-out reset set all registers to their reset values except the registers of the RTC domain. When exiting Standby mode, all registers in the V_{CORE} domain are set to their reset value. Registers outside the V_{CORE} domain (RTC, WKUP, IWDG, and Standby/Shutdown mode control) are not impacted. When exiting Shutdown mode, the brown-out reset is generated, resetting all registers except those in the RTC domain. # 5.1.2 System reset System reset sets all registers to their reset values except the reset flags in the clock control/status register (RCC_CSR) and the registers in the RTC domain. System reset is generated when one of the following events occurs: - low level on the NRST pin (external reset) - window watchdog event (WWDG reset) - independent watchdog event (IWDG reset) - software reset (SW reset) (see <u>Software reset</u>) - low-power mode security reset (see Low-power mode security reset) - option byte loader reset (see Option byte loader reset) - power-on reset The reset source can be identified by checking the reset flags in the RCC_CSR register (see Section 5.4.24: Control/status register (RCC_CSR)). ## NRST pin (external reset): Through specific option bits, the NRST pin is configurable for operating as: Reset input/output (default at device delivery) Valid reset signal on the pin is propagated to the internal logic, and each internal reset source is led to a pulse generator the output of which drives this pin. The GPIO functionality (PF2) is not available. The pulse generator guarantees a minimum reset pulse duration of 20 μ s for each internal reset source to be output on the NRST pin. An internal reset holder option can be used, if enabled in the option bytes, to ensure that the pin is pulled low until its voltage meets V_{IL} threshold. This function allows the detection of internal reset sources by external components when the line faces a significant capacitive load. ### Reset input In this mode, any valid reset signal on the NRST pin is propagated to device internal logic, but resets generated internally by the device are not visible on the pin. In this configuration, GPIO functionality (PF2) is not available. #### GPIO In this mode, the pin can be used as PF2 standard GPIO. The reset function of the pin is not available. Reset is only possible from device internal reset sources and it is not propagated to the pin. Figure 9. Simplified diagram of the reset circuit #### Caution: Upon power reset or wakeup from shutdown mode, the NRST pin is configured as Reset input/output and driven low by the system until it is reconfigured to the expected mode when the option bytes are loaded, in the fourth clock cycle after the end of trstempo. ### Software reset The SYSRESETREQ bit in Cortex®-M0+ Application interrupt and reset control register must be set to force a software reset on the device (refer to the programming manual PM0223). 5 # Low-power mode security reset To prevent that critical applications mistakenly enter a low-power mode, three low-power mode security resets are available. If enabled in option bytes, the resets are generated in the following conditions: #### Entering Standby mode This type of reset is enabled by resetting nRST_STDBY bit in user option bytes. In this case, whenever a Standby mode entry sequence is successfully executed, the device is reset instead of entering Standby mode. ## Entering Stop mode This type of reset is enabled by resetting nRST_STOP bit in user option bytes. In this case, whenever a Stop mode entry sequence is successfully executed, the device is reset instead of entering Stop mode. ## • Entering Shutdown mode This type of reset is enabled by resetting nRST_SHDW bit in user option bytes. In this case, whenever a Shutdown mode entry sequence is successfully executed, the device is reset instead of entering Shutdown mode. For further information on the user option bytes, refer to Section 3.4.1: FLASH option byte description. ## Option byte loader reset The option byte loader reset is generated when the OBL_LAUNCH bit (bit 27) is set in the FLASH_CR register. This bit is used to launch the option byte loading by software. #### 5.1.3 RTC domain reset The RTC domain has two specific resets. A RTC domain reset is generated when one of the following events occurs: - **Software reset**, triggered by setting the BDRST bit in the *RTC domain control register* (*RCC BDCR*). - V_{DD} or V_{BAT} power on, if both supplies have previously been powered off. A RTC domain reset only affects the LSE oscillator, the RTC, the backup registers and the RCC RTC domain control register. # 5.2 Clocks The device provides the following clock sources producing primary clocks: - HSI16 RC a high-speed fully-integrated RC oscillator producing HSI16 clock (about 16 MHz) - HSI48 RC a high-speed fully-integrated RC oscillator producing HSI48 clock for USB (about 48 MHz) - **HSE OSC** a
high-speed oscillator with external crystal/ceramic resonator or external clock source, producing **HSE** clock (4 to 48 MHz) - LSI RC a low-speed fully-integrated RC oscillator producing LSI clock (about 32 kHz) - LSE OSC a low-speed oscillator with external crystal/ceramic resonator or external clock source, producing LSE clock (accurate 32.768 kHz or external clock up to 1 MHz) - I2S CKIN pin for direct clock input for I2S1 peripheral Each oscillator can be switched on or off independently when it is not used, to optimize power consumption. Check sub-sections of this section for more functional details. For electrical characteristics of the internal and external clock sources, refer to the device datasheet. The device produces secondary clocks by dividing or/and multiplying the primary clocks: - HSISYS a clock derived from HSI16 through division by a factor programmable from 1 to 128 - PLLPCLK, PLLQCLK and PLLRCLK clocks output from the PLL block - SYSCLK a clock obtained through selecting one of LSE, LSI, HSE, PLLRCLK, and HSISYS clocks - HCLK a clock derived from SYSCLK through division by a factor programmable from 1 to 512 - HCLK8 a clock derived from HCLK through division by eight - PCLK a clock derived from HCLK through division by a factor programmable from 1 to - TIMPCLK a clock derived from PCLK, running at PCLK frequency if the APB prescaler division factor is set to 1, or at twice the PCLK frequency otherwise - LPTIMx IN clock from LPTIMx INx pins, selectable for the LPTIM peripheral More secondary clocks are generated by fixed division of HSE, HSI16 and HCLK clocks. The HSISYS is used as system clock source after startup from reset, with the division by 1 (producing HSI16 frequency). The HCLK clock and PCLK clock are used for clocking the AHB and the APB domains, respectively. Their maximum allowed frequency is 64 MHz. 4 RM0444 Rev 5 163/1390 The peripherals are clocked with the clocks from the bus they are attached to (HCLK for AHB, PCLK for APB) except: - TIMx, with these clock sources to select from: - TIMPCLK (selectable for all timers) running at PCLK frequency if the APB prescaler division factor is set to 1, or at twice the PCLK frequency otherwise - PLLQCLK selectable for high-speed TIM1 and TIM15 timers - LPTIMx, with these clock sources to select from: - LSI - LSE - HSI16 - PCLK (APB clock) - LPTIMx IN selected from LPTIMx INx pins The functionality in Stop mode (including wakeup) is supported only when the clock is LSI or LSE. - UCPD, always clocked with HSI16 - ADC, with these clock sources to select from: - SYSCLK (system clock) - HSI16 - PLLPCLK - USARTx / LPUARTx, with these clock sources to select from: - SYSCLK (system clock) - HSI16 - LSE - PCLK (APB clock) The wakeup from Stop mode is supported only when the clock is HSI16 or LSE. - I2Cx, with these clock sources to select from: - SYSCLK (system clock) - HSI16 - PCLK (APB clock) The wakeup from Stop mode is supported only when the clock is HSI16. - I2Sx, with these clock sources to select from: - SYSCLK (system clock) - HSI16 - PLLPCLK - I2S CKIN pin - RNG, with these clock sources to select from: - SYSCLK (system clock) - HSI16 clock divided by 8 - PLLQCLK The RNG clock can additionally be divided by 2, 4 or 8, using a dedicated prescaler. - **CEC**, with these clock sources to select from: - HSI16 clock divided by 488 - LSE - RTC, with these clock sources to select from: - LSE - LSI - HSE clock divided by 32 The functionality in Stop mode (including wakeup) is supported only when the clock is LSI or LSE. - IWDG, always clocked with LSI clock. - USB, with these clocks to select from: - HSE - HSI48 - PLLQCLK - FDCAN, with these clocks to select from: - HSE - PCLK - PLLQCLK - **SysTick** (Cortex[®] core system timer), with these clock sources to select from: - HCLK (AHB clock) - HCLK clock divided by 8 The selection is done through SysTick control and status register. HCLK is used as Cortex[®]-M0+ free-running clock (FCLK). For more details, refer to the programming manual PM0223. to IWDG LSI LSI RC 32 kHz RTC WAKEUP ◀ from RTC LSI LSI RTCCLK ◀ LSCO to RTC LSE LSE HSE /32 OSC32_OUT LSE OSC 32.768 kHz LSE to CEC OSC32 IN HS<u>I16</u> / 488 Clock detector to UCPD1/2⁽¹⁾ LSE HSI16 LSI to PWR SYSCLK HSE MCO to AHB bus, core, memory and DMA - HSI16 - HSI48⁽²⁾ / 1...1024 AHB PRESC MCO2⁽²⁾ **HCLK** FCLK Cortex free-running clock PLLRCLK / 1...1024 PLLQCLK⁽²⁾ / 1,2,..512 HCLK8 to Cortex system timer PLLPCLK⁽²⁾ / 8 RTCCLK(2) LSE RTC WAKEUP (2) APB PRESC / 1,2,4,8,16 to APB peripherals **PCLK** LSI HSE OSC 4-48 MHz OSC_OUT to USART1 **SYSCLK** HSE **HSE** LPUART1 LPUART2 **PCLK** OSC_IN LSE Clock detector PLLRCLK HSI16 SYSCLK USART2(1) **HSISYS** USART3 **PCLK** HSI16 HSI48 HSI48 RC 48 MHz SYSCLK to I2C1 I2C2 CRS PCLK_N **HSISYS** to LPTIM1/2 /1...128 HSI16 HSI16 RC HSI16 LPTIMx_IN 16 MHz x1, x2 **PLL** HSE TIMPCLK to TIM2/3/4/6/7/14/16/17 **f**PLLIN VCO /M HSI16 to TIM1 **TIMPCLK** TIM15⁽¹⁾ /N PLLQCLK **PLLRCLK** HSI48 /R f_{PLLC} PLLQCLK **PLLQCLK** / Q to RNG f_{PLLP} **PLLPCLK** HSI16 — / 8 /1,2,4,8 / P SYSCLK SYSCLK async clock to ADC HSI16 PLLPCLK SYSCLK 1 PLLPCLK to I2S1 HSI16 **12S2** I2S_CKIN I2S CKIN HSI48 to USB(2) HSE **PLLQCLK** PCLK to FDCAN(2) HSE PLLQCLK Figure 10. Clock tree - Only applies to STM32G071xx and STM32G081xx and to STM32G0B1xx and STM32G0C1xx. - 2. Only applies to STM32G0B1xx and STM32G0C1xx. BOLD: clock origin 47/ ### 5.2.1 HSE clock The high speed external clock signal (HSE) can be generated from two possible clock sources: - HSE external crystal/ceramic resonator - HSE user external clock The resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. The loading capacitance values must be adjusted according to the selected oscillator. Figure 11. HSE/ LSE clock sources # External crystal/ceramic resonator (HSE crystal) The 4 to 48 MHz external oscillator has the advantage of producing a very accurate rate on the main clock. The associated hardware configuration is shown in *Figure 11*. Refer to the electrical characteristics section of the *datasheet* for more details. The HSERDY flag in the *Clock control register (RCC_CR)* indicates if the HSE oscillator is stable or not. At startup, the clock is not released until this bit is set by hardware. An interrupt can be generated if enabled in the *Clock interrupt enable register (RCC_CIER)*. The HSE Crystal can be switched on and off using the HSEON bit in the *Clock control register (RCC_CR)*. ## **External source (HSE bypass)** In this mode, an external clock source must be provided. It can have a frequency of up to 48 MHz. This mode is selected by setting the HSEBYP and HSEON bits in the *Clock control register (RCC_CR)*. The external clock signal (square, sinus or triangle) with ~40-60 % duty cycle depending on the frequency (refer to the datasheet) must drive the OSC_IN pin, on devices where OSC_IN and OSC_OUT pins are available (see *Figure 11*). The OSC_OUT pin can be used as a GPIO. The OSC_OUT pin can be used as a GPIO or it can be configured as OSC_EN alternate function, to provide an enable signal to external clock synthesizer. It allows stopping the external clock source when the device enters low power modes. Note: For details on pin availability, refer to the pinout section in the corresponding device datasheet. To minimize the consumption, it is recommended to use the square signal. ## 5.2.2 **HSI16** clock The HSI16 clock signal is generated from an internal 16 MHz RC oscillator. The HSI16 RC oscillator has the advantage of providing a clock source at low cost (no external components). It also has a faster startup time than the HSE crystal oscillator. However, even after calibration, it is less accurate than an oscillator using a frequency reference such as quartz crystal or ceramic resonator. The HSISYS clock derived from HSI16 can be selected as system clock after wakeup from Stop modes (Stop 0 or Stop 1). Refer to Section 5.3: Low-power modes. It can also be used as a backup clock source (auxiliary clock) if the HSE crystal oscillator fails. Refer to Section 5.2.9: Clock security system (CSS). #### Calibration RC oscillator frequencies can vary from one chip to another due to manufacturing process variations. To compensate for this variation, each device is factory calibrated to 1 % accuracy at T_A =25 $^{\circ}$ C. After reset, the factory calibration value is loaded in the HSICAL[7:0] bits in the *Internal clock source calibration register (RCC_ICSCR)*. Voltage or temperature variations in the application may affect the HSI16 frequency of the RC oscillator. It can be trimmed using the HSITRIM[6:0] bits in the *Internal clock source calibration register (RCC_ICSCR)*. For more details on how to measure the HSI16 frequency variation, refer to *Section 5.2.16: Internal/external clock measurement with TIM14/TIM16/TIM17*. The HSIRDY flag in the *Clock control register (RCC_CR)* indicates if the HSI16 RC is stable or not. At startup, the HSI16 RC output clock is not released until this bit is set by hardware. The HSI16 RC can be switched on and off using the HSION bit in the *Clock control register* (RCC_CR). The HSI16 signal can also be used as a backup source (auxiliary clock) if the HSE crystal oscillator fails. Refer to Section 5.2.9: Clock security system (CSS) on page 171. # 5.2.3 HSI48 clock Available on the STM32G0B1xx and STM32G0C1xx devices only, the HSI48 clock signal is generated from an internal 48 MHz RC oscillator. It can be used as clock source for the USB and RNG peripherals. The internal 48MHz RC oscillator provides a high-precision clock to the USB peripheral thanks to the clock recovery system (CRS). CRS uses the USB SOF signal, LSE clock or an external signal as timing reference to precisely adjust the HSI48 RC oscillator frequency. HSI48 RC oscillator is disabled as soon as the system enters in Stop or Standby mode.
When the CRS is not used, the HSI48 RC oscillator runs on its free-run frequency which is subject to manufacturing process variations. The devices are factory-calibrated for \sim 3 % accuracy at $T_A = 25$ °C. Refer to CRS section for more details on how to configure and use CRS. The HSI48RDY flag in the RCC_CR register indicates if HSI48 is stable or not. At startup, the HSI48 clock is not released until this flag is set by hardware. The HSI48 RC oscillator is enabled/disabled through the HSI48ON bit of the RCC_CR register. It is automatically enabled (by hardware setting the HSI48ON bit) when selected as clock source for the USB peripheral, as long as the USB peripheral is enabled. Furthermore, it is possible to output the HSI48 clock through the MCO and MCO2 multiplexers and use it as a clock source for other application components. #### 5.2.4 PLL The internal PLL multiplies the frequency of HSI16- or HSE-based clock fetched on its input, to produce three independent clock outputs. The allowed input frequency range is from 2.66 to 16 MHz. The dedicated divider PLLM with division factor programmable from one to eight allows setting a frequency within the valid PLL input range. Refer to *Figure 10: Clock tree* and *PLL configuration register (RCC_PLLCFGR)*. The PLL configuration (selection of the input clock and multiplication factor) must be done before enabling the PLL. Once the PLL is enabled, these parameters cannot be changed. To modify the PLL configuration, proceed as follows: - 1. Disable the PLL by setting PLLON to 0 in Clock control register (RCC_CR). - 2. Wait until PLLRDY is cleared. The PLL is now fully stopped. - 3. Change the desired parameter. - 4. Enable the PLL again by setting PLLON to 1. - 5. Enable the desired PLL outputs by configuring PLLPEN, PLLQEN, and PLLREN in *PLL configuration register (RCC_PLLCFGR)*. RM0444 Rev 5 169/1390 An interrupt can be generated when the PLL is ready, if enabled in the *Clock interrupt* enable register (RCC_CIER). The enable bit of each PLL output clock (PLLPEN, PLLQEN, and PLLREN) can be modified at any time without stopping the PLL. PLLREN cannot be cleared if PLLRCLK is used as system clock. ### 5.2.5 LSE clock The LSE crystal is a 32.768 kHz crystal or ceramic resonator. It has the advantage of providing a low-power but highly accurate clock source to the real-time clock peripheral (RTC) for clock/calendar or other timing functions. The LSE crystal is switched on and off using the LSEON bit in *RTC domain control register* (*RCC_BDCR*). The crystal oscillator driving strength can be changed at runtime using the LSEDRV[1:0] bits in the *RTC domain control register* (*RCC_BDCR*) to obtain the best compromise between robustness and short start-up time on one side and low-power-consumption on the other side. The LSE drive can be decreased to the lower drive capability (LSEDRV=00) when the LSE is ON. However, once LSEDRV is selected, the drive capability can not be increased if LSEON=1. The LSERDY flag in the *RTC domain control register (RCC_BDCR)* indicates whether the LSE crystal is stable or not. At startup, the LSE crystal output clock signal is not released until this bit is set by hardware. An interrupt can be generated if enabled in the *Clock interrupt enable register (RCC_CIER)*. ## **External source (LSE bypass)** In this mode, an external clock source must be provided. It can have a frequency of up to 1 MHz. This mode is selected by setting the LSEBYP and LSEON bits in the *AHB peripheral clock enable in Sleep/Stop mode register (RCC_AHBSMENR)*. The external clock signal (square, sinus or triangle) with ~50 % duty cycle has to drive the OSC32_IN pin while the OSC32_OUT pin can be used as GPIO. See *Figure 11*. # 5.2.6 LSI clock The LSI RC acts as a low-power clock source that can be kept running in Stop and Standby mode for the independent watchdog (IWDG) and RTC. The clock frequency is 32 kHz. For more details, refer to the electrical characteristics section of the datasheets. The LSI RC can be switched on and off using the LSION bit in the *Control/status register* (RCC_CSR). The LSIRDY flag in the *Control/status register (RCC_CSR)* indicates if the LSI oscillator is stable or not. At startup, the clock is not released until this bit is set by hardware. An interrupt can be generated if enabled in the *Clock interrupt enable register (RCC_CIER)*. # 5.2.7 System clock (SYSCLK) selection One of the following clocks can be selected as system clock (SYSCLK): - LSI - LSE - HSISYS - HSE - PLLRCLK The system clock maximum frequency is 64 MHz. Upon system reset, the HSISYS clock derived from HSI16 oscillator is selected as system clock. When a clock source is used directly or through the PLL as a system clock, it is not possible to stop it. A switch from one clock source to another occurs only if the target clock source is ready (clock stable after startup delay or PLL locked). If a clock source which is not yet ready is selected, the switch occurs when the clock source becomes ready. Status bits in the *Internal clock source calibration register (RCC_ICSCR)* indicate which clock(s) is (are) ready and which clock is currently used as a system clock. # 5.2.8 Clock source frequency versus voltage scaling The following table gives the different clock source frequencies depending on the product voltage range. | Clock | Maximum clock | frequency (MHz) | |---------|--------------------|-------------------| | CIOCK | Range 1 | Range 2 | | HSI16 | 16 | 16 | | HSE | 48 | 16 | | HSI48 | 48 | N/A | | PLLPCLK | 122 ⁽¹⁾ | 40 ⁽²⁾ | | PLLQCLK | 128 ⁽¹⁾ | 32 ⁽²⁾ | | PLLRCLK | 64 ⁽¹⁾ | 16 ⁽²⁾ | Table 35. Clock source frequency # 5.2.9 Clock security system (CSS) Clock security system can be activated by software. In this case, the clock detector is enabled after the HSE oscillator startup delay, and disabled when this oscillator is stopped. If a failure is detected on the HSE clock: - the HSE oscillator is automatically disabled - a clock failure event is sent to the break input of TIM1, TIM15, TIM16 and TIM17 timers - CSSI (clock security system interrupt) is generated The CSSI is linked to the Cortex[®]-M0+ NMI (non-maskable interrupt) exception vector. It makes the software aware of a HSE clock failure to allow it to perform rescue operations. RM0444 Rev 5 171/1390 ^{1.} Maximum VCO frequency is 344 MHz. ^{2.} Maximum VCO frequency is 128 MHz. Note: If the CSS is enabled and the HSE clock fails, the CSSI occurs and an NMI is automatically generated. The NMI is executed infinitely unless the CSS interrupt pending bit is cleared. It is therefore necessary that the NMI ISR clears the CSSI by setting the CSSC bit in the Clock interrupt clear register (RCC CICR). If HSE is selected directly or indirectly (PLLRCLK selected for SYSCLK and HSE selected as PLL input) as system clock, and a failure of HSE clock is detected, the system clock switches automatically to HSISYS and the HSE oscillator is disabled. If the HSE clock (divided or not) is the clock entry of the PLL and PLLRCLK is used as system clock when the failure occurs, the PLL is disabled, too. # 5.2.10 Clock security system for LSE clock (LSECSS) A clock security system on LSE can be activated by setting the LSECSSON bit in *RTC* domain control register (*RCC_BDCR*). This bit can be cleared only by a hardware reset or RTC software reset, or after LSE clock failure detection. LSECSSON must be written after LSE and LSI are enabled (LSEON and LSION enabled) and ready (LSERDY and LSIRDY flags set by hardware), and after selecting the RTC clock by RTCSEL. The LSECSS works in all modes except VBAT. It keeps working also under system reset (excluding power-on reset). If a failure is detected on the LSE oscillator, the LSE clock is no longer supplied to the RTC but its registers are not impacted. Note: If the LSECSS is enabled and the LSE clock fails, the LSECSSI occurs and an NMI is automatically generated. The NMI is executed infinitely unless the LSECSS interrupt pending bit is cleared. It is therefore necessary that the NMI ISR clears the LSECSSI by setting the LSECSSC bit in the Clock interrupt clear register (RCC_CICR). If LSE is used as system clock, and a failure of LSE clock is detected, the system clock switches automatically to LSI. In low-power modes, an LSE clock failure generates a wakeup. The interrupt flag must then be cleared within the RCC registers. The software **must** then disable the LSECSSON bit, stop the defective 32 kHz oscillator (by clearing LSEON), and change the RTC clock source (no clock, LSI or HSE, with RTCSEL), or take any appropriate action to secure the application. The frequency of the LSE oscillator must exceed 30 kHz to avoid false positive detections. ### **5.2.11 ADC** clock The ADC clock is derived from the system clock, or from the PLLPCLK output. It can reach 122 MHz and can be divided by the following prescalers values: 1,2,4,6,8,10,12,16,32,64,128 or 256 by configuring the ADC1_CCR register. It is asynchronous to the AHB clock. Alternatively, the ADC clock can be derived from the AHB clock of the ADC bus interface, divided by a programmable factor (1, 2 or 4). This programmable factor is configured using the CKMODE bitfields in the ADC1_CCR. If the programmed factor is 1, the AHB prescaler must be set to 1. #### 5.2.12 RTC clock The RTCCLK clock source can be either the HSE/32, LSE or LSI clock. It is selected by programming the RTCSEL[1:0] bits in the *RTC domain control register (RCC_BDCR)*. This selection cannot be modified without resetting the RTC domain. The system must always be configured so as to get a PCLK frequency greater then or equal to the RTCCLK frequency for a proper operation of the RTC. The LSE clock is in the RTC domain, whereas the HSE and LSI clocks are not. Consequently: - If LSE is selected as RTC clock: - The RTC continues to work even if the V_{DD} supply is switched off, provided the V_{BAT} supply is maintained. - If LSI is selected as the RTC
clock: - The RTC state is not guaranteed if the V_{DD} supply is powered off. - If the HSE clock divided by a prescaler is used as the RTC clock: - The RTC state is not guaranteed if the V_{DD} supply is powered off or if the internal voltage regulator is powered off (removing power from the V_{CORE} domain). When the RTC clock is LSE or LSI, the RTC remains clocked and functional under system reset. ## 5.2.13 Timer clock The timer clock TIMPCLK is derived from PCLK (used for APB) as follows: - 1. If the APB prescaler is set to 1, TIMPCLK frequency is equal to PCLK frequency. - 2. Otherwise, the TIMPCLK frequency is set to twice the PCLK frequency. For TIM1 and TIM15, PLLQCLK clock can also be selected, if: - PCLK is derived from PLLRCLK, and - PLLQCLK frequency is an integer multiplication by 2 or more of the PCLK frequency, without exceeding 128 MHz. # 5.2.14 Watchdog clock If the Independent watchdog (IWDG) is started by either hardware option or software access, the LSI oscillator is forced ON and cannot be disabled. After the LSI oscillator temporization, the clock is provided to the IWDG. # 5.2.15 Clock-out capability ### MCO and MCO2 The MCO and MCO2 pins output, independently of each other, the clock selected from: - LSI - LSE - SYSCLK - HSI16 - HSI48 - HSE - PLLPCLK - PLLQCLK - PLLRCLK - RTCCLK - RTC WAKEUP The multiplexers for MCO and MCO2, respectively, are controlled by the MCOSEL[3:0] and MCO2SEL[3:0] bitfields of the Clock configuration register (RCC_CFGR). Their outputs are further divided by a factor set through the MCOPRE[2:0] and MCO2PRE[2:0] bitfields of the Clock configuration register (RCC CFGR). Note: The MCO2 output and the associated MCO2SEL[3:0] and MCO2PRE[2:0] bitfields are only available on the STM32G0B1xx and STM32G0C1xx devices. On the other devices, the divider ratio is limited to 128 and the clock sources do not include PLLPCLK, PLLQCLK, HSI48. RTCCLK, and RTC WAKEUP. #### **LSCO** The LSCO pin allows outputting on of low-speed clocks: - LSI - LSE The selection is controlled by the LSCOSEL bit and enabled with the LSCOEN bit of the RTC domain control register (RCC_BDCR). The configuration registers of the corresponding GPIO port must be programmed in alternate function mode. This function remains available in Stop 0, Stop 1 and Standby modes. #### 5.2.16 Internal/external clock measurement with TIM14/TIM16/TIM17 It is possible to indirectly measure the frequency of all on-board clock sources with the TIM14, TIM16 and TIM17 channel 1 input capture, as represented in Figure 12, Figure 13 and Figure 14. #### **TIM14** By setting the TI1SEL[3:0] field of the TIM14_TISEL register, the clock selected for the input capture channel1 of TIM14 can be one of: - GPIO (refer to the alternate function mapping in the device datasheets) - RTC clock (RTCCLK) - HSE clock divided by 32 - MCO (MCU clock output) The last option is controlled by the MCOSEL[3:0] field of the clock configuration register (RCC CFGR). All clock sources can be selected for the MCO pin. Figure 12. Frequency measurement with TIM14 in capture mode #### **TIM16** By setting the TI1SEL[3:0] field of the TIM16_TISEL register, the clock selected for the input capture channel of TIM16 can be one of: - GPIO (refer to the alternate function mapping in the device datasheets). - LSI clock - LSE clock - RTC wakeup interrupt signal The last option requires to enable the RTC interrupt. Figure 13. Frequency measurement with TIM16 in capture mode #### **TIM17** By setting the TI1SEL[3:0] field of the TIM17_TISEL register, the clock selected for the input capture channel1 of TIM17 can be one of: - GPIO Refer to the alternate function mapping in the device datasheets. - HSE divided by 32 - MCO (MCU clock output) The last option is controlled by the MCOSEL[3:0] field of the clock configuration register (RCC CFGR). All clock sources can be selected for the MCO pin. Figure 14. Frequency measurement with TIM17 in capture mode RM0444 Rev 5 175/1390 #### Calibration of the HSI16 oscillator For TIM14, TIM15 and TIM17, the primary purpose of connecting the LSE to the channel 1 input capture is to precisely measure HSISYS (derived from HSI16) selected as system clock. Counting HSISYS clock pulses between consecutive edges of the LSE clock (the time reference) allows measuring the HSISYS (and HSI16) clock period. Such measurement can determine the HSI16 oscillator frequency with nearly the same accuracy as the accuracy of the 32.768 kHz quartz crystal used with the LSE oscillator (typically a few tens of ppm). The HSI16 oscillator can then be trimmed to compensate for deviations from target frequency, due to manufacturing, process, temperature and/or voltage variation. The HSI16 oscillator has dedicated user-accessible calibration bits for this purpose. The basic concept consists in providing a relative measurement (for example, the HSISYS/LSE ratio): the measurement accuracy is therefore closely related to the ratio between the two clock sources. Increasing the ratio allows improving the measurement accuracy. Generated by the HSE oscillator, the HSE clock (divided by 32) used as time reference is the second best method for reaching a good HSI16 frequency measurement accuracy. It is recommended in absence of the LSE clock. In order to further improve the precision of the HSI16 oscillator calibration, it is advised to employ one or a combination of the following measures to increase the frequency measurement accuracy: - set the HSISYS divider to 1 for HSISYS frequency to be equal to HSI16 frequency - · average the results of multiple consecutive measurements - use the input capture prescaler of the timer (one capture every up to eight periods) - use LSE clock for the RTC and the RTC wakeup interrupt signal as time reference The last point significantly increases the reference period for HSI16 clock pulse counting, which improves the accuracy of a single measurement. For operation, the RTC wakeup interrupt must be enabled. ## Calibration of the HSI48 oscillator The HSI48 oscillator is factory-calibrated. #### Calibration of the LSI oscillator The calibration of the LSI oscillator uses the same principle as that for calibrating the HSI16 oscillator. TIM16 channel1 input capture must be used for LSI clock, and HSE selected as system clock source. The number of HSE clock pulses between consecutive edges of the LSI signal, counted by TIM16, is then representative of the LSI clock period. ## 5.2.17 Peripheral clock enable registers Each peripheral clock can be enabled by the corresponding enable bit of the RCC_AHBENR or RCC_APBENRx registers. When the peripheral clock is not active, the peripheral registers read or write accesses are not supported. #### Caution: The enable bit has a synchronization mechanism to create a glitch-free clock for the peripheral. After the enable bit is set, there is a 2-clock-cycle delay before the clock be active, which the software must take into account. # 5.3 Low-power modes - AHB and APB peripheral clocks, including DMA clock, can be disabled by software. - Sleep and Low Power Sleep modes stops the CPU clock. The memory interface clocks (Flash memory and SRAM interfaces) can be stopped by software during sleep mode. The AHB to APB bridge clocks are disabled by hardware during Sleep mode when all the clocks of the peripherals connected to them are disabled. - Stop modes (Stop 0 and Stop 1) stop all the clocks in the V_{CORE} domain and disable the PLL as well as the HSI16, HSI48 and HSE oscillators. - The USART1, USART2, USART3, LPUART1, LPUART2, I2C1, and I2C2 peripherals can enable the HSI16 oscillator even when the MCU is in Stop mode (if HSI16 is selected as clock source for one of those peripherals). - The LPUART1, LPUART2, USART1, USART2, and USART3 peripherals can also operate with the clock from the LSE oscillator when the system is in Stop mode, if LSE is selected as clock source for that peripheral and the LSE oscillator is enabled (LSEON set). In that case, the LSE oscillator remains active when the device enters Stop mode (these peripherals do not have the capability to turn on the LSE oscillator). - Standby and Shutdown modes stop all clocks in the V_{CORE} domain and disable the PLL, as well as the HSI16, HSI48, and HSE oscillators. The CPU deepsleep mode can be overridden for debugging, by setting the DBG_STOP or DBG_STANDBY bits in the DBGMCU_CR register. When leaving the Stop 0 or Stop 1 modes, HSISYS becomes automatically the system clock. When leaving the Standby and Shutdown modes, HSISYS (with frequency equal to HSI16) becomes automatically the system clock. At wakeup from Standby and Shutdown mode, the user trim is lost. If a Flash memory programming operation is ongoing, Stop, Standby, and Shutdown entry is delayed until the Flash memory interface access is finished. If an access to the APB domain is ongoing, the Stop, Standby, and Shutdown entry is delayed until the APB access is finished. RM0444 Rev 5 177/1390 # 5.4 RCC registers Unless otherwise specified, the RCC registers support word, half-word, and byte access, without any wait state. # 5.4.1 Clock control register (RCC_CR) Address offset: 0x00 Power-on reset value: 0x0000 0500 Other types of reset: same as power-on reset, except HSEBYP bit that keeps its previous value. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------------|------|------------|--------------|-------|-----------------------------|----------------------------|------|------|-----------|------------|------------|-----------| | Res. | Res. | Res. | Res. | Res. | Res. | PLL
RDY | PLLON | HSI48
RDY ⁽¹⁾ | HSI48
ON ⁽¹⁾ | Res. | Res. | CSS
ON | HSE
BYP | HSE
RDY | HSE
ON | | | | | | | | r | rw | r | rw | | | rs | rw | r | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | F | ISIDIV[2:0 | 0] | HSI
RDY | HSI
KERON | HSION | Res. | | | rw | rw | rw | r | rw |
rw | | | | | | | | | Only significant on devices integrating the corresponding peripheral, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:26 Reserved, must be kept at reset value. Bit 25 PLLRDY: PLL clock ready flag Set by hardware to indicate that the PLL is locked. 0: PLL unlocked 1: PLL locked Bit 24 PLLON: PLL enable Set and cleared by software to enable the PLL. Cleared by hardware when entering Stop, Standby or Shutdown mode. This bit cannot be reset if the PLL clock is used as the system clock. 0: PLL OFF 1: PLL ON Bit 23 **HSI48RDY**: HSI48 clock ready flag⁽¹⁾ The flag is set when the HSI48 clock is ready for use. Bit 22 HSI48ON: HSI48 RC oscillator enable(1) 0: Disable 1: Fnable Bits 21:20 Reserved, must be kept at reset value. Bit 19 CSSON: Clock security system enable Set by software to enable the clock security system. When CSSON is set, the clock detector is enabled by hardware when the HSE oscillator is ready, and disabled by hardware if a HSE clock failure is detected. This bit is set only and is cleared by reset. 0: Clock security system OFF (clock detector OFF) 1: Clock security system ON (Clock detector ON if the HSE oscillator is stable, OFF if not). #### Bit 18 HSEBYP: HSE crystal oscillator bypass Set and cleared by software to bypass the oscillator with an external clock. The external clock must be enabled with the HSEON bit set, to be used by the device. The HSEBYP bit can be written only if the HSE oscillator is disabled. 0: HSE crystal oscillator not bypassed 1: HSE crystal oscillator bypassed with external clock #### Bit 17 HSERDY: HSE clock ready flag Set by hardware to indicate that the HSE oscillator is stable. 0: HSE oscillator not ready 1: HSE oscillator ready Note: Once the HSEON bit is cleared, HSERDY goes low after 6 HSE clock cycles. #### Bit 16 HSEON: HSE clock enable Set and cleared by software. Cleared by hardware to stop the HSE oscillator when entering Stop, Standby, or Shutdown mode. This bit cannot be reset if the HSE oscillator is used directly or indirectly as the system clock. 0: HSE oscillator OFF 1: HSF oscillator ON #### Bits 15:14 Reserved, must be kept at reset value. #### Bits 13:11 HSIDIV[2:0]: HSI16 clock division factor This bitfield controlled by software sets division factor of the HSI16 clock divider to produce HSISYS clock: 000: 1 001: 2 010: 4 011: 8 100: 16 101: 32 110: 64 111: 128 # Bit 10 HSIRDY: HSI16 clock ready flag Set by hardware to indicate that HSI16 oscillator is stable. This bit is set only when HSI16 is enabled by software by setting HSION. 0: HSI16 oscillator not ready 1: HSI16 oscillator ready Note: Once the HSION bit is cleared, HSIRDY goes low after 6 HSI16 clock cycles. ### Bit 9 HSIKERON: HSI16 always enable for peripheral kernels. Set and cleared by software to force HSI16 ON even in Stop modes. The HSI16 can only feed USART1, USART2, CEC and I2C1 peripherals configured with HSI16 as kernel clock. Keeping the HSI16 ON in Stop mode allows avoiding to slow down the communication speed because of the HSI16 startup time. This bit has no effect on HSION value. 0: No effect on HSI16 oscillator. 1: HSI16 oscillator is forced ON even in Stop mode. RM0444 Rev 5 179/1390 #### Bit 8 HSION: HSI16 clock enable Set and cleared by software. Cleared by hardware to stop the HSI16 oscillator when entering Stop, Standby, or Shutdown Forced by hardware to keep the HSI16 oscillator ON when it is used directly or indirectly as system clock (also when leaving Stop, Standby, or Shutdown modes, or in case of failure of the HSE oscillator used for system clock). 0: HSI16 oscillator OFF 1: HSI16 oscillator ON Bits 7:0 Reserved, must be kept at reset value. # 5.4.2 Internal clock source calibration register (RCC_ICSCR) Address offset: 0x04 Reset value: 0x0000 40XX, where X is factory-programmed. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|----------|------|------|------|------|------|------|------|---------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | Н | SITRIM[6 | 6:0] | | | | | | HSIC | AL[7:0] | | | | | | rw r | r | r | r | r | r | r | r | Bits 31:15 Reserved, must be kept at reset value. #### Bits 14:8 HSITRIM[6:0]: HSI16 clock trimming These bits provide an additional user-programmable trimming value that is added to the HSICAL[7:0] bits. It can be programmed to adjust to variations in voltage and temperature that influence the frequency of the HSI16 clock. The default value is 64, which, when added to the HSICAL value, trims the HSI16 to 16 MHz \pm 1 %. # Bits 7:0 HSICAL[7:0]: HSI16 clock calibration These bits are initialized at startup with the factory-programmed HSI16 calibration trim value. When HSITRIM is written, HSICAL is updated with the sum of HSITRIM and the factory trim value. Refer to DS for the trimming steps granularity. The frequency progression presents discontinuities when HSICAL crosses multiples of 64. # 5.4.3 Clock configuration register (RCC_CFGR) One or two wait states are inserted if this register is accessed during clock source switch, and between zero and 15 wait states are inserted if during an update of APB or AHB prescaler values. Address offset: 0x08 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|----------|----|----|------|----------|----|------|--------|------------------------|----------|----|-------|------------------------|----| | | MCOP | RE[3:0] | | | MCOS | SEL[3:0] | | | MCO2PR | RE[3:0] ⁽¹⁾ | | | MCO2S | EL[3:0] ⁽¹⁾ | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | ı | PPRE[2:0 |] | | HPR | E[3:0] | | Res. | Res. | | SWS[2:0] | | | SW[2:0] | | | | rw | | r | r | r | rw | rw | rw | Only significant on devices integrating the corresponding output, otherwise reserved. Refer to Section 1.4: Availability of peripherals. ## Bits 31:28 MCOPRE[3:0]: Microcontroller clock output prescaler This bitfield is controlled by software. It sets the division factor of the clock sent to the MCO output as follows: 0000: 1 0001: 2 0010: 4 ... 0111: 128 1000: 256 1001: 512 1010: 1024 Other: reserved It is highly recommended to set this field before the MCO output is enabled. Note: Values above 0111 are only significant for STM32G0B1xx and STM32G0C1xx. Reserved for the other devices. ## Bits 27:24 MCOSEL[3:0]: Microcontroller clock output clock selector This bitfield is controlled by software. It sets the clock selector for MCO output as follows: 0000: no clock, MCO output disabled 0001: SYSCLK 0010: HSI48 0011: HSI16 0100: HSE 0101: PLLRCLK 0110: LSI 0111: LSE 1000: PLLPCLK 1001: PLLQCLK 1010: RTCCLK 1011: RTC WAKEUP Note: This clock output may have some truncated cycles at startup or during MCO clock source switching. Values above 0111 and the value 0010 are only significant for STM32G0B1xx and STM32G0C1xx. Reserved for the other devices. RM0444 Rev 5 181/1390 ## Bits 23:20 MCO2PRE[3:0]: Microcontroller clock output 2 prescaler⁽¹⁾ This bitfield is controlled by software. It sets the division factor of the clock sent to the MCO2 output as follows: 0000: 1 0001: 2 0010: 4 0111: 128 1000: 256 1001: 512 1010: 1024 Other: reserved It is highly recommended to set this field before the MCO2 output is enabled. ## Bits 19:16 MCO2SEL[3:0]: Microcontroller clock output 2 clock selector⁽¹⁾ This bitfield is controlled by software. It sets the clock selector for MCO2 output as follows: 0000: no clock, MCO2 output disabled 0001: SYSCLK 0010: HSI48 0011: HSI16 0100: HSE 0101: PLLRCLK 0110: LSI 0111: LSE 1000: PLLPCLK 1001: PLLQCLK 1010: RTCCLK 1011: RTC WAKEUP Note: This clock output may have some truncated cycles at startup or during MCO2 clock source switching. Bit 15 Reserved, must be kept at reset value. ## Bits 14:12 PPRE[2:0]: APB prescaler This bitfield is controlled by software. To produce PCLK clock, it sets the division factor of HCLK clock as follows: 0xx: 1 100: 2 101: 4 110: 8 111: 16 ## Bits 11:8 HPRE[3:0]: AHB prescaler This bitfield is controlled by software. To produce HCLK clock, it sets the division factor of SYSCLK clock as follows: 0xxx: 1 1000: 2 1001: 4 1010: 8 1011: 16 1100: 64 1101: 128 1110: 256 1111: 512 Caution: Depending on the device voltage range, the software has to set correctly these bits to ensure that the system frequency does not exceed the maximum allowed frequency (for more details, refer to Section 4.1.4: Dynamic voltage scaling management). After a write operation to these bits and before decreasing the voltage range, this register must be read to be sure that the new value has been taken into account. Bits 7:6 Reserved, must be kept at reset value. #### Bits 5:3 SWS[2:0]: System clock switch status This bitfield is controlled by hardware to indicate the clock source used as system clock: 000: HSISYS 001: HSE 010: PLLRCLK 011: LSI 100: LSE Others: Reserved ## Bits 2:0 SW[2:0]: System clock switch This bitfield is controlled by software and hardware. The bitfield selects the clock for SYSCLK as follows: 000: HSISYS 001: HSE 010: PLLRCLK 011: LSI 100: LSE Others: Reserved The setting is forced by hardware to 000 (HSISYS selected) when the MCU exits Stop, Standby, or Shutdown mode, or when the setting is 001 (HSE selected) and HSE oscillator failure is detected. # 5.4.4 PLL configuration register (RCC_PLLCFGR) Address offset: 0x0C Reset value: 0x0000 1000 This register configures the PLL clock outputs according to the formulas: - f_{VCO} = f_{PLLIN} × (N / M) - $f_{PLLP} = f_{VCO} / P$ - $f_{PLLQ} = f_{VCQ} / Q$ - f_{PLLR} = f_{VCO} / R RM0444 Rev 5 183/1390 where f_{PLLIN} is the PLL input clock frequency, f_{VCO} is the PLL VCO frequency, and P, Q and R are f_{VCO} division factors and f_{PLLP} , f_{PLLQ} and f_{PLLR} the clock frequencies of the PLLPCLK, PLLQCLK and PLLRCLK PLL clock
outputs, respectively. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|----------|----|------------|----------|----------|----|------------|------|------|----------|----|----------|------|-------|------------| | ! | PLLR[2:0 |] | PLL
REN | | PLLQ[2:0 |)] | PLL
QEN | Res. | Res. | | | PLLP[4:0 |] | | PLL
PEN | | rw | | rw | rw | rw | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | | PLLN[7:0 | 0] | | | Res. | | PLLM[2:0 |] | Res. | Res. | PLLSF | RC[1:0] | | | rw | rw | rw | rw | | | rw | rw | ## Bits 31:29 PLLR[2:0]: PLL VCO division factor R for PLLRCLK clock output This bitfield is controlled by software. It sets the PLL VCO division factor R as follows: 000: Reserved 001: 2 010:3 011:4 100: 5 101: 6 110: 7 111:8 The bitfield can be written only when the PLL is disabled. The PLLRCLK clock can be selected as system clock. Caution: The software must set this bitfield so as not to exceed 64 MHz on this clock. ## Bit 28 PLLREN: PLLRCLK clock output enable This bit is controlled by software to enable/disable the PLLRCLK clock output of the PLL: 0: Disable 1: Enable This bit cannot be written when PLLRCLK output of the PLL is selected for system clock. Disabling the PLLRCLK clock output, when not used, allows saving power. ## Bits 27:25 PLLQ[2:0]: PLL VCO division factor Q for PLLQCLK clock output This bitfield is controlled by software. It sets the PLL VCO division factor Q as follows: 000: Reserved 001: 2 010: 3 011: 4 100: 5 101:6 110: 7 111: 8 The bitfield can be written only when the PLL is disabled. Caution: The software must set this bitfield so as not to exceed 128 MHz on this clock. ## Bit 24 PLLQEN: PLLQCLK clock output enable This bit is controlled by software to enable/disable the PLLQCLK clock output of the PLL: 0: Disable 1: Enable Disabling the PLLQCLK clock output, when not used, allows saving power. Bits 23:22 Reserved, must be kept at reset value. ## Bits 21:17 PLLP[4:0]: PLL VCO division factor P for PLLPCLK clock output This bitfield is controlled by software. It sets the PLL VCO division factor P as follows: 00000: Reserved 00001: 2 ... 11111: 32 The bitfield can be written only when the PLL is disabled. Caution: The software must set this bitfield so as not to exceed 122 MHz on this clock. #### Bit 16 PLLPEN: PLLPCLK clock output enable This bit is controlled by software to enable/disable the PLLPCLK clock output of the PLL: 0: Disable 1: Enable Disabling the PLLPCLK clock output, when not used, allows saving power. Bit 15 Reserved, must be kept at reset value. ## Bits 14:8 PLLN[6:0]: PLL frequency multiplication factor N This bit is controlled by software to set the division factor of the f_{VCO} feedback divider (that determines the PLL multiplication ratio) as follows: 0000000: Invalid 0000001: Reserved 0000111: Reserved 0001000: 8 0001001: 9 ... 1010101: 85 1010110: 86 1010111: Reserved ... 1111111: Reserved The bitfield can be written only when the PLL is disabled. **Caution**: The software must set these bits so that the VCO output frequency is between 64 and 344 MHz. Bit 7 Reserved, must be kept at reset value. ## Bits 6:4 PLLM: Division factor M of the PLL input clock divider This bit is controlled by software to divide the PLL input clock before the actual phase-locked loop, as follows: 000: 1 001: 2 010: 3 011: 4 100: 5 101:6 110: 7 111: 8 The bitfield can be written only when the PLL is disabled. **Caution**: The software must set these bits so that the PLL input frequency after the /M divider is between 2.66 and 16 MHz. Bits 3:2 Reserved, must be kept at reset value. RM0444 Rev 5 185/1390 ## Bits 1:0 PLLSRC: PLL input clock source This bit is controlled by software to select PLL clock source, as follows: 00: No clock 01: Reserved 10: HSI16 11: HSE The bitfield can be written only when the PLL is disabled. When the PLL is not used, selecting 00 allows saving power. # 5.4.5 RCC clock recovery RC register (RCC CRRCR) This register applies to STM32G0B1xx and STM32G0C1xx only. It is reserved otherwise. Address offset: 0x14 Reset value: 0x0000 0000 0000 0000 0000 000x xxxx xxxx | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|------|------|------|------|----------------|-----------|------|------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8 | 7 | 6 | | 4
8148CAL[8 | 3
3:0] | 2 | 1 | 0 | Bits 31:9 Reserved, must be kept at reset value. ## Bits 8:0 HSI48CAL[8:0]: HSI48 clock calibration These bits are initialized at startup with the factory-programmed HSI48 calibration trim value. # 5.4.6 Clock interrupt enable register (RCC_CIER) Address offset: 0x18 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|--------------|--------------|--------------|----------------|--------------|--------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. PLL
RDYIE | HSE
RDYIE | HSI
RDYIE | HSI48
RDYIE | LSE
RDYIE | LSI
RDYIE | | | | | | | | | | | | rw | rw | rw | rw | rw | rw | ## Bits 31:6 Reserved, must be kept at reset value. ## Bit 5 PLLRDYIE: PLL ready interrupt enable Set and cleared by software to enable/disable interrupt caused by PLL lock: 0: Disable 1: Enable ## Bit 4 HSERDYIE: HSE ready interrupt enable Set and cleared by software to enable/disable interrupt caused by the HSE oscillator stabilization: 0: Disable 1: Enable ## Bit 3 HSIRDYIE: HSI16 ready interrupt enable Set and cleared by software to enable/disable interrupt caused by the HSI16 oscillator stabilization: 0: Disable 1: Enable ## Bit 2 HSI48RDYIE: HSI48 ready interrupt enable Set and cleared by software to enable/disable interrupt caused by the HSI48 oscillator stabilization: 0: Disable 1: Enable ## Bit 1 LSERDYIE: LSE ready interrupt enable Set and cleared by software to enable/disable interrupt caused by the LSE oscillator stabilization: 0: Disable 1: Enable ## Bit 0 LSIRDYIE: LSI ready interrupt enable Set and cleared by software to enable/disable interrupt caused by the LSI oscillator stabilization: 0: Disable 1: Enable # 5.4.7 Clock interrupt flag register (RCC_CIFR) Address offset: 0x1C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|-------------|------|------|------|-------------|-------------|-------------|---------------|-------------|-------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | Res. | LSE
CSSF | CSSF | Res. | Res. | PLL
RDYF | HSE
RDYF | HSI
RDYF | HSI48
RDYF | LSE
RDYF | LSI
RDYF | | | | | | | | r | r | | | r | r | r | r | r | r | RM0444 Rev 5 187/1390 ## Bits 31:10 Reserved, must be kept at reset value. ## Bit 9 LSECSSF: LSE clock security system interrupt flag Set by hardware when a failure is detected in the LSE oscillator. Cleared by software by setting the LSECSSC bit. 0: No clock security interrupt caused by LSE clock failure 1: Clock security interrupt caused by LSE clock failure #### Bit 8 CSSF: HSE clock security system interrupt flag Set by hardware when a failure is detected in the HSE oscillator. Cleared by software setting the CSSC bit. 0: No clock security interrupt caused by HSE clock failure 1: Clock security interrupt caused by HSE clock failure #### Bits 7:6 Reserved, must be kept at reset value. #### Bit 5 PLLRDYF: PLL ready interrupt flag Set by hardware when the PLL locks and PLLRDYIE is set. Cleared by software setting the PLLRDYC bit. 0: No clock ready interrupt caused by PLL lock 1: Clock ready interrupt caused by PLL lock ## Bit 4 HSERDYF: HSE ready interrupt flag Set by hardware when the HSE clock becomes stable and HSERDYIE is set. Cleared by software setting the HSERDYC bit. 0: No clock ready interrupt caused by the HSE oscillator 1: Clock ready interrupt caused by the HSE oscillator #### Bit 3 HSIRDYF: HSI16 ready interrupt flag Set by hardware when the HSI16 clock becomes stable and HSIRDYIE is set in a response to setting the HSION (refer to *Clock control register (RCC_CR)*). When HSION is not set but the HSI16 oscillator is enabled by the peripheral through a clock request, this bit is not set and no interrupt is generated. Cleared by software setting the HSIRDYC bit. 0: No clock ready interrupt caused by the HSI16 oscillator 1: Clock ready interrupt caused by the HSI16 oscillator #### Bit 2 HSI48RDYF: HSI48 ready interrupt flag Set by hardware when the HSI48 clock becomes stable and HSI48RDYIE is set in a response to setting the HSI48ON (refer to *Clock control register (RCC_CR)*). When HSI48ON is not set but the HSI48 oscillator is enabled by the peripheral through a clock request, this bit is not set and no interrupt is generated. Cleared by software setting the HSI48RDYC bit. 0: No clock ready interrupt caused by the HSI48 oscillator 1: Clock ready interrupt caused by the HSI48 oscillator ## Bit 1 LSERDYF: LSE ready interrupt flag Set by hardware when the LSE clock becomes stable and LSERDYDIE is set. Cleared by software setting the LSERDYC bit. 0: No clock ready interrupt caused by the LSE oscillator 1: Clock ready interrupt caused by the LSE oscillator #### Bit 0 LSIRDYF: LSI ready interrupt flag Set by hardware when the LSI clock becomes stable and LSIRDYDIE is set. Cleared by software setting the LSIRDYC bit. 0: No clock ready interrupt caused by the LSI oscillator 1: Clock ready interrupt
caused by the LSI oscillator # 5.4.8 Clock interrupt clear register (RCC_CICR) Address offset: 0x20 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|-------------|------|------|------|-------------|-------------|-------------|---------------|-------------|-------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | Res. | LSE
CSSC | CSSC | Res. | Res. | PLL
RDYC | HSE
RDYC | HSI
RDYC | HSI48
RDYC | LSE
RDYC | LSI
RDYC | | | | | | | | W | W | | | W | W | w | W | W | w | Bits 31:10 Reserved, must be kept at reset value. Bit 9 LSECSSC: LSE Clock security system interrupt clear This bit is set by software to clear the LSECSSF flag. 0: No effect 1: Clear LSECSSF flag Bit 8 CSSC: Clock security system interrupt clear This bit is set by software to clear the HSECSSF flag. 0: No effect 1: Clear CSSF flag Bits 7:6 Reserved, must be kept at reset value. Bit 5 PLLRDYC: PLL ready interrupt clear This bit is set by software to clear the PLLRDYF flag. 0: No effect 1: Clear PLLRDYF flag Bit 4 HSERDYC: HSE ready interrupt clear This bit is set by software to clear the HSERDYF flag. 0: No effect 1: Clear HSERDYF flag Bit 3 HSIRDYC: HSI16 ready interrupt clear This bit is set software to clear the HSIRDYF flag. 0: No effect 1: Clear HSIRDYF flag Bit 3 HSI48RDYC: HSI48 ready interrupt clear This bit is set software to clear the HSI48RDYF flag. 0: No effect 1: Clear HSI48RDYF flag Bit 1 LSERDYC: LSE ready interrupt clear This bit is set by software to clear the LSERDYF flag. 0: No effect 1: Clear LSERDYF flag Bit 0 LSIRDYC: LSI ready interrupt clear This bit is set by software to clear the LSIRDYF flag. 0: No effect 1: Clear LSIRDYF flag RM0444 Rev 5 189/1390 # 5.4.9 I/O port reset register (RCC_IOPRSTR) Address: 0x24 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|--------------|-----------------------------|--------------|--------------|--------------|--------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. GPIOF
RST | GPIOE
RST ⁽¹⁾ | GPIOD
RST | GPIOC
RST | GPIOB
RST | GPIOA
RST | | | | | | | | | | | | rw | rw | rw | rw | rw | rw | Only significant on devices integrating the corresponding peripheral, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:6 Reserved, must be kept at reset value. Bit 5 GPIOFRST: I/O port F reset This bit is set and cleared by software. 0: no effect 1: Reset I/O port F Bit 4 **GPIOERST**: I/O port E reset⁽¹⁾ This bit is set and cleared by software. 0: no effect 1: Reset I/O port E Bit 3 GPIODRST: I/O port D reset This bit is set and cleared by software. 0: no effect 1: Reset I/O port D Bit 2 GPIOCRST: I/O port C reset This bit is set and cleared by software. 0: no effect 1: Reset I/O port C Bit 1 GPIOBRST: I/O port B reset This bit is set and cleared by software. 0: no effect 1: Reset I/O port B Bit 0 GPIOARST: I/O port A reset This bit is set and cleared by software. 0: no effect 1: Reset I/O port A # 5.4.10 AHB peripheral reset register (RCC_AHBRSTR) Address offset: 0x28 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------------|------|------|------|--------------|------|------|------|------|------|---------------------------|----------------------------|---------------------------| | Res. RNG
RST ⁽¹⁾ | Res. | AES
RST ⁽¹⁾ | | | | | | | | | | | | | | | rw | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | CRC
RST | Res. | Res. | Res. | FLASH
RST | Res. | Res. | Res. | Res. | Res. | Res. | DMA2
RST ⁽¹⁾ | DMA1
RST | rw | | | | rw | | | | | | | rw | rw | ^{1.} Only significant on devices integrating the corresponding peripheral, otherwise reserved. Refer to Section 1.4: Availability of peripherals Bits 31:19 Reserved, must be kept at reset value. Bit 18 **RNGRST**: Random number generator reset⁽¹⁾ Set and cleared by software. 0: No effect 1: Reset RNG Bit 17 Reserved, must be kept at reset value. Bit 16 **AESRST**: AES hardware accelerator reset⁽¹⁾ Set and cleared by software. 0: No effect 1: Reset AES Bits 15:13 Reserved, must be kept at reset value. Bit 12 CRCRST: CRC reset Set and cleared by software. 0: No effect 1: Reset CRC Bits 11:9 Reserved, must be kept at reset value. Bit 8 FLASHRST: Flash memory interface reset Set and cleared by software. 0: No effect 1: Reset Flash memory interface This bit can only be set when the Flash memory is in power down mode. Bits 7:2 Reserved, must be kept at reset value. Bit 0 DMA2RST: DMA2 and DMAMUX reset⁽¹⁾ Set and cleared by software. 0: No effect 1: Reset DMA2 and DMAMUX Bit 0 DMA1RST: DMA1 and DMAMUX reset Set and cleared by software. 0: No effect 1: Reset DMA1 and DMAMUX # 5.4.11 APB peripheral reset register 1 (RCC_APBRSTR1) Address offset: 0x2C Reset value: 0x0000 0000 RM0444 Rev 5 191/1390 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----------------------------|---------------|----------------------------|---------------------------------|------------|---------------------------------|------------------------------|------------------------------|----------------------------|-------------|----------------------------|----------------------------|------------------------------|------------------------------|---------------|---------------------------| | LPTIM1
RST | LPTIM2
RST | DAC1
RST ⁽¹⁾ | PWR
RST | DBG
RST | UCPD
2
RST ⁽¹⁾ | UCPD1
RST ⁽¹⁾ | CEC
RST ⁽¹⁾ | I2C3
RST ⁽¹⁾ | I2C2
RST | I2C1
RST | LP
UART1
RST | USART4
RST ⁽¹⁾ | USART3
RST ⁽¹⁾ | USART2
RST | CRSR
ST ⁽¹⁾ | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SPI3
RST ⁽¹⁾ | SPI2
RST | USB
RST ⁽¹⁾ | FDCA
N ⁽¹⁾
RST | Res. | Res. | USART6
RST ⁽¹⁾ | USART5
RST ⁽¹⁾ | LP
UART2
(1)
RST | Res. | TIM7
RST ⁽¹⁾ | TIM6
RST ⁽¹⁾ | Res. | TIM4
RST ⁽¹⁾ | TIM3
RST | TIM2
RST | | rw | rw | rw | rw | | | rw | rw | rw | | rw | rw | | rw | rw | rw | ^{1.} Only significant on devices integrating the corresponding peripheral, otherwise reserved. Refer to Section 1.4: Availability Bit 31 LPTIM1RST: Low Power Timer 1 reset Set and cleared by software. 0: No effect 1: Reset LPTIM1 Bit 30 LPTIM2RST: Low Power Timer 2 reset Set and cleared by software. 0: No effect 1: Reset LPTIM2 Bit 29 DAC1RST: DAC1 interface reset(1) Set and cleared by software. 0: No effect 1: Reset DAC1 interface Bit 28 PWRRST: Power interface reset Set and cleared by software. 0: No effect 1: Reset PWR Bit 27 DBGRST: Debug support reset Set and cleared by software. 0: No effect 1: Reset DBG Bit 26 UCPD2RST: UCPD2 reset(1) Set and cleared by software. 0: No effect 1: Reset UCPD2 Bit 25 UCPD1RST: UCPD1 reset(1) Set and cleared by software. 0: No effect 1: Reset UCPD1 Bit 24 CECRST: HDMI CEC reset(1) Set and cleared by software. 0: No effect 1: Reset the HDMI CEC #### Bit 23 I2C3RST: I2C3 reset(1) Set and cleared by software. 0: No effect 1: Reset I2C3 ## Bit 22 I2C2RST: I2C2 reset Set and cleared by software. 0: No effect 1: Reset I2C2 ## Bit 21 I2C1RST: I2C1 reset Set and cleared by software. 0: No effect 1: Reset I2C1 ## Bit 20 LPUART1RST: LPUART1 reset Set and cleared by software. 0: No effect 1: Reset LPUART1 #### Bit 19 USART4RST: USART4 reset(1) Set and cleared by software. 0: No effect 1: Reset USART4 ## Bit 18 USART3RST: USART3 reset(1) Set and cleared by software. 0: No effect 1: Reset USART3 Note: ## Bit 17 USART2RST: USART2 reset Set and cleared by software. 0: No effect 1: Reset USART2 ## Bits 16 CRSRST: CRS reset(1) Set and cleared by software. 0: No effect 1: Reset CRS ## Bit 15 SPI3RST: SPI3 reset(1) Set and cleared by software. 0: No effect 1: Reset SPI3 ## Bit 14 SPI2RST: SPI2 reset Set and cleared by software. 0: No effect 1: Reset SPI2 ## Bit 13 USBRST: USB reset(1) Set and cleared by software. 0: No effect 1: Reset USB #### Bit 12 FDCAN: FDCAN reset(1) Set and cleared by software. 0: No effect 1: Reset FDCAN ## Bits 11:10 Reserved, must be kept at reset value. ## Bit 9 USART6RST: USART3 reset(1) Set and cleared by software. 0: No effect 1: Reset USART6 ## Bit 8 USART5RST: USART3 reset(1) Set and cleared by software. 0: No effect 1: Reset USART5 ## Bit 7 LPUART2RST: LPUART2 reset(1) Set and cleared by software. 0: No effect 1: Reset LPUART2 ## Bit 6 Reserved, must be kept at reset value. ## Bit 5 TIM7RST: TIM7 timer reset(1) Set and cleared by software. 0: No effect 1: Reset TIM7 #### Bit 4 TIM6RST: TIM6 timer reset(1) Set and cleared by software. 0: No effect 1: Reset TIM6 ## Bit 3 Reserved, must be kept at reset value. #### Bit 2 TIM4RST: TIM3 timer reset(1) Set and cleared by software. 0: No effect 1: Reset TIM4 ## Bit 1 TIM3RST: TIM3 timer reset Set and cleared by software. 0: No effect 1: Reset TIM3 ## Bit 0 TIM2RST: TIM2 timer reset Set and cleared by software. 0: No effect 1: Reset TIM2 # 5.4.12 APB peripheral reset register 2 (RCC_APBRSTR2) Address offset: 0x30 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |--------------|---------------|------|-------------|-------------|------|------|------|------|------|------|------------|------|--------------|--------------|-----------------------------| | Res. ADC
RST | Res. | TIM17
RST | TIM16
RST | TIM15
RST ⁽¹⁾ | | | | | | | | | | | | | rw | | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | | | | - | • | U | _ | | U | |
TIM14
RST | USART1
RST | Res. | SPI1
RST | TIM1
RST | Res. SYS
CFG
RST | Only significant on devices integrating the corresponding peripheral, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:21 Reserved, must be kept at reset value. Bit 20 ADCRST: ADC reset Set and cleared by software. 0: No effect 1: Reset ADC Bit 19 Reserved, must be kept at reset value. Bit 18 TIM17RST: TIM16 timer reset Set and cleared by software. 0: No effect 1: Reset TIM17 timer Bit 17 TIM16RST: TIM16 timer reset Set and cleared by software. 0: No effect 1: Reset TIM16 timer Bit 16 **TIM15RST**: TIM15 timer reset⁽¹⁾ Set and cleared by software. 0: No effect 1: Reset TIM15 timer Bit 15 TIM14RST: TIM14 timer reset Set and cleared by software. 0: No effect 1: Reset TIM14 timer Bit 14 USART1RST: USART1 reset Set and cleared by software. 0: No effect 1: Reset USART1 Bit 13 Reserved, must be kept at reset value. Bit 12 SPI1RST: SPI1 reset Set and cleared by software. 0: No effect 1: Reset SPI1 RM0444 Rev 5 195/1390 Bit 11 TIM1RST: TIM1 timer reset Set and cleared by software. 0: No effect 1: Reset TIM1 timer Bits 10:1 Reserved, must be kept at reset value. Bit 0 SYSCFGRST: SYSCFG, COMP and VREFBUF reset Set and cleared by software. 0: No effect 1: Reset SYSCFG + COMP + VREFBUF # 5.4.13 I/O port clock enable register (RCC_IOPENR) Address: 0x34 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|-------------|----------------------------|-------------|-------------|-------------|-------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. GPIOF
EN | GPIOE
EN ⁽¹⁾ | GPIOD
EN | GPIOC
EN | GPIOB
EN | GPIOA
EN | | | | | | | | | | | | rw | rw | rw | rw | rw | rw | Only significant on devices integrating the corresponding peripheral, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:6 Reserved, must be kept at reset value. Bit 5 GPIOFEN: I/O port F clock enable This bit is set and cleared by software. 0: Disable 1: Enable Bit 4 **GPIOEEN:** I/O port E clock enable⁽¹⁾ This bit is set and cleared by software. 0: Disable 1: Enable Bit 3 **GPIODEN:** I/O port D clock enable This bit is set and cleared by software. 0: Disable 1: Enable Bit 2 GPIOCEN: I/O port C clock enable This bit is set and cleared by software. 0: Disable 1: Enable Bit 1 GPIOBEN: I/O port B clock enable This bit is set and cleared by software. 0: Disable 1: Enable Bit 0 GPIOAEN: I/O port A clock enable This bit is set and cleared by software. 0: Disable 1: Enable # 5.4.14 AHB peripheral clock enable register (RCC_AHBENR) Address offset: 0x38 Reset value: 0x00000 0100 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|-----------------|------------|------------|-----------|------------------|-----------|------|------|------|------|--------------------------|--------------------------------|--------------------------| | Res. RNG
EN ⁽¹⁾ | Res. | AES
EN ⁽¹⁾ | | | | | | | | | | | | | | | rw | | rw | | | • | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
CRC
EN | 11
Res. | 10
Res. | 9
Res. | 8
FLASH
EN | 7
Res. | Res. | Res. | Res. | Res. | Res. | 1
DMA2
EN ⁽¹⁾ | 0
DMA1
EN | Only significant on devices integrating the corresponding peripheral, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:19 Reserved, must be kept at reset value. Bit 18 RNGEN: Random number generator clock enable⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bit 17 Reserved, must be kept at reset value. Bit 16 **AESEN**: AES hardware accelerator⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bits 15:13 Reserved, must be kept at reset value. Bit 12 CRCEN: CRC clock enable Set and cleared by software. 0: Disable 1: Enable Bits 11:9 Reserved, must be kept at reset value. 4 RM0444 Rev 5 197/1390 ## Bit 8 FLASHEN: Flash memory interface clock enable Set and cleared by software. 0: Disable 1: Enable This bit can only be cleared when the Flash memory is in power down mode. ## Bits 7:2 Reserved, must be kept at reset value. ## Bit 1 DMA2EN: DMA2 and DMAMUX clock enable⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable DMAMUX is enabled as long as at least one DMA peripheral is enabled. #### Bit 0 DMA1EN: DMA1 and DMAMUX clock enable Set and cleared by software. 0: Disable 1: Enable DMAMUX is enabled as long as at least one DMA peripheral is enabled. # 5.4.15 APB peripheral clock enable register 1 (RCC_APBENR1) Address offset: 0x3C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |---------------------------|--------------|--------------------------|--------------------------------|------------|------------------|---------------------------------|---------------------------------|----------------------------------|------------|---------------------------|---------------------------|-----------------------------|-----------------------------|--------------|--------------------------| | LPTIM1
EN | LPTIM2
EN | DAC1
EN | PWR
EN | DBG
EN | UCPD2
EN | UCPD1
EN | CEC
EN | I2C3
EN ⁽¹⁾ | I2C2
EN | I2C1
EN | LP
UART1
EN | USART4
EN ⁽¹⁾ | USART3
EN ⁽¹⁾ | USART2
EN | CRSE
N ⁽¹⁾ | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SPI3
EN ⁽¹⁾ | SPI2
EN | USB
EN ⁽¹⁾ | FDCA
N
EN ⁽¹⁾ | WWDG
EN | RTC
APB
EN | USART
6
EN ⁽¹⁾ | USART
5
EN ⁽¹⁾ | LP
UART2
EN ⁽¹⁾ | Res. | TIM7
EN ⁽¹⁾ | TIM6
EN ⁽¹⁾ | Res. | TIM4
EN ⁽¹⁾ | TIM3
EN | TIM2
EN | | rw | rw | rw | | rw | rw | rw | Only significant on devices integrating the corresponding peripheral, otherwise reserved. Refer to Section 1.4: Availability of peripherals. ## Bit 31 LPTIM1EN: LPTIM1 clock enable Set and cleared by software. 0: Disable 1: Enable #### Bit 30 LPTIM2EN: LPTIM2 clock enable Set and cleared by software. 0: Disable 1: Enable ## Bit 29 DAC1EN: DAC1 interface clock enable Set and cleared by software. 0: Disable 1: Enable ## Bit 28 PWREN: Power interface clock enable Set and cleared by software. 0: Disable 1: Enable ## Bit 27 DBGEN: Debug support clock enable Set and cleared by software. 0: Disable 1: Enable # Bit 26 **UCPD2EN**: UCPD2 clock enable⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable ## Bit 25 **UCPD1EN**: UCPD1 clock enable⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable #### Bit 24 CECEN: HDMI CEC clock enable Set and cleared by software. 0: Disable 1: Enable ## Bit 23 I2C3EN: I2C3 clock enable⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable ## Bit 22 I2C2EN: I2C2 clock enable Set and cleared by software. 0: Disable 1: Enable # Bit 21 I2C1EN: I2C1 clock enable Set and cleared by software. 0: Disable 1: Enable ## Bit 20 LPUART1EN: LPUART1 clock enable Set and cleared by software. 0: Disable 1: Enable ## Bit 19 **USART4EN**: USART4 clock enable⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable # Bit 18 **USART3EN**: USART3 clock enable⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable 199/1390 #### Bit 17 USART2EN: USART2 clock enable Set and cleared by software. 0: Disable 1: Enable ## Bit 16 **CRSEN**: CRS clock enable⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable ## Bit 15 **SPI3EN**: SPI3 clock enable⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable ## Bit 14 SPI2EN: SPI2 clock enable Set and cleared by software. 0: Disable 1: Enable # Bit 13 **USBEN**: USB clock enable⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable ## Bit 12 **FDCANEN**: FDCAN clock enable⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable ## Bit 11 WWDGEN: WWDG clock enable Set by software to enable the window watchdog clock. Cleared by hardware system reset 0: Disable 1: Enable This bit can also be set by hardware if the WWDG_SW option bit is 0. ## Bit 10 RTCAPBEN: RTC APB clock enable Set and cleared by software. 0: Disable 1: Enable ## Bit 9 **USART6EN**: USART6 clock enable⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable ## Bit 8 USART5EN: USART5 clock enable(1) Set and cleared by software. 0: Disable 1: Enable ## Bit 7 LPUART2EN: LPUART2 clock enable⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bit 6 Reserved, must be kept at reset value. Bit 5 **TIM7EN**: TIM7 timer clock enable⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bit 4 **TIM6EN**: TIM6 timer clock enable⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bit 2 **TIM4EN**: TIM4 timer clock enable⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bit 1 TIM3EN: TIM3 timer clock enable Set and cleared by software. 0: Disable 1: Enable Bit 0 TIM2EN: TIM2 timer clock enable Set and cleared by software. 0: Disable 1: Enable # 5.4.16 APB peripheral clock enable register 2(RCC_APBENR2) Address offset: 0x40 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------------|--------------|------|------------|------------|------|------|------|------|------|------|-----------|------|-------------|-------------|----------------------------| | Res. ADC
EN | Res. | TIM17
EN | TIM16
EN | TIM15
EN ⁽¹⁾ | | | | | | | | | | | | | rw | | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | TIM14
EN | USART1
EN | Res. | SPI1
EN | TIM1
EN | Res. SYS
CFG
EN | | rw | rw | | rw | rw | | | | | | | | | | | rw | Only significant on devices integrating the corresponding peripheral, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:21 Reserved, must be kept at reset value. Bit 20 ADCEN: ADC clock enable Set and cleared by
software. 0: Disable 1: Enable Bit 19 Reserved, must be kept at reset value. RM0444 Rev 5 201/1390 #### Bit 18 TIM17EN: TIM16 timer clock enable Set and cleared by software. 0: Disable 1: Enable ## Bit 17 TIM16EN: TIM16 timer clock enable Set and cleared by software. 0: Disable 1: Enable # Bit 16 **TIM15EN**: TIM15 timer clock enable⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable ## Bit 15 TIM14EN: TIM14 timer clock enable Set and cleared by software. 0: Disable 1: Enable #### Bit 14 USART1EN: USART1 clock enable Set and cleared by software. 0: Disable 1: Enable # Bit 13 Reserved, must be kept at reset value. ## Bit 12 SPI1EN: SPI1 clock enable Set and cleared by software. 0: Disable 1: Enable ## Bit 11 TIM1EN: TIM1 timer clock enable Set and cleared by software. 0: Disable 1: Enable ## Bits 10:1 Reserved, must be kept at reset value. ## Bit 0 SYSCFGEN: SYSCFG, COMP and VREFBUF clock enable Set and cleared by software. 0: Disable 1: Enable #### 5.4.17 I/O port in Sleep mode clock enable register (RCC_IOPSMENR) Address: 0x44 Reset value: 0x0000 003F | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | RM0444 Rev 5 202/1390 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|------|------|---------------|----------------------|---------------|---------------|---------------|---------------| | Res. GPIOF
SMEN | GPIOE
SMEN
(1) | GPIOD
SMEN | GPIOC
SMEN | GPIOB
SMEN | GPIOA
SMEN | | | | | | | | | | | | rw | rw | rw | rw | rw | rw | ^{1.} Only significant on devices integrating the corresponding peripheral, otherwise reserved with zero reset value. Refer to Section 1.4: Availability of peripherals. Bits 31:6 Reserved, must be kept at reset value. Bit 5 GPIOFSMEN: I/O port F clock enable during Sleep mode Set and cleared by software. 0: Disable 1: Enable Bit 4 **GPIOESMEN:** I/O port E clock enable during Sleep mode⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bit 3 GPIODSMEN: I/O port D clock enable during Sleep mode Set and cleared by software. 0: Disable 1: Enable Bit 2 GPIOCSMEN: I/O port C clock enable during Sleep mode Set and cleared by software. 0: Disable 1: Enable Bit 1 GPIOBSMEN: I/O port B clock enable during Sleep mode Set and cleared by software. 0: Disable 1: Enable Bit 0 GPIOASMEN: I/O port A clock enable during Sleep mode Set and cleared by software. 0: Disable 1: Enable # 5.4.18 AHB peripheral clock enable in Sleep/Stop mode register (RCC_AHBSMENR) Address offset: 0x48 Reset value: 0x0005 1303 RM0444 Rev 5 203/1390 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|-------------------|------|------------|-------------------|--------------------|------|------|-----------|------|------|--------------------|---------------------|--------------------| | Res. RNG
SMEN
(1) | Res. | AES
SMEN
(1) | | | | | | | | | | | | | | | rw | | rw | | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | 12
CRC
SMEN | Res. | 10
Res. | 9
SRAM
SMEN | 8
FLASH
SMEN | Res. | Res. | 5
Res. | Res. | Res. | Res. | DMA2
SMEN
(1) | 0
DMA1
SMEN | ^{1.} Only significant on devices integrating the corresponding peripheral, otherwise reserved with zero reset value. Refer to Section 1.4: Availability of peripherals Bits 31:19 Reserved, must be kept at reset value. Bit 18 **RNGSMEN**: RNG clock enable during Sleep and Stop mode⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bits 17 Reserved, must be kept at reset value. Bit 16 **AESSMEN**: AES hardware accelerator clock enable during Sleep mode⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bits 15:13 Reserved, must be kept at reset value. Bit 12 CRCSMEN: CRC clock enable during Sleep mode Set and cleared by software. 0: Disable 1: Enable Bits 11:10 Reserved, must be kept at reset value. Bit 9 **SRAMSMEN**: SRAM clock enable during Sleep mode Set and cleared by software. 0: Disable 1: Enable Bit 8 FLASHSMEN: Flash memory interface clock enable during Sleep mode Set and cleared by software. 0: Disable 1: Enable This bit can be activated only when the Flash memory is in power down mode. RM0444 Rev 5 204/1390 Bits 7:2 Reserved, must be kept at reset value. Bit 1 **DMA2SMEN**: DMA2 and DMAMUX clock enable during Sleep mode⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Clock to DMAMUX during Sleep mode is enabled as long as the clock in Sleep mode is enabled to at least one DMA peripheral. Bit 0 DMA1SMEN: DMA1 and DMAMUX clock enable during Sleep mode Set and cleared by software. 0: Disable 1: Enable Clock to DMAMUX during Sleep mode is enabled as long as the clock in Sleep mode is enabled to at least one DMA peripheral. # 5.4.19 APB peripheral clock enable in Sleep/Stop mode register 1 (RCC_APBSMENR1) Address offset: 0x4C Reset value: 0b1111 1111 1111 1111 1111 1111 1011 0111 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |---------------------|--------------------|---------------------------------|--------------------------|--------------|--------------------------------|------------------------------|----------------------------|--------------------------------------|--------------|---------------------|-------------------------|-----------------------|-----------------------|----------------|---------------------------| | LPTIM
1SMEN | LPTIM
2
SMEN | DAC1
SME
N ⁽¹⁾ | PWR
SMEN | DBG
SMEN | UCPD
2
SMEN ⁽ | UCPD1
SMEN ⁽¹⁾ | CEC
SMEN ⁽¹⁾ | I2C3
SMEN
(1) | I2C2
SMEN | I2C1
SMEN | LP
UART
1
SMEN | USART4
SMEN
(1) | USART3
SMEN
(1) | USART2
SMEN | CRSS
MEN ⁽¹ | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SPI3
SMEN
(1) | SPI2
SMEN | USB
SME
N
(1) | FDCA
N
SMEN
(1) | WWDG
SMEN | RTC
APB
SMEN | USART6
SMEN
(1) | USART5
SMEN
(1) | LP
UART
2
SMEN ⁽ | Res. | TIM7
SMEN
(1) | TIM6
SMEN
(1) | Res. | TIM4
SMEN
(1) | TIM3
SMEN | TIM2
SMEN | | rw | rw | rw | | rw | rw | rw | Only significant on devices integrating the corresponding peripheral, otherwise reserved with zero reset value. Refer to Section 1.4: Availability of peripherals. Bit 31 LPTIM1SMEN: Low Power Timer 1 clock enable during Sleep and Stop modes Set and cleared by software. 0: Disable 1: Enable Bit 30 LPTIM2SMEN: Low Power Timer 2 clock enable during Sleep and Stop modes Set and cleared by software. 0: Disable 1: Enable Bit 29 **DAC1SMEN**: DAC1 interface clock enable during Sleep and Stop modes⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable RM0444 Rev 5 205/1390 Bit 28 PWRSMEN: Power interface clock enable during Sleep mode Set and cleared by software. 0: Disable 1: Enable Bit 27 DBGSMEN: Debug support clock enable during Sleep mode Set and cleared by software. 0: Disable 1: Enable Bit 26 **UCPD2SMEN**: UCPD2 clock enable during Sleep mode⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bit 25 **UCPD1SMEN**: UCPD1 clock enable during Sleep mode⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bit 24 **CECSMEN**: HDMI CEC clock enable during Sleep and Stop modes⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bit 23 I2C3SMEN: I2C3 clock enable during Sleep mode⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bit 22 I2C2SMEN: I2C2 clock enable during Sleep mode Set and cleared by software. 0: Disable 1: Enable Bit 21 I2C1SMEN: I2C1 clock enable during Sleep and Stop modes Set and cleared by software. 0: Disable 1: Enable Bit 20 LPUART1SMEN: LPUART1 clock enable during Sleep and Stop modes Set and cleared by software. 0: Disable 1: Enable Bit 19 **USART4SMEN**: USART4 clock enable during Sleep mode⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bit 18 **USART3SMEN**: USART3 clock enable during Sleep mode⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bit 17 USART2SMEN: USART2 clock enable during Sleep and Stop modes Set and cleared by software. - 0: Disable - 1: Enable Bit 16 CRSSMEN: CRS clock enable during Sleep and Stop modes Set and cleared by software. - 0: Disable - 1: Enable Bit 15 **SPI3SMEN**: SPI3 clock enable during Sleep mode⁽¹⁾ Set and cleared by software. - 0: Disable - 1: Enable Bit 14 SPI2SMEN: SPI2 clock enable during Sleep mode Set and cleared by software. - 0: Disable - 1: Enable Bit 13 USBSMEN: USB clock enable during Sleep mode⁽¹⁾ Set and cleared by software. - 0: Disable - 1: Enable Bit 12 **FDCANSMEN**: FDCAN clock enable during Sleep mode⁽¹⁾ Set and cleared by software. - 0: Disable - 1: Enable Bit 11 WWDGSMEN: WWDG clock enable during Sleep and Stop modes Set and cleared by software. - 0: Disable - 1: Enable Bit 10 RTCAPBSMEN: RTC APB clock enable during Sleep mode Set and cleared by software. - 0: Disable - 1: Enable Bit 9 **USART6SMEN**: USART6 clock enable during Sleep mode⁽¹⁾ Set and cleared by software. - 0: Disable - 1: Enable Bit 8 **USART5SMEN**: USART5 clock enable during Sleep mode⁽¹⁾ Set and cleared by software. - 0: Disable - 1: Enable Bit 7 LPUART2SMEN: LPUART2 clock enable during Sleep and Stop modes⁽¹⁾ Set and cleared by software. - 0: Disable - 1: Enable Bit 6 Reserved, must be kept at reset value. RM0444 Rev 5 207/1390 Bit 5 **TIM7SMEN**: TIM7 timer clock enable during Sleep mode⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bit 4 **TIM6SMEN**: TIM6 timer clock enable during Sleep mode⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bit 3 Reserved, must be kept at reset value. Bit 2 **TIM4SMEN**: TIM4 timer clock enable during Sleep mode⁽¹⁾ Set and cleared by software. 0: Disable 1: Enable Bit 1 TIM3SMEN: TIM3 timer clock enable during Sleep mode Set
and cleared by software. 0: Disable 1: Enable Bit 0 TIM2SMEN: TIM2 timer clock enable during Sleep mode Set and cleared by software. 0: Disable 1: Enable # 5.4.20 APB peripheral clock enable in Sleep/Stop mode register 2 (RCC_APBSMENR2) Address offset: 0x50 Reset value: 0x0017 D801 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |---------------|----------------|------|--------------|--------------|------|------|------|------|------|------|-------------|------|---------------|------|------------------------------| | Res. ADC
SMEN | Res. | TIM17
SMEN | | TIM15S
MEN ⁽¹⁾ | | | | | | | | | | | | | rw | | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | TIM14
SMEN | USART1
SMEN | Res. | SPI1
SMEN | TIM1
SMEN | Res. SYS
CFG
SMEN | | rw | rw | | rw | rw | | | | | | | | | | | rw | Only significant on devices integrating the corresponding peripheral, otherwise reserved with zero reset value. Refer to Section 1.4: Availability of peripherals. Bits 31:21 Reserved, must be kept at reset value. Bit 20 ADCSMEN: ADC clock enable during Sleep mode Set and cleared by software. 0: Disable 1: Enable Bit 19 Reserved, must be kept at reset value. Bit 18 TIM17SMEN: TIM16 timer clock enable during Sleep mode Set and cleared by software. - 0: Disable - 1: Enable Bit 17 TIM16SMEN: TIM16 timer clock enable during Sleep mode Set and cleared by software. - 0: Disable - 1: Enable Bit 16 **TIM15SMEN**: TIM15 timer clock enable during Sleep mode⁽¹⁾ Set and cleared by software. - 0: Disable - 1: Enable Bit 15 TIM14SMEN: TIM14 timer clock enable during Sleep mode Set and cleared by software. - 0: Disable - 1: Enable - Bit 14 USART1SMEN: USART1 clock enable during Sleep and Stop modes Set and cleared by software. - 0: Disable - 1: Enable - Bit 13 Reserved, must be kept at reset value. - Bit 12 SPI1SMEN: SPI1 clock enable during Sleep mode Set and cleared by software. - 0: Disable - 1: Enable - Bit 11 **TIM1SMEN**: TIM1 timer clock enable during Sleep mode Set and cleared by software. - 0: Disable - 1: Enable - Bits 10:1 Reserved, must be kept at reset value. - Bit 0 **SYSCFGSMEN**: SYSCFG, COMP and VREFBUF clock enable during Sleep and Stop modes Set and cleared by software. - 0: Disable - 1: Enable # 5.4.21 Peripherals independent clock configuration register (RCC_CCIPR) Address: 0x54 Reset value: 0x0000 0000 RM0444 Rev 5 209/1390 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |---------|-----------|--------|-----------------------|--------------|-----------------------|---------------|-----------------------------|------|-------------|--------------|----------------------------|--------------|----------------------------|-------------|-------------| | ADCS | EL[1:0] | RNGDI | V[1:0] ⁽¹⁾ | RNGSE | L[1:0] ⁽¹⁾ | Res. | TIM15
SEL ⁽¹⁾ | Res. | TIM1
SEL | LPTIM2 | SEL[1:0] | LPTIM1 | SEL[1:0] | Res. | Res. | | rw | rw | rw | rw | rw | rw | | rw | | rw | rw | rw | rw | rw | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 12C2I2S | 1SEL[1:0] | I2C1SI | EL[1:0] | LPUAR
[1: | T1SEL
:0] | LPUAR
[1:0 | | Res. | CEC
SEL | USAR
[1:0 | T3SEL
)] ⁽¹⁾ | USAR
[1:0 | T2SEL
)] ⁽¹⁾ | USAR
[1: | T1SEL
0] | | rw | rw Only significant on devices integrating the corresponding peripheral supporting independent clock selection (or supporting the corresponding function), otherwise reserved. Refer to Section 1.4: Availability of peripherals and Section 33.4: USART implementation. ## Bits 31:30 ADCSEL[1:0]: ADCs clock source selection This bitfield is controlled by software to select the clock source for ADC: 00: System clock 01: PLLPCLK 10: HSI16 11: Reserved ## Bits 29:28 RNGDIV[1:0]: Division factor of RNG clock divider This bitfield is controlled by software to select the division factor as follows: 00: 1 01: 2 10: 4 11: 8 ## Bits 27:26 RNGSEL[1:0]: RNG clock source selection This bitfield is controlled by software to select the RNG clock as follows: 00: No clock 01: HSI16 10: SYSCLK 11: PLLQCLK Bit 25 Reserved, must be kept at reset value. ## Bit 24 **TIM15SEL**: TIM15 clock source selection⁽¹⁾ This bit is set and cleared by software. It selects TIM15 clock source as follows: 0: TIMPCLK 1: PLLQCLK Bit 23 Reserved, must be kept at reset value. ## Bit 22 TIM1SEL: TIM1 clock source selection This bit is set and cleared by software. It selects TIM1 clock source as follows: 0: TIMPCLK 1: PLLQCLK⁽¹⁾ ## Bits 21:20 LPTIM2SEL[1:0]: LPTIM2 clock source selection This bitfield is controlled by software to select LPTIM2 clock source as follows: 00: PCLK 01: LSI 10: HSI16 11: LSE ## Bits 19:18 LPTIM1SEL[1:0]: LPTIM1 clock source selection This bitfield is controlled by software to select LPTIM1 clock source as follows: 00: PCLK 01: LSI 10: HSI16 11: LSE Bits 17:16 Reserved, must be kept at reset value. #### Bits 15:14 I2C2I2S1SEL[1:0]: I2C2/I2S1 clock source selection This bitfield is controlled by software to select I2S1/I2C2 clock source as follows: 00: PCLK/SYSCLK 01: SYSCLK/PLLPCLK 10: HSI16/HSI16 11: Reserved/I2S_CKIN Note: On the STM32G0B1xx and STM32G0C1xx, the bitfield selects the clock to the I2C2 peripheral. On the other devices, it selects the clock to the I2S1 peripheral. ## Bits 13:12 I2C1SEL[1:0]: I2C1 clock source selection This bitfield is controlled by software to select I2C1 clock source as follows: 00: PCLK 01: SYSCLK 10: HSI16 11: Reserved ## Bits 11:10 LPUART1SEL[1:0]: LPUART1 clock source selection This bitfield is controlled by software to select LPUART1 clock source as follows: 00: PCLK 01: SYSCLK 10: HSI16 11: LSE ## Bits 9:8 LPUART2SEL[1:0]: LPUART2 clock source selection⁽¹⁾ This bitfield is controlled by software to select LPUART2 clock source as follows: 00: PCLK 01: SYSCLK 10: HSI16 11: LSE Bit 7 Reserved, must be kept at reset value. ## Bit 6 CECSEL: HDMI CEC clock source selection This bit is set and cleared by software. It selects the HDMI CEC clock source as follows: 0: HSI16 divided by 488 1: LSE RM0444 Rev 5 211/1390 ## Bits 5:4 USART3SEL[1:0]: USART3 clock source selection⁽¹⁾ This bitfield is controlled by software to select USART2 clock source as follows: 00: PCLK 01: SYSCLK 10: HSI16 11: LSE ## Bits 3:2 USART2SEL[1:0]: USART2 clock source selection⁽¹⁾ This bitfield is controlled by software to select USART2 clock source as follows: 00: PCLK 01: SYSCLK 10: HSI16 11: LSE ## Bits 1:0 USART1SEL[1:0]: USART1 clock source selection This bitfield is controlled by software to select USART1 clock source as follows: 00: PCLK 01: SYSCLK 10: HSI16 11: LSE # 5.4.22 Peripherals independent clock configuration register 2 (RCC_CCIPR2) This register is only available on STM32G0B1xx and STM32G0C1xx. Reserved on the other devices. Address: 0x58 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|--------------------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | USBS | SEL ⁽¹⁾ | Res. | Res. | FDCA | NSEL | Res. | Res. | Res. | Res. | 1282 | 2SEL | 12S1 | SEL | | | | rw | rw | | | rw | rw | | | | | rw | rw | rw | rw | Only significant on devices integrating the corresponding peripheral or function, otherwise reserved with zero reset value. Refer to Section 1.4: Availability of peripherals. Bits 31:14 Reserved, must be kept at reset value. ## Bits 13:12 USBSEL[1:0]: USB clock source selection This bitfield is controlled by software to select the USB clock as follows: 00: HSI48 01: PLLQCLK⁽¹⁾ 10: HSE 11: Reserved Bits 11:10 Reserved, must be kept at reset value. ## Bits 9:8 FDCANSEL[1:0]: FDCAN clock source selection This bitfield is controlled by software to select the FDCAN clock as follows: 00: PCLK 01: PLLQCLK(1) 10: HSE 11: Reserved ## Bits 7:4 Reserved, must be kept at reset value. ## Bits 3:2 I2S2SEL[1:0]: I2S2 clock source selection This bitfield is controlled by software to select I2S2 clock source as follows: 00: SYSCLK 01: PLLPCLK 10: HSI16 11: External I2S clock selected as I2S2 ## Bits 1:0 I2S1SEL[1:0]: I2S1 clock source selection This bitfield is controlled by software to select I2S1 clock source as follows: 00: SYSCLK 01: PLLPCLK 10: HSI16 11: External I2S clock selected as I2S1 # 5.4.23 RTC domain control register (RCC_BDCR) Up to three wait states are inserted in case of successive accesses to this register. As this register is outside of the V_{CORE} domain, it is write-protected upon reset. The DBP bit of the *Power control register 1 (PWR_CR1)* must be set to allow their modification. Refer to Section 4.1.2: Battery backup of RTC domain on page 120 for further information. The register bits are only reset upon RTC domain reset (see Section 5.1.3: RTC domain reset), except the LSCOSEL, LSCOEN, and BDRST bits that are only reset upon RTC domain power-on reset. Any internal or external reset has no effect on these bits. Address offset: 0x5C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-----------------|------------|------------|------------|------------|------------|-------------|--------------|-----------|------------------|-------------------|------------|--------------|-----------------|-----------------|------------| | Res. | Res. | Res. | Res. | Res. | Res. | LSCO
SEL | LSCO
EN | Res. BDRST | | | | | | | | rw | rw | | | | | | | | rw | | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
RTC
EN | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | | 8
EL[1:0] | 7
Res. | 6
LSE
CSSD | 5
LSE
CSSON | 4
LSEDF | 3
RV[1:0] | 2
LSE
BYP | 1
LSE
RDY | 0
LSEON | - Bits 31:26 Reserved, must be kept at reset value. - Bit 25 LSCOSEL:
Low-speed clock output selection Set and cleared by software to select the low-speed output clock: 0: LSI 1: LSE Bit 24 LSCOEN: Low-speed clock output (LSCO) enable Set and cleared by software. 0: Disable 1: Enable - Bits 23:17 Reserved, must be kept at reset value. - Bit 16 BDRST: RTC domain software reset Set and cleared by software to reset the RTC domain: 0: No effect 1: Reset ## Bit 15 RTCEN: RTC clock enable Set and cleared by software. The bit enables clock to RTC and TAMP. 0: Disable 1: Enable Bits 14:10 Reserved, must be kept at reset value. #### Bits 9:8 RTCSEL[1:0]: RTC clock source selection Set by software to select the clock source for the RTC as follows: 00: No clock 01: LSE 10: LSI 11: HSE divided by 32 Once the RTC clock source is selected, it cannot be changed anymore unless the RTC domain is reset, or unless a failure is detected on LSE (LSECSSD is set). The BDRST bit can be used to reset this bitfield to 00. - Bit 7 Reserved, must be kept at reset value. - Bit 6 LSECSSD CSS on LSE failure Detection Set by hardware to indicate when a failure is detected by the clock security system on the external 32 kHz oscillator (LSE): 0: No failure detected 1: Failure detected ## Bit 5 LSECSSON CSS on LSE enable Set by software to enable the clock security system on LSE (32 kHz) oscillator as follows: 0: Disable 1: Enable LSECSSON must be enabled after the LSE oscillator is enabled (LSEON bit enabled) and ready (LSERDY flag set by hardware), and after the RTCSEL bit is selected. Once enabled, this bit cannot be disabled, except after a LSE failure detection (LSECSSD =1). In that case the software **must** disable the LSECSSON bit. ## Bits 4:3 LSEDRV[1:0] LSE oscillator drive capability Set by software to select the LSE oscillator drive capability as follows: 00: low driving capability 01: medium-low driving capability 10: medium-high driving capability 11: high driving capability Applicable when the LSE oscillator is in Xtal mode, as opposed to bypass mode. ## Bit 2 LSEBYP: LSE oscillator bypass Set and cleared by software to bypass the LSE oscillator (in debug mode). 0: Not bypassed 1: Bypassed This bit can be written only when the external 32 kHz oscillator is disabled (LSEON=0 and LSERDY=0). ## Bit 1 LSERDY: LSE oscillator ready Set and cleared by hardware to indicate when the external 32 kHz oscillator is ready (stable): 0: Not ready 1: Ready After the LSEON bit is cleared, LSERDY goes low after 6 external low-speed oscillator clock cycles. ## Bit 0 LSEON: LSE oscillator enable Set and cleared by software to enable LSE oscillator: 0: Disable 1: Enable # 5.4.24 Control/status register (RCC_CSR) Up to three wait states are inserted in case of successive accesses to this register. The register is reset upon system reset, except for reset flags that are only reset upon power reset. Address: 0x60 Reset value: 0xXX00 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |--------------|--------------|--------------|-------------|-------------|-------------|-------------|------|------|------|------|------|------|------|------------|-------| | LPWR
RSTF | WWDG
RSTF | IWWG
RSTF | SFT
RSTF | PWR
RSTF | PIN
RSTF | OBL
RSTF | Res. | RMVF | Res. | r | r | r | r | r | r | r | | rw | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. LSI
RDY | LSION | | | | | | | | | | | | | | | | r | rw | RM0444 Rev 5 215/1390 ## Bit 31 LPWRRSTF: Low-power reset flag Set by hardware when a reset occurs due to illegal Stop, Standby, or Shutdown mode entry. Cleared by setting the RMVF bit. - 0: No illegal mode reset occurred - 1: Illegal mode reset occurred This operates only if nRST STOP, nRST STDBY or nRST SHDW option bits are cleared. ## Bit 30 WWDGRSTF: Window watchdog reset flag Set by hardware when a window watchdog reset occurs. Cleared by setting the RMVF bit. - 0: No window watchdog reset occurred - 1: Window watchdog reset occurred #### Bit 29 IWDGRSTF: Independent window watchdog reset flag Set by hardware when an independent watchdog reset domain occurs. Cleared by setting the RMVF bit. - 0: No independent watchdog reset occurred - 1: Independent watchdog reset occurred ## Bit 28 SFTRSTF: Software reset flag Set by hardware when a software reset occurs. Cleared by setting the RMVF bit. - 0: No software reset occurred - 1: Software reset occurred ## Bit 27 PWRRSTF: BOR or POR/PDR flag Set by hardware when a BOR or POR/PDR occurs. Cleared by setting the RMVF bit. - 0: No BOR or POR occurred - 1: BOR or POR occurred #### Bit 26 PINRSTF: Pin reset flag Set by hardware when a reset from the NRST pin occurs. Cleared by setting the RMVF bit. - 0: No reset from NRST pin occurred - 1: Reset from NRST pin occurred # Bit 25 OBLRSTF: Option byte loader reset flag Set by hardware when a reset from the Option byte loading occurs. Cleared by setting the RMVF bit. - 0: No reset from Option byte loading occurred - 1: Reset from Option byte loading occurred - Bit 24 Reserved, must be kept at reset value. #### Bit 23 RMVF: Remove reset flags Set by software to clear the reset flags. - 0: No effect - 1: Clear reset flags Bits 22:2 Reserved, must be kept at reset value. ### Bit 1 LSIRDY: LSI oscillator ready Set and cleared by hardware to indicate when the LSI oscillator is ready (stable): 0: Not ready 1: Ready After the LSION bit is cleared, LSIRDY goes low after 3 LSI oscillator clock cycles. This bit can be set even if LSION = 0 if the LSI is requested by the Clock Security System on LSE, by the Independent Watchdog or by the RTC. ### Bit 0 LSION: LSI oscillator enable Set and cleared by software to enable/disable the LSI oscillator: 0: Disable 1: Enable #### 5.4.25 **RCC** register map The following table gives the RCC register map and the reset values. Table 36. RCC register map and reset values | Off-
set | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 77 | 17 | 20 | 19 | 18 | 4٤ | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 2 | 9 | 2 | 4 | 8 | 2 | 7 | 0 | |-------------|-----------------|------|-----------|-------------|------|------|-------|-------------|-------|----------|--------------|---------------|------|-------|---------------|--------------|-------|------|------|-----------|-------------|-----------|-------------|----------|-------|-----------------|------|------|----------|------|------|---------|------| | 0x00 | RCC_CR | Res. | Res. | Res. | Res. | Res. | Res. | PLLRDY | PLLON | HSI48RDY | HSI48ON | Res. | Res. | CSSON | HSEBYP | HSERDY | HSEON | Res. | Res. | | HSIDIV[2:0] | | HSIRDY | HSIKERON | HSION | Res. | | Reset value | | | | | | | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 1 | 0 | 1 | | | | | | | | | | 0x04 | RCC_ICSCR | Res. | HS | SIT | RIN | <i>I</i> [6 | :0] | | | | HS | IC/ | \L[| 7:0 |] | | | OXO I | Reset value | | | | | | | | | | | | | | | | | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | Χ | Χ | Χ | Χ | Χ | Χ | X | X | | 0x08 | RCC_CFGR | | | MCOPRE[5:0] | | | 10.67 | MCCSEL[3.0] | | | MCC200E12-01 | MOOZE NE[3.0] | | | MC028E1 [3:0] | MOO40LE[0.0] | | Res. | | PPRE[2:0] | | | HDDE[3·0] | | | Res. | Res. | | SWS[2:0] | | | SW[2:0] | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | | 0x0C | RCC_PLL
CFGR | | PLLR[2:0] | | | | | PLLP[4:0] | | | PLLPEN | Res. | | F | PLL | _N[| 6:0 |] | | Res. | | LL
2:0 | | Res. | Res. | PL
SR
[1: | C | | | | | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | | 0 | 0 | | 0x10 | Reserved | Res. | 0x14 | RCC_CRRCR | Res. | | HS | 148 | CA | \L[8 | 8:0] |] | | | 0.7.1-4 | Reset value | х | Х | Х | х | х | Х | х | х | Х | RM0444 Rev 5 217/1390 Table 36. RCC register map and reset values (continued) | | | | | | |). r | | | - 9 | | | 1116 | -1- | | | - | •• | | | | , | | | | , | | | | | | | | | |-------------|------------------|-----------|-----------|---------|--------|--------|----------|----------|--------|---------|---------|---------|------------|------------------|------------------|------------------|----------|----------|------------------|--------|----------|---------|------|-----------|------------------|-------------------|------|----------|----------|----------|------------|----------------|-----------| | Off-
set | Register | 31 | 30 | 29 | 28 | 27 | 56 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 7 | 3 | 2 | 1 | 0 | | 0x18 | RCC_CIER | Res. PLLRDYIE | HSERDYIE | HSIRDYIE | HSI48RDYIE | LSERDYIE | LSIRDYIE | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | | 0x1C | RCC_CIFR | Res. LSECSSF | CSSF | Res. | Res. | PLLRDYF | HSERDYF | HSIRDYF | HSI48RDYF | LSERDYF | LSIRDYF | | | Reset value | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | | 0x20 | RCC_CICR | Res. LSECSSC | CSSC | Res. | Res. | PLLRDYC | HSERDYC | HSIRDYC | HSI48RDYC | LSERDYC | LSIRDYC | | | Reset value | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | | 0x24 | RCC_
IOPRSTR | Res. GPIOFRST | GPIOERST | | | GPIOBRST | GPIOARST | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | | 0x28 | RCC_
AHBRSTR | Res. RNGRST | Res. | AESRST | Res. | Res. | Res. | CRCRST | Res. | Res. | Res. | FLASHRST | Res. | Res. | Res. | Res. | Res. | Res. | DMA2RST | O DMA1RST | | | Reset value | | | | | | | | | | | | | | 0 | | 0 | | | | 0 | | | | 0 | | | | | | | 0 | 0 | | 0x2C | RCC_
APBRSTR1 | LPTIM1RST | LPTIM2RST | DAC1RST | PWRRST | DBGRST | UCPD2RST | UCPD1RST | CECRST | I2C3RST | 12C2RST | I2C1RST | LPUART1RST | USART4RST | USART3RST | USART2RST | CRSRST | SPI3RST | SPI2RST | USBRST | FDCANRST | Res. | Res. | USART6RST | USART5RST |
LPUART2RST | Res. | TIM7RST | TIM6RST | Res. | | TIM3RST | | | | Reset value | 0 | | | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | | 0x30 | RCC_
APBRSTR2 | Res. ADCRST | Res. | TIM17RST | TIM16RST | TIM15RST | TIM14RST | USART1RST | Res. | SPI1RST | TIM1RST | Res. SYSCFGRST | | | Reset value | | | | | | | | | | | | 0 | | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | | | | | | | | | | 0 | | 0x34 | RCC_
IOPENR | Res. GPIOFEN | | | | GPIOBEN | GPIOAEN | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | Table 36. RCC register map and reset values (continued) | Off- | Register | 31 | 30 | 29 | 28 | 27 | 5 6 | 25 | 24 | 23 | 22 | 21 | 50 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | ∞ | 7 | 9 | 2 | 4 | က | 2 | 1 | 0 | |--------------------|-------------------|------------|------------|----------|---------|---------|------------------|----------------|---------|----------|----------|----------|-------------|-------------------|-------------------|-------------------|-----------|-----------------|-------------------|---------|------------------|----------|------|-------------------|-------------------|-------------|------|----------|-----------------|-----------|----------|---------------|------------| | set
0x38 | RCC_
AHBENR | Res. RNGEN | Res. | AESEN | Res. | Res. | Res. | CRCEN | Res. | Res. | Res. | FLASHEN | Res. | Res. | Res. | Res. | Res. | Res. | DMA2EN | DMA1EN | | | Reset value | | | | | | | | | | | | | | 0 | | 0 | | | | 0 | | | | 1 | | | | | | | 0 | 0 | | 0x3C | RCC_
APBENR1 | LPTIM1EN | LPTIM2EN | DAC1EN | PWREN | DBGEN | NCPDZEN | UCPD1EN | CECEN | 12C3EN | ISCSEN | I2C1EN | LPUART1EN | USART4EN | USART3EN | USART2EN | CRSEN | SPI3EN | SPIZEN | NSBEN | FDCANEN | Res. | Res. | USART6EN | USART5EN | LPUART2EN | Res. | N3/WIL | LIM6EN | Res. | TIM4EN | TIM3EN | TIM2EN | | | Reset value | 0 | | | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | | 0x40 | RCC_
APBENR2 | Res. ADCEN | Res. | TIM17EN | TIM16EN | TIM15EN | TIM14EN | USART1EN | Res. | SPI1EN | TIM1EN | Res. SYSCFGEN | | | Reset value | | | | | | | | | | | | 0 | | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | | | | | | | | | | 0 | | 0x44 | RCC_
IOPSMENR | Res. | | GPIODSMEN | | | GPIOASMEN | | | Reset value | 1 | 1 | 1 | 1 | 1 | 1 | | 0x48 | RCC_
AHBSMENR | Res. RNGSMEN | Res. | AESSMEN | Res. | Res. | Res. | CRCSMEN | Res. | Res. | SRAMSMEN | FLASHSMEN | Res. | Res. | Res. | Res. | Res. | Res. | | DMA1SMEN | | | Reset value | | | | | | | | | | | | | | 1 | | 1 | | | | 1 | | | 1 | 1 | | | | | | | 1 | 1 | | 0x4C | RCC_
APBSMENR1 | LPTIM1SMEN | LPTIM2SMEN | DAC1SMEN | PWRSMEN | DBGSMEN | UCPD2SMEN | UCPD1SMEN | CECSMEN | I2C3SMEN | I2C2SMEN | I2C1SMEN | LPUART1SMEN | USART4SMEN | USART3SMEN | USART2SMEN | CRSSMEN | SPI3SMEN | SPI2SMEN | USBSMEN | FDCANSMEN | Res. | Res. | USART6SMEN | USART5SMEN | LPUART2SMEN | Res. | TIM7SMEN | TIM6SMEN | Res. | TIM4SMEN | TIM3SMEN | TIM2SMEN | | | Reset value | 1 | | | 1 | 1 | 1 | | 1 | 1 | | 1 | 1 | 1 | | 0x50 | RCC_
APBSMENR2 | Res. ADCSMEN | Res. | TIM17SMEN | TIM16SMEN | TIM15SMEN | TIM14SMEN | USART1SMEN | Res. | SPI1SMEN | TIM1SMEN | Res. SYSCFGSMEN | | | Reset value | | | | | | | | | | | | 1 | | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | | | | | | | | | | | 1 | RM0444 Rev 5 219/1390 Table 36. RCC register map and reset values (continued) | Off- | Register | 31 | 30 | 29 | 28 | 27 | 5 6 | 2 | 24 | က | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 5 | 4 | ~ | 2 | _ | 0 | |------|-------------|--------------|------------|-------------|---------|--------------|------------|---------|----------|------|---------|------------------|-------|------------------|------|------|-------|------------------|----------------------|---------------|-------|-------------------|------|---------------------|------|------|---------|-----------------|----------------|-----------------|---------|------------------|-------| | set | Register | 3 | က | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 1 | _ | _ | 1 | 7 | 1 | 1 | _ | 1 | 1 | | | | | ì | • | `, | `` | ` | | | 0x54 | RCC_CCIPR | ADCSEI [1:0] | 700 FE 1-0 | RNGDIV[1:0] | | BNGSEI [1-0] | N | Res. | TIM15SEL | Res. | TIM1SEL | I DTIMOSEI [1-0] | [0:-] | I PTIM1SEI [1-0] | | Res. | Res. | 12C212S1SEL[1-0] | 12 OZ12O 1 OLL[1.0] | 12C1SEI [1:0] | [5:-] | P ART1SF [1·0] | E. C | I PI IART2SEI [1·0] | | Res. | CECSEL | USART3SFI [1:0] | | USART2SFI [1:0] | | IISART1SFI [1:0] | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x58 | RCC_CCIPR2 | Res. USBSFI [1:0] | 0.000 | Res. | Res. | FDCANSEI [1-0] | | Res. | Res. | Res. | Res. | 12S2SFI [1·0] | 1505051 | 12S1SEI [1:0] | | | | Reset value | | | | | | | | | | | | | | | | | | | 0 | 0 | | | 0 | 0 | | | | | 0 | 0 | 0 | 0 | | 0x5C | RCC_BDCR | Res. | Res. | Res. | Res. | Res. | Res. | LSCOSEL | LSCOEN | Res. BDRST | RTCEN | Res. | Res. | Res. | Res. | Res. | RTC SEI [1:0] | | Res. | LSECSSD | LSECSSON | I.SE DRVITI-01 | | LSEBYP | LSERDY | LSEON | | | Reset value | | | | | | | 0 | 0 | | | | | | | | 0 | 0 | | | | | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x60 | RCC_CSR | LPWRRSTF | WWDGRSTF | IWDGRSTF | SFTRSTF | PWRRSTF | PINRSTF | OBLRSTF | Res. | RMVF | Res. LSIRDY | LSION | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | Refer to Section 2.2 on page 58 for the register boundary addresses. # 6 Clock recovery system (CRS) This section applies to STM32G0B1 and STM32G0C1 devices only. ## 6.1 Introduction The clock recovery system (CRS) is an advanced digital controller acting on the internal fine-granularity trimmable RC oscillator HSI48. The CRS provides powerful means for oscillator output frequency evaluation, based on comparison with a selectable synchronization signal. It is capable of doing automatic adjustment of oscillator trimming based on the measured frequency error value, while keeping the possibility of a manual trimming. The CRS is ideally suited to provide a precise clock to the USB peripheral. In such case, the synchronization signal can be derived from the start-of-frame (SOF) packet signalization on the USB bus, which is sent by a USB host at 1 ms intervals. The synchronization signal can also be derived from the LSE oscillator output or it can be generated by user software. ## 6.2 CRS main features - Selectable synchronization source with programmable prescaler and polarity: - External pin - LSE oscillator output - USB SOF packet reception - Possibility to generate synchronization pulses by software - Automatic oscillator trimming capability with no need of CPU action - Manual control option for faster start-up convergence - 16-bit frequency error counter with automatic error value capture and reload - Programmable limit for automatic frequency error value evaluation and status reporting - Maskable interrupts/events: - Expected synchronization (ESYNC) - Synchronization OK (SYNCOK) - Synchronization warning (SYNCWARN) - Synchronization or trimming error (ERR) # 6.3 CRS implementation Table 37. CRS features | Feature | CRS1 | |------------|--------| | TRIM width | 7 bits | Internal signal name Signal type Description crs_sync_in_1 Input 00: GPIO AF selected as SYNC signal source crs_sync_in_2 Input 01: LSE selected as SYNC signal source crs_sync_in_3 Input 10: USB SOF selected as SYNC signal source (default) crs_sync_in_4 Input 11: Reserved Table 38. CRS internal input/output signals ## 6.4 CRS functional description ## 6.4.1 CRS block diagram ## 6.4.2 Synchronization input For more information on the CRS synchronization source configuration, refer to Section 6.7.2: CRS configuration register (CRS_CFGR). It is also possible to generate a synchronization event by software, by setting the SWSYNC bit in the CRS_CR register. ## 6.4.3 Frequency error measurement The frequency error counter is a 16-bit down/up counter which is reloaded with the RELOAD value on each SYNC event. It starts counting down till it reaches the zero value, where the ESYNC (expected synchronization) event is generated. Then it starts counting up to the OUTRANGE limit where it eventually stops (if no SYNC event is received) and generates a SYNCMISS event. The OUTRANGE limit is defined as the frequency error limit (FELIM field of the CRS_CFGR register) multiplied by 128. When the SYNC event is detected, the actual value of the frequency error counter and its counting direction are stored in the FECAP (frequency error capture) field and in the FEDIR (frequency error direction) bit of the CRS_ISR register. When the SYNC event is detected during the downcounting phase (before reaching the zero value), it means that the actual frequency is lower than the target (and so, that the TRIM value must be incremented), while when it is detected during the upcounting phase it means that the actual frequency is higher (and that the TRIM value must be decremented). Figure 16. CRS counter behavior 4 ## 6.4.4 Frequency error evaluation and automatic trimming The measured frequency error is evaluated by comparing its value with a set of limits: - TOLERANCE LIMIT, given directly in the FELIM field of the CRS CFGR register - WARNING LIMIT, defined as 3 * FELIM value - OUTRANGE (error limit), defined as 128 * FELIM value The result of this comparison is used to generate the status indication and also to control the automatic trimming which is enabled by setting the AUTOTRIMEN bit in the CRS_CR register: - When the frequency
error is below the tolerance limit, it means that the actual trimming value in the TRIM field is the optimal one, hence no trimming action is needed. - SYNCOK status indicated - TRIM value not changed in AUTOTRIM mode - When the frequency error is below the warning limit but above or equal to the tolerance limit, it means that some trimming action is necessary but that adjustment by one trimming step is enough to reach the optimal TRIM value. - SYNCOK status indicated - TRIM value adjusted by one trimming step in AUTOTRIM mode - When the frequency error is above or equal to the warning limit but below the error limit, it means that a stronger trimming action is necessary, and there is a risk that the optimal TRIM value is not reached for the next period. - SYNCWARN status indicated - TRIM value adjusted by two trimming steps in AUTOTRIM mode - When the frequency error is above or equal to the error limit, it means that the frequency is out of the trimming range. This can also happen when the SYNC input is not clean or when some SYNC pulse is missing (for example when one USB SOF is corrupted). - SYNCERR or SYNCMISS status indicated - TRIM value not changed in AUTOTRIM mode If the actual value of the TRIM field is so close to its limits that the automatic trimming would force it to overflow or underflow, then the TRIM value is set just to the limit and the TRIMOVF status is indicated. In AUTOTRIM mode (AUTOTRIMEN bit set in the CRS_CR register), the TRIM field of CRS_CR is adjusted by hardware and is read-only. ## 6.4.5 CRS initialization and configuration #### **RELOAD** value The RELOAD value must be selected according to the ratio between the target frequency and the frequency of the synchronization source after prescaling. It is then decreased by one to reach the expected synchronization on the zero value. The formula is the following: RELOAD = $$(f_{TARGET} / f_{SYNC}) - 1$$ The reset value of the RELOAD field corresponds to a target frequency of 48 MHz and a synchronization signal frequency of 1 kHz (SOF signal from USB). RM0444 Rev 5 224/1390 Note: #### **FELIM** value The selection of the FELIM value is closely coupled with the HSI48 oscillator characteristics and its typical trimming step size. The optimal value corresponds to half of the trimming step size, expressed as a number of HSI48 oscillator clock ticks. The following formula can be used: The result must be always rounded up to the nearest integer value to obtain the best trimming response. If frequent trimming actions are not needed in the application, the hysteresis can be increased by slightly increasing the FELIM value. The reset value of the FELIM field corresponds to $(f_{TARGET} / f_{SYNC}) = 48000$ and to a typical trimming step size of 0.14%. Caution: There is no hardware protection from a wrong configuration of the RELOAD and FELIM fields which can lead to an erratic trimming response. The expected operational mode requires proper setup of the RELOAD value (according to the synchronization source frequency), which is also greater than 128 * FELIM value (OUTRANGE limit). ## 6.5 CRS low-power modes Table 39. Effect of low-power modes on CRS | Mode | Description | |---------|---| | Sleep | No effect. CRS interrupts cause the device to exit the Sleep mode. | | Stop | CRS registers are frozen. The CRS stops operating until the Stop mode is exited and the HSI48 oscillator restarted. | | Standby | The CRS peripheral is powered down and must be reinitialized after exiting Standby mode. | ## 6.6 CRS interrupts Table 40. Interrupt control bits | Interrupt event | Event flag | Enable
control bit | Clear
flag bit | |--|------------|-----------------------|-------------------| | Expected synchronization | ESYNCF | ESYNCIE | ESYNCC | | Synchronization OK | SYNCOKF | SYNCOKIE | SYNCOKC | | Synchronization warning | SYNCWARNF | SYNCWARNIE | SYNCWARNC | | Synchronization or trimming error (TRIMOVF, SYNCMISS, SYNCERR) | ERRF | ERRIE | ERRC | 225/1390 ## 6.7 CRS registers Refer to Section 1.2 on page 53 for a list of abbreviations used in register descriptions. The peripheral registers can be accessed only by words (32-bit). ## 6.7.1 CRS control register (CRS CR) Address offset: 0x00 Reset value: 0x0000 X000 (X=4 for products supporting 7-bit TRIM width, otherwise X=2) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|-----------|------|------|------|------------|----------------|------|------|-------------|-------|----------------|--------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | 7 | TRIM[6:0] | l | | | SW
SYNC | AUTO
TRIMEN | CEN | Res. | ESYNCI
E | ERRIE | SYNC
WARNIE | SYNC
OKIE | | | rw rt_w1 | rw | rw | | rw | rw | rw | rw | Bits 31:15 Reserved, must be kept at reset value. #### Bits 14:8 TRIM[6:0]: HSI48 oscillator smooth trimming For product supporting the 7-bit TRIM width (see *Section 6.3*), the default value of the HSI48 oscillator smooth trimming is 64, which corresponds to the middle of the trimming interval. For products supporting the 6-bit TRIM width (see *Section 6.3*) this bit is reserved, must be kept at reset value. #### Bit 7 SWSYNC: Generate software SYNC event This bit is set by software in order to generate a software SYNC event. It is automatically cleared by hardware. - 0: No action - 1: A software SYNC event is generated. ## Bit 6 AUTOTRIMEN: Automatic trimming enable This bit enables the automatic hardware adjustment of TRIM bits according to the measured frequency error between two SYNC events. If this bit is set, the TRIM bits are read-only. The TRIM value can be adjusted by hardware by one or two steps at a time, depending on the measured frequency error value. Refer to *Section 6.4.4* for more details. - 0: Automatic trimming disabled, TRIM bits can be adjusted by the user. - 1: Automatic trimming enabled, TRIM bits are read-only and under hardware control. ### Bit 5 CEN: Frequency error counter enable This bit enables the oscillator clock for the frequency error counter. - 0: Frequency error counter disabled - 1: Frequency error counter enabled When this bit is set, the CRS_CFGR register is write-protected and cannot be modified. #### Bit 4 Reserved, must be kept at reset value. #### Bit 3 **ESYNCIE**: Expected SYNC interrupt enable - 0: Expected SYNC (ESYNCF) interrupt disabled - 1: Expected SYNC (ESYNCF) interrupt enabled Bit 2 **ERRIE**: Synchronization or trimming error interrupt enable 0: Synchronization or trimming error (ERRF) interrupt disabled 1: Synchronization or trimming error (ERRF) interrupt enabled Bit 1 SYNCWARNIE: SYNC warning interrupt enable 0: SYNC warning (SYNCWARNF) interrupt disabled 1: SYNC warning (SYNCWARNF) interrupt enabled Bit 0 SYNCOKIE: SYNC event OK interrupt enable 0: SYNC event OK (SYNCOKF) interrupt disabled 1: SYNC event OK (SYNCOKF) interrupt enabled ## 6.7.2 CRS configuration register (CRS_CFGR) This register can be written only when the frequency error counter is disabled (CEN bit is cleared in CRS_CR). When the counter is enabled, this register is write-protected. Address offset: 0x04 Reset value: 0x2022 BB7F | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |---------|------|-------|---------|------|----|---------|--------|--------|----|----|-------|--------|----|----|----| | SYNCPOL | Res. | SYNCS | RC[1:0] | Res. | SY | NCDIV[2 | 2:0] | | | | FELIN | M[7:0] | | | | | rw | | rw | rw | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | RELOAD | [15:0] | | | | | | | | | rw #### Bit 31 SYNCPOL: SYNC polarity selection This bit is set and cleared by software to select the input polarity for the SYNC signal source. 0: SYNC active on rising edge (default) 1: SYNC active on falling edge Bit 30 Reserved, must be kept at reset value. ### Bits 29:28 SYNCSRC[1:0]: SYNC signal source selection These bits are set and cleared by software to select the SYNC signal source (see *Table 38: CRS internal input/output signals*): 00: crs_sync_in_1 selected as SYNC signal source 01: crs sync in 2 selected as SYNC signal source 10: crs sync in 3 selected as SYNC signal source 11: crs sync in 4 selected as SYNC signal source Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the periodic USB SOF is not generated by the host. No SYNC signal is therefore provided to the CRS to calibrate the HSI48 oscillator on the run. To guarantee the required clock precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs must be used as SYNC signal. Bit 27 Reserved, must be kept at reset value. RM0444 Rev 5 227/1390 #### Bits 26:24 SYNCDIV[2:0]: SYNC divider These bits are set and cleared by software to control the division factor of the SYNC signal. 000: SYNC not divided (default) 001: SYNC divided by 2 010: SYNC divided by 4 011: SYNC divided by 8 100: SYNC divided by 16 101: SYNC divided by 32 110: SYNC divided by 64 111: SYNC divided by 128 #### Bits 23:16 FELIM[7:0]: Frequency error limit FELIM contains the value to be used to evaluate the captured frequency error value latched in the FECAP[15:0] bits of the CRS_ISR register. Refer to Section 6.4.4 for more details about FECAP evaluation. ### Bits 15:0 RELOAD[15:0]: Counter reload value RELOAD is the value to be loaded in the frequency error counter with each SYNC event. Refer to *Section 6.4.3* for more details about counter behavior. ## 6.7.3 CRS interrupt and status register (CRS_ISR) Address offset: 0x08 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------|------|------|------|------|-------------|--------------|-------------
----------|------|------|------|--------|------|---------------|-------------| | | | | | | | | FECA | AP[15:0] | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | FEDIR | Res. | Res. | Res. | Res. | TRIM
OVF | SYNC
MISS | SYNC
ERR | Res. | Res. | Res. | Res. | ESYNCF | ERRF | SYNC
WARNF | SYNC
OKF | | r | | | | | r | r | r | | | | | r | r | r | r | #### Bits 31:16 FECAP[15:0]: Frequency error capture FECAP is the frequency error counter value latched in the time of the last SYNC event. Refer to *Section 6.4.4* for more details about FECAP usage. #### Bit 15 **FEDIR**: Frequency error direction FEDIR is the counting direction of the frequency error counter latched in the time of the last SYNC event. It shows whether the actual frequency is below or above the target. - 0: Upcounting direction, the actual frequency is above the target. - 1: Downcounting direction, the actual frequency is below the target. #### Bits 14:11 Reserved, must be kept at reset value. #### Bit 10 TRIMOVF: Trimming overflow or underflow This flag is set by hardware when the automatic trimming tries to over- or under-flow the TRIM value. An interrupt is generated if the ERRIE bit is set in the CRS_CR register. It is cleared by software by setting the ERRC bit in the CRS_ICR register. - 0: No trimming error signalized - 1: Trimming error signalized #### Bit 9 SYNCMISS: SYNC missed This flag is set by hardware when the frequency error counter reached value FELIM * 128 and no SYNC was detected, meaning either that a SYNC pulse was missed or that the frequency error is too big (internal frequency too high) to be compensated by adjusting the TRIM value, and that some other action has to be taken. At this point, the frequency error counter is stopped (waiting for a next SYNC) and an interrupt is generated if the ERRIE bit is set in the CRS_CR register. It is cleared by software by setting the ERRC bit in the CRS_ICR register. 0: No SYNC missed error signalized 1: SYNC missed error signalized #### Bit 8 SYNCERR: SYNC error This flag is set by hardware when the SYNC pulse arrives before the ESYNC event and the measured frequency error is greater than or equal to FELIM * 128. This means that the frequency error is too big (internal frequency too low) to be compensated by adjusting the TRIM value, and that some other action has to be taken. An interrupt is generated if the ERRIE bit is set in the CRS_CR register. It is cleared by software by setting the ERRC bit in the CRS ICR register. 0: No SYNC error signalized 1: SYNC error signalized #### Bits 7:4 Reserved, must be kept at reset value. #### Bit 3 ESYNCF: Expected SYNC flag This flag is set by hardware when the frequency error counter reached a zero value. An interrupt is generated if the ESYNCIE bit is set in the CRS_CR register. It is cleared by software by setting the ESYNCC bit in the CRS_ICR register. 0: No expected SYNC signalized 1: Expected SYNC signalized ### Bit 2 ERRF: Error flag This flag is set by hardware in case of any synchronization or trimming error. It is the logical OR of the TRIMOVF, SYNCMISS and SYNCERR bits. An interrupt is generated if the ERRIE bit is set in the CRS_CR register. It is cleared by software in reaction to setting the ERRC bit in the CRS_ICR register, which clears the TRIMOVF, SYNCMISS and SYNCERR bits. 0: No synchronization or trimming error signalized 1: Synchronization or trimming error signalized #### Bit 1 SYNCWARNF: SYNC warning flag This flag is set by hardware when the measured frequency error is greater than or equal to FELIM * 3, but smaller than FELIM * 128. This means that to compensate the frequency error, the TRIM value must be adjusted by two steps or more. An interrupt is generated if the SYNCWARNIE bit is set in the CRS_CR register. It is cleared by software by setting the SYNCWARNC bit in the CRS_ICR register. 0: No SYNC warning signalized 1: SYNC warning signalized #### Bit 0 SYNCOKF: SYNC event OK flag This flag is set by hardware when the measured frequency error is smaller than FELIM * 3. This means that either no adjustment of the TRIM value is needed or that an adjustment by one trimming step is enough to compensate the frequency error. An interrupt is generated if the SYNCOKIE bit is set in the CRS_CR register. It is cleared by software by setting the SYNCOKC bit in the CRS_ICR register. 0: No SYNC event OK signalized 1: SYNC event OK signalized RM0444 Rev 5 229/1390 ## 6.7.4 CRS interrupt flag clear register (CRS_ICR) Address offset: 0x0C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|--------|------|---------------|-------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. ESYNCC | ERRC | SYNC
WARNC | SYNC
OKC | | | | | | | | | | | | | | rw | rw | rw | rw | Bits 31:4 Reserved, must be kept at reset value. Bit 3 ESYNCC: Expected SYNC clear flag Writing 1 to this bit clears the ESYNCF flag in the CRS_ISR register. Bit 2 ERRC: Error clear flag Writing 1 to this bit clears TRIMOVF, SYNCMISS and SYNCERR bits and consequently also the ERRF flag in the CRS_ISR register. Bit 1 SYNCWARNC: SYNC warning clear flag Writing 1 to this bit clears the SYNCWARNF flag in the CRS_ISR register. Bit 0 SYNCOKC: SYNC event OK clear flag Writing 1 to this bit clears the SYNCOKF flag in the CRS_ISR register. # 6.7.5 CRS register map Table 41. CRS register map and reset values | | | | | | | | | | | | | | | | | | 1110 | | | | | | | | | | | | | | | | | |--------|-------------|---------|------|---|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------|------|------|------|--------|------|-----------|---------|------------|------|------|---------|-------|------------|----------| | Offset | Register | 31 | 30 | 67 | 28 | 27 | 97 | 25 | 24 | 23 | 77 | 17 | 20 | 19 | 18 | 41 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 2 | 9 | 2 | 7 | 8 | 7 | 1 | 0 | | 0x00 | CRS_CR | Res. TRIM[6] | | 7 | ΓRIM | 1[5:0 |)] | | SWSYNC | AUTOTRIMEN | CEN | Res. | ESYNCIE | ERRIE | SYNCWARNIE | SYNCOKIE | | | Reset value | | | | | | | | | | | | | | | | | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x04 | CRS_CFGR | SYNCPOL | Res. | SYNC SRC [1:0] SYNC [2:0] FELIM[7:0] 1 0 0 0 0 0 0 1 0 0 0 1 0 | REI | _OA | .D[1 | 5:0] | | | | | | | | | Reset value | 0 | | 1 | 0 | | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 0x08 | CRS_ISR | | | | | | | | | | | | | | | | | | Res. | Res. | Res. | Res. | ESYNCF | ERRF | SYNCWARNF | SYNCOKF | | | | | | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | | 0x0C | CRS_ICR | Res. ESYNCC | ERRC | SYNCWARNC | SYNCOKC | | | Reset value | 0 | 0 | 0 | 0 | Refer to Section 2.2 on page 58 for the register boundary addresses. 47/ RM0444 Rev 5 231/1390 # 7 General-purpose I/Os (GPIO) ## 7.1 Introduction Each general-purpose I/O port has four 32-bit configuration registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR and GPIOx_PUPDR), two 32-bit data registers (GPIOx_IDR and GPIOx_ODR) and a 32-bit set/reset register (GPIOx_BSRR). In addition all GPIOs have a 32-bit locking register (GPIOx_LCKR) and two 32-bit alternate function selection registers (GPIOx AFRH and GPIOx AFRL). ### 7.2 GPIO main features - Output states: push-pull or open drain + pull-up/down - Output data from output data register (GPIOx_ODR) or peripheral (alternate function output) - Speed selection for each I/O - Input states: floating, pull-up/down, analog - Input data to input data register (GPIOx IDR) or peripheral (alternate function input) - Bit set and reset register (GPIOx_BSRR) for bitwise write access to GPIOx_ODR - Locking mechanism (GPIOx_LCKR) provided to freeze the I/O port configurations - Analog function - Alternate function selection registers (at most 8 AFs possible per I/O) - Fast toggle capable of changing every two clock cycles - Highly flexible pin multiplexing allows the use of I/O pins as GPIOs or as one of several peripheral functions # 7.3 GPIO functional description Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each port bit of the general-purpose I/O (GPIO) ports can be individually configured by software in several modes: - Input floating - Input pull-up - Input-pull-down - Analog - Output open-drain with pull-up or pull-down capability - Output push-pull with pull-up or pull-down capability - Alternate function push-pull with pull-up or pull-down capability - Alternate function open-drain with pull-up or pull-down capability Each I/O port bit is freely programmable, however the I/O port registers have to be accessed as 32-bit words, half-words or bytes. The purpose of the GPIOx_BSRR and GPIOx_BRR registers is to allow atomic read/modify accesses to any of the GPIOx_ODR registers. In this way, there is no risk of an IRQ occurring between the read and the modify access. *Figure 17* shows the basic structures of a standard I/O port bit. *Table 42* gives the possible port bit configurations. Figure 17. Basic structure of an I/O port bit Table 42. Port bit configuration table⁽¹⁾ | MODE(i)
[1:0] | OTYPE(i) | OSPEED(i)
[1:0] | | PD(i)
:0] | I/O conf | iguration | |------------------|----------|--------------------|---|--------------|-----------------|-----------| | | 0 | | 0 | 0 | GP output | PP | | | 0 | | 0 | 1 | GP output | PP + PU | | | 0 | | 1 | 0 | GP output | PP + PD | | 01 | 0 | SPEED | 1 | 1 | Reserved |
 | 01 | 1 | [1:0] | 0 | 0 | GP output | OD | | | 1 | | 0 | 1 | GP output | OD + PU | | | 1 | | 1 | 0 | GP output | OD + PD | | | 1 | | 1 | 1 | Reserved (GP or | utput OD) | | | 0 | | 0 | 0 | AF | PP | | | 0 | | 0 | 1 | AF | PP + PU | | | 0 | | 1 | 0 | AF | PP + PD | | 10 | 0 | SPEED | 1 | 1 | Reserved | | | 10 | 1 | [1:0] | 0 | 0 | AF | OD | | | 1 | | 0 | 1 | AF | OD + PU | | | 1 | | 1 | 0 | AF | OD + PD | | | 1 | | 1 | 1 | Reserved | | RM0444 Rev 5 233/1390 | MODE(i)
[1:0] | OTYPE(i) | | EED(i)
1:0] | | PD(i)
:0] | I/O conf | iguration | |------------------|----------|---|----------------|---|--------------|-----------------|-----------| | | х | х | Х | 0 | 0 | Input | Floating | | 00 | Х | х | Х | 0 | 1 | Input | PU | | 00 | Х | х | Х | 1 | 0 | Input | PD | | | Х | х | Х | 1 | 1 | Reserved (input | floating) | | | х | х | х | 0 | 0 | Input/output | Analog | | 11 | Х | х | Х | 0 | 1 | | | | '' | Х | х | х | 1 | 0 | Reserved | | | | х | х | Х | 1 | 1 | | | Table 42. Port bit configuration table⁽¹⁾ (continued) ## 7.3.1 General-purpose I/O (GPIO) During and just after reset, the alternate functions are not active and most of the I/O ports are configured in analog mode. The debug pins are in AF pull-up/pull-down after reset: - PA14: SWCLK in pull-down - PA13: SWDIO in pull-up Note: PA14 is shared with E PA14 is shared with BOOT0 functionality. Caution is required as the debugging device can manipulate BOOT0 pin value. Upon reset, the UCPD CCx lines present a pull-down resistor that can be disabled by setting the UCPDx STROBE bit of the SYSCFG CFGR1 register. When the pin is configured as output, the value written to the output data register (GPIOx_ODR) is output on the I/O pin. It is possible to use the output driver in push-pull mode or open-drain mode (only the low level is driven, high level is HI-Z). The input data register (GPIOx_IDR) captures the data present on the I/O pin at every AHB clock cycle. All GPIO pins have weak internal pull-up and pull-down resistors, which can be activated or not depending on the value in the GPIOx PUPDR register. ## 7.3.2 I/O pin alternate function multiplexer and mapping The device I/O pins are connected to on-board peripherals/modules through a multiplexer that allows only one peripheral alternate function (AF) connected to an I/O pin at a time. In this way, there can be no conflict between peripherals available on the same I/O pin. GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate function. Each I/O pin has a multiplexer with up to eight alternate function inputs (AF0 to AF7) that can be configured through the GPIOx_AFRL (for pin 0 to 7) and GPIOx_AFRH (for pin 8 to 15) registers: - After reset the multiplexer selection is alternate function 0 (AF0). The I/Os are configured in alternate function mode through GPIOx_MODER register. - The specific alternate function assignments for each pin are detailed in the device datasheet. In addition to this flexible I/O multiplexing architecture, each peripheral has alternate functions mapped onto different I/O pins to optimize the number of peripherals available in smaller packages. To use an I/O in a given configuration, the user has to proceed as follows: - **Debug function:** after each device reset these pins are assigned as alternate function pins immediately usable by the debugger host - GPIO: configure the desired I/O as output, input or analog in the GPIOx_MODER register. #### Peripheral alternate function: - Connect the I/O to the desired AFx in one of the GPIOx_AFRL or GPIOx_AFRH register. - Select the type, pull-up/pull-down and output speed via the GPIOx_OTYPER, GPIOx PUPDR and GPIOx OSPEEDER registers, respectively. - Configure the desired I/O as an alternate function in the GPIOx MODER register. #### Additional functions: - ADC, DAC and COMP connection can be enabled in ADC, DAC or COMP registers regardless the configured GPIO mode. When ADC, DAC or COMP uses a GPIO, it is recommended to configure the GPIO in analog mode, through the GPIOx MODER register. - For the additional functions like RTC, TAMP, WKUPx and oscillators, configure the required function in the related RTC, TAMP, PWR and RCC registers. These functions have priority over the configuration in the standard GPIO registers. Refer to the "Alternate function mapping" table in the device datasheet for the detailed mapping of the alternate function I/O pins. ## 7.3.3 I/O port control registers Each of the GPIO ports has four 32-bit memory-mapped control registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR) to configure up to 16 I/Os. The GPIOx_MODER register is used to select the I/O mode (input, output, AF, analog). The GPIOx_OTYPER and GPIOx_OSPEEDR registers are used to select the output type (pushpull or open-drain) and speed. The GPIOx_PUPDR register is used to select the pull-up/pull-down whatever the I/O direction. ## 7.3.4 I/O port data registers Each GPIO has two 16-bit memory-mapped data registers: input and output data registers (GPIOx_IDR and GPIOx_ODR). GPIOx_ODR stores the data to be output, it is read/write accessible. The data input through the I/O are stored into the input data register (GPIOx_IDR), a read-only register. RM0444 Rev 5 235/1390 See Section 7.4.5: GPIO port input data register (GPIOx_IDR) (x = A to F) and Section 7.4.6: GPIO port output data register (GPIOx_ODR) (x = A to F) for the register descriptions. ## 7.3.5 I/O data bitwise handling The bit set reset register (GPIOx_BSRR) is a 32-bit register which allows the application to set and reset each individual bit in the output data register (GPIOx_ODR). The bit set reset register has twice the size of GPIOx_ODR. To each bit in GPIOx_ODR, correspond two control bits in GPIOx_BSRR: BS(i) and BR(i). When written to 1, bit BS(i) **sets** the corresponding ODR(i) bit. When written to 1, bit BR(i) **resets** the ODR(i) corresponding bit. Writing any bit to 0 in GPIOx_BSRR does not have any effect on the corresponding bit in GPIOx_ODR. If there is an attempt to both set and reset a bit in GPIOx_BSRR, the set action takes priority. Using the GPIOx_BSRR register to change the values of individual bits in GPIOx_ODR is a "one-shot" effect that does not lock the GPIOx_ODR bits. The GPIOx_ODR bits can always be accessed directly. The GPIOx_BSRR register provides a way of performing atomic bitwise handling. There is no need for the software to disable interrupts when programming the GPIOx_ODR at bit level: it is possible to modify one or more bits in a single atomic AHB write access. ## 7.3.6 GPIO locking mechanism It is possible to freeze the GPIO control registers by applying a specific write sequence to the GPIOx_LCKR register. The frozen registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH. To write the GPIOx_LCKR register, a specific write / read sequence has to be applied. When the right LOCK sequence is applied to bit 16 in this register, the value of LCKR[15:0] is used to lock the configuration of the I/Os (during the write sequence the LCKR[15:0] value must be the same). When the LOCK sequence has been applied to a port bit, the value of the port bit can no longer be modified until the next MCU reset or peripheral reset. Each GPIOx_LCKR bit freezes the corresponding bit in the control registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH. The LOCK sequence (refer to Section 7.4.8: GPIO port configuration lock register (GPIOx_LCKR) (x = A to F)) can only be performed using a word (32-bit long) access to the GPIOx_LCKR register due to the fact that GPIOx_LCKR bit 16 has to be set at the same time as the [15:0] bits. For more details refer to LCKR register description in Section 7.4.8: GPIO port configuration lock register (GPIOx_LCKR) (x = A to F). ## 7.3.7 I/O alternate function input/output Two registers are provided to select one of the alternate function inputs/outputs available for each I/O. With these registers, the user can connect an alternate function to some other pin as required by the application. This means that a number of possible peripheral functions are multiplexed on each GPIO using the GPIOx AFRL and GPIOx AFRH alternate function registers. The application can thus select any one of the possible functions for each I/O. The AF selection signal being common to the alternate function input and alternate function output, a single channel is selected for the alternate function input/output of a given I/O. To know which functions are multiplexed on each GPIO pin refer to the device datasheet. ## 7.3.8 External interrupt/wakeup lines All ports have external interrupt capability. To use external interrupt lines, the given pin must not be configured in analog mode or being used as oscillator pin, so the input trigger is kept enabled. Refer to Section 13: Extended interrupt and event controller (EXTI). ## 7.3.9 Input configuration When the I/O port is programmed as input: - The output buffer is disabled - The Schmitt trigger input is activated - The pull-up and pull-down resistors are activated depending on the value in the GPIOx PUPDR register - The data present on the I/O pin are sampled into the input data register every AHB clock cycle - A read access to the input data register provides the I/O state Figure 18 shows the input configuration of the I/O port bit. RM0444 Rev 5 237/1390 ## 7.3.10 Output configuration When the I/O port is programmed as output: - The output buffer is enabled: - Open drain mode: A "0" in the Output register activates the N-MOS whereas a "1" in the Output register leaves the port in Hi-Z (the P-MOS is never activated) - Push-pull mode: A "0" in the Output register activates the N-MOS whereas a "1" in the Output register activates the P-MOS - The Schmitt trigger input is activated - The pull-up and pull-down resistors are activated depending on the value in the GPIOx_PUPDR register - The data present
on the I/O pin are sampled into the input data register every AHB clock cycle - A read access to the input data register gets the I/O state - A read access to the output data register gets the last written value Figure 19 shows the output configuration of the I/O port bit. Figure 19. Output configuration ## 7.3.11 Alternate function configuration When the I/O port is programmed as alternate function: - The output buffer can be configured in open-drain or push-pull mode - The output buffer is driven by the signals coming from the peripheral (transmitter enable and data) - The Schmitt trigger input is activated - The weak pull-up and pull-down resistors are activated or not depending on the value in the GPIOx_PUPDR register - The data present on the I/O pin are sampled into the input data register every AHB clock cycle - A read access to the input data register gets the I/O state Figure 20 shows the Alternate function configuration of the I/O port bit. Figure 20. Alternate function configuration- ## 7.3.12 Analog configuration When the I/O port is programmed as analog configuration: - The output buffer is disabled - The Schmitt trigger input is deactivated, providing zero consumption for every analog value of the I/O pin. The output of the Schmitt trigger is forced to a constant value (0). - The weak pull-up and pull-down resistors are disabled by hardware - Read access to the input data register gets the value "0" Figure 21 shows the high-impedance, analog-input configuration of the I/O port bits. Figure 21. High impedance-analog configuration RM0444 Rev 5 239/1390 ## 7.3.13 Using the HSE or LSE oscillator pins as GPIOs When the HSE or LSE oscillator is switched OFF (default state after reset), the related oscillator pins can be used as normal GPIOs. When the HSE or LSE oscillator is switched ON (by setting the HSEON or LSEON bit in the RCC_CSR register) the oscillator takes control of its associated pins and the GPIO configuration of these pins has no effect. When the oscillator is configured in a user external clock mode, only the OSC_IN or OSC32_IN pin is reserved for clock input and the OSC_OUT or OSC32_OUT pin can still be used as normal GPIO. ## 7.3.14 Using the GPIO pins in the RTC domain The PC13/PC14/PC15 GPIO functionality is lost when the core supply domain is powered off (when the device enters Standby mode). In this case, if their GPIO configuration is not bypassed by the RTC configuration, these pins are set in an analog input mode. For details about I/O control by the RTC, refer to Section 30.3: RTC functional description. ## 7.3.15 USB PD / Dead battery support In the absence of V_{DD} supply, the device using the Dead battery capability of the USB Type-C standard provides an internal pull-down resistor R_d on CC lines if the input level on DBCC pins is high. This is to signal VBUS supply request. To enable this feature, it is necessary to connect UCPD_DBCC1 to UCPD_CC1 and UCPD_DBCC2 to UCPD_CC2. To disable the feature, it is necessary to connect UCPD_DBCC1 and UCPD_DBCC2 to ground. Refer to Section 38: USB Type-C™ / USB Power Delivery interface (UCPD) for more detail. Note: The DBCC pads (GPIOs of FT_d type) present more leakage than standard GPIOs. Refer to product datasheet for values. In applications that do not use the UCPD peripheral, disable the internal pull-down resistor R_d at startup through the strobe bits in SYSCFG registers. In applications that use the UCPD peripheral, first configure the peripheral then load the configuration to the UCPD CCx GPIOs through the strobe bits in SYSCFG registers. **47**/ ## 7.4 GPIO registers This section gives a detailed description of the GPIO registers. For a summary of register bits, register address offsets and reset values, refer to Table 43. The peripheral registers can be written in word, half word or byte mode. # 7.4.1 GPIO port mode register (GPIOx_MODER) (x = A to F) Address offset:0x00 Reset value: 0xEBFF FFFF for port A Reset value: 0xFFFF FFFF for other ports | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|---------|------|---------|------|---------|------|---------|------|---------|------|---------|------|---------|------|---------| | MODE | 15[1:0] | MODE | 14[1:0] | MODE | 13[1:0] | MODE | 12[1:0] | MODE | 11[1:0] | MODE | 10[1:0] | MODE | E9[1:0] | MODE | E8[1:0] | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | MODE | E7[1:0] | MODE | E6[1:0] | MODE | E5[1:0] | MODE | E4[1:0] | MODE | E3[1:0] | MODE | 2[1:0] | MODE | E1[1:0] | MODE | E0[1:0] | | rw Bits 31:0 MODE[15:0][1:0]: Port x configuration I/O pin y (y = 15 to 0) These bits are written by software to configure the I/O mode. 00: Input mode 01: General purpose output mode 10: Alternate function mode 11: Analog mode (reset state) ## 7.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A to F) Address offset: 0x04 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
OT15 | 14
OT14 | 13
OT13 | 12
OT12 | 11
OT11 | 10
OT10 | 9
OT9 | 8
OT8 | 7
OT7 | 6
OT6 | 5
OT5 | 4
OT4 | 3
OT3 | 2
OT2 | 1
OT1 | 0
OT0 | Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 **OT[15:0]**: Port x configuration I/O pin y (y = 15 to 0) These bits are written by software to configure the I/O output type. 0: Output push-pull (reset state) 1: Output open-drain RM0444 Rev 5 241/1390 # 7.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A to F) Address offset: 0x08 Reset value: 0x0C00 0000 (for port A) Reset value: 0x0000 0000 (for other ports) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|--------------|----|-------------|----|-------------|-------------|-------------|----|-------------|-------------|------------|----|-------------|----|------------| | | EED15
:0] | | ED14
:0] | - | ED13
:0] | OSPE
[1: | ED12
:0] | | ED11
:0] | OSPE
[1: | ED10
0] | | EED9
:0] | _ | EED8
0] | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | EED7
:0] | | EED6
:0] | _ | EED5
:0] | | EED4
:0] | | EED3
:0] | OSPI
[1: | ED2
0] | | EED1
:0] | _ | EED0
0] | | rw Bits 31:0 **OSPEED[15:0][1:0]**: Port x configuration I/O pin y (y = 15 to 0) These bits are written by software to configure the I/O output speed. 00: Very low speed 01: Low speed 10: High speed 11: Very high speed Note: Refer to the device datasheet for the frequency specifications and the power supply and load conditions for each speed. The FT_c GPIOs cannot be set to high speed. # 7.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A to F) Address offset: 0x0C Reset value: 0x2400 0000 (for port A) Reset value: 0x0000 0000 (for other ports) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|---------|------|---------|------|---------|------|---------|------|---------|------|---------|------|--------|------|--------| | PUPD | 15[1:0] | PUPD | 14[1:0] | PUPD | 13[1:0] | PUPD | 12[1:0] | PUPD | 11[1:0] | PUPD | 10[1:0] | PUPE | 9[1:0] | PUPD | 8[1:0] | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | PUPD | 7[1:0] | PUPD | 06[1:0] | PUPE | 5[1:0] | PUPD | 04[1:0] | PUPD | 3[1:0] | PUPD | 2[1:0] | PUPE | 1[1:0] | PUPD | 0[1:0] | | rw Bits 31:0 **PUPD[15:0][1:0]:** Port x configuration I/O pin y (y = 15 to 0) These bits are written by software to configure the I/O pull-up or pull-down 00: No pull-up, pull-down 01: Pull-up 10: Pull-down 11: Reserved # 7.4.5 GPIO port input data register (GPIOx_IDR) (x = A to F) Address offset: 0x10 Reset value: 0x0000 XXXX | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
ID15 | 14
ID14 | 13
ID13 | 12
ID12 | 11
ID11 | 10
ID10 | 9
ID9 | 8
ID8 | 7
ID7 | 6
ID6 | 5
ID5 | 4
ID4 | 3
ID3 | 2
ID2 | 1
ID1 | 0
ID0 | Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 **ID[15:0]**: Port x input data I/O pin y (y = 15 to 0) These bits are read-only. They contain the input value of the corresponding I/O port. # 7.4.6 GPIO port output data register (GPIOx_ODR) (x = A to F) Address offset: 0x14 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------------|----------|------|------|----------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 4.4 | 40 | 40 | 44 | 4.0 | | | | | | | | | | _ | | 13 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | OD15 | OD14 | 0D13 | 0D12 | 0D11 | 10
OD10 | 9
OD9 | OD8 | OD7 | 6
OD6 | OD5 | OD4 | OD3 | OD2 | 0D1 | OD0 | Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 **OD[15:0]**: Port output data I/O pin y (y = 15 to 0) These bits can be read and written by software. Note: For atomic bit set/reset, the OD bits can be individually set and/or reset by writing to the $GPIOx_BSRR$ register (x = A...D, F). # 7.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A to F) Address offset: 0x18 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------
------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | BR15 | BR14 | BR13 | BR12 | BR11 | BR10 | BR9 | BR8 | BR7 | BR6 | BR5 | BR4 | BR3 | BR2 | BR1 | BR0 | | W | W | W | W | W | W | W | W | W | W | W | W | W | W | W | w | RM0444 Rev 5 243/1390 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | BS15 | BS14 | BS13 | BS12 | BS11 | BS10 | BS9 | BS8 | BS7 | BS6 | BS5 | BS4 | BS3 | BS2 | BS1 | BS0 | | w | w | w | w | w | w | W | w | W | w | W | W | W | W | W | w | Bits 31:16 **BR[15:0]**: Port x reset I/O pin y (y = 15 to 0) These bits are write-only. A read to these bits returns the value 0x0000. 0: No action on the corresponding ODRx bit 1: Resets the corresponding ODRx bit Note: If both BSx and BRx are set, BSx has priority. Bits 15:0 **BS[15:0]**: Port x set I/O pin y (y = 15 to 0) These bits are write-only. A read to these bits returns the value 0x0000. 0: No action on the corresponding ODRx bit 1: Sets the corresponding ODRx bit # 7.4.8 GPIO port configuration lock register (GPIOx_LCKR) (x = A to F) This register is used to lock the configuration of the port bits when a correct write sequence is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the LOCK sequence has been applied on a port bit, the value of this port bit can no longer be modified until the next MCU reset or peripheral reset. Note: A specific write sequence is used to write to the GPIOx_LCKR register. Only word access (32-bit long) is allowed during this locking sequence. Each lock bit freezes a specific configuration register (control and alternate function registers). Address offset: 0x1C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|------|------|------| | Res. LCKK | | | | | | | | | | | | | | | | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | LCK15 | LCK14 | LCK13 | LCK12 | LCK11 | LCK10 | LCK9 | LCK8 | LCK7 | LCK6 | LCK5 | LCK4 | LCK3 | LCK2 | LCK1 | LCK0 | | rw Bits 31:17 Reserved, must be kept at reset value. #### Bit 16 LCKK: Lock key This bit can be read any time. It can only be modified using the lock key write sequence. 0: Port configuration lock key not active 1: Port configuration lock key active. The GPIOx_LCKR register is locked until the next MCU reset or peripheral reset. LOCK key write sequence: WR LCKR[16] = '1' + LCKR[15:0] WR LCKR[16] = '0' + LCKR[15:0] WR LCKR[16] = '1' + LCKR[15:0] RD LCKR RD LCKR[16] = '1' (this read operation is optional but it confirms that the lock is active) Note: During the LOCK key write sequence, the value of LCK[15:0] must not change. Any error in the lock sequence aborts the lock. After the first lock sequence on any bit of the port, any read access on the LCKK bit returns '1' until the next MCU reset or peripheral reset. ### Bits 15:0 **LCK[15:0]:** Port x lock I/O pin y (y = 15 to 0) These bits are read/write but can only be written when the LCKK bit is '0. 0: Port configuration not locked 1: Port configuration locked # 7.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A to F) Address offset: 0x20 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|------|---------|----|----|-------|---------|----|----|------|---------|----|----|------|---------|----| | | AFSE | _7[3:0] | _ | | AFSEL | -6[3:0] | | | AFSE | _5[3:0] | _ | | AFSE | L4[3:0] | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | AFSE | _3[3:0] | _ | | AFSEL | 2[3:0] | | | AFSE | _1[3:0] | _ | | AFSE | L0[3:0] | | | rw Bits 31:0 **AFSELy[3:0]:** Alternate function selection for port x pin y (y = 0..7) These bits are written by software to configure alternate function I/Os | AFSELy selection: | | |-------------------|----------------| | 0000: AF0 | 1000: Reserved | | ******* | 1001: Reserved | | 0001: AF1 | 1010: Reserved | | 0010: AF2 | 1011: Reserved | | 0011: AF3 | 1100: Reserved | | 0100: AF4 | 1101: Reserved | | 0101: AF5 | 1110: Reserved | | 0110: AF6 | 1111: Reserved | | 0111: AF7 | IIII. Neserveu | RM0444 Rev 5 245/1390 # 7.4.10 GPIO alternate function high register (GPIOx_AFRH) (x = A to F) Address offset: 0x24 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|-------|----------|----|----|-------|---------|--------------|----|------|---------|----|----|-------|----------|----| | | AFSEL | .15[3:0] | | | AFSEL | 14[3:0] | AFSEL13[3:0] | | | | | | AFSEL | .12[3:0] | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | AFSEL | .11[3:0] | | | AFSEL | 10[3:0] | | | AFSE | L9[3:0] | | | AFSE | L8[3:0] | | | rw Bits 31:0 **AFSELy[3:0]:** Alternate function selection for port x pin y (y = 8..15) These bits are written by software to configure alternate function I/Os AFSELy selection: 0000: AF0 1000: Reserved 0001: AF1 1001: Reserved 0010: AF2 1010: Reserved 1011: Reserved 0011: AF3 0100: AF4 1100: Reserved 0101: AF5 1101: Reserved 1110: Reserved 0110: AF6 1111: Reserved 0111: AF7 ## 7.4.11 GPIO port bit reset register (GPIOx_BRR) (x = A to F) Address offset: 0x28 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
BR15 | 14
BR14 | 13
BR13 | 12
BR12 | 11
BR11 | 10
BR10 | 9
BR9 | 8
BR8 | 7
BR7 | 6
BR6 | 5
BR5 | 4
BR4 | 3
BR3 | 2
BR2 | 1
BR1 | 0
BR0 | Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 **BR[15:0]**: Port x reset IO pin y (y = 15 to 0) These bits are write-only. A read to these bits returns the value 0x0000. 0: No action on the corresponding ODx bit 1: Reset the corresponding ODx bit # 7.4.12 GPIO register map The following table gives the GPIO register map and reset values. Table 43. GPIO register map and reset values | | | | | | | | | _ | | | _ | | | | ÷ | | | | | | _ | | | _ | | | | | | _ | | | | |--------|---------------------------------|---------------|----------------|---------------|---|------------------|------------------|----------------|------------|----------------|------|------------------|----------------|--------------|-----------|--------------|-------------------------|---------------|------------|--------------|--------|--------------|-------|--------------|-------------------------|---------------|--------------|---------------|-----------------|---------------|---|--------------|------| | Offset | Register name | 31 | 30 | 29 | 28 | 27 | 56 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | က | 7 | - | 0 | | 0x00 | GPIOx_MODER | MODE 15[1:0] | MODE 13[1.0] | MODE 44[4:0] | MODE 14[1.0] | MODE 13[1:0] | MODE 19[1.0] | MODE 12[1:0] | NOC 12 1.0 | MODE 11[1:0] | | MODE 10[1:0] | MODE 10[: 0] | MODE9[1:0] | [0:-] | MODE8[1:0] | [0:-] | MODE711-01 | [6:1] | MODE6[1:0] | [a]aa. | MODE5[1:0] | | MODEAL1:01 | MODE 4 [-0] | MODE 311:01 | MODES 1.0] | MODE2[1:0] | [5:-] | MODE4[1-0] | JON 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | MODE0[1:0] | , | | | Reset value port A | 1 | 1 | 1 | 0 | 1 | 0 | 1 | | | Reset value
port B to F | 1 | | 0x04 | GPIOx_OTYPER
(x = A to F) | Res. OT15 | OT14 | OT13 | OT12 | | _ | 610 | OT8 | 710 | OT6 | | OT4 | ОТЗ | OT2 | | ОТО | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x08 | GPIOx_OSPEEDR
(x = A to F) | OSPEED16[1:0] | OSFEED 13[1.0] | OSBEED14[1:0] | OSFEED 14[1.0] | OS DE ED 13[1:0] | OSF EED 13[1.0] | OSPEED12[1:0] | 001 | OSPEED11111-01 | | OS DE ED 40[4:0] | OSFEED IN 1.0] | OSPEED911-01 | 031 | OSPEED8[1-0] | 001 - 100 | OSPEED 711-01 | 001 | OSPEFD6[1:0] | | OSPEED5[1:0] | | OSPEED4[1-0] | O3FEED4[1:0] | OSDEED314:01 | OSPEEDS[1.0] | OSPEED2[1:0] | 001 1104[1:5] | OSPEED1[1-0] | 0.57 EEU 1. 5. | OSPEED0[1:0] | , | | | Reset value port A | 0 | 0 | 0 | 0 | 1 | 1 | 0 | | | Reset value port B to F | 0 | | 0x0C | GPIOx_PUPDR
(x = A to F) | [0-12L1-0] | [0.1]CLUTOL | [0.444.0] | J-1 | [0.13[1-0] | 0.0 0.0 | PI IPD 12[1-0] | 0.12 | DI ID011[1-0] | | [0.10140] | ניין טו טרטר | PI IPDQ[1-0] | [0.1]ea | PI IPDRI1-01 | [6:-]
[6:-]
[6:-] | DI IDD 711-01 | | PUPD611-01 | | PUPD5[1:0] | _ | וסי 197 | [0] + U-10-1 | DI 100-214-01 | เบาบาย เม | PI IPD 2[1:0] | ان . ا
این ا | DI IDD 1[1-0] | ין אין די | PUPD0[1:0] | • | | | Reset value port A | 0 | 0 | 1 | 0 | 0 | 1 | 0 | | | Reset value port B to F | 0 | | 0x10 | GPIOx_IDR
(x = A to F) | Res. ID15 | ID14 | ID13 | ID12 |
ID11 | ID10 | 6QI | 8QI | LD7 | 9QI | ID5 | ID4 | ID3 | ID2 | ID1 | ID0 | | | Reset value | | | | | | | | | | | | | | | | | Х | Х | Х | Х | х | Х | Х | х | Х | Х | х | Х | х | х | х | х | | 0x14 | GPIOx_ODR
(x = A to F) | Res. OD 15 | OD14 | OD13 | OD12 | OD11 | OD10 | 6 0 0 | SQO | OD7 | 900 | OD5 | OD4 | OD3 | OD2 | OD1 | 000 | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x18 | GPIOx_BSRR
(x = A to F) | BR15 | BR14 | BR13 | BR12 | BR11 | BR10 | BR9 | BR8 | | BR6 | BR5 | BR4 | BR3 | | | BR0 | BS15 | | BS13 | BS12 | | 1 | BS9 | BS8 | BS7 | BS6 | | | BS3 | BS2 | | BS0 | | | Reset value | 0 | | 0x1C | GPIOx_LCKR
(x = A to F) | Res. LCKK | LCK15 | LCK14 | LCK13 | LCK12 | LCK11 | LCK10 | 6У) | LCK8 | LCK7 | LCK6 | LCK5 | LCK4 | LCK3 | LCK2 | LCK1 | LCK0 | | | Reset value | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x20 | GPIOx_AFRL
(x = A to F) | 4 | AFS
[3 | :0] | 7 | , | AFS
[3 | EL6
:0] | 3 | , | | EL:
:0] | 5 | , | AFS
[3 | | 1 | , | AFS
[3: | | 3 | | [3: | - | | , | | SEL1
:0] | 1 | , | | SEL0
3:0] | ' | | | Reset value | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | | 0 | | 0 | | 0 | | 0 | | | 0 | | 0x24 | GPIOx_AFRH
(x = A to F) | | | :0] | | | | :0] | | | [3 | EL1
:0] | | | FS
[3 | [0] | | | FSI
[3: | [0] | | | [3: | | | | [3 | SEL9
:0] | | | [3 | SEL8
3:0] | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 0 | | 0 | 0 | | _ | 0 | | 0 | | | 0x28 | GPIOx_BRR
(where x = AD, F)) | Res. | , BR14 | | | | | | | | | , BR5 | | | | | _ | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Refer to Section 2.2 on page 58 for the register boundary addresses. RM0444 Rev 5 247/1390 # 8 System configuration controller (SYSCFG) The devices feature a set of configuration registers. The main purposes of the system configuration controller are the following: - Enabling/disabling I²C Fast Mode Plus on some I/O ports - Enabling/disabling the analog switch booster - · Configuring the IR modulation signal and its output polarity - Remapping of some I/O ports - Remapping the memory located at the beginning of the code area - Flag pending interrupts from each interrupt line - · Managing robustness feature ## 8.1 SYSCFG registers ## 8.1.1 SYSCFG configuration register 1 (SYSCFG_CFGR1) This register is used for specific configurations of memory and DMA requests remap and to control special I/O features. Two bits are used to configure the type of memory accessible at address 0x0000 0000. These bits are used to select the physical remap by software and so, bypass the hardware BOOT selection. After reset these bits take the value selected by the actual boot mode configuration. Address offset: 0x00 Reset value: 0x0000 000X (X is the memory mode selected by the actual boot mode configuration | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|-------------------------|------------------|-----------------------------|----------------------|---------------------|--------------|--------------|---------------------|---------------------|---------------------|---------------------| | Res. I2C3_
FMP ⁽¹⁾ | I2C_
PA10_
FMP | I2C_
PA9_
FMP | I2C2_
FMP | I2C1_
FMP | I2C_
PB9_
FMP | I2C_
PB8_
FMP | I2C_
PB7_
FMP | I2C_
PB6_
FMP | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | UCPD2_
STROBE
(1) | UCPD1_
STROBE | BOOS
TEN | IR_M
[1: | | IR_
POL | PA12_
RMP | PA11_
RMP | Res. | MEM_
[1: | | | | | | | | w | w | rw | rv | v | rw | rw | rw | | rw | rw | Only significant on devices integrating the corresponding peripheral or function, otherwise reserved. Refer to Section 1.4: Availability of peripherals. #### Bits 31:25 Reserved, must be kept at reset value. ## Bit 24 I2C3_FMP: Fast Mode Plus (FM+) enable for I2C3⁽¹⁾ This bit is set and cleared by software. It enables I²C FM+ driving capability on I/O ports configured as I2C3 through GPIOx_AFR registers. 0: Disable 1: Enable With this bit in disable state, the I^2C FM+ driving capability on I/O ports configured as I2C3 can be enabled through their corresponding I2Cx_FMP bit. When I^2C FM+ is enabled, the speed control is ignored. #### Bit 23 I2C_PA10_FMP: Fast Mode Plus (FM+) enable for PA10 This bit is set and cleared by software. It enables I²C FM+ driving capability on PA10 I/O port. 0: Disable 1: Enable With this bit in disable state, the I²C FM+ driving capability on this I/O port can be enabled through one of I2Cx FMP bits. When I²C FM+ is enabled, the speed control is ignored. ### Bit 22 I2C_PA9_FMP: Fast Mode Plus (FM+) enable for PA9 This bit is set and cleared by software. It enables I²C FM+ driving capability on PA9 I/O port. 0: Disable 1: Enable With this bit in disable state, the I²C FM+ driving capability on this I/O port can be enabled through one of I2Cx_FMP bits. When I²C FM+ is enabled, the speed control is ignored. #### Bit 21 I2C2_FMP: Fast Mode Plus (FM+) enable for I2C2 This bit is set and cleared by software. It enables I²C FM+ driving capability on I/O ports configured as I2C2 through GPIOx_AFR registers. 0: Disable 1: Enable With this bit in disable state, the I^2C FM+ driving capability on I/O ports configured as I2C2 can be enabled through their corresponding I2Cx_FMP bit. When I^2C FM+ is enabled, the speed control is ignored. ## Bit 20 I2C1_FMP: Fast Mode Plus (FM+) enable for I2C1 This bit is set and cleared by software. It enables I²C FM+ driving capability on I/O ports configured as I2C1 through GPIOx_AFR registers. 0: Disable 1: Enable With this bit in disable state, the I^2C FM+ driving capability on I/O ports configured as I2C1 can be enabled through their corresponding I2Cx_FMP bit. When I^2C FM+ is enabled, the speed control is ignored. #### Bit 19 I2C_PB9_FMP: Fast Mode Plus (FM+) enable for PB9 This bit is set and cleared by software. It enables I²C FM+ driving capability on PB9 I/O port. 0: Disable 1: Enable With this bit in disable state, the I^2C FM+ driving capability on this I/O port can be enabled through one of I2Cx_FMP bits. When I^2C FM+ is enabled, the speed control is ignored. RM0444 Rev 5 249/1390 ### Bit 18 I2C_PB8_FMP: Fast Mode Plus (FM+) enable for PB8 This bit is set and cleared by software. It enables I²C FM+ driving capability on PB8 I/O port. 0: Disable 1: Enable With this bit in disable state, the I²C FM+ driving capability on this I/O port can be enabled through one of I2Cx FMP bits. When I²C FM+ is enabled, the speed control is ignored. #### Bit 17 I2C_PB7_FMP: Fast Mode Plus (FM+) enable for PB7 This bit is set and cleared by software. It enables I²C FM+ driving capability on PB7 I/O port. 0: Disable 1: Enable With this bit in disable state, the I^2C FM+ driving capability on this I/O port can be enabled through one of I2Cx_FMP bits. When I^2C FM+ is enabled, the speed control is ignored. #### Bit 16 I2C_PB6_FMP: Fast Mode Plus (FM+) enable for PB6 This bit is set and cleared by software. It enables I²C FM+ driving capability on PB6 I/O port. 0: Disable 1: Fnable With this bit in disable state, the I²C FM+ driving capability on this I/O port can be enabled through one of I2Cx_FMP bits. When I²C FM+ is enabled, the speed control is ignored. ### Bits 15:11 Reserved, must be kept at reset value. ## Bit 10 UCPD2 STROBE: UCPD2 pull-down configuration strobe⁽¹⁾ Upon power on, internal pull-down resistors on UCPD2 CC1 and CC2 pins are enabled (connected). The action of setting this bit has the following "strobing" effect: - when UCPD2 is disabled: disable UCPD pull-down resistors on CC1 and CC2 - when UCPD2 is enabled, with CC1 and CC2 pin UCPD control bits configured: apply that configuration See Section 38: USB Type-C™ / USB Power Delivery interface (UCPD) for details. #### Bit 9 **UCPD1 STROBE**: UCPD1 pull-down configuration strobe⁽¹⁾ Upon power on, internal pull-down resistors on UCPD1 CC1 and CC2 pins are enabled (connected). The action of setting this bit has the following "strobing" effect: - when UCPD1 is disabled: disable UCPD pull-down resistors on CC1 and CC2 - when UCPD1 is enabled, with CC1 and CC2 pin UCPD control bits configured: apply that configuration See Section 38: USB Type-C™ / USB Power Delivery interface (UCPD) for details. #### Bit 8 BOOSTEN: I/O analog switch voltage booster enable This bit selects the way of supplying I/O analog switches: 0: V_{DD} 1: Dedicated voltage booster (supplied by V_{DD}) When using the analog inputs , setting to 0 is recommended for high V_{DD} , setting to 1 for low V_{DD} (less than 2.4 V). ## Bits 7:6 IR_MOD[1:0]: IR Modulation Envelope signal selection This bitfield selects the signal for IR modulation envelope: 00: TIM16 01: USART1 10: USART4 on STM32G071xx and STM32G081xx as well as STM32G0B1xx and STM32G0C1xx, USART2 on STM32G031xx and STM32G041xx as well as STM32G051xx and STM32G061xx 11: Reserved #### Bit 5 IR_POL: IR output polarity selection 0: Output of IRTIM (IR OUT) is not inverted 1: Output of IRTIM (IR OUT) is inverted #### Bit 4 PA12_RMP: PA12 pin remapping This bit is set and cleared by software. When set, it remaps the PA12 pin to operate as PA10 GPIO port, instead as PA12 GPIO port. 0: No remap (PA12) 1: Remap (PA10) ### Bit 3 PA11_RMP: PA11 pin remapping This bit is set and cleared by software. When set, it remaps the PA11 pin to operate as PA9 GPIO port, instead as PA11 GPIO port. 0: No remap (PA11) 1: Remap (PA9) Bit 2 Reserved, must be kept at reset value. #### Bits 1:0
MEM_MODE[1:0]: Memory mapping selection bits These bits are set and cleared by software. They control the memory internal mapping at address 0x0000 0000. After reset these bits take on the value selected by the actual boot mode configuration. Refer to *Section 2.5: Boot configuration* for more details. x0: Main Flash memory mapped at 0x0000 0000 01: System Flash memory mapped at 0x0000 0000 11: Embedded SRAM mapped at 0x0000 0000 ## 8.1.2 SYSCFG configuration register 2 (SYSCFG_CFGR2) Address offset: 0x18 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|--------------|---------------------|---------------------|---------------------|----------------------|---------------------|---------------------|--------------------------|---------------------| | Res. PB2_
CDEN
(1) | PB1_
CDEN
(1) | PB0_
CDEN
(1) | PA13_
CDEN
(1) | PA6_
CDEN
(1) | PA5_
CDEN
(1) | PA3_
CDEN
(1) | PA1_
CDEN
(1) | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. SRAM_
PEF | Res. | Res. | Res. | Res. | ECC_
LOCK | PVD_
LOCK | SRAM_
PARITY
_LOCK | LOCKUP
_LOCK | | | | | | | | | rc_w1 | | | | | rw | rw | rw | rw | Only significant on devices integrating switchable clamping diodes, otherwise reserved. Refer to Section 1.4: Availability of peripherals. RM0444 Rev 5 251/1390 #### Bits 31:24 Reserved, must be kept at reset value ## Bit 23 **PB2_CDEN**: PB2 clamping diode enable bit⁽¹⁾ This bit is set and cleared by software. It enables (connects) a clamping diode to V_{DD} on PB2 pin. 0: Disable 1: Enable ## Bit 22 **PB1_CDEN**: PB1 clamping diode enable bit⁽¹⁾ This bit is set and cleared by software. It enables (connects) a clamping diode to V_{DD} on PB1 pin. 0: Disable 1: Enable ## Bit 21 **PB0 CDEN**: PB0 clamping diode enable bit⁽¹⁾ This bit is set and cleared by software. It enables (connects) a clamping diode to V_{DD} on PB0 pin. 0: Disable 1: Enable ## Bit 20 **PA13_CDEN**: PA13 clamping diode enable bit⁽¹⁾ This bit is set and cleared by software. It enables (connects) a clamping diode to V_{DD} on PA13 pin. 0: Disable 1: Enable ## Bit 19 **PA6_CDEN**: PA6 clamping diode enable bit⁽¹⁾ This bit is set and cleared by software. It enables (connects) a clamping diode to V_{DD} on PA6 pin. 0: Disable 1: Enable #### Bit 18 **PA5 CDEN**: PA5 clamping diode enable bit⁽¹⁾ This bit is set and cleared by software. It enables (connects) a clamping diode to V_{DD} on PA5 pin. 0: Disable 1: Enable #### Bit 17 **PA3 CDEN**: PA3 clamping diode enable bit⁽¹⁾ This bit is set and cleared by software. It enables (connects) a clamping diode to V_{DD} on PA3 pin. 0: Disable 1: Enable ### Bit 16 PA1_CDEN: PA1 clamping diode enable bit⁽¹⁾ This bit is set and cleared by software. It enables (connects) a clamping diode to V_{DD} on PA1 pin. 0: Disable 1: Enable ## Bits 15:9 Reserved, must be kept at reset value #### Bit 8 **SRAM_PEF**: SRAM parity error flag This bit is set by hardware when an SRAM parity error is detected. It is cleared by software by writing 1. 0: No SRAM parity error detected 1: SRAM parity error detected #### Bits 7:4 Reserved, must be kept at reset value. #### Bit 3 ECC LOCK: ECC error lock bit This bit is set by software and cleared by a system reset. It can be used to enable and lock the Flash ECC 2-bit error detection signal connection to TIM1/15/16/17 Break input. - 0: ECC error disconnected from TIM1/15/16/17 Break input - 1: ECC error connected to TIM1/15/16/17 Break input #### Bit 2 PVD_LOCK: PVD lock enable bit This bit is set by software and cleared by a system reset. It can be used to enable and lock the PVD connection to TIM1/15/16/17 Break input, as well as the PVDE and PLS[2:0] in the PWR CR register. - 0: PVD interrupt disconnected from TIM1/15/16/17 Break input. PVDE and PLS[2:0] bits can be programmed by the application. - 1: PVD interrupt connected to TIM1/15/16/17 Break input, PVDE and PLS[2:0] bits are read only. #### Bit 1 SRAM_PARITY_LOCK: SRAM parity lock bit This bit is set by software and cleared by a system reset. It can be used to enable and lock the SRAM parity error signal connection to TIM1/15/16/17 Break input. - 0: SRAM parity error disconnected from TIM1/15/16/17 Break input - 1: SRAM parity error connected to TIM1/15/16/17 Break input #### Bit 0 LOCKUP_LOCK: Cortex®-M0+ LOCKUP bit enable bit This bit is set by software and cleared by a system reset. It can be use to enable and lock the connection of Cortex[®]-M0+ LOCKUP (Hardfault) output to TIM1/15/16/17 Break input. - 0: Cortex®-M0+ LOCKUP output disconnected from TIM1/15/16/17 Break input - 1: Cortex®-M0+ LOCKUP output connected to TIM1/15/16/17 Break input ## 8.1.3 SYSCFG interrupt line 0 status register (SYSCFG_ITLINE0) A dedicated set of registers is implemented on the device to collect all pending interrupt sources associated with each interrupt line into a single register. This allows users to check by single read which peripheral requires service in case more than one source is associated to the interrupt line. All bits in those registers are read only, set by hardware when there is corresponding interrupt request pending and cleared by resetting the interrupt source flags in the peripheral registers. Address offset: 0x80 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------------|------|------|------|------|------|------|------|------|------|-----------| | Res. | | | | | | | | | | | | | | | | | | 15 | 4.4 | 40 | 4.0 | | | | _ | _ | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | 10
Res. | Res. 0
WWDG | Bits 31:1 Reserved, must be kept at reset value. Bit 0 WWDG: Window watchdog interrupt pending flag RM0444 Rev 5 253/1390 ## 8.1.4 SYSCFG interrupt line 1 status register (SYSCFG_ITLINE1) Address offset: 0x84 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------|--------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. PVMOUT | PVDOUT | | | | | | | | | | | | | | | | r | r | ^{1.} Only significant on devices integrating V_{DDIO2} monitor, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:2 Reserved, must be kept at reset value. Bit 1 **PVMOUT**: V_{DDIO2} supply monitoring interrupt request pending (EXTI line 34). Bit 0 PVDOUT: PVD supply monitoring interrupt request pending (EXTI line 16). ## 8.1.5 SYSCFG interrupt line 2 status register (SYSCFG_ITLINE2) Address offset: 0x88 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. RTC | TAMP | | | | | | | | | | | | | | | | r | r | Bits 31:2 Reserved, must be kept at reset value. Bit 1 RTC: RTC interrupt request pending (EXTI line 19) Bit 0 TAMP: Tamper interrupt request pending (EXTI line 21) ## 8.1.6 SYSCFG interrupt line 3 status register (SYSCFG_ITLINE3) Address offset: 0x8C System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------------|---------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. FLASH_
ECC | FLASH_
ITF | | | | | | | | | | | | | | | | r | r | Bits 31:2 Reserved, must be kept at reset value. Bit 1 FLASH_ECC: Flash interface ECC interrupt request pending Bit 0 FLASH_ITF: Flash interface interrupt request pending ## 8.1.7 SYSCFG interrupt line 4 status register (SYSCFG_ITLINE4) Address offset: 0x90 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------------------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. CRS ⁽¹⁾ | RCC | | | | | | | | | | | | | | | | r | r | Only significant on devices integrating the corresponding peripheral, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:2 Reserved, must be kept at reset value. Bit 1 CRS: CRS interrupt request pending Bit 0 RCC: Reset and clock control interrupt request pending RM0444 Rev 5 255/1390 ## 8.1.8 SYSCFG interrupt line 5 status register (SYSCFG_ITLINE5) Address offset: 0x94 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------|------|------|------|------|-----------|------|-----------|-----------|-----------|------------|------------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | | | | | | 6
Res. | | 4
Res. | 3
Res. | 2
Res. | 1
EXTI1 | 0
EXTI0 | Bits 31:2 Reserved, must be kept at reset value. Bit 1 **EXTI1**: EXTI line 1 interrupt request pending Bit 0 **EXTI0**: EXTI line 0 interrupt request pending ## 8.1.9 SYSCFG interrupt line 6 status register (SYSCFG_ITLINE6) Address offset: 0x98 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 |
25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | 3
Res. | 2
Res. | 1
EXTI3 | 0
EXTI2 | Bits 31:2 Reserved, must be kept at reset value. Bit 1 **EXTI3**: EXTI line 3 interrupt request pending Bit 0 **EXTI2**: EXTI line 2 interrupt request pending ## 8.1.10 SYSCFG interrupt line 7 status register (SYSCFG_ITLINE7) Address offset: 0x9C System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------|------|------|-------------|-------------|------|------|------------|------------|------------|------------|------------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | | | | 8
EXTI12 | 7
EXTI11 | | | 4
EXTI8 | 3
EXTI7 | 2
EXTI6 | 1
EXTI5 | 0
EXTI4 | Bits 31:12 Reserved, must be kept at reset value. Bit 11 **EXTI15**: EXTI line 15 interrupt request pending Bit 10 EXTI14: EXTI line 14 interrupt request pending Bit 9 EXTI13: EXTI line 13 interrupt request pending Bit 8 EXTI12: EXTI line 12 interrupt request pending Bit 7 **EXTI11**: EXTI line 11 interrupt request pending Bit 6 EXTI10: EXTI line 10 interrupt request pending Bit 5 EXTI9: EXTI line 9 interrupt request pending Bit 4 EXTI8: EXTI line 8 interrupt request pending Bit 3 **EXTI7**: EXTI line 7 interrupt request pending Bit 2 **EXTI6**: EXTI line 6 interrupt request pending Bit 1 **EXTI5**: EXTI line 5 interrupt request pending Bit 0 EXTI4: EXTI line 4 interrupt request pending ## 8.1.11 SYSCFG interrupt line 8 status register (SYSCFG_ITLINE8) Address offset: 0xA0 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------------|-------|--------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. USB
(1) | UCPD2 | UCPD1
(1) | | | | | | | | | | | | | | | r | r | r | Only significant on devices integrating the corresponding peripheral, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:3 Reserved, must be kept at reset value. Bit 2 **USB:** USB interrupt request pending⁽¹⁾ Bit 1 **UCPD2:** UCPD2 interrupt request pending (EXTI line 33)⁽¹⁾ Bit 0 **UCPD1:** UCPD1 interrupt request pending (EXTI line 32)⁽¹⁾ #### 8.1.12 SYSCFG interrupt line 9 status register (SYSCFG ITLINE9) Address offset: 0xA4 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-----|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res | . Res. | | | | | | | | | | | | | | | | | | RM0444 Rev 5 257/1390 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------------| | Res. DMA1_
CH1 | | | | | | | | | | | | | | | | | r | Bits 31:1 Reserved, must be kept at reset value. Bit 0 DMA1_CH1: DMA1 channel 1 interrupt request pending ## 8.1.13 SYSCFG interrupt line 10 status register (SYSCFG_ITLINE10) Address offset: 0xA8 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|------|-----------|------|------|------|-------------------|-------------------| | Res. | | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | Res. | 5
Res. | Res. | Res. | Res. | 1
DMA1
_CH3 | 0
DMA1
_CH2 | Bits 31:2 Reserved, must be kept at reset value. Bit 1 DMA1_CH3: DMA1 channel 3 interrupt request pending Bit 0 DMA1_CH2: DMA1 channel 2 interrupt request pending ## 8.1.14 SYSCFG interrupt line 11 status register (SYSCFG_ITLINE11) Address offset: 0xAC System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------|--------------|--------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | Res. | DMA2_
CH5
(1) | DMA2_
CH4
(1) | DMA2_
CH3
(1) | DMA2_
CH2
(1) | DMA2
_CH1
(1) | DMA1
_CH7
(1) | DMA1
_CH6
(1) | DMA1
_CH5 | DMA1
_CH4 | DMAMUX | | | | | | | | r | r | r | r | r | r | r | r | r | r | Only significant on devices integrating the corresponding DMA instance and channel, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:10 Reserved, must be kept at reset value. Bit 9 **DMA2_CH5**: DMA2 channel 5 interrupt request pending⁽¹⁾ Bit 8 **DMA2_CH4**: DMA2 channel 4 interrupt request pending⁽¹⁾ Bit 7 DMA2_CH3: DMA2 channel 3 interrupt request pending⁽¹⁾ Bit 6 **DMA2_CH2**: DMA2 channel 2 interrupt request pending⁽¹⁾ Bit 5 **DMA2_CH1**: DMA2 channel 1 interrupt request pending⁽¹⁾ Bit 4 **DMA1_CH7**: DMA1 channel 7 interrupt request pending⁽¹⁾ Bit 3 **DMA1_CH6** DMA1 channel 6 interrupt request pending⁽¹⁾ Bit 2 DMA1_CH5: DMA1 channel 5 interrupt request pending Bit 1 DMA1_CH4: DMA1 channel 4 interrupt request pending Bit 0 **DMAMUX**: DMAMUX interrupt request pending ## 8.1.15 SYSCFG interrupt line 12 status register (SYSCFG_ITLINE12) Address offset: 0xB0 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|--------------------------|----------------------|----------------------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. COMP
3 ⁽¹⁾ | COMP2 ⁽¹⁾ | COMP1 ⁽¹⁾ | ADC | | | | | | | | | | | | | | r | r | r | r | Only significant on devices integrating the corresponding peripheral, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:4 Reserved, must be kept at reset value. Bit 3 **COMP3**: Comparator 3 interrupt request pending (EXTI line 20)⁽¹⁾ Bit 2 **COMP2**: Comparator 2 interrupt request pending (EXTI line 18)⁽¹⁾ Bit 1 **COMP1**: Comparator 1 interrupt request pending (EXTI line 17)⁽¹⁾ Bit 0 ADC: ADC interrupt request pending ## 8.1.16 SYSCFG interrupt line 13 status register (SYSCFG_ITLINE13) Address offset: 0xB4 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|--------------|--------------|--------------|--------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. TIM1_
BRK | TIM1_
UPD | TIM1_
TRG | TIM1_
CCU | | | | | | | | | | | | | | r | r | r | r | Bits 31:4 Reserved, must be kept at reset value. Bit 3 TIM1_BRK: Timer 1 break interrupt request pending Bit 2 TIM1_UPD: Timer 1 update interrupt request pending Bit 1 TIM1_TRG: Timer 1 trigger interrupt request pending Bit 0 TIM1_CCU: Timer 1 commutation interrupt request pending RM0444 Rev 5 259/1390 ## 8.1.17 SYSCFG interrupt line 14 status register (SYSCFG_ITLINE14) Address offset: 0xB8 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. TIM1_
CC | | | | | | | | | | | | | | | | | r | Bits 31:1 Reserved, must be kept at reset value. Bit 0 TIM1_CC: Timer 1 capture compare interrupt request pending ## 8.1.18 SYSCFG interrupt line 15 status register (SYSCFG_ITLINE15) Address offset: BCh System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. TIM2 | | | | | | | | | | | | | | | | | r | Bits 31:1 Reserved, must be kept at reset value. Bit 0 TIM2: Timer 2 interrupt request pending ## 8.1.19 SYSCFG interrupt line 16 status register (SYSCFG_ITLINE16) Address offset: 0xC0 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------------|------------|------------|------------|------------|-----------|------|------|------|-----------|-----------|------|------|--------------------------|-----------| | Res. | • | • | • | • | | • | | • | • | | | • | • | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
0 | | Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | Res. | Res. | Res. | 5
Res. | 4
Res. | Res. | Res. | 1
TIM4 ⁽¹⁾ | 0
TIM3 | ^{1.} Only significant on devices integrating TIM4, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:2 Reserved, must be kept at reset value. Bit 1 **TIM4**: Timer 4 interrupt request pending Bit 0 TIM3: Timer 3 interrupt request pending ## 8.1.20 SYSCFG interrupt line 17 status register (SYSCFG_ITLINE17) Address offset: 0xC4 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|--------|--------------------|--------------------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 12 | 40 | | 40 | | | _ | _ | _ | | _ | _ | | | | | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 1 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. LPTIM1 | DAC ⁽¹⁾ | 0
TIM6 ⁽¹⁾ | ^{1.} Only significant on devices integrating TIM4, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:3 Reserved, must be kept at reset value. Bit 2 LPTIM1: Low-power timer 1 interrupt request pending (EXTI line 29) Bit 1 **DAC**: DAC underrun interrupt request pending⁽¹⁾ Bit 0 **TIM6**: Timer 6 interrupt request pending⁽¹⁾ ## 8.1.21 SYSCFG interrupt line 18 status register (SYSCFG_ITLINE18) Address offset: 0xC8 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------|---------------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. LPTIM2 | TIM7 ⁽¹⁾ | | | | | | | | | | | | | | | | r | r | ^{1.} Only significant on devices integrating TIM4, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:2 Reserved, must be kept at reset value. Bit 1 LPTIM2: Low-power timer 2 interrupt request pending (EXTI line 30) Bit 0 **TIM7**: Timer 7 interrupt request pending⁽¹⁾ ## 8.1.22 SYSCFG interrupt line 19 status register (SYSCFG_ITLINE19) Address offset: 0xCC System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | 3
Res. | 2
Res. | 1
Res. | 0
TIM14 | RM0444 Rev 5 261/1390 Bits 31:1 Reserved, must be kept at reset value. Bit 0 TIM14: Timer 14 interrupt request pending ## 8.1.23 SYSCFG interrupt line 20 status register (SYSCFG_ITLINE20) Address offset: 0xD0 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------|-----------|-----------|---------------------------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | Res. | 2
Res. | 1
Res. | 0
TIM15 ⁽¹⁾ | ^{1.} Only significant on devices integrating TIM15, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:1 Reserved, must be kept at reset value. Bit 0 **TIM15**: Timer 15 interrupt request pending⁽¹⁾ ## 8.1.24 SYSCFG interrupt line 21 status register (SYSCFG_ITLINE21) Address offset: 0xD4 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|-------------------------------|-------------------------------|-------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. FDCAN
2_IT0 ⁽¹⁾ | FDCAN
1_IT0 ⁽¹⁾ | TIM16 | | | | | | | | | | | | | | | r | r | r | ^{1.} Only significant on devices integrating the corresponding peripheral, otherwise reserved. Refer to Section 1.4: Availability of peripherals Bits 31:1 Reserved, must be kept at reset value. Bit 2 FDCAN2_IT0: FDCAN2 interrupt request pending⁽¹⁾ Bit 1 **FDCAN1 IT0**: FDCAN1 interrupt request pending⁽¹⁾ Bit 0 TIM16: Timer 16 interrupt request pending ### 8.1.25 SYSCFG interrupt line 22 status register (SYSCFG_ITLINE22) Address offset: 0xD8 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|-------------------------------|-------------------------------|-------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. FDCAN
2_IT0 ⁽¹⁾ | FDCAN
1_IT0 ⁽¹⁾ | TIM17 | | | | | | | | | | | | | | | r | r | r | Only significant on devices integrating the corresponding peripheral, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:1 Reserved, must be kept at reset value. Bit 2 FDCAN2_IT1: FDCAN2 interrupt request pending⁽¹⁾ Bit 1 **FDCAN1_IT1**: FDCAN1 interrupt request pending⁽¹⁾ Bit 0 TIM17: Timer 17 interrupt request pending ## 8.1.26 SYSCFG interrupt line 23 status register (SYSCFG_ITLINE23) Address offset: 0xDC System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. I2C1 | | | | | | | | | | | | | | | | | r | Bits 31:1 Reserved, must be kept at reset value. Bit 0 I2C1: I2C1 interrupt request pending, combined with EXTI line 23 ### 8.1.27 SYSCFG interrupt line 24 status register (SYSCFG_ITLINE24) Address offset: 0xE0 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------|-----------|--------------------------|-----------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | Res. | 2
Res. | 1
I2C3 ⁽¹⁾ | 0
I2C2 | ^{1.} Only significant on devices integrating I2C3, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:2 Reserved, must be kept at reset value. Bit 1 **I2C3**: I2C3 interrupt request pending (EXTI line 22)⁽¹⁾ Bit 0 I2C2: I2C2 interrupt request pending ### 8.1.28 SYSCFG interrupt line 25 status register (SYSCFG_ITLINE25) Address offset: 0xE4 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | 3
Res. | 2
Res. | 1
Res. | 0
SPI1 | Bits 31:1 Reserved, must be kept at reset value. Bit 0 SPI1: SPI1 interrupt request pending ## 8.1.29 SYSCFG interrupt line 26 status register (SYSCFG_ITLINE26) Address offset: 0xE8 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------|-----------|--------------------------|-----------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | Res. | 2
Res. | 1
SPI3 ⁽¹⁾ | 0
SPI2 | ^{1.} Only significant on devices integrating SPI3, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:2 Reserved, must be kept at reset value. Bit 1 **SPI3**: SPI3 interrupt request pending⁽¹⁾ Bit 0 SPI2: SPI2 interrupt request pending ## 8.1.30 SYSCFG interrupt line 27 status register (SYSCFG_ITLINE27) Address offset: 0xEC System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. |
13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | 3
Res. | 2
Res. | 1
Res. | 0
USART1 | Bits 31:1 Reserved, must be kept at reset value. Bit 0 USART1: USART1 interrupt request pending, combined with EXTI line 25 ### 8.1.31 SYSCFG interrupt line 28 status register (SYSCFG_ITLINE28) Address offset: 0xF0 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|----------------------------|--------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. LPUAR
T2 ⁽¹⁾ | USART2 | | | | | | | | | | | | | | | | r | r | ^{1.} Only significant on devices integrating LPUART2, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:2 Reserved, must be kept at reset value. Bit 1 **LPUART2**: LPUART2 interrupt request pending⁽¹⁾ Bit 0 USART2: USART2 interrupt request pending (EXTI line 26) ## 8.1.32 SYSCFG interrupt line 29 status register (SYSCFG_ITLINE29) Address offset: 0xF4 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|--------|--------|---------|--------|--------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. USART6 | USART5 | LPUART1 | USART4 | USART3 | | | | | | | | | | | | | r | r | r | r | r | Only significant on devices integrating the corresponding peripheral, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:5 Reserved, must be kept at reset value. Bit 4 **USART6**: USART6 interrupt request pending⁽¹⁾ Bit 3 **USART5**: USART5 interrupt request pending⁽¹⁾ Bit 2 LPUART1: LPUART1 interrupt request pending (EXTI line 28) Bit 1 **USART4**: USART4 interrupt request pending⁽¹⁾ Bit 0 **USART3**: USART3 interrupt request pending (EXTI line 28)⁽¹⁾ ### 8.1.33 SYSCFG interrupt line 30 status register (SYSCFG_ITLINE30) Address offset: 0xF8 System reset value: 0x0000 0000 RM0444 Rev 5 265/1390 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|------|------|-----------|------|-----------|-----------|-------------------------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | | | 4
Res. | | 2
Res. | 1
Res. | 0
CEC ⁽¹⁾ | ^{1.} Only significant on devices integrating CEC, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:1 Reserved, must be kept at reset value. Bit 0 CEC: CEC interrupt request pending (EXTI line 27)⁽¹⁾ ## 8.1.34 SYSCFG interrupt line 31 status register (SYSCFG_ITLINE31) Address offset: 0xFC System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------|------|-------------------------|-------------------------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | Res. | Res. | 1
AES ⁽¹⁾ | 0
RNG ⁽¹⁾ | ^{1.} Onldy significant on devices integrating the corresponding peripheral, otherwise reserved. Refer to Section 1.4: Availability of peripherals. Bits 31:2 Reserved, must be kept at reset value. Bit 1 **AES**: AES interrupt request pending⁽¹⁾ Bit 0 **RNG**: RNG interrupt request pending⁽¹⁾ ## 8.1.35 SYSCFG register map The following table gives the SYSCFG register map and the reset values. Table 44. SYSCFG register map and reset values | Offset | Register | 31 | 30 | 29 | 28 | 27 | 5 6 | 52 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 2 | 9 | 2 | 4 | 3 | 2 | 1 | 0 | |-----------------|--------------|------|------|------|------|------|------------|------|----------|--------------|----|----|-------|-------------|--------|--------|-------------|------|------|------|------|------|----|--------------|---------|--------|---|--------|---|----------|------|---------------|---| | 0x00 | SYSCFG_CFGR1 | Res. I2C3_FMP | I2C_PA10_FMP | 22 | | C1_FI | I2C_PB9_FMP | _PB8_F | _PB7_F | I2C_PB6_FMP | Res. | Res. | Res. | Res. | Res. | ร | UCPD2_STROBE | BOOSTEN | OOM AI | | IR_POL | | PA11_RMP | Res. | MEM MODE[1:0] | 1 | | | Reset value | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Х | Х | | 0x04 to
0x17 | Reserved | | | | | | | | | | | | | | | F | Rese | erve | d | | | | | | | | | | | | | | | Table 44. SYSCFG register map and reset values (continued) | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 2 | 1 | 0 | |-----------------|-----------------------------|--------|--------|--------|----------|--------|--------|-------|-------|----------|----------|------------------|------------| | 0x18 | SYSCFG_CFGR2 | Res. SRAM_PEF | Res. | Res. | Res. | Res. | ECC_LOCK | PVD_LOCK | SRAM_PARITY_LOCK | LOCUP_LOCK | | Ov4D to | Reset value | 0 | | | | | 0 | 0 | 0 | 0 | | 0x1D to
0x7F | Reserved | | | | | | | | | | | | | | | F | Rese | erve | ∙d | | | | | | | | | | | | | | | | 0x80 | SYSCFG_ITLINE0 | Res. WWDG | | | Reset value | 0 | | 0x84 | SYSCFG_ITLINE1 | Res. PVMOUT | PVDOUT | | | Reset value | 0 | 0 | | 0x88 | SYSCFG_ITLINE2 Reset value | Res. o RTC | o TAMP | | 0x8C | SYSCFG_ITLINE3 | Res. | FLASH_ITF | | - | Reset value | 0 | 0 | | 0x90 | SYSCFG_ITLINE4 Reset value | Res. o CRS | o RCC | | 0x94 | SYSCFG_ITLINE5 | Res. | EXTI0 o | | | Reset value | 0 | 0 | | 0x98 | SYSCFG_ITLINE6 Reset value | Res. о ЕХТІЗ | o EXTI2 | | 0x9C | SYSCFG_ITLINE7 | Res. EXTI15 | EXTI14 | EXTI13 | EXTI12 | EXTI11 | EXTI10 | ЕХТІВ | EXT18 | EXT17 | EXT16 | | EXTI4 o | | - | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0xA0 | SYSCFG_ITLINE8 | Res. NSB | UCPD2 | UCPD1 | | | Reset value | 0 | 0 | 0 | | 0xA4 | SYSCFG_ITLINE9 | Res. DMA1_CH1 | | | Reset value | 0 | | 0xA8 | SYSCFG_ITLINE10 | Res. OMA1_CH3 | o DMA1_CH2 | | F | Reset value | 0 | 0 | RM0444 Rev 5 267/1390 Table 44. SYSCFG register map and reset values (continued) | SYSCFG_ITLINE11 S | |--| | SYSCFG_ITLINE12 Street value SYSCFG_ITLINE13 Street value SYSCFG_ITLINE14 Street value SYSCFG_ITLINE15 Street value SYSCFG_ITLINE16 Street value SYSCFG_ITLINE16 Street value SYSCFG_ITLINE17 Street value SYSCFG_ITLINE18 SYSCFG_ITLINE19 Street value Street value SYSCFG_ITLINE19 Street value Street value SYSCFG_ITLINE20 Street value
Street value SYSCFG_ITLINE21 Street value Street value Street value SYSCFG_ITLINE21 Street value | | No. 10 N | | No. 10 N | | Reset value | | SYSCFG_ITLINE14 56 58 58 58 58 58 58 58 | | Reset value | | OxBC SYSCFG_ITLINE15 Str. Str. Str. Str. Str. Str. Str. Str. | | Reset value | | OxCO SYSCFG_ITLINE16 S | | Reset value | | Reset value | | OxC8 SYSCFG_ITLINE18 S | | Reset value | | 0xCC SYSCFG_ITLINE19 SS SS SS SS SS SS SS | | Reset value | | 0xD0 SYSCFG_ITLINE20 8 | | Reset value | | 0xD4 SYSCFG_ITLINE21 S S S S S S S S S | | Reset value 0 0 0 | | Reset value 0 0 0 | | | | 0xD8 SASCEG_ILITINE55 S. | | Reset value 0 0 0 0 | | 0xDC SYSCFG_ITLINE23 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0xE0 SYSCFG_ITLINE24 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | SYSCFG ITLINE25 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 0xE4 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Table 44. SYSCFG register map and reset values (continued) | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 2 | 1 | 0 | |--------|-----------------|--------|--------|---------|---------|--------| | 0xE8 | SYSCFG_ITLINE26 | Res. SP13 | SP12 | | | Reset value | 0 | 0 | | 0xEC | SYSCFG_ITLINE27 | Res. USART1 | | | Reset value | 0 | | 0xF0 | SYSCFG_ITLINE28 | Res. LPUART2 | USART2 | | | Reset value | 0 | 0 | | 0xF4 | SYSCFG_ITLINE29 | Res. USART6 | USART5 | LPUART1 | USART4 | USART3 | | | Reset value | 0 | 0 | 0 | 0 | 0 | | 0xF8 | SYSCFG_ITLINE30 | Res. CEC | | | Reset value | 0 | | 0xFC | SYSCFG_ITLINE31 | Res. AES | RNG | | | Reset value | 0 | 0 | Refer to Section 2.2 on page 58 for the register boundary addresses. RM0444 Rev 5 269/1390 Interconnect matrix RM0444 ## 9 Interconnect matrix ### 9.1 Introduction Several peripherals have direct connections between them. This allows autonomous communication and/or synchronization between peripherals, saving CPU resources thus power consumption. In addition, these hardware connections remove software latency and allow design of predictable systems. Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power run, Low-power sleep, Stop 0, and Stop 1 modes. For availability of peripherals on different STM32G0x1 products, refer to Section 1.4: Availability of peripherals. ## 9.2 Connection summary Table 45. Interconnect matrix⁽¹⁾⁽²⁾ | | | | | | | | | De | stinat | ion | | | | | | | | |-----------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|-------|-------|--------|-------|-------|-------|--------| | Source | TIM1 | TIM2 | TIM3 | TIM4 | TIM14 | TIM15 | TIM16 | TIM17 | LPTIM1 | LPTIM2 | ADC | DAC | DMAMUX | COMP1 | COMP2 | сомьз | IRTIM | | TIM1 | - | 9.3.1 | 9.3.1 | 9.3.1 | - | - | - | - | - | - | 9.3.2 | 9.3.4 | - | 9.3.7 | 9.3.7 | 9.3.7 | - | | TIM2 | 9.3.1 | - | 9.3.1 | 9.3.1 | - | 9.3.1 | - | - | - | - | 9.3.2 | 9.3.4 | - | 9.3.7 | 9.3.7 | 9.3.7 | - | | TIM3 | 9.3.1 | 9.3.1 | - | • | 1 | 9.3.1 | ı | • | ı | • | 9.3.2 | 9.3.4 | - | 9.3.7 | 9.3.7 | 9.3.7 | - | | TIM4 | 9.3.1 | 9.3.1 | - | i | 1 | 9.3.1 | ı | • | ı | ı | 9.3.2 | 9.3.4 | - | 9.3.7 | 9.3.7 | 9.3.7 | - | | TIM14 | - | 9.3.1 | 9.3.1 | 9.3.1 | - | - | - | - | - | - | - | - | 9.3.12 | - | - | - | - | | TIM15 | 9.3.1 | 9.3.1 | 9.3.1 | 9.3.1 | - | - | - | - | - | - | 9.3.2 | 9.3.4 | - | - | - | - | - | | TIM16 | - | - | - | - | - | 9.3.1 | - | - | - | - | - | - | - | - | - | - | 9.3.11 | | TIM17 | 9.3.1 | - | - | - | - | 9.3.1 | - | - | - | - | - | - | - | - | - | - | 9.3.11 | | TIM6 | - | - | - | - | - | - | - | - | - | - | 9.3.2 | 9.3.4 | - | - | - | - | - | | TIM7 | - | - | - | | - | - | - | - | - | - | - | 9.3.4 | - | - | - | - | - | | LPTIM1 | - | - | - | - | - | - | - | - | - | - | - | 9.3.4 | 9.3.12 | - | - | - | - | | LPTIM2 | - | - | - | - | - | - | - | - | - | - | - | 9.3.4 | 9.3.12 | - | - | - | - | | USART1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 9.3.11 | | USART4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 9.3.11 | | ADC | 9.3.3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | T. sensor | - | - | - | - | - | - | - | - | - | - | 9.3.8 | - | - | - | - | - | - | | VBAT | - | 1 | - | - | 1 | - | 1 | • | • | • | 9.3.8 | 1 | - | • | • | • | - | RM0444 Interconnect matrix **Destination** DMAMUX COMP2 COMP3 Source TIM15 COMP1 TIM14 TIM1 TIM2 TIM3 TIM4 ADC DAC TIM1 **VREFINT** 9.3.8 HSF 935 935 LSE 9.3.5 9.3.5 LSI 9.3.5 MCO 9.3.5 9.3.5 MCO₂ -9.3.5 9.3.5 _ **EXTI** 9.3.2 9.3.4 RTC and 9.3.5 9.3.5 9.3.6 9.3.6 **TAMP** COMP1 9.3.9 9.3.9 9.3.9 9.3.9 9.3.9 9.3.9 9.3.9 9.3.6 9.3.6 COMP2 9.3.9 9.3.9 9.3.9 9.3.9 9.3.9 9.3.9 9.3.9 9.3.6 9.3.6 COMP3 9.3.9 9.3.9 9.3.9 9.3.9 9.3.9 9.3.9 9.3.9 9.3.6 9.3.6 **SYST** 9.3.10 9.3.10 9.3.10 9.3.10 9.3.10 9.3.10 9.3.10 **ERR** Table 45. Interconnect matrix⁽¹⁾⁽²⁾ (continued) #### 9.3 Interconnection details # 9.3.1 From TIM1, TIM2, TIM3, TIM4, TIM15, TIM16, and TIM17, to TIM1, TIM2, TIM3, TIM4, and TIM15 #### **Purpose** Some of the TIMx timers are linked together internally for timer synchronization or chaining. When one timer is configured in master mode, it can reset, start, stop or clock the counter of another timer configured in slave mode. A description of the feature is provided in: Section 22.3.19: Timer synchronization. The modes of synchronization are detailed in: - Section 21.3.26: Timer synchronization for advanced-control timer TIM1 - Section 22.3.18: Timers and external trigger synchronization for general-purpose timers TIM2/TIM3/TIM4 - Section 25.4.19: External trigger synchronization (TIM15 only) for general-purpose timer TIM15 RM0444 Rev 5 271/1390 ^{1.} Numbers in the table are links to corresponding sub-sections in Section 9.3: Interconnection details. ^{2.} The "-" symbol in grayed cells means "no interconnection". Interconnect matrix RM0444 #### **Triggering signals** The output (from master) is on signal TIMx_TRGO (and TIMx_TRGOx), following a configurable timer event. With TIM14, TIM16, and TIM17 timers that do not have a trigger output, the output compare 1 is used instead. The input (to slave) is on signals TIMx_ITR0/ITR1/ITR2/ITR3. The input and output signals for TIM1 are shown in *Figure 101: Advanced-control timer block diagram*. The possible master/slave connections are given in *Table 115: TIM1 internal trigger connection* and *Table 126: TIMx Internal trigger connection*. #### Relevant power modes These interconnections operate in Run, Sleep, Low-power run, and Low-power sleep power modes. #### 9.3.2 From TIM1, TIM2, TIM3, TIM4, TIM6, TIM15, and EXTI, to ADC #### **Purpose** The general-purpose timers TIM2, TIM3, TIM4, and TIM15, basic timer TIM6, advanced-control timer TIM1, and EXTI can be used to generate an ADC triggering event. TIMx synchronization is described in: Section 21.3.27: ADC synchronization. ADC synchronization is described in: Section 15.4: Conversion on external trigger and trigger polarity (EXTSEL, EXTEN). #### **Triggering signals** The output (from timer) is on signal TIMx TRGO, TIMx TRGO2 or TIMx CCx event. The input (to ADC) is on signal EXT[15:0], JEXT[15:0]. The connection between timers and ADC is provided in *Table 70: External triggers*. #### Relevant power modes These interconnections operate in Run, Sleep, Low-power run, and Low-power sleep power modes. #### 9.3.3 From ADC to TIM1 #### **Purpose** ADC can provide trigger event through watchdog signals to the advanced-control timer TIM1. A description of the ADC analog watchdog setting is provided in: Section 15.7: Analog window watchdog (AWD1EN, AWD1SGL, AWD1CH, ADC_AWDxCR, ADC_AWDxTR). Trigger settings on the timer are provided in: Section 21.3.4: External trigger input. RM0444 Interconnect matrix #### **Triggering signals** The output (from ADC) is on signals ADCn_AWDx_OUT n = 1, 2, 3 (for ADC) x = 1, 2, 3 (three watchdogs per ADC) and the input (to timer) on signal TIMx_ETR (external trigger). #### Relevant power modes This interconnection operates in Run, Sleep, Low-power run, and Low-power sleep power modes. ## 9.3.4 From TIM1, TIM2, TIM3, TIM4, TIM6, TIM7, TIM15, LPTIM1, LPTIM2, and EXTI, to DAC #### **Purpose** General-purpose timers TIM2/TIM3/TIM4/TIM15, basic timers TIM6, TIM7, low-power timers LPTIM1/LPTIM2, and advanced control timer TIM1 can trigger a DAC conversion. #### **Triggering signals** The TIMx TRGO output of each timer is directly connected to corresponding DAC input. Selection of DAC triggering input is provided in *Section 16.4.7: DAC trigger selection* (single and dual mode). #### Relevant power modes These interconnections operate in Run, Sleep, Low-power run, and Low-power sleep power modes. ## 9.3.5 From HSE, LSE, LSI, MCO, MCO2, RTC and TAMP, to TIM2, TIM14, TIM16, and TIM17 #### **Purpose** External clocks (HSE, LSE), internal clock (LSI), microcontroller output clock (MCO and MCO2), RTC clock, RTC wakeup interrupt, and GPIO can be selected as inputs to capture channel 1 of some of TIM14/16/TIM17 timers. The timers allow calibrating or precisely measuring internal clocks such as HSI16 or LSI, using accurate clocks such as LSE or HSE/32 for timing
reference. See details in Section 5.2.16: Internal/external clock measurement with TIM14/TIM16/TIM17. When low-speed external (LSE) oscillator is used, no additional hardware connections are required. External clock LSE can be used as input to general-purpose timers (TIM2) on TIM2_ETR input, see Section 22.4.25: TIM2 alternate function option register 1 (TIM2_AF1). #### Relevant power modes These interconnections operate in Run, Sleep, Low-power run, and Low-power sleep power modes. 4 RM0444 Rev 5 273/1390 Interconnect matrix RM0444 ## 9.3.6 From RTC, TAMP, COMP1, COMP2, and COMP3 to LPTIM1 and LPTIM2 #### **Purpose** RTC alarm A/B, TAMP1/2 input detection, COMP1/2_OUT and GPIO alternate function can be used as trigger to start LPTIM counters LPTIM1/2. #### **Triggering signals** This trigger feature is described in *Section 26.4.7: Trigger multiplexer* (and following sections). The input selection is described in *Table 134: LPTIM1 external trigger connection* and *Table 135: LPTIM2 external trigger connection*. #### Relevant power modes These interconnections operate in Run, Sleep, Low-power run, Low-power sleep, Stop 0, and Stop 1 power modes. # 9.3.7 From TIM1, TIM2, TIM3, TIM4, and TIM15, to COMP1, COMP2, and COMP3 #### **Purpose** Advanced-control timer TIM1 and general-purpose timers TIM2, TIM3, TIM4, and TIM15 can be used as blanking window input to COMP1, COMP2, and COMP3. The blanking function is described in Section 18.3.7: Comparator output blanking function. The blanking sources are given in: - Section 18.6.1: Comparator 1 control and status register (COMP1_CSR) bits 20:18 BLANKING[2:0] - Section 18.6.2: Comparator 2 control and status register (COMP2_CSR) bits 20:18 BLANKING[2:0] #### **Triggering signals** Timer output signal TIMx_OCx are the inputs to blanking source of COMP1/COMP2/COMP3. #### Relevant power modes These interconnections operate in Run, Sleep, Low-power run, and Low-power sleep power modes. ### 9.3.8 From internal analog sources to ADC #### **Purpose** Internal temperature sensor output voltage V_{TS} , internal reference voltage V_{REFINT} and V_{BAT} monitoring channel are connected to ADC input channels. RM0444 Interconnect matrix More information is in: - Section 15.2: ADC main features - Section 15.3.8: Channel selection (CHSEL, SCANDIR, CHSELRMOD) - Figure 15.9: Temperature sensor and internal reference voltage - Figure 15.10: Battery voltage monitoring #### Relevant power modes These interconnections operate in Run, Sleep, Low-power run, and Low-power sleep power modes. # 9.3.9 From COMP1, COMP2, and COMP3 to TIM1, TIM2, TIM3, TIM4, TIM15, TIM16, and TIM17 #### **Purpose** COMP1, COMP2, and COMP3 comparator outputs can be connected to input capture or TIMx ETR inputs of TIM1, TIM2, TIM3, or TIM4. The connection to ETR is described in Section 21.3.4: External trigger input. COMP1, COMP2, and COMP3 comparator outputs can also act as TIMx_BKIN or TIMx_BKIN2 break input signals for TIM1, TIM15, TIM16, and TIM17, through selecting GPIO alternate function using open drain connection of I/O. See Section 21.3.17: Bidirectional break inputs. The possible connections are given in: - Section 21.4.23: TIM1 option register 1 (TIM1_OR1) - Section 21.4.28: TIM1 Alternate function register 2 (TIM1_AF2) - Section 22.4.22: TIM2 option register 1 (TIM2 OR1) - Section 25.3: TIM16/TIM17 main features #### Relevant power modes These interconnections operate in Run, Sleep, Low-power run, and Low-power sleep power modes. ## 9.3.10 From system errors to TIM1, TIM2, TIM3, TIM4, TIM15, TIM16, and TIM17 #### **Purpose** CSS, CPU hardfault, RAM parity error, FLASH ECC double error detection, PVD can generate system errors in the form of timer break toward TIM1, TIM2, TIM3, TIM4, TIM15, TIM16, and TIM17. The purpose of the break function is to protect power switches driven by PWM signals from the timers. 4 RM0444 Rev 5 275/1390 Interconnect matrix RM0444 List of possible source of break are described in: - Section 21.3.16: Using the break function (TIM1) - Section 25.4.13: Using the break function (TIM15/TIM16/TIM17) - Figure 236: TIM15 block diagram - Figure 237: TIM16/TIM17 block diagram #### Relevant power modes These interconnections operate in Run, Sleep, Low-power run, and Low-power sleep power modes. ### 9.3.11 From TIM16, TIM17, USART1, and USART4, to IRTIM #### **Purpose** TIMx_OC1 output channel of TIM16 or TIM17 timers, associated with USART1 or USART4 transmission signal, can generate the infrared output waveform. The functionality is described in Section 27: Infrared interface (IRTIM). #### Relevant power modes These interconnections operate in Run, Sleep, Low-power run, and Low-power sleep power modes. ## 9.3.12 From TIM14, LPTIM1, and LPTIM2, to DMAMUX #### **Purpose** TIM14 general-purpose timer, LPTIM1 and LPTIM2 low-power timers, and EXTI, can be used as triggering event to DMAMUX. #### Relevant power modes These interconnections operate in Run, Sleep, Low-power run, and Low-power sleep power modes. ## 10 Direct memory access controller (DMA) #### 10.1 Introduction The direct memory access (DMA) controller is a bus master and system peripheral. The DMA is used to perform programmable data transfers between memory-mapped peripherals and/or memories, upon the control of an off-loaded CPU. The DMA controller features a single AHB master architecture. Refer to Section 10.3 for information on DMA implementation. Each channel is dedicated to managing memory access requests from one or more peripherals. The DMA includes an arbiter for handling the priority between DMA requests. ### 10.2 DMA main features - Single AHB master - Peripheral-to-memory, memory-to-peripheral, memory-to-memory and peripheral-to-peripheral data transfers - Access, as source and destination, to on-chip memory-mapped devices such as Flash memory, SRAM, and AHB and APB peripherals - All DMA channels independently configurable: - Each channel is associated either with a DMA request signal coming from a peripheral, or with a software trigger in memory-to-memory transfers. This configuration is done by software. - Priority between the requests is programmable by software (4 levels per channel: very high, high, medium, low) and by hardware in case of equality (such as request to channel 1 has priority over request to channel 2). - Transfer size of source and destination are independent (byte, half-word, word), emulating packing and unpacking. Source and destination addresses must be aligned on the data size. - Support of transfers from/to peripherals to/from memory with circular buffer management - Programmable number of data to be transferred: 0 to 2¹⁶ 1 - Generation of an interrupt request per channel. Each interrupt request is caused from any of the three DMA events: transfer complete, half transfer, or transfer error. RM0444 Rev 5 277/1390 ## 10.3 DMA implementation #### 10.3.1 DMA The devices incorporate one or two DMA controller instances. The following implementation table shows the number of DMA channels for either instance. A dash indicates that the instance is not implemented. Table 46. DMA implementation | Number of channels | STM32G031xx
STM32G041xx | STM32G051xx
STM32G061xx
STM32G071xx
STM32G081xx | STM32G0B1xx
STM32G0C1xx | |--------------------|----------------------------|--|----------------------------| | DMA1 | 5 | 7 | 7 | | DMA2 | - | - | 5 | ## 10.3.2 DMA request mapping The DMA controller is connected to DMA requests from the AHB/APB peripherals through the DMAMUX peripheral. For the mapping of the different requests, refer to the Section 11.3: DMAMUX implementation. ## 10.4 DMA functional description ## 10.4.1 DMA block diagram MSv48187V1 **DMA** Ch 1 Ch 2 AHB master interface Ch 7 dma_req [1..7] Arbiter dma_ack [1..7] 32-bit AHB bu Interrupt AHB slave interface interface dma_it[1..7] The DMA block diagram is shown in the figure below. Figure 22. DMA block diagram The DMA controller performs direct memory transfer by sharing the AHB system bus with other system masters. The bus matrix implements round-robin scheduling. DMA requests may stop the CPU access to the system bus for a number of bus cycles, when CPU and DMA target the same destination (memory or peripheral). According to its configuration through the AHB slave interface, the DMA controller arbitrates between the DMA channels and their associated received requests. The DMA controller also schedules the DMA data transfers over the single AHB port master. The DMA controller generates an interrupt per channel to the interrupt controller. #### 10.4.2 DMA pins and internal signals Signal name Signal type Description dma req[x] Input DMA channel x request dma_ack[x] Output DMA channel x acknowledge dma it[x] Output DMA channel x interrupt Table 47. DMA internal input/output signals #### 10.4.3 **DMA transfers** The software configures the DMA controller at channel level, in order to perform a block transfer, composed of a sequence of AHB bus transfers. A DMA block transfer may be requested from a peripheral, or triggered by the software in case of memory-to-memory transfer. After an event, the following steps of a single DMA transfer occur: - 1. The peripheral sends a single DMA request signal to the DMA controller. - 2. The DMA controller serves the request, depending on the priority of the channel associated to this peripheral request. - 3. As soon as the DMA controller grants the peripheral, an acknowledge is sent to the peripheral by the DMA controller. - The peripheral releases its request as soon as it gets the acknowledge from the DMA controller. - 5. Once the request is de-asserted by the peripheral, the DMA controller releases the acknowledge. The peripheral may order a further single request and initiate another single DMA transfer. The request/acknowledge protocol is used when a peripheral is either the source or the destination of the transfer. For example,
in case of memory-to-peripheral transfer, the peripheral initiates the transfer by driving its single request signal to the DMA controller. The DMA controller reads then a single data in the memory and writes this data to the peripheral. For a given channel x, a DMA block transfer consists of a repeated sequence of: - a single DMA transfer, encapsulating two AHB transfers of a single data, over the DMA AHB bus master: - a single data read (byte, half-word or word) from the peripheral data register or a location in the memory, addressed through an internal current peripheral/memory address register. - The start address used for the first single transfer is the base address of the peripheral or memory, and is programmed in the DMA_CPARx or DMA_CMARx register. - a single data write (byte, half-word or word) to the peripheral data register or a location in the memory, addressed through an internal current peripheral/memory address register. - The start address used for the first transfer is the base address of the peripheral or memory, and is programmed in the DMA_CPARx or DMA_CMARx register. - post-decrementing of the programmed DMA_CNDTRx register This register contains the remaining number of data items to transfer (number of AHB 'read followed by write' transfers). This sequence is repeated until DMA_CNDTRx is null. Note: The AHB master bus source/destination address must be aligned with the programmed size of the transferred single data to the source/destination. #### 10.4.4 DMA arbitration The DMA arbiter manages the priority between the different channels. When an active channel x is granted by the arbiter (hardware requested or software triggered), a single DMA transfer is issued (such as a AHB 'read followed by write' transfer of a single data). Then, the arbiter considers again the set of active channels and selects the one with the highest priority. The priorities are managed in two stages: - software: priority of each channel is configured in the DMA_CCRx register, to one of the four different levels: - very high - high - medium - low - hardware: if two requests have the same software priority level, the channel with the lowest index gets priority. For example, channel 2 gets priority over channel 4. When a channel x is programmed for a block transfer in memory-to-memory mode, re arbitration is considered between each single DMA transfer of this channel x. Whenever there is another concurrent active requested channel, the DMA arbiter automatically alternates and grants the other highest-priority requested channel, which may be of lower priority than the memory-to-memory channel. #### 10.4.5 DMA channels Each channel may handle a DMA transfer between a peripheral register located at a fixed address, and a memory address. The amount of data items to transfer is programmable. The register that contains the amount of data items to transfer is decremented after each transfer. A DMA channel is programmed at block transfer level. #### Programmable data sizes The transfer sizes of a single data (byte, half-word, or word) to the peripheral and memory are programmable through, respectively, the PSIZE[1:0] and MSIZE[1:0] fields of the DMA_CCRx register. #### **Pointer incrementation** The peripheral and memory pointers may be automatically incremented after each transfer, depending on the PINC and MINC bits of the DMA_CCRx register. If the **incremented mode** is enabled (PINC or MINC set to 1), the address of the next transfer is the address of the previous one incremented by 1, 2 or 4, depending on the data size defined in PSIZE[1:0] or MSIZE[1:0]. The first transfer address is the one programmed in the DMA_CPARx or DMA_CMARx register. During transfers, these registers keep the initially programmed value. The current transfer addresses (in the current internal peripheral/memory address register) are not accessible by software. If the channel x is configured in **non-circular mode**, no DMA request is served after the last data transfer (once the number of single data to transfer reaches zero). The DMA channel must be disabled in order to reload a new number of data items into the DMA_CNDTRx register. Note: If the channel x is disabled, the DMA registers are not reset. The DMA channel registers (DMA_CCRx, DMA_CPARx and DMA_CMARx) retain the initial values programmed during the channel configuration phase. In **circular mode**, after the last data transfer, the DMA_CNDTRx register is automatically reloaded with the initially programmed value. The current internal address registers are reloaded with the base address values from the DMA_CPARx and DMA_CMARx registers. RM0444 Rev 5 281/1390 #### Channel configuration procedure The following sequence is needed to configure a DMA channel x: - Set the peripheral register address in the DMA CPARx register. The data is moved from/to this address to/from the memory after the peripheral event, or after the channel is enabled in memory-to-memory mode. - Set the memory address in the DMA_CMARx register. The data is written to/read from the memory after the peripheral event or after the channel is enabled in memory-to-memory mode. - 3. Configure the total number of data to transfer in the DMA CNDTRx register. After each data transfer, this value is decremented. - 4. Configure the parameters listed below in the DMA CCRx register: - the channel priority - the data transfer direction - the circular mode - the peripheral and memory incremented mode - the peripheral and memory data size - the interrupt enable at half and/or full transfer and/or transfer error - Activate the channel by setting the EN bit in the DMA_CCRx register. A channel, as soon as enabled, may serve any DMA request from the peripheral connected to this channel, or may start a memory-to-memory block transfer. Note: The two last steps of the channel configuration procedure may be merged into a single access to the DMA CCRx register, to configure and enable the channel. #### Channel state and disabling a channel A channel x in active state is an enabled channel (read DMA_CCRx.EN = 1). An active channel x is a channel that must have been enabled by the software (DMA CCRx.EN set to 1) and afterwards with no occurred transfer error (DMA ISR.TEIFx = 0). In case there is a transfer error, the channel is automatically disabled by hardware (DMA CCRx.EN = 0). The three following use cases may happen: Suspend and resume a channel This corresponds to the two following actions: - An active channel is disabled by software (writing DMA_CCRx.EN = 0 whereas DMA CCRx.EN = 1). - The software enables the channel again (DMA_CCRx.EN set to 1) without reconfiguring the other channel registers (such as DMA CNDTRx, DMA CPARx and DMA CMARx). This case is not supported by the DMA hardware, that does not guarantee that the remaining data transfers are performed correctly. Stop and abort a channel If the application does not need any more the channel, this active channel can be disabled by software. The channel is stopped and aborted but the DMA_CNDTRx register content may not correctly reflect the remaining data transfers versus the aborted source and destination buffer/register. Abort and restart a channel This corresponds to the software sequence: disable an active channel, then reconfigure the channel and enable it again. This is supported by the hardware if the following conditions are met: - The application guarantees that, when the software is disabling the channel, a DMA data transfer is not occurring at the same time over its master port. For example, the application can first disable the peripheral in DMA mode, in order to ensure that there is no pending hardware DMA request from this peripheral. - The software must operate separated write accesses to the same DMA_CCRx register: First disable the channel. Second reconfigure the channel for a next block transfer including the DMA_CCRx if a configuration change is needed. There are read-only DMA_CCRx register fields when DMA_CCRx.EN=1. Finally enable again the channel. When a channel transfer error occurs, the EN bit of the DMA_CCRx register is cleared by hardware. This EN bit can not be set again by software to re-activate the channel x, until the TEIFx bit of the DMA_ISR register is set. ### Circular mode (in memory-to-peripheral/peripheral-to-memory transfers) The circular mode is available to handle circular buffers and continuous data flows (such as ADC scan mode). This feature is enabled using the CIRC bit in the DMA CCRx register. Note: The circular mode must not be used in memory-to-memory mode. Before enabling a channel in circular mode (CIRC = 1), the software must clear the MEM2MEM bit of the DMA_CCRx register. When the circular mode is activated, the amount of data to transfer is automatically reloaded with the initial value programmed during the channel configuration phase, and the DMA requests continue to be served. In order to stop a circular transfer, the software needs to stop the peripheral from generating DMA requests (such as quit the ADC scan mode), before disabling the DMA channel. The software must explicitly program the DMA_CNDTRx value before starting/enabling a transfer, and after having stopped a circular transfer. ### Memory-to-memory mode The DMA channels may operate without being triggered by a request from a peripheral. This mode is called memory-to-memory mode, and is initiated by software. If the MEM2MEM bit in the DMA_CCRx register is set, the channel, if enabled, initiates transfers. The transfer stops once the DMA_CNDTRx register reaches zero. Note: The memory-to-memory mode must not be used in circular mode. Before enabling a channel in memory-to-memory mode (MEM2MEM = 1), the software must clear the CIRC bit of the DMA_CCRx register. RM0444 Rev 5 283/1390 #### Peripheral-to-peripheral mode Any DMA channel can operate in peripheral-to-peripheral mode: - when the hardware request from a peripheral is selected to trigger the DMA channel This
peripheral is the DMA initiator and paces the data transfer from/to this peripheral to/from a register belonging to another memory-mapped peripheral (this one being not configured in DMA mode). - when no peripheral request is selected and connected to the DMA channel The software configures a register-to-register transfer by setting the MEM2MEM bit of the DMA_CCRx register. #### Programming transfer direction, assigning source/destination The value of the DIR bit of the DMA_CCRx register sets the direction of the transfer, and consequently, it identifies the source and the destination, regardless the source/destination type (peripheral or memory): - **DIR = 1** defines typically a memory-to-peripheral transfer. More generally, if DIR = 1: - The **source** attributes are defined by the DMA MARx register, the MSIZE[1:0] field and MINC bit of the DMA CCRx register. Regardless of their usual naming, these 'memory' register, field and bit are used to define the source peripheral in peripheral-to-peripheral mode. - The **destination** attributes are defined by the DMA PARx register, the PSIZE[1:0] field and PINC bit of the DMA CCRx register. Regardless of their usual naming, these 'peripheral' register, field and bit are used to define the destination memory in memory-to-memory mode. - **DIR = 0** defines typically a peripheral-to-memory transfer. More generally, if DIR = 0: - The **source** attributes are defined by the DMA PARx register, the PSIZE[1:0] field and PINC bit of the DMA CCRx register. Regardless of their usual naming, these 'peripheral' register, field and bit are used to define the source memory in memory-to-memory mode - The **destination** attributes are defined by the DMA MARx register, the MSIZE[1:0] field and MINC bit of the DMA_CCRx register. Regardless of their usual naming, these 'memory' register, field and bit are used to define the destination peripheral in peripheral-to-peripheral mode. #### 10.4.6 DMA data width, alignment and endianness When PSIZE[1:0] and MSIZE[1:0] are not equal, the DMA controller performs some data alignments as described in the table below. Table 48. Programmable data width and endian behavior (when PINC = MINC = 1) | Source
port
width
(MSIZE
if
DIR = 1,
else
PSIZE) | Destinat
ion port
width
(PSIZE
if
DIR = 1,
else
MSIZE) | Number
of data
items to
transfer
(NDT) | Source content:
address / data
(DMA_CMARX if
DIR = 1, else
DMA_CPARX) | DMA transfers | Destination
content:
address / data
(DMA_CPARx if
DIR = 1, else
DMA_CMARx) | |---|---|--|---|---|---| | 8 | 8 | 4 | @0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3 | 1: read B0[7:0] @0x0 then write B0[7:0] @0x0
2: read B1[7:0] @0x1 then write B1[7:0] @0x1
3: read B2[7:0] @0x2 then write B2[7:0] @0x2
4: read B3[7:0] @0x3 then write B3[7:0] @0x3 | @0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3 | | 8 | 16 | 4 | @0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3 | 1: read B0[7:0] @0x0 then write 00B0[15:0] @0x0
2: read B1[7:0] @0x1 then write 00B1[15:0] @0x2
3: read B2[7:0] @0x2 then write 00B2[15:0] @0x4
4: read B3[7:0] @0x3 then write 00B3[15:0] @0x6 | @0x0 / 00B0
@0x2 / 00B1
@0x4 / 00B2
@0x6 / 00B3 | | 8 | 32 | 4 | @0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3 | 1: read B0[7:0] @0x0 then write 000000B0[31:0] @0x0
2: read B1[7:0] @0x1 then write 000000B1[31:0] @0x4
3: read B2[7:0] @0x2 then write 000000B2[31:0] @0x8
4: read B3[7:0] @0x3 then write 000000B3[31:0] @0xC | @0x0 / 000000B0
@0x4 / 000000B1
@0x8 / 000000B2
@0xC / 000000B3 | | 16 | 8 | 4 | @0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6 | 1: read B1B0[15:0] @0x0 then write B0[7:0] @0x0
2: read B3B2[15:0] @0x2 then write B2[7:0] @0x1
3: read B5B4[15:0] @0x4 then write B4[7:0] @0x2
4: read B7B6[15:0] @0x6 then write B6[7:0] @0x3 | @0x0 / B0
@0x1 / B2
@0x2 / B4
@0x3 / B6 | | 16 | 16 | 4 | @0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6 | 1: read B1B0[15:0] @0x0 then write B1B0[15:0] @0x0
2: read B3B2[15:0] @0x2 then write B3B2[15:0] @0x2
3: read B5B4[15:0] @0x4 then write B5B4[15:0] @0x4
4: read B7B6[15:0] @0x6 then write B7B6[15:0] @0x6 | @0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6 | | 16 | 32 | 4 | @0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6 | 1: read B1B0[15:0] @0x0 then write 0000B1B0[31:0] @0x0
2: read B3B2[15:0] @0x2 then write 0000B3B2[31:0] @0x4
3: read B5B4[15:0] @0x4 then write 0000B5B4[31:0] @0x8
4: read B7B6[15:0] @0x6 then write 0000B7B6[31:0] @0xC | @0x0 / 0000B1B0
@0x4 / 0000B3B2
@0x8 / 0000B5B4
@0xC / 0000B7B6 | | 32 | 8 | 4 | @0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC | 1: read B3B2B1B0[31:0] @0x0 then write B0[7:0] @0x0
2: read B7B6B5B4[31:0] @0x4 then write B4[7:0] @0x1
3: read BBBAB9B8[31:0] @0x8 then write B8[7:0] @0x2
4: read BFBEBDBC[31:0] @0xC then write BC[7:0] @0x3 | @0x0 / B0
@0x1 / B4
@0x2 / B8
@0x3 / BC | | 32 | 16 | 4 | @0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC | 1: read B3B2B1B0[31:0] @0x0 then write B1B0[15:0] @0x0
2: read B7B6B5B4[31:0] @0x4 then write B5B4[15:0] @0x2
3: read BBBAB9B8[31:0] @0x8 then write B9B8[15:0] @0x4
4: read BFBEBDBC[31:0] @0xC then write BDBC[15:0] @0x6 | @0x0 / B1B0
@0x2 / B5B4
@0x4 / B9B8
@0x6 / BDBC | | 32 | 32 | 4 | @0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC | 1: read B3B2B1B0[31:0] @0x0 then write B3B2B1B0[31:0] @0x0 2: read B7B6B5B4[31:0] @0x4 then write B7B6B5B4[31:0] @0x4 3: read BBBAB9B8[31:0] @0x8 then write BBBAB9B8[31:0] @0x8 4: read BFBEBDBC[31:0] @0xC then write BFBEBDBC[31:0] @0xC | @0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC | #### Addressing AHB peripherals not supporting byte/half-word write transfers When the DMA controller initiates an AHB byte or half-word write transfer, the data are duplicated on the unused lanes of the AHB master 32-bit data bus (HWDATA[31:0]). When the AHB slave peripheral does not support byte or half-word write transfers and does not generate any error, the DMA controller writes the 32 HWDATA bits as shown in the two examples below: - To write the half-word 0xABCD, the DMA controller sets the HWDATA bus to 0xABCDABCD with a half-word data size (HSIZE = HalfWord in AHB master bus). - To write the byte 0xAB, the DMA controller sets the HWDATA bus to 0xABABABAB with a byte data size (HSIZE = Byte in the AHB master bus). RM0444 Rev 5 285/1390 Assuming the AHB/APB bridge is an AHB 32-bit slave peripheral that does not take into account the HSIZE data, any AHB byte or half-word transfer is changed into a 32-bit APB transfer as described below: - An AHB byte write transfer of 0xB0 to one of the 0x0, 0x1, 0x2 or 0x3 addresses, is converted to an APB word write transfer of 0xB0B0B0B0 to the 0x0 address. - An AHB half-word write transfer of 0xB1B0 to the 0x0 or 0x2 addresses, is converted to an APB word write transfer of 0xB1B0B1B0 to the 0x0 address. ### 10.4.7 DMA error management A DMA transfer error is generated when reading from or writing to a reserved address space. When a DMA transfer error occurs during a DMA read or write access, the faulty channel x is automatically disabled through a hardware clear of its EN bit in the corresponding DMA_CCRx register. The TEIFx bit of the DMA_ISR register is set. An interrupt is then generated if the TEIE bit of the DMA_CCRx register is set. The EN bit of the DMA_CCRx register can not be set again by software (channel x reactivated) until the TEIFx bit of the DMA_ISR register is cleared (by setting the CTEIFx bit of the DMA_IFCR register). When the software is notified with a transfer error over a channel which involves a peripheral, the software has first to stop this peripheral in DMA mode, in order to disable any pending or future DMA request. Then software may normally reconfigure both DMA and the peripheral in DMA mode for a new transfer. ## 10.5 DMA interrupts An interrupt can be generated on a half transfer, transfer complete or transfer error for each DMA channel x. Separate interrupt enable bits are available for flexibility. | Interrupt request | Interrupt event | Event flag | Interrupt
enable bit | |---------------------|---|------------|-------------------------| | | Half transfer on channel x | HTIFx | HTIEx | | Channel x interrupt | Transfer complete on channel x | TCIFx | TCIEx | | Charmer x interrupt | Transfer error on channel x | TEIFx | TEIEx | | | Half transfer or transfer complete or transfer error on channel x | GIFx | - | Table 49. DMA interrupt requests ## 10.6 DMA registers Refer to Section 1.2 for a list of abbreviations used in register descriptions. The DMA registers have to be accessed by words (32-bit). ## 10.6.1 DMA interrupt status register (DMA_ISR) Address offset: 0x00 Reset value: 0x0000 0000 Every status bit is cleared by hardware when the software sets the corresponding clear bit or the corresponding global clear bit CGIFx, in the DMA_IFCR register. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------|-------|-------|------|-------|-------|-------|------|-------|-------|-------|------|-------|-------|-------|------| | Res. | Res. | Res. |
Res. | TEIF7 | HTIF7 | TCIF7 | GIF7 | TEIF6 | HTIF6 | TCIF6 | GIF6 | TEIF5 | HTIF5 | TCIF5 | GIF5 | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | TEIF4 | HTIF4 | TCIF4 | GIF4 | TEIF3 | HTIF3 | TCIF3 | GIF3 | TEIF2 | HTIF2 | TCIF2 | GIF2 | TEIF1 | HTIF1 | TCIF1 | GIF1 | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | Bits 31:28 Reserved, must be kept at reset value. Bit 27 TEIF7: transfer error (TE) flag for channel 7 0: no TE event 1: a TE event occurred Bit 26 HTIF7: half transfer (HT) flag for channel 7 0: no HT event 1: a HT event occurred Bit 25 TCIF7: transfer complete (TC) flag for channel 7 0: no TC event 1: a TC event occurred Bit 24 GIF7: global interrupt flag for channel 7 0: no TE, HT or TC event 1: a TE, HT or TC event occurred Bit 23 TEIF6: transfer error (TE) flag for channel 6 0: no TE event 1: a TE event occurred Bit 22 HTIF6: half transfer (HT) flag for channel 6 0: no HT event 1: a HT event occurred Bit 21 TCIF6: transfer complete (TC) flag for channel 6 0: no TC event 1: a TC event occurred Bit 20 GIF6: global interrupt flag for channel 6 0: no TE, HT or TC event 1: a TE, HT or TC event occurred Bit 19 TEIF5: transfer error (TE) flag for channel 5 0: no TE event 1: a TE event occurred Bit 18 HTIF5: half transfer (HT) flag for channel 5 0: no HT event 1: a HT event occurred RM0444 Rev 5 287/1390 Bit 17 TCIF5: transfer complete (TC) flag for channel 5 0: no TC event 1: a TC event occurred Bit 16 GIF5: global interrupt flag for channel 5 0: no TE, HT or TC event 1: a TE, HT or TC event occurred Bit 15 TEIF4: transfer error (TE) flag for channel 4 0: no TE event 1: a TE event occurred Bit 14 HTIF4: half transfer (HT) flag for channel 4 0: no HT event 1: a HT event occurred Bit 13 TCIF4: transfer complete (TC) flag for channel 4 0: no TC event 1: a TC event occurred Bit 12 GIF4: global interrupt flag for channel 4 0: no TE, HT or TC event 1: a TE, HT or TC event occurred Bit 11 **TEIF3**: transfer error (TE) flag for channel 3 0: no TE event 1: a TE event occurred Bit 10 HTIF3: half transfer (HT) flag for channel 3 0: no HT event 1: a HT event occurred Bit 9 TCIF3: transfer complete (TC) flag for channel 3 0: no TC event 1: a TC event occurred Bit 8 GIF3: global interrupt flag for channel 3 0: no TE, HT or TC event 1: a TE, HT or TC event occurred Bit 7 TEIF2: transfer error (TE) flag for channel 2 0: no TE event 1: a TE event occurred Bit 6 HTIF2: half transfer (HT) flag for channel 2 0: no HT event 1: a HT event occurred Bit 5 TCIF2: transfer complete (TC) flag for channel 2 0: no TC event 1: a TC event occurred Bit 4 GIF2: global interrupt flag for channel 2 0: no TE, HT or TC event 1: a TE, HT or TC event occurred Bit 3 TEIF1: transfer error (TE) flag for channel 1 0: no TE event 1: a TE event occurred Bit 2 HTIF1: half transfer (HT) flag for channel 1 0: no HT event 1: a HT event occurred Bit 1 TCIF1: transfer complete (TC) flag for channel 1 0: no TC event 1: a TC event occurred Bit 0 GIF1: global interrupt flag for channel 1 0: no TE, HT or TC event 1: a TE, HT or TC event occurred ## 10.6.2 DMA interrupt flag clear register (DMA_IFCR) Address offset: 0x04 Reset value: 0x0000 0000 Setting the global clear bit CGIFx of the channel x in this DMA_IFCR register, causes the DMA hardware to clear the corresponding GIFx bit and any individual flag among TEIFx, HTIFx, TCIFx, in the DMA_ISR register. Setting any individual clear bit among CTEIFx, CHTIFx, CTCIFx in this DMA_IFCR register, causes the DMA hardware to clear the corresponding individual flag and the global flag GIFx in the DMA_ISR register, provided that none of the two other individual flags is set. Writing 0 into any flag clear bit has no effect. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |--------|--------|--------|-------|--------|--------|--------|-------|--------|--------|--------|-------|--------|--------|--------|-------| | Res. | Res. | Res. | Res. | CTEIF7 | CHTIF7 | CTCIF7 | CGIF7 | CTEIF6 | CHTIF6 | CTCIF6 | CGIF6 | CTEIF5 | CHTIF5 | CTCIF5 | CGIF5 | | | | | | W | W | w | w | w | w | w | w | w | w | w | w | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | CTEIF4 | CHTIF4 | CTCIF4 | CGIF4 | CTEIF3 | СНТІЕЗ | CTCIF3 | CGIF3 | CTEIF2 | CHTIF2 | CTCIF2 | CGIF2 | CTEIF1 | CHTIF1 | CTCIF1 | CGIF1 | | w | W | W | W | W | W | W | W | W | W | W | W | W | W | W | w | Bits 31:28 Reserved, must be kept at reset value. Bit 27 CTEIF7: transfer error flag clear for channel 7 Bit 26 CHTIF7: half transfer flag clear for channel 7 Bit 25 CTCIF7: transfer complete flag clear for channel 7 Bit 24 CGIF7: global interrupt flag clear for channel 7 Bit 23 CTEIF6: transfer error flag clear for channel 6 Bit 22 CHTIF6: half transfer flag clear for channel 6 Bit 21 CTCIF6: transfer complete flag clear for channel 6 Bit 20 CGIF6: global interrupt flag clear for channel 6 Bit 19 CTEIF5: transfer error flag clear for channel 5 Bit 18 CHTIF5: half transfer flag clear for channel 5 RM0444 Rev 5 289/1390 - Bit 17 CTCIF5: transfer complete flag clear for channel 5 - Bit 16 CGIF5: global interrupt flag clear for channel 5 - Bit 15 CTEIF4: transfer error flag clear for channel 4 - Bit 14 CHTIF4: half transfer flag clear for channel 4 - Bit 13 CTCIF4: transfer complete flag clear for channel 4 - Bit 12 CGIF4: global interrupt flag clear for channel 4 - Bit 11 CTEIF3: transfer error flag clear for channel 3 - Bit 10 CHTIF3: half transfer flag clear for channel 3 - Bit 9 CTCIF3: transfer complete flag clear for channel 3 - Bit 8 CGIF3: global interrupt flag clear for channel 3 - Bit 7 CTEIF2: transfer error flag clear for channel 2 - Bit 6 CHTIF2: half transfer flag clear for channel 2 - Bit 5 CTCIF2: transfer complete flag clear for channel 2 - Bit 4 CGIF2: global interrupt flag clear for channel 2 - Bit 3 CTEIF1: transfer error flag clear for channel 1 - Bit 2 CHTIF1: half transfer flag clear for channel 1 - Bit 1 CTCIF1: transfer complete flag clear for channel 1 - Bit 0 CGIF1: global interrupt flag clear for channel 1 ### 10.6.3 DMA channel x configuration register (DMA_CCRx) Address offset: 0x08 + 0x14 * (x - 1), (x = 1 to 7) Reset value: 0x0000 0000 The register fields/bits MEM2MEM, PL[1:0], MSIZE[1:0], PSIZE[1:0], MINC, PINC, and DIR are read-only when EN = 1. The states of MEM2MEM and CIRC bits must not be both high at the same time. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|-------------|------|------|------|--------|------|--------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | MEM2
MEM | PL[| 1:0] | MSIZ | E[1:0] | PSIZ | E[1:0] | MINC | PINC | CIRC | DIR | TEIE | HTIE | TCIE | EN | | | rw #### Bits 31:15 Reserved, must be kept at reset value. #### Bit 14 MEM2MEM: memory-to-memory mode 0: disabled 1: enabled Note: this bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1). #### Bits 13:12 PL[1:0]: priority level 00: low 01: medium 10: high 11: very high Note: this field is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1). #### Bits 11:10 MSIZE[1:0]: memory size Defines the data size of each DMA transfer to the identified memory. In memory-to-memory mode, this field identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this field identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. 00: 8 bits 01: 16 bits 10: 32 bits 11: reserved Note: this field is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1). #### Bits 9:8 PSIZE[1:0]: peripheral size Defines the data size of each DMA transfer to the identified peripheral. In memory-to-memory mode, this field identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this field identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. 00: 8 bits 01: 16 bits 10: 32 bits 11: reserved Note: this field is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1). RM0444 Rev 5 291/1390 #### Bit 7 MINC: memory increment mode Defines the increment mode for each DMA transfer to the identified memory. In memory-to-memory mode, this field identifies the memory source if DIR = 1 and the memory destination if DIR = 0. In peripheral-to-peripheral mode, this field identifies the peripheral source if DIR = 1 and the peripheral destination if DIR = 0. 0: disabled 1. enabled Note: this bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1). #### Bit 6 PINC: peripheral increment mode Defines the increment mode for each DMA transfer to the identified peripheral. n memory-to-memory mode, this field identifies the memory destination if DIR = 1 and the memory source if DIR = 0. In peripheral-to-peripheral mode, this field identifies the peripheral destination if DIR = 1 and the peripheral source if DIR = 0. 0: disabled 1: enabled Note: this bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1). #### Bit 5 CIRC: circular mode 0: disabled 1: enabled Note: this bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1). Bit 4 **DIR**: data transfer direction This bit must be set
only in memory-to-peripheral and peripheral-to-memory modes. 0: read from peripheral - Source attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. - Destination attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. #### 1: read from memory - Destination attributes are defined by PSIZE and PINC, plus the DMA_CPARx register. This is still valid in a memory-to-memory mode. - Source attributes are defined by MSIZE and MINC, plus the DMA_CMARx register. This is still valid in a peripheral-to-peripheral mode. Note: this bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1). it is read-only when the charmer is chabled #### Bit 3 **TEIE**: transfer error interrupt enable 0: disabled 1: enabled Note: this bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1). #### Bit 2 HTIE: half transfer interrupt enable 0: disabled 1: enabled Note: this bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1). #### Bit 1 TCIE: transfer complete interrupt enable 0: disabled 1: enabled Note: this bit is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1). #### Bit 0 EN: channel enable When a channel transfer error occurs, this bit is cleared by hardware. It can not be set again by software (channel x re-activated) until the TEIFx bit of the DMA_ISR register is cleared (by setting the CTEIFx bit of the DMA_IFCR register). 0: disabled 1: enabled Note: this bit is set and cleared by software. ### 10.6.4 DMA channel x number of data to transfer register (DMA_CNDTRx) Address offset: 0x0C + 0x14 * (x - 1), (x = 1 to 7) Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|---------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | _ | _ | | | _ | _ | ND' | T[15:0] | _ | _ | | | _ | | | | rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 **NDT[15:0]**: number of data to transfer (0 to 2¹⁶ - 1) This field is updated by hardware when the channel is enabled: - It is decremented after each single DMA 'read followed by write' transfer, indicating the remaining amount of data items to transfer. - It is kept at zero when the programmed amount of data to transfer is reached, if the channel is not in circular mode (CIRC = 0 in the DMA_CCRx register). - It is reloaded automatically by the previously programmed value, when the transfer is complete, if the channel is in circular mode (CIRC = 1). If this field is zero, no transfer can be served whatever the channel status (enabled or not). Note: this field is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is read-only when the channel is enabled (EN = 1). RM0444 Rev 5 293/1390 ## 10.6.5 DMA channel x peripheral address register (DMA_CPARx) Address offset: 0x10 + 0x14 * (x - 1), (x = 1 to 7) Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|-----|--------|----|----|----|----|----|----|----| | | | | | | | | PA[| 31:16] | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | PA | [15:0] | | | | | | | | | rw Bits 31:0 PA[31:0]: peripheral address It contains the base address of the peripheral data register from/to which the data will be read/written. When PSIZE[1:0] = 01 (16 bits), bit 0 of PA[31:0] is ignored. Access is automatically aligned to a half-word address. When PSIZE = 10 (32 bits), bits 1 and 0 of PA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this register identifies the memory destination address if DIR = 1 and the memory source address if DIR = 0. In peripheral-to-peripheral mode, this register identifies the peripheral destination address DIR = 1 and the peripheral source address if DIR = 0. Note: this register is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1). #### 10.6.6 DMA channel x memory address register (DMA_CMARx) Address offset: 0x14 + 0x14 * (x - 1), (x = 1 to 7) Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|----|---------|----|----|----|----|----|----|----| | | | _ | | | _ | | MA | [31:16] | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | MA | [15:0] | | | | | | | | | rw #### Bits 31:0 MA[31:0]: peripheral address It contains the base address of the memory from/to which the data will be read/written. When MSIZE[1:0] = 01 (16 bits), bit 0 of MA[31:0] is ignored. Access is automatically aligned to a half-word address. When MSIZE = 10 (32 bits), bits 1 and 0 of MA[31:0] are ignored. Access is automatically aligned to a word address. In memory-to-memory mode, this register identifies the memory source address if DIR = 1 and the memory destination address if DIR = 0. In peripheral-to-peripheral mode, this register identifies the peripheral source address DIR = 1 and the peripheral destination address if DIR = 0. Note: this register is set and cleared by software. It must not be written when the channel is enabled (EN = 1). It is not read-only when the channel is enabled (EN = 1). ## 10.6.7 DMA register map The table below gives the DMA register map and reset values. Table 50. DMA register map and reset values | | | | | | | | | | _ | _ | | _ | _ | ÷ | _ | _ | | _ | _ | _ | _ | _ | | | _ | _ | _ | _ | _ | | _ | _ | |-------------|---|---|--|--|---------|---------
--
--
--
--
--
--
--

--
--
--
--
--

--
--
--
--
--
--|--|---
--
--
--
--
--

--
--|----------------|---------|--------------
---|--|---|-------------|--|--
--|--|---|--------------|--
--| | Register | 31 | 30 | 53 | 28 | 27 | 56 | 22 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | æ | 7 | 9 | 2 | 4 | က | 2 | - | 0 | | DMA_ISR | Res. | Res. | Res. | Res. | TEIF7 | HTIF7 | TCIF7 | GIF7 | TEIF6 | нт IF6 | TCIF6 | GIF6 | TEIF5 | HTIF5 | TCIF5 | GIF5 | TEIF4 | HTIF4 | TCIF4 | GIF4 | TEIF3 | HTIF3 | TCIF3 | GIF3 | TEIF2 | HTIF2 | TCIF2 | GIF2 | TEIF1 | HTIF1 | TCIF1 | GIF1 | | Reset value | | | | | 0 | | DMA_IFCR | Res. | Res. | Res. | Res. | CTEIF7 | CHTIF7 | CTCIF7 | CGIF7 | CTEIF6 | CHTIF6 | CTCIF6 | CGIF6 | CTEIF5 | CHTIF5 | CTCIF5 | CGIF5 | CTEIF4 | CHTIF4 | CTCIF4 | CGIF4 | | CHTIF3 | CTCIF3 | CGIF3 | CTEIF2 | CHTIF2 | CTCIF2 | CGIF2 | CTEIF1 | CHTIF1 | CTCIF1 | CGIF1 | | Reset value | | | | | 0 | | DMA_CCR1 | Res. MEM2MEM | [1.0] | ا
ا
آ | MS17E[4·0] | NISIZE . U] | DC17E14.01 | PSIZE[1:0] | MINC | PINC | CIRC | DIR | TEIE | HTIE | TCIE | EN | | Reset value | | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DMA_CNDTR1 | Res. | | | | | | NI | DTR | (15 | :0] | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DMA_CPAR1 | | | | | • | | • | | | | | | | • | ı | PA[3 | 31:0 |] | | | | | | | | | | | | | | | | Reset value | 0 | | DMA_CMAR1 | | • | | • | • | | • | • | | | | | | • | ı | JAN | 31:0 |] | • | | | | | • | • | | | • | • | • | • | | | Reset value | 0 | | Reserved | | | | | | | | | | | | | | | R | Rese | rve | d. | | | | | | | | | | | | | | | | DMA_CCR2 | Res. MEM2MEM | [0.17] | ۲
ا
آن | MSIZEI1-01 | M312E[1.0] | 10.175130 | PSIZE[1:0] | MINC | PINC | CIRC | DIR | TEIE | HTIE | TCIE | EN | | Reset value | | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DMA_CNDTR2 | Res. | | | | | | ΝI | DTR | (15 | :0] | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DMA_CPAR2 | | | | | | | | | | | | | | | | PA[3 | 31:0 |] | | | | | | | | | | | | | | | | Reset value | 0 | | DMA_CMAR2 | | | | | | | | | | | | | | | | MA[| 31:0 |] | | | | | | | | | | | | | | | | Reset value | 0 | | Reserved | | | | | • | | • | | | | | | | • | R | Rese | erve | d. | | | | | | | • | | | | • | • | | | | | DMA_ISR Reset value DMA_IFCR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CPAR1 Reset value DMA_CCMAR1 Reset value DMA_CMAR1 Reset value Reserved DMA_CCR2 Reset value DMA_CCR2 Reset value DMA_CNDTR2 Reset value DMA_CPAR2 Reset value DMA_CMAR2 Reset value | DMA_ISR Reset value DMA_IFCR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CPAR1 Reset value DMA_CCMAR1 Reset value DMA_CCMAR1 Reset value DMA_CAMAR1 Reset value DMA_CAMAR1 Reset value DMA_CCR2 Reset value DMA_CRACR2 Reset value DMA_CPAR2 Reset value DMA_CMAR2 Reset value DMA_CMAR2 Reset value O DMA_CMAR2 Reset value O DMA_CMAR2 Reset value O DMA_CMAR2 Reset value O DMA_CMAR2 Reset value | DMA_ISR Reset value DMA_IFCR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CPAR1 Reset value DMA_CPAR1 Reset value DMA_CCR2 Reset value DMA_CCR2 Reset value DMA_CCR2 Reset value DMA_CRACR2 Reset value DMA_CNDTR2 Reset value DMA_CAR2 Reset value DMA_CPAR2 Reset value DMA_CMAR2 Reset value DMA_CMAR2 Reset value DMA_CMAR2 Reset value D 0 0 | DMA_ISR Reset value DMA_IFCR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CPAR1 Reset value DMA_CPAR1 Reset value DMA_CCR2 Reset value DMA_CCR2 Reset value DMA_CCR2 Reset value DMA_CCR2 Reset value DMA_CNDTR2 Reset value DMA_CNDTR2 Reset value DMA_CPAR2 Reset value DMA_CPAR2 Reset value DMA_CMAR2 Reset value DMA_CMAR2 Reset value DMA_CMAR2 Reset value D 0 0 0 | DMA_ISR | DMA_ISR | DMA_ISR 8 8 8 8 8 1 1 1 0 </td <td>DMA_ISR 8 8 8 8 1 1 1 0<!--</td--><td>DMA_ISR 8 8 8 1 2 2<!--</td--><td>DMA_ISR 8 8 8 8 1<!--</td--><td>DMA_ISR 2<!--</td--><td>DMA_ISR 88 <t< td=""><td>DMA_ISR Reset value DMA_IFCR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CMAR1 Reset value DMA_CCR2 DMA_CCRAC R</td><td>DMA_ISR 88 88 88 14/4 14</td><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR </td><td> DMA_ISR</td><td> DMA_ISR</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CCR2 DMA_CCR2 Reset value DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CPAR1 Reset value DMA_CAMAR1 Reset value DMA_CCR2 DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset va</td><td> DMA_ISR S S S S S S S S S </td><td> DMA_ISR S</td><td>DMA_ISR Reset value DMA_IFCR BMA_CCR1 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2
BMA_CCR2 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR3 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR3 BMA_</td><td>DMA_ISR Reset value DMA_IFCR DMA_CCR1 DMA_CCR1 Reset value DMA_CRDTR1 Reset value DMA_CDAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DM</td><td>DMA_ISR Reset value DMA_CRAPT Reset value DMA_CRAPAT value</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CC</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CCR4</td><td>DMA_ISR A</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR4 DMA</td><td>DMA_ISR DMA_ISR DMA_I</td></td></td></td></t<></td></td></td></td></td> | DMA_ISR 8 8 8 8 1 1 1 0 </td <td>DMA_ISR 8 8 8 1 2 2<!--</td--><td>DMA_ISR 8 8 8 8 1<!--</td--><td>DMA_ISR 2<!--</td--><td>DMA_ISR 88 <t< td=""><td>DMA_ISR Reset value DMA_IFCR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CMAR1 Reset value DMA_CCR2 DMA_CCRAC R</td><td>DMA_ISR 88 88 88 14/4 14</td><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR </td><td> DMA_ISR</td><td> DMA_ISR</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CCR2 DMA_CCR2 Reset value DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CPAR1 Reset value DMA_CAMAR1 Reset value DMA_CCR2 DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset va</td><td> DMA_ISR S S S S S S S S S </td><td> DMA_ISR S</td><td>DMA_ISR Reset value DMA_IFCR BMA_CCR1 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR3 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR3 BMA_</td><td>DMA_ISR Reset value DMA_IFCR DMA_CCR1 DMA_CCR1 Reset value DMA_CRDTR1 Reset value DMA_CDAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DM</td><td>DMA_ISR Reset value DMA_CRAPT Reset value DMA_CRAPAT value</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CC</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CCR4</td><td>DMA_ISR A</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR4 DMA</td><td>DMA_ISR DMA_ISR DMA_I</td></td></td></td></t<></td></td></td></td> | DMA_ISR 8 8 8 1 2 2 </td <td>DMA_ISR 8 8 8 8 1<!--</td--><td>DMA_ISR 2<!--</td--><td>DMA_ISR 88 <t< td=""><td>DMA_ISR Reset value DMA_IFCR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CMAR1 Reset value DMA_CCR2 DMA_CCRAC R</td><td>DMA_ISR 88 88 88 14/4 14</td><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR </td><td> DMA_ISR</td><td> DMA_ISR</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CCR2 DMA_CCR2 Reset value DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CPAR1 Reset value DMA_CAMAR1 Reset value DMA_CCR2 DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset va</td><td> DMA_ISR S S S S S S S S S </td><td> DMA_ISR S</td><td>DMA_ISR Reset value DMA_IFCR BMA_CCR1 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR3 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR3 BMA_</td><td>DMA_ISR Reset value DMA_IFCR DMA_CCR1 DMA_CCR1 Reset value DMA_CRDTR1 Reset value DMA_CDAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DM</td><td>DMA_ISR Reset value DMA_CRAPT Reset value DMA_CRAPAT value</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CC</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CCR4</td><td>DMA_ISR A</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR4 DMA</td><td>DMA_ISR DMA_ISR DMA_I</td></td></td></td></t<></td></td></td> | DMA_ISR 8 8 8 8 1 </td <td>DMA_ISR 2<!--</td--><td>DMA_ISR 88 <t< td=""><td>DMA_ISR Reset value DMA_IFCR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CMAR1 Reset value DMA_CCR2 DMA_CCRAC R</td><td>DMA_ISR 88 88 88 14/4
14/4 14</td><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR </td><td> DMA_ISR</td><td> DMA_ISR</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CCR2 DMA_CCR2 Reset value DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CPAR1 Reset value DMA_CAMAR1 Reset value DMA_CCR2 DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset va</td><td> DMA_ISR S S S S S S S S S </td><td> DMA_ISR S</td><td>DMA_ISR Reset value DMA_IFCR BMA_CCR1 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR3 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR3 BMA_</td><td>DMA_ISR Reset value DMA_IFCR DMA_CCR1 DMA_CCR1 Reset value DMA_CRDTR1 Reset value DMA_CDAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DM</td><td>DMA_ISR Reset value DMA_CRAPT Reset value DMA_CRAPAT value</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CC</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CCR4</td><td>DMA_ISR A</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR4 DMA</td><td>DMA_ISR DMA_ISR DMA_I</td></td></td></td></t<></td></td> | DMA_ISR 2 </td <td>DMA_ISR 88 <t< td=""><td>DMA_ISR Reset value DMA_IFCR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CMAR1 Reset value DMA_CCR2 DMA_CCRAC R</td><td>DMA_ISR 88 88 88 14/4 14</td><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR </td><td> DMA_ISR</td><td> DMA_ISR</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CCR2 DMA_CCR2 Reset value DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CPAR1 Reset value DMA_CAMAR1 Reset value DMA_CCR2 DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset va</td><td> DMA_ISR S S S S S S S S S </td><td> DMA_ISR S</td><td>DMA_ISR Reset value DMA_IFCR BMA_CCR1 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR3 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR3 BMA_</td><td>DMA_ISR Reset value DMA_IFCR DMA_CCR1 DMA_CCR1 Reset value DMA_CRDTR1 Reset value DMA_CDAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DM</td><td>DMA_ISR Reset value DMA_CRAPT Reset value DMA_CRAPAT value</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CC</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CCR4</td><td>DMA_ISR A</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR4 DMA</td><td>DMA_ISR DMA_ISR DMA_I</td></td></td></td></t<></td> | DMA_ISR 88 <t< td=""><td>DMA_ISR Reset value DMA_IFCR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CMAR1 Reset value DMA_CCR2 DMA_CCRAC R</td><td>DMA_ISR 88 88 88 14/4 14</td><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR </td><td> DMA_ISR</td><td> DMA_ISR</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CCR2 DMA_CCR2 Reset value DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CPAR1 Reset value DMA_CAMAR1 Reset value DMA_CCR2 DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset va</td><td> DMA_ISR S S S S S S S S S </td><td> DMA_ISR S</td><td>DMA_ISR Reset value DMA_IFCR BMA_CCR1 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR3 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR3 BMA_</td><td>DMA_ISR Reset value DMA_IFCR DMA_CCR1 DMA_CCR1 Reset value DMA_CRDTR1 Reset value DMA_CDAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DM</td><td>DMA_ISR Reset value DMA_CRAPT Reset value DMA_CRAPAT value</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CC</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CCR4</td><td>DMA_ISR A</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR4 DMA</td><td>DMA_ISR DMA_ISR DMA_I</td></td></td></td></t<> | DMA_ISR Reset value DMA_IFCR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CMAR1 Reset value DMA_CCR2 DMA_CCRAC R | DMA_ISR 88 88 88 14/4 14 | DMA_ISR 8 8 8 1 </td <td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1<!--</td--><td>DMA_ISR </td><td> DMA_ISR</td><td> DMA_ISR</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CCR2 DMA_CCR2 Reset value DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CPAR1 Reset value DMA_CAMAR1 Reset value DMA_CCR2 DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset va</td><td> DMA_ISR S S S S S S S S S </td><td> DMA_ISR S</td><td>DMA_ISR Reset value DMA_IFCR BMA_CCR1 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR3 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR3 BMA_</td><td>DMA_ISR Reset value DMA_IFCR DMA_CCR1 DMA_CCR1 Reset value DMA_CRDTR1 Reset value DMA_CDAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DM</td><td>DMA_ISR Reset value DMA_CRAPT Reset value DMA_CRAPAT value</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CC</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CCR4</td><td>DMA_ISR A</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR4 DMA</td><td>DMA_ISR DMA_ISR DMA_I</td></td></td> | DMA_ISR 8 8 8 1 </td <td>DMA_ISR 8 8 8 1<!--</td--><td>DMA_ISR </td><td> DMA_ISR</td><td> DMA_ISR</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CCR2 DMA_CCR2 Reset value DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CPAR1 Reset value DMA_CAMAR1 Reset value DMA_CCR2 DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset va</td><td> DMA_ISR S S S S S S S S S </td><td> DMA_ISR S</td><td>DMA_ISR Reset value DMA_IFCR BMA_CCR1 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR3 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR3 BMA_</td><td>DMA_ISR Reset value DMA_IFCR DMA_CCR1 DMA_CCR1 Reset value DMA_CRDTR1 Reset value DMA_CDAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DM</td><td>DMA_ISR Reset value DMA_CRAPT Reset value DMA_CRAPAT value</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CC</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CCR4</td><td>DMA_ISR A</td><td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR4 DMA</td><td>DMA_ISR DMA_ISR DMA_I</td></td> | DMA_ISR 8 8 8 1 </td <td>DMA_ISR </td> <td> DMA_ISR</td> <td> DMA_ISR</td> <td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CCR2 DMA_CCR2 Reset value DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset</td> <td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CPAR1 Reset value DMA_CAMAR1 Reset value DMA_CCR2 DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset va</td> <td> DMA_ISR S S S S S S S S S </td> <td> DMA_ISR S</td> <td>DMA_ISR Reset value DMA_IFCR BMA_CCR1 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR3 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR3 BMA_</td> <td>DMA_ISR Reset value DMA_IFCR DMA_CCR1 DMA_CCR1 Reset value DMA_CRDTR1 Reset value DMA_CDAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DM</td> <td>DMA_ISR Reset value DMA_CRAPT Reset value DMA_CRAPAT value</td> <td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CC</td> <td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CCR4</td> <td>DMA_ISR A</td> <td>DMA_ISR Reset value DMA_CCR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR4 DMA</td> <td>DMA_ISR DMA_ISR DMA_I</td> | DMA_ISR | DMA_ISR | DMA_ISR | DMA_ISR Reset value DMA_CCR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CDADTR1 Reset value DMA_CCR2 DMA_CCR2 Reset value DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset | DMA_ISR Reset value DMA_CCR1 Reset value DMA_CPAR1 Reset value DMA_CAMAR1 Reset value DMA_CCR2 DMA_CCRAC2 DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset value DMA_CCRAC4 Reset va | DMA_ISR S S S S S S S S S | DMA_ISR S | DMA_ISR Reset value DMA_IFCR BMA_CCR1 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR1 BMA_CCR2 BMA_CCR3 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR2 BMA_CCR3 BMA_ | DMA_ISR Reset value DMA_IFCR DMA_CCR1 DMA_CCR1 Reset value DMA_CRDTR1 Reset value DMA_CDAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 DM | DMA_ISR Reset value DMA_CRAPT Reset value DMA_CRAPAT | DMA_ISR Reset value DMA_CCR1 Reset value DMA_CNDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR3 DMA_CCR4 DMA_CC | DMA_ISR Reset value DMA_CCR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CRAR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR3 DMA_CCR4 | DMA_ISR A | DMA_ISR Reset value DMA_CCR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CANDTR1 Reset value DMA_CCR2 DMA_CCR3 DMA_CCR4 DMA | DMA_ISR DMA_I | RM0444 Rev 5 295/1390 Table 50. DMA register map and reset values (continued) | Office Register St. | Offset | Dominton | L | 0 | 6 | 80 | _ | ဖွ | D. | 4 | 8 | 7 | Ĺ | | 6 | ~ | _ | ဖ | ю | 4 | ار | 2 | | | Ĺ | T. | | | | _ | | | | | |--|--------|-------------|----------|------|------|------|------|------|------|------|------|------|------|------|----------|----------|------|------|------|----------------------|---------|-----|------------|-----|------------|----------|-------|----------|------|-----|------|------|------|----| | Reset value | Oliset | Register | 'n | ñ | 7 | 2 | 5 | 7 | 5 | 5 | 2 | 2 | 5 | 2 | 1 | 7 | 1 | 7 | 7 | | ÷ | 7 | | - (| , a | , , | ` ' | 9 | 2 | 4 | ဗ | 7 | 1 | 0 | | Reset value | | DMA CCR3 | SO. | SO. | S. | SS. | S. | S. | SS. | SS. | GS. | GS. | GS. | S. | GS. | O.S. | es. | GS. | O.S. | 2MEN | 1:01 | | E[1:0] | | E[1:0] | 2 | 2 2 | 2 | RC | 껕 | ΞIE | 븯 | 兴 | z | | DMA_CPAR3 | 0x030 | BW/_00/10 | Ř | ď | Ř | X | Ř | Ř | X | X | X | X | X | X | X | Ř | X | Ř | Ř | MEM | F | | MSIZ | | PSIZ | V | 2 2 | <u>.</u> | ਹ | Ω | TE | Ξ | ĭ | Ш | | May | | Reset value | | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 |) | 0 0 |) (|) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Reset value | 0x034 | DMA_CNDTR3 | Res. | | | | | | NDT | R[1 | 5:0 |] | | | | | | | | MACCR4 M | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 |) | 0 0 |) (|) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Magest value | 0x038 | DMA_CPAR3 | | | | | | | | | | | | | | | | PA[3 | _ |] | | | | | | | | | | | | | | | | Ox0040 Reserved Ox0040 Reserved Ox0040 Reserved Ox0040 Reserved Ox0040 Ox | 0,000 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | _ | | 0 | 0 | 0 |) | 0 0 |) (|) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reserved | 0x03C | | | | | | 1 | 1 | 1 | | 1 | | 1 | | | | | | _ | - | | - | | - | | | - | | - | | | | - | | | DMA_CCR4 DMA_CCR4 DMA_CDTR4 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 0 |) | 0 0 |) (|) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reset value | 0x040 | Reserved | | | 1 | 1 | | | | | | | | 1 | | | F | Rese | rve | d. | 1 | | | _ | | _ | _ | | - 1 | | | | | | | Reset value | 0x044 | DMA_CCR4 | Res. MEM2MEN | PL[1:0] | 7 | MSIZE[1:0] | | PSIZE[1:0] | CIVIEN | | J NIA | CIRC | DIR | TEIE | HTIE | TCIE | EN | | Reset value | | Reset value | | | | | | | | | | | | | | | | | | | 0 | 0 | 0 |) | 0 0 |) (|) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reset value | 0x048 | DMA_CNDTR4 | Res. | • | | | • | | NDT | R[1 | 5:0 |] | • | | | | | | | Reset value | 0,010 | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 |) | 0 0 |) (|) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reset value | 0×040 | DMA_CPAR4 | | | | | | | | | | | | • | • | | | PA[3 | 31:0 |] | | | | | • | • | | | | | | | | | | Reserved | 0X04C | Reset value | 0 |) | 0 0 |) (|) (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reservative | 0x050 | DMA_CMAR4 | | | | | | | | | | | | | | | _ | | | _ | | | | | | | | | | | | | | | | DMA_CR75 DMA_CR75 | | | 0 |) | 0 0 |) (|) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reset value | 0x054 | Reserved | | | | | 1 | 1 | | | | | | | | | F | Rese | rve | d. | 1 | - | | | | | | | | | | | | | | DMA_CNDTR5 | 0x058 | DMA_CCR5 | Res. MEM2MEN | PL[1:0] | 7 | MSIZE[1:0] | | PSIZE[1:0] | CIVIEN | | PINC | CIRC | DIR | JIJL | HTE | TCIE | EN | | Reset value | | Reset value | | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 |) | 0 0 |) (|) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DMA_CPAR5 Reset value | 0x05C | DMA_CNDTR5 | Res. | | | | | | NDT | R[1 | 5:0 |] | | | | | | | | Reset value | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 |) | 0 0 |) (|) (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reset value | 0x060 | DMA_CPAR5 | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | Reset value | OXOGO | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 |) | 0 0 |) (|) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x068 Reserved R | 0x064 | _ | 1 | | | | 1 - | 1 - | | | | | | | | | | | | - | T . T | . 1 | | | | | | - 1 | . 1 | - 1 | | | . 1 | _ | | 0x06C | | | 0 |) | 0 0 |) (|) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x06C | 0X068 | Reserved | - | 1 | 1 | | 1 | 1 | 1 | | 1 | | 1 | ı - | <u> </u> | | h | kese | rve | a.
 - | 1 | - 1 | _ | | _ | <u> </u> | | 1 | | | | | 1 | | | Reset value | 0x06C | DMA_CCR6 | Res. MEM2MEN | PL[1:0] | 7 | MSIZE[1:0 | | PSIZE[1:0 | CIVIEN | | PINC | CIRC | DIR | TEIE | HTE | TCIE | EN | | Reset value | | Reset value | | | | | | | | | | | | | | | | | | | 0 | 0 | 0 |) | 0 0 |) (|) (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reset value | 0x070 | DMA_CNDTR6 | Res. | | | | | | NDT | R[1 | 5:0 |] | | | | | | | | 0x074 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 |) | 0 0 |) (|) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x078 DMA_CMAR6 | 0x074 | DMA_CPAR6 | | | | | | | | | | | | | | | | PA[3 | 31:0 |] | | | | | | | | | | | | | | | | 0x078 Reset value | 0.074 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 |) | 0 0 |) (|) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x080 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0x078 | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | 080x0 Res | | | 0 |) | 0 0 |) (|) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0x07C | Reserved | - | | | | 1 | 1 | | | | | | 1 | | | F | Rese | rve | d. | ı | | | | _ | | - | -1 | | | | | | _ | | | 0x080 | DMA_CCR7 | Res. MEM2MEN | PL[1:0] | 7 | MSIZE[1:0] | | PSIZE[1:0] | CIVIEN | | PINC | CIRC | DIR | TEIE | HTIE | TCIE | В | | | | Reset value | \vdash | T | T | | | | | | | | | | | | | | | | 0 | 0 | |) | |) (|) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ### Table 50. DMA register map and reset values (continued) | Offset | Register | 31 | 30 | 29 | 28 | 27 | 56 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 2 | 1 | 0 | |--------|-------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----|----|----|----|----|----|-----|------|-----|---|---|---|---|---|---| | 0x084 | DMA_CNDTR7 | Res. | | | | | | ΝI | OTF | R[15 | :0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x088 | DMA_CPAR7 | | | | | | | | | | | | | | | | PA[3 | 31:0 |] | | | | | | | | | | | | | | | | 0,000 | Reset value | 0 | | 0x08C | DMA_CMAR7 | | | | | | | | | | | | | | | N | JAN | 31:0 |)] | | | | | | | | | | | | | | | | UXU6C | Reset value | 0 | Refer to Section 2.2 for the register boundary addresses. RM0444 Rev 5 297/1390 ## 11 DMA request multiplexer (DMAMUX) #### 11.1 Introduction A peripheral indicates a request for DMA transfer by setting its DMA request signal. The DMA request is pending until it is served by the DMA controller that generates a DMA acknowledge signal, and the corresponding DMA request signal is deasserted. In this document, the set of control signals required for the DMA request/acknowledge protocol is not explicitly shown or described, and it is referred to as DMA request line. The DMAMUX request multiplexer enables routing a DMA request line between the peripherals and the DMA controllers of the product. The routing function is ensured by a programmable multi-channel DMA request line multiplexer. Each channel selects a unique DMA request line, unconditionally or synchronously with events from its DMAMUX synchronization inputs. The DMAMUX may also be used as a DMA request generator from programmable events on its input trigger signals. The number of DMAMUX instances and their main characteristics are specified in *Section 11.3.1*. The assignment of DMAMUX request multiplexer inputs to the DMA request lines from peripherals and to the DMAMUX request generator outputs, the assignment of DMAMUX request multiplexer outputs to DMA controller channels, and the assignment of DMAMUX synchronizations and trigger inputs to internal and external signals depend on the product implementation, and are detailed in *Section 11.3.2*. #### 11.2 DMAMUX main features - up to 12-channel programmable DMA request line multiplexer output - 4-channel DMA request generator - 23 trigger inputs to DMA request generator - 23 synchronization inputs - Per DMA request generator channel: - DMA request trigger input selector - DMA request counter - Event overrun flag for selected DMA request trigger input - Per DMA request line multiplexer channel output: - up to 73 input DMA request lines from peripherals - One DMA request line output - Synchronization input selector - DMA request counter - Event overrun flag for selected synchronization input - One event output, for DMA request chaining ## 11.3 DMAMUX implementation #### 11.3.1 DMAMUX instantiation DMAMUX is instantiated with the hardware configuration parameters listed in the following table. **Table 51. DMAMUX instantiation** | Feature | DMAMUX | |---|-----------------------| | Number of DMAMUX output request channels | 12/7/5 ⁽¹⁾ | | Number of DMAMUX request generator channels | 4 | | Number of DMAMUX request trigger inputs | 23 | | Number of DMAMUX synchronization inputs | 23 | | Number of DMAMUX peripheral request inputs | up to 73 | ¹² for STM32G0B1xx and STM32G0C1xx, seven for STM32G071xx and STM32G081xx as well as for STM32G051xx and STM32G061xx, and five for STM32G031xx and STM32G041xx devices. ### 11.3.2 DMAMUX mapping The mapping of resources to DMAMUX is hardwired. Table 52. DMAMUX: assignment of multiplexer inputs to resources | DMA
request
MUX
input | Resource | DMA
request
MUX
input | Resource | DMA
request
MUX
input | Resource | |--------------------------------|-----------------|--------------------------------|----------------|--------------------------------|------------| | 1 | dmamux_req_gen0 | 27 | TIM2_CH2 | 53 | USART2_TX | | 2 | dmamux_req_gen1 | 28 | TIM2_CH3 | 54 | USART3_RX | | 3 | dmamux_req_gen2 | 29 | TIM2_CH4 | 55 | USART3_TX | | 4 | dmamux_req_gen3 | 30 | TIM2_TRIG | 56 | USART4_RX | | 5 | ADC | 31 | TIM2_UP | 57 | USART4_TX | | 6 | AES_IN | 32 | TIM3_CH1 | 58 | UCPD1_RX | | 7 | AES_OUT | 33 | TIM3_CH2 | 59 | UCPD1_TX | | 8 | DAC_Channel1 | 34 | TIM3_CH3 | 60 | UCPD2_RX | | 9 | DAC_Channel2 | 35 | TIM3_CH4 | 61 | UCPD2_TX | | 10 | I2C1_RX | 36 | TIM3_TRIG | 62 | I2C3_RX | | 11 | I2C1_TX | 37 | TIM3_UP | 63 | I2C3_TX | | 12 | I2C2_RX | 38 | TIM6_UP | 64 | LPUART2_RX | | 13 | I2C2_TX | 39 | TIM7_UP | 65 |
LPUART2_TX | | 14 | LPUART_RX | 40 | TIM15_CH1 | 66 | SPI3_RX | | 15 | LPUART_TX | 41 | TIM15_CH2 | 67 | SPI3_TX | | 16 | SPI1_RX | 42 | TIM15_TRIG_COM | 68 | TIM4_CH1 | | 17 | SPI1_TX | 43 | TIM15_UP | 69 | TIM4_CH2 | | 18 | SPI2_RX | 44 | TIM16_CH1 | 70 | TIM4_CH3 | | 19 | SPI2_TX | 45 | TIM16_COM | 71 | TIM4_CH4 | | 20 | TIM1_CH1 | 46 | TIM16_UP | 72 | TIM4_TRIG | | 21 | TIM1_CH2 | 47 | TIM17_CH1 | 73 | TIM4_UP | | 22 | TIM1_CH3 | 48 | TIM17_COM | 74 | USART5_RX | | 23 | TIM1_CH4 | 49 | TIM17_UP | 75 | USART5_TX | | 24 | TIM1_TRIG_COM | 50 | USART1_RX | 76 | USART6_RX | | 25 | TIM1_UP | 51 | USART1_TX | 77 | USART6_TX | | 26 | TIM2_CH1 | 52 | USART2_RX | - | - | Table 53. DMAMUX: assignment of trigger inputs to resources | Trigger input | Resource | Trigger input | Resource | |---------------|------------|---------------|-------------| | 0 | EXTI LINE0 | 12 | EXTI LINE12 | | 1 | EXTI LINE1 | 13 | EXTI LINE13 | | 2 | EXTI LINE2 | 14 | EXTI LINE14 | | 3 | EXTI LINE3 | 15 | EXTI LINE15 | | 4 | EXTI LINE4 | 16 | dmamux_evt0 | | 5 | EXTI LINE5 | 17 | dmamux_evt1 | Table 53. DMAMUX: assignment of trigger inputs to resources (continued) | Trigger input | Resource | Trigger input | Resource | |---------------|-------------|---------------|-------------| | 6 | EXTI LINE6 | 18 | dmamux_evt2 | | 7 | EXTI LINE7 | 19 | dmamux_evt3 | | 8 | EXTI LINE8 | 20 | LPTIM1_OUT | | 9 | EXTI LINE9 | 21 | LPTIM2_OUT | | 10 | EXTI LINE10 | 22 | TIM14_OC | | 11 | EXTI LINE11 | 23 | Reserved | Table 54. DMAMUX: assignment of synchronization inputs to resources | Sync. input | Resource | Sync. input | Resource | |-------------|-------------|-------------|-------------| | 0 | EXTI LINE0 | 12 | EXTI LINE12 | | 1 | EXTI LINE1 | 13 | EXTI LINE13 | | 2 | EXTI LINE2 | 14 | EXTI LINE14 | | 3 | EXTI LINE3 | 15 | EXTI LINE15 | | 4 | EXTI LINE4 | 16 | dmamux_evt0 | | 5 | EXTI LINE5 | 17 | dmamux_evt1 | | 6 | EXTI LINE6 | 18 | dmamux_evt2 | | 7 | EXTI LINE7 | 19 | dmamux_evt3 | | 8 | EXTI LINE8 | 20 | LPTIM1_OUT | | 9 | EXTI LINE9 | 21 | LPTIM2_OUT | | 10 | EXTI LINE10 | 22 | TIM14_OC | | 11 | EXTI LINE11 | 23 | Reserved | RM0444 Rev 5 301/1390 #### 11.4 **DMAMUX** functional description #### 11.4.1 **DMAMUX** block diagram Figure 23 shows the DMAMUX block diagram. 32-bit AHB bus dmamux hclk **DMAMUX** Request multiplexer AHB slave Channel m interface DMAMUX_CmCR Channel 1 Channel 0 **DMA** requests DMAMUX_COCR from peripherals: dmamux_req_inx Channel select 0 Ctrl **DMA** requests to DMA controllers: Request generator dmamux reg outx n+3 Channel n Sync dmamux_req_genx n+2 DMAMUX_RGCnCR m DMA channels events: dmamux_evtx \s ·····\\1\\0 Channel 1 2 0 Channel 0 Interrupt interface / n Interrupt: Control registers Trigger inputs: Synchronization inputs: dmamux_ovr_it dmamux_trgx dmamux_syncx Figure 23. DMAMUX block diagram DMAMUX features two main sub-blocks: the request line multiplexer and the request line generator. The implementation assigns: - DMAMUX request multiplexer sub-block inputs (dmamux reqx) from peripherals (dmamux req inx) and from channels of the DMAMUX request generator sub-block (dmamux_req_genx) - DMAMUX request outputs to channels of DMA controllers (dmamux_req_outx) - Internal or external signals to DMA request trigger inputs (dmamux trgx) - Internal or external signals to synchronization inputs (dmamux syncx) RM0444 Rev 5 302/1390 #### 11.4.2 DMAMUX signals Table 55 lists the DMAMUX signals. Table 55. DMAMUX signals | Signal name | Description | |-----------------|---| | dmamux_hclk | DMAMUX AHB clock | | dmamux_req_inx | DMAMUX DMA request line inputs from peripherals | | dmamux_trgx | DMAMUX DMA request triggers inputs (to request generator sub-block) | | dmamux_req_genx | DMAMUX request generator sub-block channels outputs | | dmamux_reqx | DMAMUX request multiplexer sub-block inputs (from peripheral requests and request generator channels) | | dmamux_syncx | DMAMUX synchronization inputs (to request multiplexer sub-block) | | dmamux_req_outx | DMAMUX requests outputs (to DMA controllers) | | dmamux_evtx | DMAMUX events outputs | | dmamux_ovr_it | DMAMUX overrun interrupts | #### 11.4.3 DMAMUX channels A DMAMUX channel is a DMAMUX request multiplexer channel that may include, depending on the selected input of the request multiplexer, an additional DMAMUX request generator channel. A DMAMUX request multiplexer channel is connected and dedicated to one single channel of DMA controller(s). #### Channel configuration procedure Follow the sequence below to configure both a DMAMUX x channel and the related DMA channel y: - 1. Set and configure completely the DMA channel y, except enabling the channel y. - 2. Set and configure completely the related DMAMUX y channel. - 3. Last, activate the DMA channel y by setting the EN bit in the DMA y channel register. ### 11.4.4 DMAMUX request line multiplexer The DMAMUX request multiplexer with its multiple channels ensures the actual routing of DMA request/acknowledge control signals, named DMA request lines. Each DMA request line is connected in parallel to all the channels of the DMAMUX request line multiplexer. A DMA request is sourced either from the peripherals or from the DMAMUX request generator. The DMAMUX request line multiplexer channel x selects the DMA request line number as configured by the DMAREQ_ID field in the DMAMUX_CxCR register. Note: The null value in the field DMAREQ_ID corresponds to no DMA request line selected. RM0444 Rev 5 303/1390 #### Caution: A same non-null DMAREQ_ID can be assigned to two different channels only if the application ensures that these channels are not requested to be served at the same time. In other words, if two different channels receive a same asserted hardware request at the same time, an unpredictable DMA hardware behavior occurs. On top of the DMA request selection, the synchronization mode and/or the event generation may be configured and enabled, if required. #### Synchronization mode and channel event generation Each DMAMUX request line multiplexer channel x can be individually synchronized by setting the synchronization enable (SE) bit in the DMAMUX_CxCR register. DMAMUX has multiple synchronization inputs. The synchronization inputs are connected in parallel to all the channels of the request multiplexer. The synchronization input is selected via the SYNC_ID field in the DMAMUX_CxCR register of a given channel x. When a channel is in this synchronization mode, the selected input DMA request line is propagated to the multiplexer channel output, once is detected a programmable rising/falling edge on the selected input synchronization signal, via the SPOL[1:0] field of the DMAMUX_CxCR register. Additionally, there is a programmable DMA request counter, internally to the DMAMUX request multiplexer, which may be used for the channel request output generation and also possibly for an event generation. An event generation on the channel x output is enabled through the EGE bit (event generation enable) of the DMAMUX CxCR register. As shown in *Figure 25*, upon the detected edge of the synchronization input, the pending selected input DMA request line is connected to the DMAMUX multiplexer channel x output. Note: If a synchronization event occurs while there is no pending selected input DMA request line, it is discarded. The following asserted input request lines is not connected to the DMAMUX multiplexer channel output until a synchronization event occurs again. From this point on, each time the connected DMAMUX request is served by the DMA controller (a served request is deasserted), the DMAMUX request counter is decremented. At its underrun, the DMA request counter is automatically loaded with the value in NBREQ field of the DMAMUX_CxCR register and the input DMA request line is disconnected from the multiplexer channel x output. Thus, the number of DMA requests transferred to the multiplexer channel x output following a detected synchronization event, is equal to the value in NBREQ field, plus one. Note: The NBREQ field value shall only be written by software when both synchronization enable bit SE and event generation enable EGE bit of the corresponding multiplexer channel x are disabled. 4 Figure 24. Synchronization mode of the DMAMUX request line multiplexer channel If EGE is enabled, the multiplexer channel generates a channel event, as a pulse of one AHB clock cycle, when its DMA request counter is automatically reloaded with the value of the programmed NBREQ field, as shown in *Figure 24* and *Figure 25*. RM0444 Rev 5 305/1390 Note: If EGE is enabled and NBREQ = 0, an event is generated after each served DMA request. Note: A synchronization event (edge) is detected if the state following the edge remains stable for more than two AHB clock cycles. Upon writing into DMAMUX_CxCR register, the synchronization events are masked during three AHB clock cycles. #### Synchronization overrun and interrupt If a new synchronization event occurs before the request counter underrun (the internal request counter programmed via the NBREQ field of the DMAMUX_CxCR register), the synchronization overrun flag bit SOFx is set in the DMAMUX_CSR status register. Note: The request multiplexer channel x synchronization must be disabled (DMAMUX_CxCR.SE = 0) at the completion of the use of the related channel of the DMA controller. Else, upon a new detected synchronization event, there is a synchronization overrun due to the absence of a DMA acknowledge (that is, no served request) received from the DMA controller. The overrun flag SOFx is reset by setting the associated clear synchronization overrun flag bit CSOFx in the DMAMUX CFR register. Setting the synchronization overrun flag generates an interrupt if the synchronization overrun interrupt enable bit SOIE is set in the DMAMUX_CxCR register. #### 11.4.5 DMAMUX request generator The DMAMUX request
generator produces DMA requests following trigger events on its DMA request trigger inputs. The DMAMUX request generator has multiple channels. DMA request trigger inputs are connected in parallel to all channels. The outputs of DMAMUX request generator channels are inputs to the DMAMUX request line multiplexer. Each DMAMUX request generator channel x has an enable bit GE (generator enable) in the corresponding DMAMUX_RGxCR register. The DMA request trigger input for the DMAMUX request generator channel x is selected through the SIG_ID (trigger signal ID) field in the corresponding DMAMUX_RGxCR register. Trigger events on a DMA request trigger input can be rising edge, falling edge or either edge. The active edge is selected through the GPOL (generator polarity) field in the corresponding DMAMUX_RGxCR register. Upon the trigger event, the corresponding generator channel starts generating DMA requests on its output. Each time the DMAMUX generated request is served by the connected DMA controller (a served request is deasserted), a built-in (inside the DMAMUX request generator) DMA request counter is decremented. At its underrun, the request generator channel stops generating DMA requests and the DMA request counter is automatically reloaded to its programmed value upon the next trigger event. Thus, the number of DMA requests generated after the trigger event is GNBREQ + 1. Note: The GNBREQ field value must be written by software only when the enable GE bit of the corresponding generator channel x is disabled. A trigger event (edge) is detected if the state following the edge remains stable for more than two AHB clock cycles. Upon writing into DMAMUX_RGxCR register, the trigger events are masked during three AHB clock cycles. #### Trigger overrun and interrupt If a new DMA request trigger event occurs before the DMAMUX request generator counter underrun (the internal counter programmed via the GNBREQ field of the DMAMUX_RGxCR register), and if the request generator channel x was enabled via GE, then the request trigger event overrun flag bit OFx is asserted by the hardware in the status DMAMUX_RGSR register. Note: The request generator channel x must be disabled (DMAMUX_RGxCR.GE = 0) at the completion of the usage of the related channel of the DMA controller. Else, upon a new detected trigger event, there is a trigger overrun due to the absence of an acknowledge (that is, no served request) received from the DMA. The overrun flag OFx is reset by setting the associated clear overrun flag bit COFx in the DMAMUX_RGCFR register. Setting the DMAMUX request trigger overrun flag generates an interrupt if the DMA request trigger event overrun interrupt enable bit OIE is set in the DMAMUX_RGxCR register. ## 11.5 DMAMUX interrupts An interrupt can be generated upon: - a synchronization event overrun in each DMA request line multiplexer channel - a trigger event overrun in each DMA request generator channel For each case, per-channel individual interrupt enable, status and clear flag register bits are available. **Table 56. DMAMUX interrupts** | Inter | rrupt signal | Interrupt event | Event flag | Clear bit | Enable bit | |-------|--------------|---|------------|-----------|------------| | dm | amuxovr it | Synchronization event overrun on channel x of the DMAMUX request line multiplexer | SOFx | CSOFx | SOIE | | dini | amuxovi_it | Trigger event overrun
on channel x of the
DMAMUX request generator | OFx | COFx | OIE | RM0444 Rev 5 307/1390 ## 11.6 DMAMUX registers Refer to the table containing register boundary addresses for the DMAMUX base address. DMAMUX registers may be accessed per (8-bit) byte, (16-bit) half-word, or (32-bit) word. The address must be aligned with the data size. ## 11.6.1 DMAMUX request line multiplexer channel x configuration register (DMAMUX_CxCR) Address offset: 0x000 + 0x04 * x (x = 0 to 11) Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|----------|-----|------|------|----|---------|----|---------|-------|--------|----| | Res. | Res. | Res. | | S | YNC_ID[4 | :0] | | | N | BREQ[4: | 0] | | SPOI | L[1:0] | SE | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | Res. | EGE | SOIE | Res. | | | DM | AREQ_ID | [6:0] | | | | | | | | | | rw | rw | | rw Bits 31:29 Reserved, must be kept at reset value. Bits 28:24 SYNC_ID[4:0]: Synchronization identification Selects the synchronization input (see *Table 54: DMAMUX: assignment of synchronization inputs to resources*). Bits 23:19 NBREQ[4:0]: Number of DMA requests minus 1 to forward Defines the number of DMA requests to forward to the DMA controller after a synchronization event, and/or the number of DMA requests before an output event is generated. This field shall only be written when both SE and EGE bits are low. Bits 18:17 SPOL[1:0]: Synchronization polarity Defines the edge polarity of the selected synchronization input: 00: No event, i.e. no synchronization nor detection. 01: Rising edge 10: Falling edge 11: Rising and falling edges Bit 16 SE: Synchronization enable 0: synchronization disabled 1: synchronization enabled Bits 15:10 Reserved, must be kept at reset value. Bit 9 EGE: Event generation enable 0: event generation disabled 1: event generation enabled Bit 8 SOIE: Synchronization overrun interrupt enable 0: interrupt disabled 1: interrupt enabled Bit 7 Reserved, must be kept at reset value. #### Bits 6:0 DMAREQ_ID[6:0]: DMA request identification Selects the input DMA request. See the DMAMUX table about assignments of multiplexer inputs to resources. # 11.6.2 DMAMUX request line multiplexer interrupt channel status register (DMAMUX_CSR) Address offset: 0x080 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|-------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
SOF11 | 10
SOF10 | 9
SOF9 | 8
SOF8 | 7
SOF7 | 6
SOF6 | 5
SOF5 | 4
SOF4 | 3
SOF3 | 2
SOF2 | 1
SOF1 | 0
SOF0 | Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 SOF[11:0]: Synchronization overrun event flag The flag is set when a synchronization event occurs on a DMA request line multiplexer channel x, while the DMA request counter value is lower than NBREQ. The flag is cleared by writing 1 to the corresponding CSOFx bit in DMAMUX_CFR register. # 11.6.3 DMAMUX request line multiplexer interrupt clear flag register (DMAMUX_CFR) Address offset: 0x084 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | CSOF
11 | CSOF
10 | CSOF
9 | CSOF
8 | CSOF
7 | CSOF
6 | CSOF
5 | CSOF
4 | CSOF
3 | CSOF
2 | CSOF
1 | CSOF
0 | | | | | | W | W | W | W | W | W | W | W | W | W | W | W | Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 CSOF[11:0]: Clear synchronization overrun event flag Writing 1 in each bit clears the corresponding overrun flag SOFx in the DMAMUX_CSR register. RM0444 Rev 5 309/1390 ## 11.6.4 DMAMUX request generator channel x configuration register (DMAMUX_RGxCR) Address offset: 0x100 + 0x04 * x (x = 0 to 3) Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|---------|-----|----|-----------------|--------|----| | Res. | GI | NBREQ[4 | :0] | | GPO | L[1:0] | GE | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | ^ | | | 2 | _ | | ^ | | | | | 12 | | 10 | 9 | 0 | 1 | 6 | 5 | 4 | 3 | 2 | 1 | U | | Res. OIE | Res. | Res. | Res. | 4 | | 2
SIG_ID[4:0 |)] | 0 | Bits 31:24 Reserved, must be kept at reset value. Bits 23:19 GNBREQ[4:0]: Number of DMA requests to be generated (minus 1) Defines the number of DMA requests to be generated after a trigger event. The actual number of generated DMA requests is GNBREQ +1. Note: This field must be written only when GE bit is disabled. Bits 18:17 GPOL[1:0]: DMA request generator trigger polarity Defines the edge polarity of the selected trigger input 00: No event, i.e. no trigger detection nor generation. 01: Rising edge10: Falling edge 11: Rising and falling edges Bit 16 **GE**: DMA request generator channel x enable 0: DMA request generator channel x disabled 1: DMA request generator channel x enabled Bits 15:9 Reserved, must be kept at reset value. Bit 8 **OIE**: Trigger overrun interrupt enable 0: Interrupt on a trigger overrun event occurrence is disabled 1: Interrupt on a trigger overrun event occurrence is enabled Bits 7:5 Reserved, must be kept at reset value. Bits 4:0 SIG_ID[4:0]: Signal identification Selects the DMA request trigger input used for the channel x of the DMA request generator ## 11.6.5 DMAMUX request generator interrupt status register (DMAMUX_RGSR) Address offset: 0x140 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------| | Res. | | | | | | | |
 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | 3
OF3 | 2
OF2 | 1
OF1 | 0
OF0 | Bits 31:4 Reserved, must be kept at reset value. Bits 3:0 OF[3:0]: Trigger overrun event flag The flag is set when a new trigger event occurs on DMA request generator channel x, before the request counter underrun (the internal request counter programmed via the GNBREQ field of the DMAMUX_RGxCR register). The flag is cleared by writing 1 to the corresponding COFx bit in the DMAMUX_RGCFR register. ## 11.6.6 DMAMUX request generator interrupt clear flag register (DMAMUX_RGCFR) Address offset: 0x144 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | | | | - | | - | - | • | • | | Res. COF3 | COF2 | COF1 | COF0 | Bits 31:4 Reserved, must be kept at reset value. Bits 3:0 COF[3:0]: Clear trigger overrun event flag Writing 1 in each bit clears the corresponding overrun flag OFx in the DMAMUX_RGSR register. RM0444 Rev 5 311/1390 ## 11.6.7 DMAMUX register map The following table summarizes the DMAMUX registers and reset values. Refer to the register boundary address table for the DMAMUX register base address. Table 57. DMAMUX register map and reset values | Offset | Register | 31 | 30 | 29 | 28 | 27 | 56 | 22 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | ဗ | 7 | 1 | 0 | |------------------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|------|------|------|--------|--------|--------|---------------|-------|-------|-------|-------|-------|-------|-------|-------| | 0x000 | DMAMUX_COCR | Res. | Res. | Res. | S' | YNC | C_IE |)[4: | 0] | 1 | NBR | | | | SPOL | [1:0] | SE | Res. | Res. | Res. | Res. | Res. | Res. | EGE | SOIE | Res. | | DM | ARI | EQ_ | _ID[| 6:0] | | | | Reset value | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x004 | DMAMUX_C1CR | Res. | Res. | Res. | | YNC | | | | | NBR | | | | 3 | [1:0] | SE | Res. | Res. | Res. | Res. | Res. | Res. | EGE | SOIE | Res. | | | | | _ID[| | | | | Reset value | _ | | _ | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 7 | 0 | 0 | | | | | | _ | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x008 | DMAMUX_C2CR | Res | Res | Res | | YNC | | | | | NBR | | | | SPOL | _ | SE | Res. | Res. | Res. | Res | Res. | Res | EGE | SOIE | Res | | | | | _ID[| | | | | Reset value | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x00C | DMAMUX_C3CR | Res | Res. | Res | | YNC | | | | | NBR | | | | 3 | | SE | Res. | Res. | Res. | Res | Res. | Res | EGE | SOIE | Res | | | | | ID[| | | | | Reset value | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x010 | DMAMUX_C4CR | Res | Res | Res | | YNC | | | | | NBR | | | | 3 |] | SE | Res | Res | Res | Res | Res | Res | o EGE | SOIE | Res | | | | | _ID[| | 0 | | | Reset value | S) | S. | s, | 0 | 0 | 0 | | | | 0 | | 0 | - | ٥ ار | 0] | 0 | S. | S. | S. | S. | S. | S. | | о
<u>Ш</u> | o' | 0 | 0 | | | 0 | | U | | 0x014 | DMAMUX_C5CR | Re | Re | Re | | YNC | | | | | NBR | | | | S | [1:0] | SE | Rei | Re | Re | Re | Re | Re | EGE | SOIE | Re | | | | | ID[| | | | | Reset value | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 7 | 0 | 0 | | | | | | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x018 | DMAMUX_C6CR | Res | Res | Res | | YNC | | | | | NBR | | | | 3 | [1:0] | ЗS | Res | Res | Res | Res | Res | Res | EGE | SOIE | Res | | | | | _ID[| | | | | Reset value | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x01C | DMAMUX_C7CR | Res. | Res. | Res. | | YNC | | | | | NBR | | | | 3 |] | SE | Res. | Res. | Res. | Res. | Res. | Res. | EGE | SOIE | Res. | | | | | _ID[| | | | | Reset value | | | | 0 | 0 | 0 | | | 0 | 0 | | 0 | - | 0 | 0 | 0 | , | | | | | | 0 | О
Ш | | 0 | 0 | | | 0 | | 0 | | 0x020 | DMAMUX_C8CR | Res | Res | Res | S | YNC | | | 0] | | NBR | | [4:0 |)] | TOds | [1:0] | SE | Res | Res | Res | Res | Res | Res | EGE | SOIE | Res | | DM | | | _ID[| | | | | Reset value | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x024 | DMAMUX_C9CR | Res. | Res. | Res. | | YNC | | | | | NBR | | | | 3 |] | SE | Res. | Res. | Res. | Res. | Res. | Res. | EGE | SOIE | Res. | | | | | _ID[| | | | | Reset value | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x028 | DMAMUX_C10CR | Res. | Res. | Res. | | YNC | | | | | NBR | | | | 3 |] | SE | Res. | Res. | Res. | Res. | Res. | Res. | eGE | SOIE | Res. | | | | | _ID[| | 0 | | | Reset value | ró. | | ró. | 0 | 0 | 0 | | 0 | 0 | 1 | | 0 | - |)L 0 | 0] | 0 | ró. | ró. | · i | ró. | | ró. | О
Ш | О
Ш | ró. | 0 | 0 | | 0 | | | 0 | | 0x02C | DMAMUX_C11CR | Re | Rei | Re | | YNC | | | _ | | NBR | | | | S | _ | SE | Rei | Re | Re | Rei | Re | Re | EGE | SOIE | Re | | | | | ID[| | | | 0x030- | Reset value | - 10 | | - 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - 10 | | | | | | 0 | 0 | - 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x07C | Reserved | Res | 0x080 | DMAMUX_CSR | Res. | SOF11 | SOF10 | SOF9 | SOF8 | SOF7 | SOF6 | SOF5 | SOF4 | SOF3 | SOF2 | SOF1 | SOF0 | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x084 | DMAMUX_CFR | Res. | CSOF11 | CSOF10 | CSOF9 | CSOF8 | CSOF7 | CSOF6 | CSOF5 | CSOF4 | CSOF3 | CSOF2 | CSOF1 | CSOF0 | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x088 -
0x0FC | Reserved | Res. | 0x100 | DMAMUX_RG0CR | Res. G | NBI | REC | Չ[4։ | 0] | GPOL | [1:0] | GE | Res. OIE | Res. | Res. | Res. | Ş | SIG | _ID | [4:0 |] | | | Reset value | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | 0 | | | | 0 | 0 | 0 | 0 | 0 | Table 57. DMAMUX register map and reset values | | | | | | | | | | | | | <u> </u> | | | | _ | | | | | | | | | | | | | | | | | | |------------------|--------------|------|------|------|------|------|------|------|------|------|------|----------|-------|------|------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Offset | Register | 31 | 30 | 59 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | ဗ | 7 | 7 | 0 | | 0x104 | DMAMUX_RG1CR | Res. | | REC | ຸຊ[4: | 0] | GPOL | []:0] | GE | Res. OIE | Res. | Res. | Res. | ; | SIG | _ID | [4:0 |] | | | Reset value | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | 0 | | | | 0 | 0 | 0 | 0 | 0 | | 0x108 | DMAMUX_RG2CR | Res. G | NB | REC | ຊ[4: | 0] | GPOL | [1:0] | GE | Res. OIE | Res. | Res. | Res. | , | SIG | _ID | [4:0 |] | | | Reset value | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | 0 | | | | 0 | 0 | 0 | 0 | 0 | | 0x10C | DMAMUX_RG3CR | Res. G | NB | REC | ຸຊ[4: | 0] | GPOL | [1:0] | GE | Res. OIE | Res. | Res. | Res. | ; | SIG | _ID | [4:0 |] | | | Reset value | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | 0 | | | | 0 | 0 | 0 | 0 | 0 | | 0x110 -
0x13C | Reserved | Res. | 0x140 | DMAMUX_RGSR | Res. OF3 | OF2 | OF1 | OF0 | | | Reset value | 0 | 0 | 0 | 0 | | 0x144 | DMAMUX_RGCFR | Res. COF3 | COF2 | COF1 | COF0 | | | Reset value | 0 | 0 | 0 | 0 | | 0x148 -
0x3FC | Reserved | Res. Refer to Section 2.2 on page 58 for the register boundary addresses. RM0444 Rev 5 313/1390 0x0000 0018 0x0000_001C 0x0000_0020 0x0000_0024 0x0000 0028 0x0000_002C ## 12 Nested vectored interrupt controller (NVIC) #### 12.1 Main features 3 settable SVC_Handler - 32 maskable interrupt channels (not including the sixteen Cortex[®]-M0+ interrupt lines) - 4 programmable priority levels (2 bits of interrupt priority are used) - Low-latency exception and interrupt handling - Power management control - Implementation of system control registers The NVIC and the processor core interface are closely coupled, which enables low-latency interrupt processing and efficient processing of late arriving interrupts. All interrupts including the core exceptions are managed by the NVIC. For more information on exceptions and NVIC programming, refer to the programming manual PM0223. ## 12.2 SysTick calibration value register The SysTick calibration value is set to 6500, which gives a reference time base of 1 ms with the SysTick clock set to 6.5 MHz (max $f_{HCLK}/8$). ## 12.3 Interrupt and exception vectors *Table 58* is the vector table. Information pertaining to a peripheral only applies to devices containing that peripheral. Type of **Position Priority** Acronym Description Address priority Reserved 0x0000 0000 -3 fixed Reset Reset 0x0000 0004 Non maskable interrupt. The SRAM parity err., Flash ECC double err., -2 fixed NMI Handler 0x0000 0008 HSE CSS and LSE CSS are linked to the NMI vector. 0x0000_000C -1 fixed All class of fault HardFault Handler 0x0000_0010 0x0000 0014 Table 58. Vector table⁽¹⁾ instruction Reserved System service call via SWI Table 58. Vector table⁽¹⁾ (continued) | Position | Priority | Type of priority | Acronym | Description | Address | |----------|----------|------------------
---|---|----------------------------| | - | - | - | - | Reserved | 0x0000_0030
0x0000_0034 | | - | 5 | settable | PendSV_Handler | Pendable request for system service | 0x0000_0038 | | - | 6 | settable | SysTick_Handler | System tick timer | 0x0000_003C | | 0 | 7 | settable | WWDG | Window watchdog interrupt | 0x0000_0040 | | 1 | 8 | settable | PVD | Power voltage detector interrupt (EXTI line 16) | 0x0000_0044 | | 2 | 9 | settable | RTC / TAMP | RTC and TAMP interrupts (combined EXTI lines 19 & 21) | 0x0000_0048 | | 3 | 10 | settable | FLASH | Flash global interrupt | 0x0000_004C | | 4 | 11 | settable | RCC / CRS | RCC global interrupt | 0x0000_0050 | | 5 | 12 | settable | EXTIO_1 | EXTI line 0 & 1 interrupt | 0x0000_0054 | | 6 | 13 | settable | EXTI2_3 | EXTI line 2 & 3 interrupt | 0x0000_0058 | | 7 | 14 | settable | EXTI4_15 | EXTI line 4 to 15 interrupt | 0x0000_005C | | 8 | 15 | settable | UCPD1 / UCPD2 /
USB | UCPD and USB global interrupt (combined with EXTI lines 32 & 33) | 0x0000_0060 | | 9 | 16 | settable | DMA1_Channel1 | DMA1 channel 1 interrupt | 0x0000_0064 | | 10 | 17 | settable | DMA1_Channel2_3 | DMA1 channel 2 & 3 interrupts | 0x0000_0068 | | 11 | 18 | settable | DMA1_Channel4_5_6
_7 / DMAMUX /
DMA2_Channel1_2_3
_4_5 | DMA1 channel 4, 5, 6, 7, DMAMUX,
DMA2 channel 1, 2, 3, 4, 5 interrupts | 0x0000_006C | | 12 | 19 | settable | ADC_COMP | ADC and COMP interrupts (ADC combined with EXTI 17 & 18) | 0x0000_0070 | | 13 | 20 | settable | TIM1_BRK_UP_TRG
_COM | TIM1 break, update, trigger and commutation interrupts | 0x0000_0074 | | 14 | 21 | settable | TIM1_CC | TIM1 Capture Compare interrupt | 0x0000_0078 | | 15 | 22 | settable | TIM2 | TIM2 global interrupt | 0x0000_007C | | 16 | 23 | settable | TIM3+TIM4 | TIM3 global interrupt | 0x0000_0080 | | 17 | 24 | settable | TIM6_DAC / LPTIM1 | TIM6, LPTIM1 and DAC global interrupt | 0x0000_0084 | | 18 | 25 | settable | TIM7 / LPTIM2 | TIM7 and LPTIM2 global interrupt | 0x0000_0088 | | 19 | 26 | settable | TIM14 | TIM14 global interrupt | 0x0000_008C | | 20 | 27 | settable | TIM15 | TIM15 global interrupt | 0x0000_0090 | | 21 | 28 | settable | TIM16 / FDCAN_IT0 | TIM16 and FDCAN_IT0 global interrupt | 0x0000_0094 | | 22 | 29 | settable | TIM17/ FDCAN_IT1 | TIM17 and FDCAN_IT1 global interrupt | 0x0000_0098 | RM0444 Rev 5 315/1390 Table 58. Vector table⁽¹⁾ (continued) | Position | Priority | Type of priority | Acronym | Description | Address | | |----------|----------|------------------|---|---|-------------|--| | 23 | 30 | settable | I2C1 | I2C1 global interrupt (combined with EXTI 23) | | | | 24 | 31 | settable | I2C2 / I2C3 | I2C2 and I2C3 global interrupt | 0x0000_00A0 | | | 25 | 32 | settable | SPI1 | SPI1 global interrupt | 0x0000_00A4 | | | 26 | 33 | settable | SPI2 / SPI3 | SPI2 global interrupt | 0x0000_00A8 | | | 27 | 34 | settable | USART1 | USART1 global interrupt (combined with EXTI 25) | 0x0000_00AC | | | 28 | 35 | settable | USART2 / LPUART2 | USART2 and LPUART2 global interrupt (combined with EXTI 26) | 0x0000_00B0 | | | 29 | 36 | settable | USART3 / USART4 /
USART5 / USART6 /
LPUART1 | USART3/4/5/6 and LPUART1 global interrupt (combined with EXTI 28) | 0x0000_00B4 | | | 30 | 37 | settable | CEC | CEC global interrupt (combined with EXTI 27) | 0x0000_00B8 | | | 31 | 38 | settable | AES / RNG | AES and RNG global interrupts | 0x0000_00BC | | The grayed cells correspond to the Cortex®-M0+ interrupts. ## 13 Extended interrupt and event controller (EXTI) The Extended interrupt and event controller (EXTI) manages the CPU and system wakeup through configurable and direct event inputs (lines). It provides wakeup requests to the power control, and generates an interrupt request to the CPU NVIC and events to the CPU event input. For the CPU an additional event generation block (EVG) is needed to generate the CPU event signal. The EXTI wakeup requests allow the system to be woken up from Stop modes. The interrupt request and event request generation can also be used in Run modes. The EXTI also includes the EXTI I/O port mux. #### 13.1 EXTI main features The EXTI main features are the following: - System wakeup upon event on any input - Wakeup flag and CPU interrupt generation for events not having a wakeup flag in their source peripheral - Configurable events (from I/Os, peripherals not having an associated interrupt pending status bit, or peripherals generating a pulse) - Selectable active trigger edge - Independent rising and falling edge interrupt pending status bits - Individual interrupt and event generation mask, used for conditioning the CPU wakeup, interrupt and event generation - SW trigger possibility - Direct events (from peripherals having an associated flag and interrupt pending status bit) - Fixed rising edge active trigger - No interrupt pending status bit in the EXTI - Individual interrupt and event generation mask for conditioning the CPU wakeup and event generation - No SW trigger possibility - I/O port selector ## 13.2 EXTI block diagram The EXTI consists of a register block accessed via an AHB interface, the event input trigger block, the masking block, and EXTI mux as shown in *Figure 26*. The register block contains all the EXTI registers. The event input trigger block provides an event input edge trigger logic. The masking block provides the event input distribution to the different wakeup, interrupt and event outputs, and the masking of these. The EXTI mux provides the I/O port selection on to the EXTI event signal. RM0444 Rev 5 317/1390 AHB interface Registers exti[15:0] To interconnect EXTImux GPIO IOPort sys_wakeup c_wakeup **PWR** Configurable event(15:0) it_exti_per(y)* Direct event(x) or configurable event(y) Event Peripherals c_evt_exti c_event Trigger Masking Pulse events c_evt_rst CPU c_fclk **EVG** Interrupt Direct event(x) **EXTI** * it_exti_per(y) are only available for configurable events (y) MS44733V2 Figure 26. EXTI block diagram Table 59. EXTI signal overview | Signal name | I/O | Description | |-----------------------|-----|--| | AHB interface | I/O | EXTI register bus interface. When one event is configured to allow security, the AHB interface support secure accesses | | hclk | I | AHB bus clock and EXTI system clock | | Configurable event(y) | I | Asynchronous wakeup events from peripherals that do not have an associated interrupt and flag in the peripheral | | Direct event(x) | I | Synchronous and asynchronous wakeup events from peripherals having an associated interrupt and flag in the peripheral | | IOPort(n) | I | GPIO ports[15:0] | | exti[15:0] | 0 | EXTI output port to trigger other IPs | | it_exti_per (y) | 0 | Interrupts to the CPU associated with configurable event (y) | | c_evt_exti | 0 | High-level sensitive event output for CPU synchronous to hclk | | c_evt_rst | I | Asynchronous reset input to clear c_evt_exti | | sys_wakeup | 0 | Asynchronous system wakeup request to PWR for ck_sys and hclk | | c_wakeup | 0 | Wakeup request to PWR for CPU, synchronous to hclk | Table 60. EVG pin overview | Pin name | I/O | Description | |-----------|-----|---| | c_fclk | ı | CPU free-running clock | | c_evt_in | ı | High-level sensitive event input from EXTI, asynchronous to CPU clock | | c_event | 0 | Event pulse, synchronous to CPU clock | | c_evt_rst | 0 | Event reset signal, synchronous to CPU clock | #### 13.2.1 EXTI connections between peripherals and CPU The peripherals able to generate wakeup or interrupt events when the system is in Stop mode are connected to the EXTI. - Peripheral wakeup signals that generate a pulse or that do not have an interrupt status bits in the peripheral, are connect to an EXTI configurable line. For these events the EXTI provides a status pending bit which requires to be cleared. It is the EXTI interrupt associated with the status bit that interrupts the CPU. - Peripheral interrupt and wakeup signals that have a status bit in the peripheral which requires to be cleared in the peripheral, are connected to an EXTI direct line. There is no status pending bit within the EXTI. The interrupt or wakeup is cleared by the CPU in the peripheral. It is the peripheral interrupt that interrupts the CPU directly. - All GPIO ports input to the EXTI multiplexer, allowing to select a port to wake up the system via a configurable event. The EXTI configurable event interrupts are connected to the NVIC(a) of the CPU. The dedicated EXTI/EVG CPU event is connected to the CPU rxev input. The EXTI CPU wakeup signals are connected to the PWR block, and are used to wake up the system and CPU sub-system bus clocks. ## 13.3 EXTI functional description Depending on the EXTI line type and wakeup target(s), different logic implementations are used. The applicable features and control or status registers are: - · rising and falling edge event enable through - EXTI rising trigger selection register (EXTI_RTSR1) - EXTI falling trigger selection register 1 (EXTI_FTSR1) - software trigger through EXTI software interrupt event register 1 (EXTI SWIER1) - pending interrupt flagging through - EXTI rising edge pending register 1 (EXTI_RPR1) - EXTI falling edge pending register 1 (EXTI_FPR1) - EXTI external interrupt selection register (EXTI_EXTICRx) - CPU wakeup and interrupt enable through - EXTI CPU wakeup with interrupt mask register (EXTI IMR1) - EXTI CPU wakeup with interrupt mask register (EXTI_IMR2) - CPU wakeup and event enable through - EXTI CPU wakeup with event mask register (EXTI EMR1) - EXTI CPU wakeup with event mask register (EXTI_EMR2) RM0444 Rev
5 319/1390 SWIER1 FTSR1 R/FPR1 EMRX EXTI_RTSR EXTI_IMRX **Event input** Logic implementation type EXTI EXT Configurable Configurable event input wakeup logic х Х Х Х Х Х Direct Direct event input wakeup logic Х Table 61. EXTI event input configurations and register control ## 13.3.1 EXTI configurable event input wakeup Figure 27 is a detailed representation of the logic associated with configurable event inputs which wake up the CPU sub-system bus clocks and generated an EXTI pending flag and interrupt to the CPU and or a CPU wakeup event. Figure 27. Configurable event trigger logic CPU wakeup The software interrupt event register allows triggering configurable events by software, writing the corresponding register bit, irrespective of the edge selection setting. The rising edge and falling edge selection registers allow to enable and select the configurable event active trigger edge or both edges. The CPU has its dedicated interrupt mask register and a dedicated event mask registers. The enabled event allows generating an event on the CPU. All events for a CPU are OR-ed together into a single CPU event signal. The event pending registers (EXTI_RPR1 and EXTI_FPR1) is not set for an unmasked CPU event. The configurable events have unique interrupt pending request registers, shared by the CPU. The pending register is only set for an unmasked interrupt. Each configurable event provides a common interrupt to the CPU. The configurable event interrupts need to be acknowledged by software in the EXTI_RPR1 and/or EXTI_FPR1 registers. When a CPU interrupt or CPU event is enabled, the asynchronous edge detection circuit is reset by the clocked delay and rising edge detect pulse generator. This guarantees the wakeup of the EXTI helk clock before the asynchronous edge detection circuit is reset. Note: A detected configurable event interrupt pending request can be cleared by the CPU. The system cannot enter low-power modes as long as an interrupt pending request is active. #### 13.3.2 EXTI direct event input wakeup *Figure 28* is a detailed representation of the logic associated with direct event inputs waking up the system. The direct events do not have an associated EXTI interrupt. The EXTI only wakes up the system and CPU sub-system clocks and may generate a CPU wakeup event. The peripheral synchronous interrupt, associated with the direct wakeup event wakes up the CPU. The EXTI direct event is able to generate a CPU event. This CPU event wakes up the CPU. The CPU event may occur before the interrupt flag of the associated peripheral is set. Figure 28. Direct event trigger logic CPU wakeup #### 13.3.3 EXTI mux The EXTI mux allows selecting GPIOs as interrupts and wakeup. The GPIOs are connected via 16 EXTI mux lines to the first 16 EXTI events as configurable event. The selection of GPIO port as EXTI mux output is controlled through the *EXTI external interrupt selection register (EXTI_EXTICRx)* register. RM0444 Rev 5 321/1390 MS44726V1 EXTI_EXTICR1.EXTI0 EXTI_EXTICR1.EXTI1 EXTI_EXTICR4.EXTI15 PA0 🗀 PA1 _ PA15 __ PB0 □-PB15 □-PB1 <u></u> PC0□ PC1_ PC15 □-EXTI0 EXTI15 Px1 □ Px15 □ Px0 □ Figure 29. EXTI GPIO mux The EXTIs mux outputs are available as output signals from the EXTI, to trigger other functional blocks. The EXTI mux outputs are available independently of mask setting through the EXTI_IMR and EXTI_EMR registers. The EXTI lines (event inputs) are connected as shown in the following table. | EXTI line | Line source | Line type | | | | |-----------|----------------|--------------|--|--|--| | 0-15 | GPIO | Configurable | | | | | 16 | PVD output | Configurable | | | | | 17 | COMP1 output | Configurable | | | | | 18 | COMP2 output | Configurable | | | | | 19 | RTC | Direct | | | | | 20 | COMP3 output | Configurable | | | | | 21 | TAMP | Direct | | | | | 22 | I2C2 wakeup | Direct | | | | | 23 | I2C1 wakeup | Direct | | | | | 24 | USART3 wakeup | Direct | | | | | 25 | USART1 wakeup | Direct | | | | | 26 | USART2 wakeup | Direct | | | | | 27 | CEC wakeup | Direct | | | | | 28 | LPUART1 wakeup | Direct | | | | | 29 | LPTIM1 | Direct | | | | | 30 | LPTIM2 | Direct | | | | | 31 | LSE_CSS | Direct | | | | | 32 | UCPD1 wakeup | Direct | | | | | 33 | UCPD2 wakeup | Direct | | | | Table 62. EXTI line connections | EXTI line | Line source | Line type | | | | | | | | | |-----------|--|-----------|--|--|--|--|--|--|--|--| | 34 | V _{DDIO2} monitoring configurable | Direct | | | | | | | | | | 35 | LPUART2 wakeup | Direct | | | | | | | | | Table 62. EXTI line connections (continued) #### 13.4 EXTI functional behavior The direct event inputs are enabled in the respective peripheral generating the wakeup event. The configurable events are enabled by enabling at least one of the trigger edges. Once an event input is enabled, the generation of a CPU wakeup is conditioned by the CPU interrupt mask and CPU event mask. | CPU interrupt
enable
EXTI_IMR.IMn | CPU event enable
EXTI_EMR.EMn | Configurable
event inputs
EXTI_RPR.RPIFn
EXTI_FPR.FPIFn | exti(n)
interrupt ⁽¹⁾ | CPU
event | CPU wakeup | | | |---|----------------------------------|--|-------------------------------------|--------------|------------|--|--| | 0 | 0 | No | Masked | Masked | Masked | | | | | 1 | No | Masked | Yes | Yes | | | | 1 | 0 | Status latched | Yes | Yes Masked | | | | | 1 | 1 | Status latched | Yes | Yes | Yes | | | **Table 63. Masking functionality** For configurable event inputs, upon an edge on the event input, an event request is generated if that edge (rising or/and falling) is enabled. When the associated CPU interrupt is unmasked, the corresponding RPIFn and/or FPIFn bit is/are set in the EXTI_RPR or/and EXTI_FPR register, waking up the CPU subsystem and activating CPU interrupt signal. The RPIFn and/or FPIFn pending bit is cleared by writing 1 to it, which clears the CPU interrupt request. For direct event inputs, when enabled in the associated peripheral, an event request is generated on the rising edge only. There is no corresponding CPU pending bit in the EXTI. When the associated CPU interrupt is unmasked, the corresponding CPU subsystem is woken up. The CPU is woken up (interrupted) by the peripheral synchronous interrupt. The CPU event must be unmasked to generate an event. Upon an enabled edge occurring on an event input, a CPU event pulse is generated. There is no event pending bit. For the configurable event inputs, the software can generate an event request by setting the corresponding bit of the software interrupt/event register EXTI_SWIER1, which has the effect of a rising edge on the event input. The pending rising edge event flag is set in the EXTI_RPR1 register, irrespective of the EXTI_RTSR1 register setting. The single exti(n) interrupt goes to the CPU. If no interrupt is required for CPU, the exti(n) interrupt must be masked in the CPU NVIC. ^{2.} Only if CPU interrupt is enabled in EXTI_IMR.IMn. ## 13.5 EXTI registers The EXTI register map is divided in the following sections: Table 64. EXTI register map sections | Address | Description | |---------------|---| | 0x000 - 0x01C | General configurable event [31:0] configuration | | 0x060 - 0x06C | EXTI I/O port multiplexer | | 0x080 - 0x0BC | CPU input event configuration | All the registers can be accessed with word (32-bit), half-word (16-bit) and byte (8-bit) access. ### 13.5.1 EXTI rising trigger selection register (EXTI_RTSR1) Address offset: 0x000 Reset value: 0x0000 0000 Contains only register bits for configurable events. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. RT20 | Res. | RT18 | RT17 | RT16 | | | | | | | | | | | | | rw | | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | RT15 | RT14 | RT13 | RT12 | RT11 | RT10 | RT9 | RT8 | RT7 | RT6 | RT5 | RT4 | RT3 | RT2 | RT1 | RT0 | | rw Bits 31:21 Reserved, must be kept at reset value. Bit 20 RT20: Rising trigger event configuration bit of configurable line 20⁽¹⁾ This bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. - 0: Disable - 1: Enable The RT20 bit is only available in STM32G0B1xx and STM32G0C1xx. It is reserved in all the other devices. Bit 19 Reserved, must be kept at reset value. Bits 18:0 RTx: Rising trigger event configuration bit of configurable line x (x = 18 to 0) $^{(2)}$ Each bit enables/disables the rising edge trigger for the event and interrupt on the corresponding line. - 0: Disable - 1: Enable The RT18 and RT17 bits are only available in STM32G071xx and STM32G081xx as well as STM32G0B1xx and STM32G0C1xx. They are reserved in STM32G031xx and STM32G041xx as well as STM32G051xx and STM32G061xx. The configurable lines are edge triggered, no glitch must be generated on these inputs. If a rising edge on the configurable line occurs during writing of the register, the associated pending bit is not set. Rising edge trigger can be set for a line with falling edge trigger enabled. In this case, both edges generate a trigger. The configurable lines are edge triggered, no glitch must be generated on these inputs. If a rising edge on the configurable line occurs during writing of the register, the associated pending bit is not set. Rising edge trigger can be set for a line with falling edge trigger enabled. In this case, both edges generate a trigger. ### 13.5.2 EXTI falling trigger selection register 1 (EXTI_FTSR1) Address offset: 0x004 Reset value: 0x0000 0000 Contains only register bits for configurable events. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------
------|------|------|------|------| | Res. FT20 | Res. | FT18 | FT17 | FT16 | | | | | | | | | | | | | rw | | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | FT15 | FT14 | FT13 | FT12 | FT11 | FT10 | FT9 | FT8 | FT7 | FT6 | FT5 | FT4 | FT3 | FT2 | FT1 | FT0 | | rw Bits 31:21 Reserved, must be kept at reset value. Bit 20 **FT20:** Falling trigger event configuration bit of configurable line 20⁽¹⁾. This bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. 0: Disable 1: Fnable The FT20 bit is only available in STM32G0B1xx and STM32G0C1xx. It is reserved in all the other devices. Bit 19 Reserved, must be kept at reset value. Bits 18:0 **FTx**: Falling trigger event configuration bit of configurable line x (x = 18 to 0)⁽¹⁾. Each bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. 0: Disable 1: Enable The FT18 and FT17 bits are only available in STM32G071xx and STM32G081xx as well as STM32G0B1xx and STM32G0C1xx. They are reserved in STM32G031xx and STM32G041xx as well as STM32G051xx and STM32G061xx. The configurable lines are edge triggered, no glitch must be generated on these inputs. If a falling edge on the configurable line occurs during writing of the register, the associated pending bit is not set. Falling edge trigger can be set for a line with rising edge trigger enabled. In this case, both edges generate a trigger. ### 13.5.3 EXTI software interrupt event register 1 (EXTI_SWIER1) Address offset: 0x008 Reset value: 0x0000 0000 Contains only register bits for configurable events. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-----------|-----------|-----------|-----------|-----------|-----------|------|------|------|------|------|-----------|------|-----------|-----------|-----------| | Res. SWI
20 | Res. | SWI
18 | SWI
17 | SWI
16 | | | | | | | | | | | | | rw | | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | . • | U | O | , | U | U | - | J | 2 | | U | | SWI
15 | SWI
14 | SWI
13 | SWI
12 | SWI
11 | SWI
10 | SWI9 | SWI8 | SWI7 | SWI6 | SWI5 | SWI4 | SWI3 | SWI2 | SWI1 | SWI0 | Bits 31:21 Reserved, must be kept at reset value. Bit 20 **SWI20:** Software rising edge event trigger on line $20^{(1)}$. Setting this bit by software triggers a rising edge event on the corresponding line, resulting in an interrupt, independently of EXTI RTSR1 and EXTI FTSR1 settings. This bit is automatically cleared by hardware. Reading this bit always returns 0. 0: No effect 1: Rising edge event generated on the corresponding line, followed by an interrupt The SWI20 bit is only available in STM32G0B1xx and STM32G0C1xx. It is reserved in all the other devices. Bit 19 Reserved, must be kept at reset value. Bits 18:0 **SWIx**: Software rising edge event trigger on line x (x = 18 to 0) Setting of any bit by software triggers a rising edge event on the corresponding line x, resulting in an interrupt, independently of EXTI_RTSR1 and EXTI_FTSR1 settings. The bits are automatically cleared by HW. Reading of any bit always returns 0. 0: No effect 1: Rising edge event generated on the corresponding line, followed by an interrupt The SW18 and SW17 bits are only available in STM32G071xx and STM32G081xx as well as STM32G0B1xx and STM32G0C1xx. They are reserved in STM32G031xx and STM32G041xx as well as STM32G051xx and STM32G061xx. #### 13.5.4 EXTI rising edge pending register 1 (EXTI_RPR1) Address offset: 0x00C Reset value: 0x0000 0000 Contains only register bits for configurable events. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|--------|-------|--------|--------|--------| | Res. RPIF20 | Res. | RPIF18 | RPIF17 | RPIF16 | | | | | | | | | | | | | rc_w1 | | rc_w1 | rc_w1 | rc_w1 | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | RPIF15 | RPIF14 | RPIF13 | RPIF12 | RPIF11 | RPIF10 | RPIF9 | RPIF8 | RPIF7 | RPIF6 | RPIF5 | RPIF4 | RPIF3 | RPIF2 | RPIF1 | RPIF0 | | rc_w1 RM0444 Rev 5 326/1390 327/1390 Bits 31:21 Reserved, must be kept at reset value. Bit 20 **RPIF20:** Rising edge event pending for configurable line $20^{(1)}$. This bit is set upon a rising edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. This bit is cleared by writing 1 into it. 0: No rising edge trigger request occurred 1: Rising edge trigger request occurred The RPIF20 bit is only available in STM32G0B1xx and STM32G0C1xx. It is reserved in all the other devices. Bit 19 Reserved, must be kept at reset value. Bits 18:0 **RPIFx:** Rising edge event pending for configurable line x (x = 18 to 0) Each bit is set upon a rising edge event generated by hardware or by software (through the EXTI SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. 0: No rising edge trigger request occurred 1: Rising edge trigger request occurred The RPIF18 and RPIF17 bits are only available in STM32G071xx and STM32G081xx as well as STM32G0B1xx and STM32G0C1xx. They are reserved in STM32G031xx and STM32G041xx as well as STM32G051xx and STM32G061xx. # 13.5.5 EXTI falling edge pending register 1 (EXTI_FPR1) Address offset: 0x010 Reset value: 0x0000 0000 Contains only register bits for configurable events. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|--------|-------|--------|--------|--------| | Res. FPIF20 | Res. | FPIF18 | FPIF17 | FPIF16 | | | | | | | | | | | | | rc_w1 | | rc_w1 | rc_w1 | rc_w1 | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | FPIF15 | FPIF14 | FPIF13 | FPIF12 | FPIF11 | FPIF10 | FPIF9 | FPIF8 | FPIF7 | FPIF6 | FPIF5 | FPIF4 | FPIF3 | FPIF2 | FPIF1 | FPIF0 | | rc_w1 Bits 31:21 Reserved, must be kept at reset value. RM0444 Rev 5 Bit 20 **FPIF20:** Falling edge event pending for configurable line 20⁽¹⁾. This bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. This bit is cleared by writing 1 into it. 0: No falling edge trigger request occurred 1: Falling edge trigger request occurred The FPIF20 bit is only available in STM32G0B1xx and STM32G0C1xx. It is reserved in all the other devices. Bit 19 Reserved, must be kept at reset value. Bits 18:0 **FPIFx**: Falling edge event pending for configurable line x (x = 18 to 0) Each bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER1 register) on the corresponding line. Each bit is cleared by writing 1 into it. 0: No falling edge trigger request occurred 1: Falling edge trigger request occurred The FPIF18 and FPIF17 bits are only available in STM32G071xx and STM32G081xx. They are reserved in STM32G031xx and STM32G041xx as well as STM32G051xx and STM32G061xx. ### 13.5.6 EXTI rising trigger selection register 2 (EXTI RTSR2) Address offset: 0x028 Reset value: 0x0000 0000 Contains only register bits for configurable events. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | 10 | 12 | - '' | 10 | 3 | 0 | , | 0 | 3 | - | 3 | | | U | | Res. RT2 | Res. | Res. | Bits 31:3 Reserved, must be kept at reset value. Bit 2 RT2: Rising trigger event configuration bit of configurable line 34⁽¹⁾ This bit enables/disables the rising edge trigger for the event and interrupt on line 34. 0: Disable 1: Enable The RT2 bit is only available in STM32G0B1xx and STM32G0C1xx. This bit is reserved in all the other devices. Bits 1:0 Reserved, must be kept at reset value. The configurable lines are edge triggered, no glitch must be generated on these inputs. If a rising edge on the configurable line occurs during writing of the register, the associated pending bit is not set. Rising edge trigger can be set for a line with falling edge trigger enabled. In this case, both edges generate a trigger. ### 13.5.7 EXTI falling trigger selection register 2 (EXTI FTSR2) Address offset: 0x02C Reset value: 0x0000 0000 Contains only register bits for configurable events. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. FT2 | Res. | Res. | | | | | | | | | | | | | | | | | | Bits 31:3 Reserved, must be kept at reset value. Bit 2 **FT2:** Falling trigger event configuration bit of configurable line 34⁽¹⁾. This bit enables/disables the falling edge trigger for the event and interrupt on the corresponding line. 0: Disable 1: Enable The FT2 bit is only available in STM32G0B1xx and STM32G0C1xx. This bit is reserved in all the other devices. Bits 1:0 Reserved, must be kept at reset value. The configurable lines are edge triggered, no glitch must be generated on these inputs. If a falling edge on the configurable line occurs during writing of the register, the associated pending bit is not set. Falling edge trigger can be set for a line with rising edge trigger enabled. In this case, both edges generate a trigger. ### 13.5.8 EXTI software interrupt event register 2 (EXTI_SWIER2) Address offset: 0x030 Reset value: 0x0000 0000 Contains only register bits for configurable events. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------|-------|-------|-------|-------
-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. SWI2 | Res. | Res. | | 1100. | 1103. | 1100. | 1100. | 1103. | 1103. | 1103. | 1103. | 1103. | 1103. | 1,65. | 1165. | 1105. | OVVIZ | 1165. | 1103. | Bits 31:3 Reserved, must be kept at reset value. Bit 2 **SWI2**: Software rising edge event trigger on line 34) Setting of any bit by software triggers a rising edge event on the line 34, resulting in an interrupt, independently of EXTI_RTSR2 and EXTI_FTSR2 settings. This bit is automatically cleared by hardware. Reading the bit always returns 0. 0. No effect 1: Rising edge event generated on the corresponding line, followed by an interrupt The SWI2 bit is only available in STM32G0B1xx and STM32G0C1xx. This bit is reserved in all the other devices. Bits 1:0 Reserved, must be kept at reset value. ### 13.5.9 EXTI rising edge pending register 2 (EXTI RPR2) Address offset: 0x034 RM0444 Rev 5 329/1390 Reset value: 0x0000 0000 Contains only register bits for configurable events. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | • | • | • | • | • | - | • | _ | | · | | Res. RPIF2 | Res. | Res. | Bits 31:3 Reserved, must be kept at reset value. Bit 2 RPIF2: Rising edge event pending for configurable line 34 This bit is set upon a rising edge event generated by hardware or by software (through the EXTI SWIER2 register) on line 34. This bit is cleared by writing 1 into it. - 0: No rising edge trigger request occurred - 1: Rising edge trigger request occurred The RPIF2 bit is only available in STM32G0B1xx and STM32G0C1xx. This bit is reserved in all the other devices. Bits 1:0 Reserved, must be kept at reset value. # 13.5.10 EXTI falling edge pending register 2 (EXTI_FPR2) Address offset: 0x038 Reset value: 0x0000 0000 Contains only register bits for configurable events. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. FPIF2 | Res. | Res. | | | | | | | | | | | | | | | rc_w1 | | | Bits 31:3 Reserved, must be kept at reset value. Bit 2 FPIF2: Falling edge event pending for configurable line 34 This bit is set upon a falling edge event generated by hardware or by software (through the EXTI_SWIER2 register) on the line 34. This bit is cleared by writing 1 into it. - 0: No falling edge trigger request occurred - 1: Falling edge trigger request occurred The FPIF2 bit is only available in STM32G0B1xx and STM32G0C1xx. This bit is reserved in all the other devices. Bits 1:0 Reserved, must be kept at reset value. ### 13.5.11 EXTI external interrupt selection register (EXTI EXTICRx) Address offset: 0x060 + 0x4 * (x - 1), (x = 1 to 4) Reset value: 0x0000 0000 EXTIm fields contain only the number of bits in line with the nb_ioport configuration. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|--------------|----|-------|----------|----|----|----|----|----|----|-------|----------|----|----|----| | | | | EXTIm | n+3[7:0] | | | | | | | EXTIn | n+2[7:0] | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | EXTIm+1[7:0] | | | | | | | | | | EXT | lm[7:0] | | | | | rw ### Bits 31:24 **EXTIm+3[7:0]**: EXTIm+3 GPIO port selection (m = 4 * (x - 1)) These bits are written by software to select the source input for EXTIm+3 external interrupt. 0x00: PA[m+3] pin 0x01: PB[m+3] pin 0x02: PC[m+3] pin 0x03: PD[m+3] pin 0x04: reserved 0x05: PF[m+3] pin Others reserved #### Bits 23:16 **EXTIm+2[7:0]**: EXTIm+2 GPIO port selection (m = 4 * (x - 1)) These bits are written by software to select the source input for EXTIm+2 external interrupt. 0x00: PA[m+2] pin 0x01: PB[m+2] pin 0x02: PC[m+2] pin 0x03: PD[m+2] pin 0x04: reserved 0x05: PF[m+2] pin Others reserved ### Bits 15:8 **EXTIm+1[7:0]**: EXTIm+1 GPIO port selection (m = 4 * (x - 1)) These bits are written by software to select the source input for EXTIm+1 external interrupt. 0x00: PA[m+1] pin 0x01: PB[m+1] pin 0x02: PC[m+1] pin 0x03: PD[m+1] pin 0x04: reserved 0x05: PF[m+1] pin Others reserved #### Bits 7:0 **EXTIM[7:0]**: EXTIM GPIO port selection (m = 4 * (x - 1)) These bits are written by software to select the source input for EXTIm external interrupt. 0x00: PA[m] pin 0x01: PB[m] pin 0x02: PC[m] pin 0x03: PD[m] pin 0x04: reserved 0x05: PF[m] pin Others reserved $\overline{\Box}$ 331/1390 ### 13.5.12 EXTI CPU wakeup with interrupt mask register (EXTI IMR1) Address offset: 0x080 (EXTI_IMR1) Reset value: 0xFFF8 0000 Contains register bits for configurable events and direct events. The reset value is set such as to, by default, enable interrupt from direct lines, and disable interrupt from configurable lines. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | IM31 | IM30 | IM29 | IM28 | IM27 | IM26 | IM25 | IM24 | IM23 | IM22 | IM21 | IM20 | IM19 | IM18 | IM17 | IM16 | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | IM15 | IM14 | IM13 | IM12 | IM11 | IM10 | IM9 | IM8 | IM7 | IM6 | IM5 | IM4 | IM3 | IM2 | IM1 | IM0 | | rw Bits 31:0 IMx: CPU wakeup with interrupt mask on line x (x = 31 to 0) Setting/clearing each bit unmasks/masks the CPU wakeup with interrupt, by an event on the corresponding line. 0: wakeup with interrupt masked 1: wakeup with interrupt unasked The IM24, IM22 and IM20 bits are only available in STM32G0B1xx and STM32G0C1xx. They are reserved in STM32G031xx and STM32G041xx as well as STM32G051xx and STM32G061xx as well as STM32G071xx and STM32G081xx. The IM27, IM18 and IM17 bits are only available in STM32G071xx and STM32G081xx as well as STM32G0B1xx and STM32G0C1xx. They are reserved in STM32G031xx and STM32G041xx as well as STM32G051xx and STM32G061xx. # 13.5.13 EXTI CPU wakeup with event mask register (EXTI_EMR1) Address offset: 0x084 (EXTI_EMR1) Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | EM31 | EM30 | EM29 | EM28 | EM27 | EM26 | EM25 | EM24 | EM23 | EM22 | EM21 | EM20 | EM19 | EM18 | EM17 | EM16 | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | EM15 | EM14 | EM13 | EM12 | EM11 | EM10 | EM9 | EM8 | EM7 | EM6 | EM5 | EM4 | EM3 | EM2 | EM1 | EM0 | | rw Bits 31:0 **EMx:** CPU wakeup with event generation mask on line x (x = 31 to 0) Setting/clearing each bit unmasks/masks the CPU wakeup with event generation on the corresponding line. 0: wakeup with event generation masked 1: wakeup with event generation unmasked The EM24, EM22 and EM20 bits are only available in STM32G0B1xx and STM32G0C1xx. They are reserved in STM32G031xx and STM32G041xx as well as STM32G051xx and STM32G061xx as well as STM32G071xx and STM32G081xx. ### 13.5.14 EXTI CPU wakeup with interrupt mask register (EXTI_IMR2) Address offset: 0x090 (EXTI_IMR2) Reset value: 0xFFFF FFFF Contains register bits for configurable events and direct events. The reset value is set such as to, by default, enable interrupt from direct lines, and disable interrupt from configurable lines. This register is not available in STM32G031xx and STM32G041xx as well as STM32G051xx and STM32G061xx. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. IM35 | IM34 | IM33 | IM32 | | | | | | | | | | | | | | rw | rw | rw | rw | Bits 31:4 Reserved, must be kept at reset value. Bits 3:0 **IMx:** CPU wakeup with interrupt mask on line x (x = 35 to 32) Setting/clearing this bit unmasks/masks the CPU wakeup with interrupt, by an event on the corresponding line. 0: wakeup with interrupt request from Line x is masked 1: wakeup with interrupt request from Line x is unmasked The IM35 and IM34 bits are only available in STM32G0B1xx and STM32G0C1xx. They are reserved in STM32G071xx and STM32G081xx. ### 13.5.15 EXTI CPU wakeup with event mask register (EXTI EMR2) Address offset: 0x094 Reset value: 0x0000 0000 Contains register bits for configurable events and direct events. The reset value is set such as to, by default, enable interrupt from direct lines, and disable interrupt from configurable lines. This register is not available in STM32G031xx and STM32G041xx as well as STM32G051xx and STM32G061xx. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. EM35 | EM34 | EM33 | EM32 | | | | | | | | | | | | | | rw | rw | rw | rw | RM0444 Rev 5 333/1390 Bits 31:4 Reserved, must be kept at reset value. Bits 3:0 **EMx:** CPU wakeup with event generation mask on line x (x = 35 to 32) Setting/clearing each bit unmasks/masks the CPU wakeup with event generation on the corresponding line. 0: wakeup with event generation masked 1: wakeup with event generation unmasked The EM35 and EM34 bits are only available in STM32G0B1xx
and STM32G0C1xx. They are reserved in STM32G071xx and STM32G081xx. ## 13.5.16 EXTI register map The following table gives the EXTI register map and the reset values. Table 65. EXTI controller register map and reset values | | | | | | | | | | | | | | | Ť | | | | | Г | 1 | | | | | | | | | | | | | \Box | |-----------------|-------------|------|------|------|------|------|------|------|------|------|------|------|--------|------|------|------|------|------|------|------|------|------|------|-------------|------|------|------|------|------|------|-------|------|--------| | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 1 | 10 | 6 | œ | 7 | 9 | 2 | 4 | ဗ | 7 | 1 | 0 | | 0x000 | EXTI_RTSR1 | Res. RT20 | Res. | | | | | | | | | R | Γ[18 | 3:0] | | | | | | | | | | | Reset value | | | | | | | | | | | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x004 | EXTI_FTSR1 | Res. FT20 | Res. | | | | | | | | | F | Γ[18 | :0] | | | | | | | | | | | Reset value | | | | | | | | | | | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x008 | EXTI_SWIER1 | Res. SWI20 | Res. | | | | | | | | | SV | VI[18 | 8:0] | | | | | | | | | | | Reset value | | | | | | | | | | | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x00C | EXTI_RPR1 | Res. RPIF20 | Res. | | | | | | | | | RP | IF[1 | 8:0] | | | | | | | | | | | Reset value | | | | | | | | | | | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x010 | EXTI_FPR1 | Res. FPIF20 | Res. | | | | | | | | | | IF[1
Res | 6:0] | | | | | | | | | | | Reset value | | | | | | | | | | | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x014-
0x024 | Reserved | Res. | 0x028 | EXTI_RTSR2 | Res. RT2 | Res. | Res. | | | Reset value | 0 | | | | 0x02C | EXTI_FTSR2 | Res. FT2 | Res. | Res. | | | Reset value | 0 | | | | 0x030 | EXTI_SWIER2 | Res. SWI2 | Res. | Res. | | | Reset value | 0 | | | | 0x034 | EXTI_RPR2 | Res. RPIF2 | Res. | Res. | | | Reset value | 0 | | | | 0x038 | EXTI_FPR2 | Res. FPIF2 | Res. | Res. | | | Reset value | 0 | | | | 0x038-
0x05C | Reserved | Res. Table 65. EXTI controller register map and reset values (continued) | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 2 | 1 | 0 | |-----------------|--------------| | 0x060 | EXTI_EXTICR1 | | | E | XTI | 3[7: | 0] | | | | | E | XTI | 2[7: | 0] | | | | | E | XTI | 1[7: | 0] | | | | | E | XTI | 0[7: | 0] | | | | | Reset value | 0 | | 0x064 | EXTI_EXTICR2 | | | Е | XTI | 7[7: | 0] | | | | | E | XTI | 6[7: | 0] | | | | | E | XTI | 5[7: | 0] | | | | | Е | XTI | 4[7: | 0] | | | | | Reset value | 0 | | 0x068 | EXTI_EXTICR3 | | | E | XTI′ | 11[7 | :0] | | | | | E | KTI1 | 10[7 | :0] | | | | | E | XTI | 9[7: | 0] | | | | | Е | XTI | 8[7: | 0] | | | | | Reset value | 0 | | 0x06C | EXTI_EXTICR4 | | | E | XTI1 | 15[7 | :0] | | | | | E | KTI1 | 14[7 | :0] | | | | | E | ΧΤΙ΄ | 13[7 | :0] | | | | | E | XTI1 | 2[7 | :0] | | | | | Reset value | 0 | | 0x070-
0x07C | Reserved | Res. | 0x080 | EXTI_IMR1 | | | | | | | | | | | | | | | | IM[3 | 31:0 |)] | | | | | | | | | | | | | | | | | Reset value | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | | 1 | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x084 | EXTI_EMR1 | | | | | | | | | | | | | | | E | ΞM[: | 31:0 | 0] | | | | | | | | | | | | | | | | | Reset value | 0 | | 0x088-
0x08C | Reserved | Res. | 0x090 | EXTI_IMR2 | Res. IM35 | IM34 | IM33 | IM32 | | | Reset value | 1 | 1 | 1 | 1 | | 0x094 | EXTI_EMR2 | Res. EM35 | EM34 | EM33 | EM32 | | | Reset value | 0 | 0 | 0 | 0 | Refer to Section 2.2 on page 58 for the register boundary addresses. RM0444 Rev 5 335/1390 # 14 Cyclic redundancy check calculation unit (CRC) ### 14.1 Introduction The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from 8-, 16- or 32-bit data word and a generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the functional safety standards, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link time and stored at a given memory location. ### 14.2 CRC main features - Uses CRC-32 (Ethernet) polynomial: 0x4C11DB7 $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$ - Alternatively, uses fully programmable polynomial with programmable size (7, 8, 16, 32 bits) - Handles 8-,16-, 32-bit data size - Programmable CRC initial value - Single input/output 32-bit data register - Input buffer to avoid bus stall during calculation - CRC computation done in 4 AHB clock cycles (HCLK) for the 32-bit data size - General-purpose 8-bit register (can be used for temporary storage) - Reversibility option on I/O data # 14.3 CRC functional description ### 14.3.1 CRC block diagram Figure 30. CRC calculation unit block diagram ### 14.3.2 CRC internal signals Table 66. CRC internal input/output signals | Signal name | Signal type | Description | |-------------|---------------|-------------| | crc_hclk | Digital input | AHB clock | ### 14.3.3 CRC operation The CRC calculation unit has a single 32-bit read/write data register (CRC_DR). It is used to input new data (write access), and holds the result of the previous CRC calculation (read access). Each write operation to the data register creates a combination of the previous CRC value (stored in CRC_DR) and the new one. CRC computation is done on the whole 32-bit data word or byte by byte depending on the format of the data being written. The CRC_DR register can be accessed by word, right-aligned half-word and right-aligned byte. For the other registers only 32-bit access is allowed. The duration of the computation depends on data width: - 4 AHB clock cycles for 32-bit - 2 AHB clock cycles for 16-bit - 1 AHB clock cycles for 8-bit An input buffer allows a second data to be immediately written without waiting for any wait states due to the previous CRC calculation. The data size can be dynamically adjusted to minimize the number of write accesses for a given number of bytes. For instance, a CRC for 5 bytes can be computed with a word write followed by a byte write. The input data can be reversed, to manage the various endianness schemes. The reversing operation can be performed on 8 bits, 16 bits and 32 bits depending on the REV_IN[1:0] bits in the CRC_CR register. For example: input data 0x1A2B3C4D is used for CRC calculation as: - 0x58D43CB2 with bit-reversal done by byte - 0xD458B23C with bit-reversal done by half-word - 0xB23CD458 with bit-reversal done on the full word The output data can also be reversed by setting the REV_OUT bit in the CRC_CR register. The operation is done at bit level: for example, output data 0x11223344 is converted into 0x22CC4488. The CRC calculator can be initialized to a programmable value using the RESET control bit in the CRC CR register (the default value is 0xFFFFFFFF). The initial CRC value can be programmed with the CRC_INIT register. The CRC_DR register is automatically initialized upon CRC_INIT register write access. The CRC_IDR register can be used to hold a temporary value related to CRC calculation. It is not affected by the RESET bit in the CRC_CR register. ### Polynomial programmability The polynomial coefficients are fully programmable through the CRC_POL register, and the polynomial size can be configured to be 7, 8, 16 or 32 bits by programming the POLYSIZE[1:0] bits in the CRC_CR register. Even polynomials are not supported. If the CRC data is less than 32-bit, its value can be read from the least significant bits of the CRC_DR register. To obtain a reliable CRC calculation, the change on-fly of the polynomial value or size can not be performed during a CRC calculation. As a result, if a CRC calculation is ongoing, the application must either reset it or perform a CRC_DR read before changing the polynomial. The default polynomial value is the CRC-32 (Ethernet) polynomial: 0x4C11DB7. # 14.4 CRC registers # 14.4.1 CRC data register (CRC_DR) Address offset: 0x00 Reset value: 0xFFFF FFFF | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|------|-------|----|----|----|----|----|----|----| | | | | | | | | DR[3 | 1:16] | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 |
6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | DR[| 15:0] | | | | | _ | | | | rw Bits 31:0 DR[31:0]: Data register bits This register is used to write new data to the CRC calculator. It holds the previous CRC calculation result when it is read. If the data size is less than 32 bits, the least significant bits are used to write/read the correct value. ## 14.4.2 CRC independent data register (CRC_IDR) Address offset: 0x04 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|-----|---------|----|----|----|----|----|----|----| | | | | | | | | IDR | [31:16] | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | IDF | R[15:0] | | | | | | | | | rw Bits 31:0 IDR[31:0]: General-purpose 32-bit data register bits These bits can be used as a temporary storage location for four bytes. This register is not affected by CRC resets generated by the RESET bit in the CRC_CR register ## 14.4.3 CRC control register (CRC_CR) Address offset: 0x08 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|-------------|------|---------|-------|----------|------|------|-------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. REV_
OUT | REV_ | IN[1:0] | POLYS | IZE[1:0] | Res. | Res. | RESET | | | | | | | | | | rw | rw | rw | rw | rw | | | rs | Bits 31:8 Reserved, must be kept at reset value. #### Bit 7 REV_OUT: Reverse output data This bit controls the reversal of the bit order of the output data. 0: Bit order not affected 1: Bit-reversed output format ### Bits 6:5 REV_IN[1:0]: Reverse input data These bits control the reversal of the bit order of the input data 00: Bit order not affected 01: Bit reversal done by byte 10: Bit reversal done by half-word 11: Bit reversal done by word ### Bits 4:3 POLYSIZE[1:0]: Polynomial size These bits control the size of the polynomial. 00: 32 bit polynomial 01: 16 bit polynomial 10: 8 bit polynomial 11: 7 bit polynomial #### Bits 2:1 Reserved, must be kept at reset value. #### Bit 0 RESET: RESET bit This bit is set by software to reset the CRC calculation unit and set the data register to the value stored in the CRC_INIT register. This bit can only be set, it is automatically cleared by hardware # 14.4.4 CRC initial value (CRC_INIT) Address offset: 0x10 Reset value: 0xFFFF FFFF | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|-------|------------|----|----|----|----|----|----|----| | | | | | | | | CRC_I | NIT[31:16] | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | _ | | CRC_ | INIT[15:0] | | | | | | | | | rw Bits 31:0 CRC_INIT[31:0]: Programmable initial CRC value This register is used to write the CRC initial value. ## 14.4.5 CRC polynomial (CRC_POL) Address offset: 0x14 Reset value: 0x04C1 1DB7 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|-----|----------|----|----|----|----|----|----|----| | | | | | | | | POL | _[31:16] | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | РО | L[15:0] | | | | _ | _ | | | | rw Bits 31:0 POL[31:0]: Programmable polynomial This register is used to write the coefficients of the polynomial to be used for CRC calculation. If the polynomial size is less than 32 bits, the least significant bits have to be used to program the correct value. # 14.4.6 CRC register map Table 67. CRC register map and reset values | | | | | | | | | | | | | | | •••• | • |--------|------------------|-----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|------|------|------|------|------|---------|--------|-------------|------------|---------------|------|------|-------| | Offset | Register
name | 31 | 30 | 29 | 28 | 27 | 56 | 22 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | œ | 7 | 9 | 2 | 4 | က | 7 | - | 0 | | 0x00 | CRC_DR | | | | | | | | | | | | | | | [| OR[: | 31:0 |] | | | | | | | | | | | | | | | | | Reset value | 1 | | 0x04 | CRC_IDR | | | | | | | | | | | | | | | I | DR[| 31:0 |)] | | | | | | | | | | | | | | | | | Reset value | 0 | | 0x08 | CRC_CR | Res. REV OUT | 20.214 | NEV_IN[1:0] | VS12F[4:0] | POLYSIZE[1:0] | Res. | Res. | RESET | | | Reset value | 0 | 0 | 0 | 0 | 0 | | | 0 | | 0x10 | CRC_INIT | | | | | | | | | | | | | | | CRO | C_IN | IIT[3 | 31:0 |] | | | | | | | | | | | | | | | | Reset value | 1 | | 0x14 | CRC_POL | POL[31:0] | Reset value | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | Refer to Section 2.2 on page 58 for the register boundary addresses. # 15 Analog-to-digital converter (ADC) ### 15.1 Introduction The 12-bit ADC is a successive approximation analog-to-digital converter. It has up to 19 multiplexed channels allowing it to measure signals from 16 external and 3 internal sources. A/D conversion of the various channels can be performed in single, continuous, scan or discontinuous mode. The result of the ADC is stored in a left-aligned or right-aligned 16-bit data register. The analog watchdog feature allows the application to detect if the input voltage goes outside the user-defined higher or lower thresholds. An efficient low-power mode is implemented to allow very low consumption at low frequency. A built-in hardware oversampler allows analog performances to be improved while off-loading the related computational burden from the CPU. RM0444 Rev 5 343/1390 ### 15.2 ADC main features - High performance - 12-bit, 10-bit, 8-bit or 6-bit configurable resolution - ADC conversion time: 0.4 μs for 12-bit resolution (2.5Msps), faster conversion times can be obtained by lowering resolution. - Self-calibration - Programmable sampling time - Data alignment with built-in data coherency - DMA support - Low-power - The application can reduce PCLK frequency for low-power operation while still keeping optimum ADC performance. For example, 0.4 μs conversion time is kept, whatever the PCLK frequency) - Wait mode: prevents ADC overrun in applications with low PCLK frequency - Auto off mode: ADC is automatically powered off except during the active conversion phase. This dramatically reduces the power consumption of the ADC. - Analog input channels - 16 external analog inputs - 1 channel for internal temperature sensor (V_{SENSE}) - 1 channel for internal reference voltage (V_{REFINT}) - 1 channel for monitoring external V_{BAT} power supply pin - Start-of-conversion can be initiated: - By software - By hardware triggers with configurable polarity (timer events or GPIO input events) - Conversion modes - Can convert a single channel or can scan a sequence of channels. - Single mode converts selected inputs once per trigger - Continuous mode converts selected inputs continuously - Discontinuous mode - Interrupt generation at the end of sampling, end of conversion, end of sequence conversion, and in case of analog watchdog or overrun events - Analog watchdog - Oversampler - 16-bit data register - Oversampling ratio adjustable from 2 to 256x - Programmable data shift up to 8-bits - ADC supply requirements: 1.62 to 3.6 V - ADC input range: V_{SSA} ≤ V_{IN} ≤ V_{REF+} # 15.3 ADC functional description Figure 31 shows the ADC block diagram and Table 68 gives the ADC pin description. Figure 31. ADC block diagram ### 15.3.1 ADC pins and internal signals Table 68. ADC input/output pins | Name | Signal type | Remarks | |---------|----------------------------------|--| | VDDA | Input, analog power supply | Analog power supply and positive reference voltage for the ADC, $V_{DDA} \ge V_{DD}$ | | VSSA | Input, analog supply ground | Ground for analog power supply. Must be at $V_{\mbox{\scriptsize SS}}$ potential | | VREF+ | Input, analog reference positive | The higher/positive reference voltage for the ADC. | | ADC_INx | Analog input signals | 16 external analog input channels | | i and i o o o o o o o o o o o o o o o o o o | | | | | | |---|-----------------------|---|--|--|--| | Internal signal
name | Signal type | Description | | | | | V _{IN} [x] | Analog Input channels | Connected either to internal channels or to ADC_INi external channels | | | | | TRGx | Input | ADC conversion triggers | | | | | V _{SENSE} | Input | Internal temperature sensor output voltage | | | | | V _{REFINT} | Input | Internal voltage reference output voltage | | | | | V _{BAT/3} | Input | VBAT pin input voltage divided by 3 | | | | | ADC_AWDx_OUT Output | | Internal analog watchdog output signal connected to on-
chip timers (x = Analog watchdog number = 1,2,3) | | | | Table 69. ADC internal input/output signals Table 70. External triggers | Name | Source | EXTSEL[2:0] | | |------|------------|-------------|--| | TRG0 | TIM1_TRGO2 | 000 | | | TRG1 | TIM1_CC4 | 001 | | | TRG2 | TIM2_TRGO | 010 | | | TRG3
| TIM3_TRGO | 011 | | | TRG4 | TIM15_TRGO | 100 | | | TRG5 | TIM6_TRGO | 101 | | | TRG6 | TIM4_TRGO | 110 | | | TRG7 | EXTI11 | 111 | | ### 15.3.2 ADC voltage regulator (ADVREGEN) The ADC has a specific internal voltage regulator which must be enabled and stable before using the ADC. The ADC internal voltage regulator can be enabled by setting ADVREGEN bit to 1 in the ADC_CR register. The software must wait for the ADC voltage regulator startup time ($t_{ADCVREG_SETUP}$) before launching a calibration or enabling the ADC. This delay must be managed by software (for details on $t_{ADCVREG_SETUP}$, refer to the device datasheet). After ADC operations are complete, the ADC is disabled (ADEN = 0). It is then possible to save additional power by disabling the ADC voltage regulator (refer to Section : ADC voltage regulator disable sequence). Note: When the internal voltage regulator is disabled, the internal analog calibration is kept. ### Analog reference from the power control unit The internal ADC voltage regulator internally uses an analog reference delivered by the power control unit through a buffer. This buffer is always enabled when the main voltage regulator of the power control unit operates in normal Run mode (refer to Reset and clock control and power control sections). If the main voltage regulator enters low-power mode (such as Low-power run mode), this buffer is disabled and the ADC cannot be used. ### ADC Voltage regulator enable sequence To enable the ADC voltage regulator, set ADVREGEN bit to 1 in ADC_CR register. ### ADC voltage regulator disable sequence To disable the ADC voltage regulator, follow the sequence below: - 1. Make sure that the ADC is disabled (ADEN = 0). - Clear ADVREGEN bit in ADC_CR register. ### 15.3.3 Calibration (ADCAL) The ADC has a calibration feature. During the procedure, the ADC calculates a calibration factor which is internally applied to the ADC until the next ADC power-off. The application must not use the ADC during calibration and must wait until it is complete. Calibration should be performed before starting A/D conversion. It removes the offset error which may vary from chip to chip due to process variation. The calibration is initiated by software by setting bit ADCAL = 1. Calibration can only be initiated when the ADC voltage regulator is enabled (ADVREGEN = 1 and $t_{ADCVREG_SETUP}$ has elapsed) and the ADC is disabled (when ADEN = 0). ADCAL bit stays at 1 during all the calibration sequence. It is then cleared by hardware as soon the calibration completes. After this, the calibration factor can be read from the ADC_DR register (from bits 6 to 0). The internal analog calibration is kept if the ADC is disabled (ADEN = 0). When the ADC operating conditions change (V_{DDA} changes are the main contributor to ADC offset variations and temperature change to a lesser extend), it is recommended to re-run a calibration cycle. The calibration factor is lost in the following cases: - The power supply is removed from the ADC (for example when the product enters STANDBY or VBAT mode) - The ADC peripheral is reset. The calibration factor is lost each time power is removed from the ADC (for example when the product enters Standby or V_{BAT} mode). Still, it is possible to save and restore the calibration factor by software to save time when re-starting the ADC (as long as temperature and voltage are stable during the ADC power-down). The calibration factor can be written if the ADC is enabled but not converting (ADEN = 1 and ADSTART = 0). Then, at the next start of conversion, the calibration factor is automatically injected into the analog ADC. This loading is transparent and does not add any cycle latency to the start of the conversion. #### Software calibration procedure - 1. Ensure that ADEN = 0, ADVREGEN = 1 and DMAEN = 0. - 2. Set ADCAL = 1. - 3. Wait until ADCAL = 0 (or until EOCAL = 1). This can be handled by interrupt if the interrupt is enabled by setting the EOCALIE bit in the ADC_IER register - 4. The calibration factor can be read from bits 6:0 of ADC_DR or ADC_CALFACT registers. 4 RM0444 Rev 5 347/1390 MS31925V1 Figure 32. ADC calibration ### **Calibration factor forcing Software Procedure** - 1. Ensure that ADEN = 1 and ADSTART = 0 (ADC started with no conversion ongoing) - 2. Write ADC_CALFACT with the saved calibration factor - 3. The calibration factor is used as soon as a new conversion is launched. Ready (not converting) Converting channel Ready (Converting channel (Single ended) F1 F2 F2 Figure 33. Calibration factor forcing # 15.3.4 ADC on-off control (ADEN, ADDIS, ADRDY) by H/W ADC state calibration factor[6:0] Start conversion (hardware or software) WRITE ADC_CALFACT CALFACT[6:0] by S/W Internal At power-up, the ADC is disabled and put in power-down mode (ADEN = 0). As shown in *Figure 34*, the ADC needs a stabilization time of t_{STAB} before it starts converting accurately. Two control bits are used to enable or disable the ADC: - Set ADEN = 1 to enable the ADC. The ADRDY flag is set as soon as the ADC is ready for operation. - Set ADDIS = 1 to disable the ADC and put the ADC in power down mode. The ADEN and ADDIS bits are then automatically cleared by hardware as soon as the ADC is fully disabled. Conversion can then start either by setting ADSTART to 1 (refer to Section 15.4: Conversion on external trigger and trigger polarity (EXTSEL, EXTEN) on page 358) or when an external trigger event occurs if triggers are enabled. Follow this procedure to enable the ADC: - 1. Clear the ADRDY bit in ADC_ISR register by programming this bit to 1. - Set ADEN = 1 in the ADC_CR register. - 3. Wait until ADRDY = 1 in the ADC_ISR register (ADRDY is set after the ADC startup time). This can be handled by interrupt if the interrupt is enabled by setting the ADRDYIE bit in the ADC_IER register. Follow this procedure to disable the ADC: - Check that ADSTART = 0 in the ADC_CR register to ensure that no conversion is ongoing. If required, stop any ongoing conversion by writing 1 to the ADSTP bit in the ADC_CR register and waiting until this bit is read at 0. - 2. Set ADDIS = 1 in the ADC_CR register. - 3. If required by the application, wait until ADEN = 0 in the ADC_CR register, indicating that the ADC is fully disabled (ADDIS is automatically reset once ADEN = 0). - 4. Clear the ADRDY bit in ADC_ISR register by programming this bit to 1 (optional). Figure 34. Enabling/disabling the ADC Note: In Auto-off mode (AUTOFF = 1) the power-on/off phases are performed automatically, by hardware and the ADRDY flag is not set. 4 RM0444 Rev 5 ### 15.3.5 ADC clock (CKMODE, PRESC[3:0]) The ADC has a dual clock-domain architecture, so that the ADC can be fed with a clock (ADC asynchronous clock) independent from the APB clock (PCLK). Figure 35. ADC clock scheme Refer to Section Reset and clock control (RCC) for how the PCLK clock and ADC asynchronous clock are enabled. The input clock of the analog ADC can be selected between two different clock sources (see *Figure 35: ADC clock scheme* to see how the PCLK clock and the ADC asynchronous clock are enabled): - a) The ADC clock can be a specific clock source, named "ADC asynchronous clock" which is independent and asynchronous with the APB clock. Refer to RCC Section for more information on generating this clock source. To select this scheme, bits CKMODE[1:0] of the ADC_CFGR2 register must be reset. - b) The ADC clock can be derived from the APB clock of the ADC bus interface, divided by a programmable factor (1, 2 or 4) according to bits CKMODE[1:0]. To select this scheme, bits CKMODE[1:0] of the ADC_CFGR2 register must be different from "00". In option a), the generated ADC clock can eventually be divided by a prescaler (1, 2, 4, 6, 8, 10, 12, 16, 32, 64, 128, 256) when programming the bits PRESC[3:0] in the ADC_CCR register). Option a) has the advantage of reaching the maximum ADC clock frequency whatever the APB clock scheme selected. Option b) has the advantage of bypassing the clock domain resynchronizations. This can be useful when the ADC is triggered by a timer and if the application requires that the ADC is precisely triggered without any uncertainty (otherwise, an uncertainty of the trigger instant is added by the resynchronizations between the two clock domains). | <u> </u> | | | | | | | |---|-------------|--|--|--|--|--| | ADC clock source | CKMODE[1:0] | Latency between the trigger event and the start of conversion | | | | | | HSI16, SYSCLK, or
PLLPCLK ⁽³⁾ | 00 | Latency is not deterministic (jitter) | | | | | | PCLK divided by 2 | 01 | Latency is deterministic (no jitter) and equal to 3.25 ADC clock cycles | | | | | | PCLK divided by 4 | 10 | Latency is deterministic (no jitter) and equal to 3.125 ADC clock cycles | | | | | | PCLK divided by 1 | 11 | Latency is deterministic (no jitter) and equal to 3.5 ADC clock cycles | | | | | Table 71. Latency between trigger and start of conversion⁽¹⁾⁽²⁾ - 1. Refer to the device datasheet for the maximum ADC_CLK frequency. - 2. If the trigger is generated by TIM1 or TIM15 clocked at twice the CPU clock frequency, then the latency is not deterministic and can be increased by one TIM1 or TIM15 clock cycle. - 3. Selected with ADCSEL bitfield of the RCC_CCIPR register. ### Caution: When selecting CKMODE[1:0] = 11 (PCLK divided by 1), the user must ensure that the PCLK has a 50% duty cycle. This is done by selecting a system clock with a 50% duty cycle and configuring the APB prescaler in bypass modes in the RCC (refer to there Reset and clock controller section). If an internal source clock is selected, the AHB and APB prescalers do not divide the clock. RM0444 Rev 5 351/1390 # 15.3.6 ADC connectivity ADC inputs are connected to the external channels as well as internal sources as described in *Figure 36*. Figure 36. ADC connectivity ### 15.3.7 Configuring the
ADC Software must write to the ADCAL and ADEN bits in the ADC_CR register if the ADC is disabled (ADEN must be 0). Software must only write to the ADSTART and ADDIS bits in the ADC_CR register only if the ADC is enabled and there is no pending request to disable the ADC (ADEN = 1 and ADDIS = 0). For all the other control bits in the ADC_IER, ADC_CFGRi, ADC_SMPR, ADC_CHSELR and ADC_CCR registers, refer to the description of the corresponding control bit in *Section 15.12: ADC registers*. ADC AWDTRx registers can be modified when conversion is ongoing. Software must only write to the ADSTP bit in the ADC_CR register if the ADC is enabled (and possibly converting) and there is no pending request to disable the ADC (ADSTART = 1 and ADDIS = 0). Note: There is no hardware protection preventing software from making write operations forbidden by the above rules. If such a forbidden write access occurs, the ADC may enter an undefined state. To recover correct operation in this case, the ADC must be disabled (clear ADEN = 0 and all the bits in the ADC_CR register). ### 15.3.8 Channel selection (CHSEL, SCANDIR, CHSELRMOD) There are up to 19 multiplexed channels: - 16 analog inputs from GPIO pins (ADC_INx) - 3 internal analog inputs (Temperature Sensor, Internal Reference Voltage, V_{BAT} channel) It is possible to convert a single channel or a sequence of channels. The sequence of the channels to be converted can be programmed in the ADC_CHSELR channel selection register: each analog input channel has a dedicated selection bit (CHSELx). The ADC scan sequencer can be used in two different modes: Sequencer not fully configurable: The order in which the channels are scanned is defined by the channel number (CHSELRMOD bit must be cleared in ADC_CFGR1 register): - Sequence length configured through CHSELx bits in ADC_CHSELR register - Sequence direction: the channels are scanned in a forward direction (from the lowest to the highest channel number) or backward direction (from the highest to the lowest channel number) depending on the value of SCANDIR bit (SCANDIR = 0: forward scan, SCANDIR = 1: backward scan) RM0444 Rev 5 353/1390 - Any channel can belong to in these sequences - Sequencer fully configurable The CHSELRMOD bit is set in ADC_CFGR1 register. - Sequencer length is up to 8 channels - The order in which the channels are scanned is independent from the channel number. Any order can be configured through SQ1[3:0] to SQ8[3:0] bits in ADC_CHSELR register. - Only channel 0 to channel 14 can be selected in this sequence - If the sequencer detects SQx[3:0] = 0b1111, the following SQx[3:0] registers are ignored. - If no 0b1111 is programmed in SQx[3:0], the sequencer scans full eight channels. After programming ADC CHSELR, SCANDIR and CHSELRMOD bits, it is mandatory to wait for CCRDY flag before starting conversions. It indicates that the new channel setting has been applied. If a new configuration is required, the CCRDY flag must be cleared prior to starting the conversion. The software is allowed to program the CHSEL, SCANDIR, CHSELRMOD bits only when ADSTART bit is cleared to 0 (which ensures that no conversion is ongoing). ### Temperature sensor, V_{REFINT} and V_{BAT} internal channels The temperature sensor is connected to channel ADC V_{IN}[12]. The internal voltage reference V_{REFINT} is connected to channel ADC V_{IN}[13]. The V_{BAT} channel is connected to ADC V_{IN} [14] channel. ### 15.3.9 Programmable sampling time (SMPx[2:0]) Before starting a conversion, the ADC needs to establish a direct connection between the voltage source to be measured and the embedded sampling capacitor of the ADC. This sampling time must be enough for the input voltage source to charge the sample and hold capacitor to the input voltage level. Having a programmable sampling time allows the conversion speed to be trimmed according to the input resistance of the input voltage source. The ADC samples the input voltage for a number of ADC clock cycles that can be modified using the SMP1[2:0] and SMP2[2:0] bits in the ADC_SMPR register. Each channel can choose one out of two sampling times configured in SMP1[2:0] and SMP2[2:0] bitfields, through SMPSELx bits in ADC_SMPR register. The total conversion time is calculated as follows: t_{CONV} = Sampling time + 12.5 x ADC clock cycles #### Example: With ADC_CLK = 16 MHz and a sampling time of 1.5 ADC clock cycles: t_{CONV} = 1.5 + 12.5 = 14 ADC clock cycles = 0.875 µs The ADC indicates the end of the sampling phase by setting the EOSMP flag. ### 15.3.10 Single conversion mode (CONT = 0) In Single conversion mode, the ADC performs a single sequence of conversions, converting all the channels once. This mode is selected when CONT = 0 in the ADC_CFGR1 register. Conversion is started by either: - Setting the ADSTART bit in the ADC_CR register - Hardware trigger event Inside the sequence, after each conversion is complete: - The converted data are stored in the 16-bit ADC_DR register - The EOC (end of conversion) flag is set - An interrupt is generated if the EOCIE bit is set After the sequence of conversions is complete: - The EOS (end of sequence) flag is set - · An interrupt is generated if the EOSIE bit is set Then the ADC stops until a new external trigger event occurs or the ADSTART bit is set again. Note: To convert a single channel, program a sequence with a length of 1. ### 15.3.11 Continuous conversion mode (CONT = 1) In continuous conversion mode, when a software or hardware trigger event occurs, the ADC performs a sequence of conversions, converting all the channels once and then automatically re-starts and continuously performs the same sequence of conversions. This mode is selected when CONT = 1 in the ADC_CFGR1 register. Conversion is started by either: - Setting the ADSTART bit in the ADC_CR register - Hardware trigger event Inside the sequence, after each conversion is complete: - The converted data are stored in the 16-bit ADC DR register - The EOC (end of conversion) flag is set - · An interrupt is generated if the EOCIE bit is set After the sequence of conversions is complete: - The EOS (end of sequence) flag is set - An interrupt is generated if the EOSIE bit is set Then, a new sequence restarts immediately and the ADC continuously repeats the conversion sequence. Note: To convert a single channel, program a sequence with a length of 1. It is not possible to have both discontinuous mode and continuous mode enabled: it is forbidden to set both bits DISCEN = 1 and CONT = 1. 577 RM0444 Rev 5 355/1390 ### 15.3.12 Starting conversions (ADSTART) Software starts ADC conversions by setting ADSTART = 1. When ADSTART is set, the conversion: - Starts immediately if EXTEN = 00 (software trigger) - At the next active edge of the selected hardware trigger if EXTEN ≠ 00 The ADSTART bit is also used to indicate whether an ADC operation is currently ongoing. It is possible to re-configure the ADC while ADSTART = 0, indicating that the ADC is idle. The ADSTART bit is cleared by hardware: - In single mode with software trigger (CONT = 0, EXTEN = 00) - At any end of conversion sequence (EOS = 1) - In discontinuous mode with software trigger (CONT = 0, DISCEN = 1, EXTEN = 00) - At end of conversion (EOC = 1) - In all cases (CONT = x, EXTEN = XX) - After execution of the ADSTP procedure invoked by software (see Section 15.3.14: Stopping an ongoing conversion (ADSTP) on page 358) Note: In continuous mode (CONT = 1), the ADSTART bit is not cleared by hardware when the EOS flag is set because the sequence is automatically relaunched. When hardware trigger is selected in single mode (CONT = 0 and EXTEN = 01), ADSTART is not cleared by hardware when the EOS flag is set. This avoids the need for software having to set the ADSTART bit again and ensures the next trigger event is not missed. After changing channel selection configuration (by programming ADC_CHSELR register or changing CHSELRMOD or SCANDIR), it is mandatory to wait until CCRDY flag is asserted before asserting ADSTART, otherwise the value written to ADSTART is ignored. 4 ### 15.3.13 **Timings** The elapsed time between the start of a conversion and the end of conversion is the sum of the configured sampling time plus the successive approximation time depending on data resolution: $$t_{CONV} = t_{SMPL} + t_{SAR} = [1.5_{|min} + 12.5_{|12bit}] \times t_{ADC_CLK}$$ $t_{CONV} = t_{SMPL} + t_{SAR} = 42.9 \text{ ns}_{|min} + 357.1 \text{ ns}_{|12bit} = 0.400 \text{ } \mu \text{s}_{|min} \text{ (for } f_{ADC_CLK} = 35 \text{ MHz)}$ Figure 38. ADC conversion timings - 1. EXTEN = 00 or EXTEN \neq 00 - 2. Trigger latency (refer to datasheet for more details) - 3. ADC_DR register write latency (refer to datasheet for more details) 4 RM0444 Rev 5 357/1390 ### 15.3.14 Stopping an ongoing conversion (ADSTP) The software can decide to stop any ongoing conversions by setting ADSTP = 1 in the ADC_CR register. This resets the ADC operation and the ADC is idle, ready for a new operation. When the ADSTP bit is set by software, any ongoing conversion is aborted and the result is discarded (ADC DR register is not updated with the current conversion). The scan sequence is also aborted and reset (meaning that restarting the ADC would restart a new sequence). Once this procedure is complete, the ADSTP and ADSTART bits are both cleared by hardware and the software must wait until ADSTART=0 before starting new conversions. Figure 39. Stopping an ongoing conversion # 15.4 Conversion on external trigger and trigger polarity (EXTSEL, EXTEN) A conversion or a sequence of conversion can be triggered either by software or by an external event (for example timer capture). If the EXTEN[1:0] control bits are not equal to "0b00", then external events are able to trigger a conversion with the selected polarity. The trigger selection is effective once software has set bit ADSTART = 1. Any hardware triggers which occur while a conversion is ongoing are ignored. If bit
ADSTART = 0, any hardware triggers which occur are ignored. *Table 72* provides the correspondence between the EXTEN[1:0] values and the trigger polarity. Table 72. Configuring the trigger polarity | Source | EXTEN[1:0] | | |--|------------|--| | Trigger detection disabled | 00 | | | Detection on rising edge | 01 | | | Detection on falling edge | 10 | | | Detection on both rising and falling edges | 11 | | Note: The polarity of the external trigger can be changed only when the ADC is not converting (ADSTART = 0). The EXTSEL[2:0] control bits are used to select which of 8 possible events can trigger conversions. Refer to *Table 70: External triggers* in *Section 15.3.1: ADC pins and internal signals* for the list of all the external triggers that can be used for regular conversion. The software source trigger events can be generated by setting the ADSTART bit in the ADC_CR register. Note: The trigger se The trigger selection can be changed only when the ADC is not converting (ADSTART = 0). ### 15.4.1 Discontinuous mode (DISCEN) This mode is enabled by setting the DISCEN bit in the ADC_CFGR1 register. In this mode (DISCEN = 1), a hardware or software trigger event is required to start each conversion defined in the sequence. On the contrary, if DISCEN = 0, a single hardware or software trigger event successively starts all the conversions defined in the sequence. #### Example: - DISCEN = 1, channels to be converted = 0, 3, 7, 10 - 1st trigger: channel 0 is converted and an EOC event is generated - 2nd trigger: channel 3 is converted and an EOC event is generated - 3rd trigger: channel 7 is converted and an EOC event is generated - 4th trigger: channel 10 is converted and both EOC and EOS events are generated. - 5th trigger: channel 0 is converted an EOC event is generated - 6th trigger: channel 3 is converted and an EOC event is generated - ... - DISCEN = 0, channels to be converted = 0, 3, 7, 10 - 1st trigger: the complete sequence is converted: channel 0, then 3, 7 and 10. Each conversion generates an EOC event and the last one also generates an EOS event. - Any subsequent trigger events restarts the complete sequence. Note: It is not possible to have both discontinuous mode and continuous mode enabled: it is forbidden to set both bits DISCEN = 1 and CONT = 1. ### 15.4.2 Programmable resolution (RES) - Fast conversion mode It is possible to obtain faster conversion times (t_{SAR}) by reducing the ADC resolution. The resolution can be configured to be either 12, 10, 8, or 6 bits by programming the RES[1:0] bits in the ADC_CFGR1 register. Lower resolution allows faster conversion times for applications where high data precision is not required. Note: The RES[1:0] bit must only be changed when the ADEN bit is reset. The result of the conversion is always 12 bits wide and any unused LSB bits are read as zeros. Lower resolution reduces the conversion time needed for the successive approximation steps as shown in *Table 73*. RM0444 Rev 5 359/1390 | RES[| _ | t _{SAR}
(ADC clock
cycles) | t _{SAR} (ns) at
f _{ADC} = 35 MHz | t _{SMPL (min)}
(ADC clock
cycles) | t _{CONV}
(ADC clock cycles)
(with min. t _{SMPL}) | t _{CONV} (ns) at
f _{ADC} = 35 MHz | |------|---|---|---|--|---|--| | 12 | 2 | 12.5 | 357 | 1.5 | 14 | 400 | | 10 |) | 10.5 | 300 | 1.5 | 12 | 343 | | 8 | | 8.5 | 243 | 1.5 | 10 | 286 | | 6 | | 6.5 | 186 | 1.5 | 8 | 229 | Table 73. t_{SAR} timings depending on resolution ### 15.4.3 End of conversion, end of sampling phase (EOC, EOSMP flags) The ADC indicates each end of conversion (EOC) event. The ADC sets the EOC flag in the ADC_ISR register as soon as a new conversion data result is available in the ADC_DR register. An interrupt can be generated if the EOCIE bit is set in the ADC_IER register. The EOC flag is cleared by software either by writing 1 to it, or by reading the ADC_DR register. The ADC also indicates the end of sampling phase by setting the EOSMP flag in the ADC_ISR register. The EOSMP flag is cleared by software by writing1 to it. An interrupt can be generated if the EOSMPIE bit is set in the ADC_IER register. The aim of this interrupt is to allow the processing to be synchronized with the conversions. Typically, an analog multiplexer can be accessed in hidden time during the conversion phase, so that the multiplexer is positioned when the next sampling starts. Note: As there is only a very short time left between the end of the sampling and the end of the conversion, it is recommenced to use polling or a WFE instruction rather than an interrupt and a WFI instruction. ### 15.4.4 End of conversion sequence (EOS flag) The ADC notifies the application of each end of sequence (EOS) event. The ADC sets the EOS flag in the ADC_ISR register as soon as the last data result of a conversion sequence is available in the ADC_DR register. An interrupt can be generated if the EOSIE bit is set in the ADC_IER register. The EOS flag is cleared by software by writing 1 to it. # 15.4.5 Example timing diagrams (single/continuous modes hardware/software triggers) Figure 40. Single conversions of a sequence, software trigger - 1. EXTEN = 00, CONT = 0 - 2. CHSEL = 0x20601, WAIT = 0, AUTOFF = 0 Figure 41. Continuous conversion of a sequence, software trigger - 1. EXTEN = 00, CONT = 1, - 2. CHSEL = 0x20601, WAIT = 0, AUTOFF = 0 Figure 42. Single conversions of a sequence, hardware trigger - 1. EXTSEL = TRGx (over-frequency), EXTEN = 01 (rising edge), CONT = 0 - 2. CHSEL = 0xF, SCANDIR = 0, WAIT = 0, AUTOFF = 0 Figure 43. Continuous conversions of a sequence, hardware trigger ADSTART⁽¹⁾ EOS _ TRGx⁽¹⁾ RDY / CH0 / CH1 / CH2 / CH3 / CH0 / CH1 / CH2 / CH3 / CH0 /STOP/ RDY ADC_DR \(\text{D0} \) \(\text{D1} \) \(\text{D2} \) \(\text{D3} \) \(\text{D0} \) \(\text{D1} \) \(\text{D2} \) \(\text{D3} \) by S/W by H/W triggered ____ ignored _ MSv30341V2 - 1. EXTSEL = TRGx, EXTEN = 10 (falling edge), CONT = 1 - 2. CHSEL = 0xF, SCANDIR = 0, WAIT = 0, AUTOFF = 0 ### 15.4.6 Low frequency trigger mode Once the ADC is enabled or the last ADC conversion is complete, the ADC is ready to start a new conversion. The ADC needs to be started at a predefined time (t_{idle}) otherwise ADC converted data might be corrupted due to the transistor leakage (refer to the device datasheet for the maximum value of t_{idle}). If the application has to support a time longer than the maximum t_{idle} value (between one trigger to another for single conversion mode or between the ADC enable and the first ADC conversion), then the ADC internal state needs to be rearmed. This mechanism can be enabled by setting LFTRIG bit to 1 in ADC_CFGR2 register. By setting this bit, any trigger (software or hardware) sends a rearm command to ADC. The conversion is started after a two ADC clock cycle delay compared to LFTRIG set to 0. It is not necessary to use this mode when AUTOFF bit is set to 1. For Wait mode, only the first trigger generates an internal rearm command. # 15.5 Data management ### 15.5.1 Data register and data alignment (ADC_DR, ALIGN) At the end of each conversion (when an EOC event occurs), the result of the converted data is stored in the ADC DR data register which is 16-bit wide. The format of the ADC_DR depends on the configured data alignment and resolution. The ALIGN bit in the ADC_CFGR1 register selects the alignment of the data stored after conversion. Data can be right-aligned (ALIGN = 0) or left-aligned (ALIGN = 1) as shown in *Figure 44*. Figure 44. Data alignment and resolution (oversampling disabled: OVSE = 0) # 15.5.2 ADC overrun (OVR, OVRMOD) The overrun flag (OVR) indicates a data overrun event, when the converted data was not read in time by the CPU or the DMA, before the data from a new conversion is available. The OVR flag is set in the ADC_ISR register if the EOC flag is still at '1' at the time when a new conversion completes. An interrupt can be generated if the OVRIE bit is set in the ADC_IER register. RM0444 Rev 5 363/1390 When an overrun condition occurs, the ADC keeps operating and can continue to convert unless the software decides to stop and reset the sequence by setting the ADSTP bit in the ADC_CR register. The OVR flag is cleared by software by writing 1 to it. It is possible to configure if the data is preserved or overwritten when an overrun event occurs by programming the OVRMOD bit in the ADC_CFGR1 register: - OVRMOD = 0 - An overrun event preserves the data register from being overwritten: the old data is maintained and the new conversion is discarded. If OVR remains at 1, further conversions can be performed but the resulting data is discarded. - OVRMOD = 1 - The data register is overwritten with the last conversion result and the previous unread data is lost. If OVR remains at 1, further conversions can be performed and the ADC DR register always contains the data from the latest conversion. Figure 45. Example of overrun (OVR) ### 15.5.3 Managing a sequence of data converted without using the DMA If the conversions are slow enough, the conversion sequence can be handled by software. In this case the software must use the EOC flag and its associated interrupt to handle each data result. Each time a conversion is complete, the EOC bit is set in the ADC_ISR register and the ADC_DR register can be read. The OVRMOD bit in the ADC_CFGR1 register should be configured to 0 to manage overrun events as an error. ### 15.5.4 Managing converted data without using the DMA without overrun It may be useful to let the ADC convert one or more channels without reading the data after each conversion. In this case, the OVRMOD bit must be configured at 1 and the OVR flag should be
ignored by the software. When OVRMOD = 1, an overrun event does not prevent the ADC from continuing to convert and the ADC_DR register always contains the latest conversion data. ### 15.5.5 Managing converted data using the DMA Since all converted channel values are stored in a single data register, it is efficient to use DMA when converting more than one channel. This avoids losing the conversion data results stored in the ADC DR register. When DMA mode is enabled (DMAEN bit set to 1 in the ADC_CFGR1 register), a DMA request is generated after the conversion of each channel. This allows the transfer of the converted data from the ADC_DR register to the destination location selected by the software. Note: The DMAEN bit in the ADC_CFGR1 register must be set after the ADC calibration phase. Despite this, if an overrun occurs (OVR = 1) because the DMA could not serve the DMA transfer request in time, the ADC stops generating DMA requests and the data corresponding to the new conversion is not transferred by the DMA. Which means that all the data transferred to the RAM can be considered as valid. Depending on the configuration of OVRMOD bit, the data is either preserved or overwritten (refer to Section 15.5.2: ADC overrun (OVR, OVRMOD) on page 363). The DMA transfer requests are blocked until the software clears the OVR bit. Two different DMA modes are proposed depending on the application use and are configured with bit DMACFG in the ADC_CFGR1 register: - DMA one shot mode (DMACFG = 0). This mode should be selected when the DMA is programmed to transfer a fixed number of data words. - DMA circular mode (DMACFG = 1) This mode should be selected when programming the DMA in circular mode or double buffer mode. ### DMA one shot mode (DMACFG = 0) In this mode, the ADC generates a DMA transfer request each time a new conversion data word is available and stops generating DMA requests once the DMA has reached the last DMA transfer (when a DMA_EOT interrupt occurs, see Section 10: Direct memory access controller (DMA) on page 277) even if a conversion has been started again. RM0444 Rev 5 365/1390 When the DMA transfer is complete (all the transfers configured in the DMA controller have been done): - The content of the ADC data register is frozen. - Any ongoing conversion is aborted and its partial result discarded - No new DMA request is issued to the DMA controller. This avoids generating an overrun error if there are still conversions which are started. - The scan sequence is stopped and reset - The DMA is stopped ### DMA circular mode (DMACFG = 1) In this mode, the ADC generates a DMA transfer request each time a new conversion data word is available in the data register, even if the DMA has reached the last DMA transfer. This allows the DMA to be configured in circular mode to handle a continuous analog input data stream. # 15.6 Low-power features ### 15.6.1 Wait mode conversion Wait mode conversion can be used to simplify the software as well as optimizing the performance of applications clocked at low frequency where there might be a risk of ADC overrun occurring. When the WAIT bit is set to 1 in the ADC_CFGR1 register, a new conversion can start only if the previous data has been treated, once the ADC_DR register has been read or if the EOC bit has been cleared. This is a way to automatically adapt the speed of the ADC to the speed of the system that reads the data. Note: Any hardware triggers which occur while a conversion is ongoing or during the wait time preceding the read access are ignored. Figure 46. Wait mode conversion (continuous mode, software trigger) - 1. EXTEN = 00, CONT = 1 - 2. CHSEL = 0x3, SCANDIR = 0, WAIT = 1, AUTOFF = 0 ### 15.6.2 Auto-off mode (AUTOFF) The ADC has an automatic power management feature which is called auto-off mode, and is enabled by setting AUTOFF = 1 in the ADC_CFGR1 register. When AUTOFF = 1, the ADC is always powered off when not converting and automatically wakes-up when a conversion is started (by software or hardware trigger). A startup-time is automatically inserted between the trigger event which starts the conversion and the sampling time of the ADC. The ADC is then automatically disabled once the sequence of conversions is complete. Auto-off mode can cause a dramatic reduction in the power consumption of applications which need relatively few conversions or when conversion requests are timed far enough apart (for example with a low frequency hardware trigger) to justify the extra power and extra time used for switching the ADC on and off. Auto-off mode can be combined with the wait mode conversion (WAIT = 1) for applications clocked at low frequency. This combination can provide significant power savings if the ADC is automatically powered-off during the wait phase and restarted as soon as the ADC_DR register is read by the application (see *Figure 48: Behavior with WAIT = 1, AUTOFF = 1*). Note: Please refer to the Section Reset and clock control (RCC) for the description of how to manage the dedicated 14 MHz internal oscillator. The ADC interface can automatically switch ON/OFF the 14 MHz internal oscillator to save power. Figure 47. Behavior with WAIT = 0, AUTOFF = 1 EXTSEL = TRGx, EXTEN = 01 (rising edge), CONT = x, ADSTART = 1, CHSEL = 0xF, SCANDIR = 0, WAIT = 1, AUTOFF = 1 Figure 48. Behavior with WAIT = 1, AUTOFF = 1 EXTSEL = TRGx, EXTEN = 01 (rising edge), CONT = x, ADSTART = 1, CHSEL = 0xF, SCANDIR = 0, WAIT = 1, AUTOFF = 1 RM0444 Rev 5 ### 15.7 Analog window watchdog (AWD1EN, AWD1SGL, AWD1CH, ADC_AWDxCR, ADC_AWDxTR) The three AWD analog watchdogs monitor whether some channels remain within a configured voltage range (window). #### 15.7.1 Description of analog watchdog 1 AWD1 analog watchdog is enabled by setting the AWD1EN bit in the ADC CFGR1 register. It is used to monitor that either one selected channel or all enabled channels (see Table 75: Analog watchdog 1 channel selection) remain within a configured voltage range (window) as shown in Figure 49. The AWD1 analog watchdog status bit is set if the analog voltage converted by the ADC is below a lower threshold or above a higher threshold. These thresholds are programmed in HT1[11:0] and LT1[11:0] bits of ADC AWD1TR register. An interrupt can be enabled by setting the AWD1IE bit in the ADC_IER register. The AWD1 flag is cleared by software by programing it to 1. When converting data with a resolution of less than 12-bit (according to bits DRES[1:0]), the LSB of the programmed thresholds must be kept cleared because the internal comparison is always performed on the full 12-bit raw converted data (left aligned). Table 74 describes how the comparison is performed for all the possible resolutions. | Resolution | Analog Watchdog | comparison between: | | |------------------|---|-------------------------|---| | bits
RES[1:0] | Raw converted data, left aligned ⁽¹⁾ | Thresholds | Comments | | 00: 12-bit | DATA[11:0] | LTx[11:0] and HTx[11:0] | - | | 01: 10-bit | DATA[11:2],00 | LTx[11:0] and HTx[11:0] | The user must configure LTx[1:0] and HTx[1:0] to "00" | | 10: 8-bit | DATA[11:4],0000 | LTx[11:0] and HTx[11:0] | The user must configure LTx[3:0] and HTx[3:0] to "0000" | | 11: 6-bit | DATA[11:6],000000 | LTx[11:0] and HTx[11:0] | The user must configure LTx[5:0] and HTx[5:0] to "000000" | Table 74. Analog watchdog comparison Table 75 shows how to configure the AWD1SGL and AWD1EN bits in the ADC CFGR1 register to enable the analog watchdog on one or more channels. Figure 49. Analog watchdog guarded area Analog voltage Higher threshold HTx Guarded area Lower threshold I Tx MS45396V1 RM0444 Rev 5 369/1390 ^{1.} The watchdog comparison is performed on the raw converted data before any alignment calculation. | Channels guarded by the analog watchdog | AWD1SGL bit | AWD1EN bit | |---|-------------|------------| | None | х | 0 | | All channels | 0 | 1 | | Single ⁽¹⁾ channel | 1 | 1 | Table 75. Analog watchdog 1 channel selection # 15.7.2 Description of analog watchdog 2 and 3 The second and third analog watchdogs are more flexible and can guard several selected channels by programming the AWDxCHy in ADC_AWDxCR (x = 2, 3). The corresponding watchdog is enabled when any AWDxCHy bit (x = 2,3) is set in ADC_AWDxCR register. When converting data with a resolution of less than 12 bits (configured through DRES[1:0] bits), the LSB of the programmed thresholds must be kept cleared because the internal comparison is always performed on the full 12-bit raw converted data (left aligned). Table 74 describes how the comparison is performed for all the possible resolutions. The AWD2/3 analog watchdog status bit is set if the analog voltage converted by the ADC is below a low threshold or above a high threshold. These thresholds are programmed in HTx[11:0] and LTx[11:0] of ADC_AWDxTR registers (x = 2 or 3). An interrupt can be enabled by setting the AWDxIE bit in the ADC_IER register. The AWD2 and ADW3 flags are cleared by software by programming them to 1. # 15.7.3 ADC_AWDx_OUT output signal generation Each analog watchdog is associated to an internal hardware signal, ADC_AWDx_OUT (x being the watchdog number) that is directly connected to the ETR input (external trigger) of some on-chip timers (refer to the timers section for details on how to select the ADC_AWDx_OUT signal as ETR). ADC AWDx OUT is activated when the associated analog watchdog is enabled: - ADC_AWDx_OUT is set when a guarded conversion is outside the programmed thresholds. - ADC_AWDx_OUT is reset after the end of the next guarded conversion which is inside the programmed thresholds. It remains at 1 if the next guarded conversions are still outside the programmed thresholds. - ADC_AWDx_OUT is also reset when disabling the ADC (when setting ADDIS to 1). Note that stopping conversions (ADSTP set to 1), might clear the
ADC_AWDx_OUT state. - ADC_AWDx_OUT state does not change when the ADC converts the none-guarded channel (see Figure 52) AWDx flag is set by hardware and reset by software: AWDx flag has no influence on the generation of ADC_AWDx_OUT (as an example, ADC_AWDx_OUT can toggle while AWDx flag remains at 1 if the software has not cleared the flag). The ADC_AWDx_OUT signal is generated by the ADC_CLK domain. This signal can be generated even the APB clock is stopped. ^{1.} Selected by the AWD1CH[4:0] bits The AWD comparison is performed at the end of each ADC conversion. The ADC_AWDx_OUT rising edge and falling edge occurs two ADC_CLK clock cycles after the comparison. As ADC_AWDx_OUT is generated by the ADC_CLK domain and AWD flag is generated by the APB clock domain, the rising edges of these signals are not synchronized. Figure 50. ADC_AWDx_OUT signal generation 4 RM0444 Rev 5 371/1390 Figure 52. ADC_AWDx_OUT signal generation (on a single channel) ### 15.7.4 Analog Watchdog threshold control LTx[11:0] and HTx[11:0] can be changed during an analog-to-digital conversion (that is between the start of the conversion and the end of conversion of the ADC internal state). If HTx and LTx bits are programmed during the ADC guarded channel conversion, the watchdog function is masked for this conversion. This mask is cleared when starting a new conversion, and the resulting new AWD threshold is applied starting the next ADC conversion result. AWD comparison is performed at each end of conversion. If the current ADC data are out of the new threshold interval, this does not generated any interrupt or an ADC_AWDx_OUT signal. The Interrupt and the ADC_AWDx_OUT generation only occurs at the end of the ADC conversion that started after the threshold update. If ADC_AWDx_OUT is already asserted, programming the new threshold does not deassert the ADC_AWDx_OUT signal. Figure 53. Analog watchdog threshold update # 15.8 Oversampler The oversampling unit performs data preprocessing to offload the CPU. It can handle multiple conversions and average them into a single data with increased data width, up to 16-bit. It provides a result with the following form, where N and M can be adjusted: Result = $$\frac{1}{M} \times \sum_{n=0}^{n=N-1} Conversion(t_n)$$ It allows the following functions to be performed by hardware: averaging, data rate reduction, SNR improvement, basic filtering. The oversampling ratio N is defined using the OVFS[2:0] bits in the ADC_CFGR2 register. It can range from 2x to 256x. The division coefficient M consists of a right bit shift up to 8 bits. It is configured through the OVSS[3:0] bits in the ADC_CFGR2 register. The summation unit can yield a result up to 20 bits (256 x 12-bit), which is first shifted right. The upper bits of the result are then truncated, keeping only the 16 least significant bits rounded to the nearest value using the least significant bits left apart by the shifting, before being finally transferred into the ADC DR data register. Note: If the intermediate result after the shifting exceeds 16 bits, the upper bits of the result are simply truncated. Figure 54. 20-bit to 16-bit result truncation The *Figure 55* gives a numerical example of the processing, from a raw 20-bit accumulated data to the final 16-bit result. 57 MS31929V1 19 15 3 Raw 20-bit data: 3 В 7 D 7 Figure 55. Numerical example with 5-bits shift and rounding The Table 76 below gives the data format for the various N and M combination, for a raw conversion data equal to 0xFFF. Table 76. Maximum output results vs N and M. Grayed values indicates truncation 15 Final result after 5-bits shift and rounding to nearest | Oversa
mpling
ratio | Max
Raw data | No-shift
OVSS =
0000 | 1-bit
shift
OVSS =
0001 | 2-bit
shift
OVSS =
0010 | 3-bit
shift
OVSS =
0011 | 4-bit
shift
OVSS =
0100 | 5-bit
shift
OVSS =
0101 | 6-bit
shift
OVSS =
0110 | 7-bit
shift
OVSS =
0111 | 8-bit
shift
OVSS =
1000 | |---------------------------|-----------------|----------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | 2x | 0x1FFE | 0x1FFE | 0x0FFF | 0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | 0x0020 | | 4x | 0x3FFC | 0x3FFC | 0x1FFE | 0x0FFF | 0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | 0x0040 | | 8x | 0x7FF8 | 0x7FF8 | 0x3FFC | 0x1FFE | 0x0FFF | 0x0800 | 0x0400 | 0x0200 | 0x0100 | 0x0080 | | 16x | 0xFFF0 | 0xFFF0 | 0x7FF8 | 0x3FFC | 0x1FFE | 0x0FFF | 0x0800 | 0x0400 | 0x0200 | 0x0100 | | 32x | 0x1FFE0 | 0xFFE0 | 0xFFF0 | 0x7FF8 | 0x3FFC | 0x1FFE | 0x0FFF | 0x0800 | 0x0400 | 0x0200 | | 64x | 0x3FFC0 | 0xFFC0 | 0xFFE0 | 0xFFF0 | 0x7FF8 | 0x3FFC | 0x1FFE | 0x0FFF | 0x0800 | 0x0400 | | 128x | 0x7FF80 | 0xFF80 | 0xFFC0 | 0xFFE0 | 0xFFF0 | 0x7FF8 | 0x3FFC | 0x1FFE | 0x0FFF | 0x0800 | | 256x | 0xFFF00 | 0xFF00 | 0xFF80 | 0xFFC0 | 0xFFE0 | 0xFFF0 | 0x7FF8 | 0x3FFC | 0x1FFE | 0x0FFF | The conversion timings in oversampled mode do not change compared to standard conversion mode: the sample time is maintained equal during the whole oversampling sequence. New data are provided every N conversion, with an equivalent delay equal to N x t_{CONV} = N x (t_{SMPL} + t_{SAR}). The flags features are raised as following: - the end of the sampling phase (EOSMP) is set after each sampling phase - the end of conversion (EOC) occurs once every N conversions, when the oversampled result is available - the end of sequence (EOCSEQ) occurs once the sequence of oversampled data is completed (i.e. after N x sequence length conversions total) RM0444 Rev 5 374/1390 # 15.8.1 ADC operating modes supported when oversampling In oversampling mode, most of the ADC operating modes are available: - Single or continuous mode conversions, forward or backward scanned sequences and up to 8 channels programmed sequence - ADC conversions start either by software or with triggers - ADC stop during a conversion (abort) - Data read via CPU or DMA with overrun detection - Low-power modes (WAIT, AUTOFF) - Programmable resolution: in this case, the reduced conversion values (as per RES[1:0] bits in ADC_CFGR1 register) are accumulated, truncated, rounded and shifted in the same way as 12-bit conversions are Note: The alignment mode is not available when working with oversampled data. The ALIGN bit in ADC CFGR1 is ignored and the data are always provided right-aligned. ### 15.8.2 Analog watchdog The analog watchdog functionality is available (AWDxSGL, AW1DEN and AWDxCH bits), with the following differences: - the RES[1:0] bits are ignored, comparison is always done on using the full 12-bits values HTx[11:0] and LTx[11:0] - the comparison is performed on the most significant 12 bits of the 16 bits oversampled results ADC_DR[15:4] Note: Care must be taken when using high shifting values. This reduces the comparison range. For instance, if the oversampled result is shifted by 4 bits thus yielding a 12-bit data right-aligned, the affective analog watchdog comparison can only be performed on 8 bits. The comparison is done between ADC_DR[11:4] and HTx[7:0] / LTx[[7:0], and HTx[11:8] / LTx[11:8] must be kept reset. ### 15.8.3 Triggered mode The averager can also be used for basic filtering purposes. Although not a very efficient filter (slow roll-off and limited stop band attenuation), it can be used as a notch filter to reject constant parasitic frequencies (typically coming from the mains or from a switched mode power supply). For this purpose, a specific discontinuous mode can be enabled with TOVS bit in ADC_CFGR2, to be able to have an oversampling frequency defined by a user and independent from the conversion time itself. Figure 56 below shows how conversions are started in response to triggers in discontinuous mode. If the TOVS bit is set, the content of the DISCEN bit is ignored and considered as 1. RM0444 Rev 5 375/1390 Figure 56. Triggered oversampling mode (TOVS bit = 1) #### 15.9 Temperature sensor and internal reference voltage The temperature sensor can be used to measure the junction temperature (T_J) of the device. The temperature sensor is internally connected to the ADC V_{IN}[12] input channel which is used to convert the sensor's output voltage to a digital value. The sampling time for the temperature sensor analog pin must be greater than the minimum $T_{S\ temp}$ value specified in the datasheet. When not in use, the sensor can be put in power down mode. The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and comparators. VREFINT is internally connected to the ADC V_{IN}[13] input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. Figure 57 shows the block diagram of connections between the temperature sensor, the internal voltage reference and the ADC. The TSEN bit must be set to enable the conversion of ADC V_{IN}[12] (temperature sensor) and the VREFEN bit must be set to enable the conversion of ADC V_{IN}[13] (V_{REFINT}). The temperature sensor output voltage changes linearly with temperature. The offset of this line varies from chip to chip due to process variation (up to 45 °C from one chip to another). The uncalibrated internal temperature sensor is more suited for applications that detect temperature variations instead of absolute temperatures. To improve the accuracy of the temperature sensor measurement, calibration values are stored in system memory for each device by ST during production. During the manufacturing process, the calibration data of the temperature sensor and the internal voltage reference are stored in the system memory area. The user application can then read them and use them to improve
the accuracy of the temperature sensor or the internal reference. Refer to the datasheet for additional information. #### Main features - Supported temperature range: –40 to 125 °C - Linearity: ±2 °C max., precision depending on calibration Figure 57. Temperature sensor and V_{REFINT} channel block diagram ### Reading the temperature - 1. Select the ADC V_{IN}[12] input channel - 2. Select an appropriate sampling time specified in the device datasheet (T_{S temp}). - Set the TSEN bit in the ADC_CCR register to wake up the temperature sensor from power down mode and wait for its stabilization time (t_{START}). - 4. Start the ADC conversion by setting the ADSTART bit in the ADC_CR register (or by external trigger) - 5. Read the resulting V_{SENSE} data in the ADC_DR register - 6. Calculate the temperature using the following formula $$Temperature \ (in \ ^{\circ}C) \ = \ \frac{TS_CAL2_TEMP - TS_CAL1_TEMP}{TS_CAL2_TS_CAL1} \times (TS_DATA - TS_CAL1) + TS_CAL1_TEMP$$ ### Where: - TS_CAL2 is the temperature sensor calibration value acquired at TS_CAL2_TEMP (refer to the datasheet for TS_CAL2 value) - TS_CAL1 is the temperature sensor calibration value acquired at TS_CAL1_TEMP (refer to the datasheet for TS_CAL1 value) - TS_DATA is the actual temperature sensor output value converted by ADC Refer to the specific device datasheet for more information about TS_CAL1 and TS_CAL2 calibration points. Note: The sensor has a startup time after waking from power down mode before it can output V_{SENSE} at the correct level. The ADC also has a startup time after power-on, so to minimize the delay, the ADEN and TSEN bits should be set at the same time. RM0444 Rev 5 377/1390 # Calculating the actual V_{REF+} voltage using the internal reference voltage V_{REF+} voltage may be subject to variation or not precisely known. The embedded internal reference voltage (V_{REFINT}) and its calibration data acquired by the ADC during the manufacturing process at V_{REF+_charac} can be used to evaluate the actual V_{REF+} voltage level. The following formula gives the actual V_{RFF+} voltage supplying the device: $$V_{REF+} = V_{REF+Charac} \times VREFINT_CAL/VREFINT_DATA$$ #### Where: - V_{REF+_Charac} is the value of V_{REF+} voltage characterized at V_{REFINT} during the manufacturing process. It is specified in the device datasheet. - VREFINT_CAL is the VREFINT calibration value - VREFINT_DATA is the actual VREFINT output value converted by ADC ### Converting a supply-relative ADC measurement to an absolute voltage value The ADC is designed to deliver a digital value corresponding to the ratio between the analog power supply and the voltage applied on the converted channel. For most application use cases, it is necessary to convert this ratio into a voltage independent of V_{REF+} . For applications where V_{REF+} is known and ADC converted values are right-aligned you can use the following formula to get this absolute value: $$V_{CHANNELx} = \frac{V_{REF+}}{FULL\ SCALE} \times ADC_DATA_x$$ For applications where V_{REF+} value is not known, you must use the internal voltage reference and V_{REF+} can be replaced by the expression provided in *Section : Calculating the actual V_{REF+} voltage using the internal reference voltage*, resulting in the following formula: $$V_{CHANNELx} = \frac{V_{REF+_Charac} \times VREFINT_CAL \times ADC_DATA_x}{VREFINT_DATA \times FULL_SCALE}$$ #### Where: - V_{REF+_Charac} is the value of V_{REF+} voltage characterized at V_{REFINT} during the manufacturing process. It is specified in the device datasheet. - VREFINT CAL is the VREFINT calibration value - ADC_DATA_x is the value measured by the ADC on channelx (right-aligned) - VREFINT DATA is the actual VREFINT output value converted by the ADC - full_SCALE is the maximum digital value of the ADC output. For example with 12-bit resolution, it is 2^{12} 1 = 4095 or with 8-bit resolution, 2^8 1 = 255. Note: If ADC measurements are done using an output format other than 12 bit right-aligned, all the parameters must first be converted to a compatible format before the calculation is done. # 15.10 Battery voltage monitoring The VBATEN bit in the ADC_CCR register allows the application to measure the backup battery voltage on the VBAT pin. As the V_{BAT} voltage could be higher than V_{REF+} , to ensure the correct operation of the ADC, the V_{BAT} pin is internally connected to a bridge divider. This bridge is automatically enabled when VBATEN is set, to connect V_{BAT} to the ADC V_{IN} [14] input channel. As a consequence, the converted digital value is half the V_{BAT} voltage. To prevent any unwanted consumption on the battery, it is recommended to enable the bridge divider only when needed for ADC conversion. Figure 58. V_{BAT} channel block diagram # 15.11 ADC interrupts An interrupt can be generated by any of the following events: - End Of Calibration (EOCAL flag) - ADC power-up, when the ADC is ready (ADRDY flag) - End of any conversion (EOC flag) - End of a sequence of conversions (EOS flag) - When an analog watchdog detection occurs (AWD1, AWD2, AWD3 flags) - When the Channel configuration is ready (CCRDY flag) - When the end of sampling phase occurs (EOSMP flag) - when a data overrun occurs (OVR flag) Analog watchdog 1 status bit is set Separate interrupt enable bits are available for flexibility. Interrupt eventEvent flagEnable control bitEnd Of CalibrationEOCALEOCALIEADC readyADRDYADRDYIEEnd of conversionEOCEOCIEEnd of sequence of conversionsEOSEOSIE Table 77. ADC interrupts AWD1 AWD1IE Table 77. ADC interrupts (continued) | Interrupt event | Event flag | Enable control bit | |-------------------------------------|------------|--------------------| | Analog watchdog 2 status bit is set | AWD2 | AWD2IE | | Analog watchdog 3 status bit is set | AWD3 | AWD3IE | | Channel Configuration Ready | CCRDY | CCRDYIE | | End of sampling phase | EOSMP | EOSMPIE | | Overrun | OVR | OVRIE | # 15.12 ADC registers Refer to Section 1.2 for a list of abbreviations used in register descriptions. # 15.12.1 ADC interrupt and status register (ADC_ISR) Address offset: 0x00 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|-------------|------|-------------|------------|-----------|------|-----------|------|-----------|----------|----------|----------|------------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | 13
CCRDY | | 11
EOCAL | 10
Res. | 9
AWD3 | | 7
AWD1 | Res. | 5
Res. | 4
OVR | 3
EOS | 2
EOC | 1
EOSMP | | Bits 31:14 Reserved, must be kept at reset value. ### Bit 13 CCRDY: Channel Configuration Ready flag This flag bit is set by hardware when the channel configuration is applied after programming to ADC_CHSELR register or changing CHSELRMOD or SCANDIR. It is cleared by software by programming it to it. - 0: Channel configuration update not applied. - 1: Channel configuration update is applied. Note: When the software configures the channels (by programming ADC_CHSELR or changing CHSELRMOD or SCANDIR), it must wait until the CCRDY flag rises before configuring again or starting conversions, otherwise the new configuration (or the START bit) is ignored. Once the flag is asserted, if the software needs to configure again the channels, it must clear the CCRDY flag before proceeding with a new configuration. Bit 12 Reserved, must be kept at reset value. #### Bit 11 EOCAL: End Of Calibration flag This bit is set by hardware when calibration is complete. It is cleared by software writing 1 to it. - 0: Calibration is not complete - 1: Calibration is complete - Bit 10 Reserved, must be kept at reset value. ### Bit 9 AWD3: Analog watchdog 3 flag This bit is set by hardware when the converted voltage crosses the values programmed in ADC_AWD3TR and ADC_AWD3TR registers. It is cleared by software by programming it to 1. - 0: No analog watchdog event occurred (or the flag event was already acknowledged and cleared by software) - 1: Analog watchdog event occurred ### Bit 8 AWD2: Analog watchdog 2 flag This bit is set by hardware when the converted voltage crosses the values programmed in ADC_AWD2TR and ADC_AWD2TR registers. It is cleared by software programming it it. - 0: No analog watchdog event occurred (or the flag event was already acknowledged and cleared by software) - 1: Analog watchdog event occurred RM0444 Rev 5 381/1390 ### Bit 7 AWD1: Analog watchdog 1 flag This bit is set by hardware when the converted voltage crosses the values programmed in ADC_TR1 and ADC_HR1 registers. It is cleared by software by programming it to 1. - 0: No analog watchdog event occurred (or the flag event was already acknowledged and cleared by software) - 1: Analog watchdog event occurred - Bits 6:5 Reserved, must be kept at reset value. #### Bit 4 OVR: ADC overrun This bit is set by hardware when an overrun occurs, meaning that a new conversion has complete while the EOC flag was already set. It is cleared by software writing 1 to it. - 0: No overrun occurred (or the flag event was already acknowledged and cleared by software) - 1: Overrun has occurred #### Bit 3 EOS: End of sequence flag This bit is set by hardware at the end of the conversion of a sequence of channels selected by the CHSEL bits. It is cleared by software writing 1 to it. - 0: Conversion sequence not complete (or the flag event was already acknowledged and cleared by software) - 1: Conversion sequence complete #### Bit 2 EOC: End of conversion flag This bit is set by hardware at the end of each conversion of a channel when a new data result is available in the ADC_DR register. It is cleared by software writing 1 to it or by reading the ADC_DR register. - 0: Channel conversion not complete (or the flag event was already acknowledged and cleared by software) - 1:
Channel conversion complete #### Bit 1 EOSMP: End of sampling flag This bit is set by hardware during the conversion, at the end of the sampling phase. It is cleared by software by programming it to '1'. - 0: Not at the end of the sampling phase (or the flag event was already acknowledged and cleared by software) - 1: End of sampling phase reached ### Bit 0 ADRDY: ADC ready This bit is set by hardware after the ADC has been enabled (ADEN = 1) and when the ADC reaches a state where it is ready to accept conversion requests. It is cleared by software writing 1 to it. - 0: ADC not yet ready to start conversion (or the flag event was already acknowledged and cleared by software) - 1: ADC is ready to start conversion ### 15.12.2 ADC interrupt enable register (ADC_IER) Address offset: 0x04 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|-------------------|------------|-------------------|------------|-----------------|-----------------|-----------------|-----------|-----------|------------|------------|------|------------------|------------------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
CCRD
YIE | 12
Res. | 11
EOCAL
IE | 10
Res. | 9
AWD3I
E | 8
AWD2I
E | 7
AWD1I
E | 6
Res. | 5
Res. | 4
OVRIE | 3
EOSIE | | 1
EOSMP
IE | 0
ADRDY
IE | Bits 31:14 Reserved, must be kept at reset value. #### Bit 13 **CCRDYIE**: Channel Configuration Ready Interrupt enable This bit is set and cleared by software to enable/disable the channel configuration ready interrupt. - 0: Channel configuration ready interrupt disabled - 1: Channel configuration ready interrupt enabled Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). Bit 12 Reserved, must be kept at reset value. ### Bit 11 **EOCALIE**: End of calibration interrupt enable This bit is set and cleared by software to enable/disable the end of calibration interrupt. - 0: End of calibration interrupt disabled - 1: End of calibration interrupt enabled Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). Bit 10 Reserved, must be kept at reset value. ### Bit 9 AWD3IE: Analog watchdog 3 interrupt enable This bit is set and cleared by software to enable/disable the analog watchdog interrupt. - 0: Analog watchdog interrupt disabled - 1: Analog watchdog interrupt enabled Note: The Software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). ### Bit 8 AWD2IE: Analog watchdog 2 interrupt enable This bit is set and cleared by software to enable/disable the analog watchdog interrupt. - 0: Analog watchdog interrupt disabled - 1: Analog watchdog interrupt enabled Note: The Software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). #### Bit 7 AWD1IE: Analog watchdog 1 interrupt enable This bit is set and cleared by software to enable/disable the analog watchdog interrupt. - 0: Analog watchdog interrupt disabled - 1: Analog watchdog interrupt enabled Note: The Software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). Bits 6:5 Reserved, must be kept at reset value. RM0444 Rev 5 383/1390 #### Bit 4 **OVRIE**: Overrun interrupt enable This bit is set and cleared by software to enable/disable the overrun interrupt. - 0: Overrun interrupt disabled - 1: Overrun interrupt enabled. An interrupt is generated when the OVR bit is set. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). #### Bit 3 **EOSIE**: End of conversion sequence interrupt enable This bit is set and cleared by software to enable/disable the end of sequence of conversions interrupt. - 0: EOS interrupt disabled - 1: EOS interrupt enabled. An interrupt is generated when the EOS bit is set. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). #### Bit 2 **EOCIE**: End of conversion interrupt enable This bit is set and cleared by software to enable/disable the end of conversion interrupt. - 0: EOC interrupt disabled - 1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). ### Bit 1 EOSMPIE: End of sampling flag interrupt enable This bit is set and cleared by software to enable/disable the end of the sampling phase interrupt. - 0: EOSMP interrupt disabled. - 1: EOSMP interrupt enabled. An interrupt is generated when the EOSMP bit is set. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). ### Bit 0 ADRDYIE: ADC ready interrupt enable This bit is set and cleared by software to enable/disable the ADC Ready interrupt. - 0: ADRDY interrupt disabled. - 1: ADRDY interrupt enabled. An interrupt is generated when the ADRDY bit is set. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). ### 15.12.3 ADC control register (ADC_CR) Address offset: 0x08 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------|------|------|--------------|------|------|------|------|------|------|------|-------|------|-------------|-------|------| | ADCAL | Res. | Res. | ADVR
EGEN | Res. | rs | | | rw | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | | | | | | | | | | | Res. ADSTP | Res. | ADSTA
RT | ADDIS | ADEN | #### Bit 31 ADCAL: ADC calibration This bit is set by software to start the calibration of the ADC. It is cleared by hardware after calibration is complete. 0: Calibration complete 1: Write 1 to calibrate the ADC. Read at 1 means that a calibration is in progress. Note: The software is allowed to set ADCAL only when the ADC is disabled (ADCAL = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0). The software is allowed to update the calibration factor by writing ADC_CALFACT only when ADEN = 1 and ADSTART = 0 (ADC enabled and no conversion is ongoing). Bits 30:29 Reserved, must be kept at reset value. #### Bit 28 ADVREGEN: ADC Voltage Regulator Enable This bit is set by software, to enable the ADC internal voltage regulator. The voltage regulator output is available after tancountries. It is cleared by software to disable the voltage regulator. It can be cleared only if ADEN is et to 0. 0: ADC voltage regulator disabled 1: ADC voltage regulator enabled Note: The software is allowed to program this bit field only when the ADC is disabled (ADCAL = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0). Bits 27:5 Reserved, must be kept at reset value. ### Bit 4 ADSTP: ADC stop conversion command This bit is set by software to stop and discard an ongoing conversion (ADSTP Command). It is cleared by hardware when the conversion is effectively discarded and the ADC is ready to accept a new start conversion command. 0: No ADC stop conversion command ongoing 1: Write 1 to stop the ADC. Read 1 means that an ADSTP command is in progress. Note: Setting ADSTP to '1' is only effective when ADSTART = 1 and ADDIS = 0 (ADC is enabled and may be converting and there is no pending request to disable the ADC) Bit 3 Reserved, must be kept at reset value. RM0444 Rev 5 385/1390 #### Bit 2 ADSTART: ADC start conversion command This bit is set by software to start ADC conversion. Depending on the EXTEN [1:0] configuration bits, a conversion either starts immediately (software trigger configuration) or once a hardware trigger event occurs (hardware trigger configuration). It is cleared by hardware: - In single conversion mode (CONT = 0, DISCEN = 0), when software trigger is selected (EXTEN = 00): at the assertion of the end of Conversion Sequence (EOS) flag. - In discontinuous conversion mode(CONT = 0, DISCEN = 1), when the software trigger is selected (EXTEN = 00): at the assertion of the end of Conversion (EOC) flag. - In all other cases: after the execution of the ADSTP command, at the same time as the ADSTP bit is cleared by hardware. - 0: No ADC conversion is ongoing. - 1: Write 1 to start the ADC. Read 1 means that the ADC is operating and may be converting. Note: The software is allowed to set ADSTART only when ADEN = 1 and ADDIS = 0 (ADC is enabled and there is no pending request to disable the ADC). After writing to ADC_CHSELR register or changing CHSELRMOD or SCANDIRW, it is mandatory to wait until CCRDY flag is asserted before setting ADSTART, otherwise, the value written to ADSTART is ignored. #### Bit 1 ADDIS: ADC disable command This bit is set by software to disable the ADC (ADDIS command) and put it into power-down state (OFF state). It is cleared by hardware once the ADC is effectively disabled (ADEN is also cleared by hardware at this time). - 0: No ADDIS command ongoing - 1: Write 1 to disable the ADC. Read 1 means that an ADDIS command is in progress. Note: Setting ADDIS to '1' is only effective when ADEN = 1 and ADSTART = 0 (which ensures that no conversion is ongoing) ### Bit 0 ADEN: ADC enable command This bit is set by software to enable the ADC. The ADC is effectively ready to operate once the ADRDY flag has been set. It is cleared by hardware when the ADC is disabled, after the execution of the ADDIS command. - 0: ADC is disabled (OFF state) - 1: Write 1 to enable the ADC. Note: The software is allowed to set ADEN only when all bits of ADC_CR registers are 0
(ADCAL = 0, ADSTP = 0, ADSTART = 0, ADDIS = 0 and ADEN = 0) # 15.12.4 ADC configuration register 1 (ADC_CFGR1) Address offset: 0x0C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |--------|------|------|----------|------|---------|------|------------|-------------|---------------|-------|------|-------|-------------|------------|-------| | Res. | | | AWD1CH[4 | | Res. | Res. | AWD1E
N | AWD1SG
L | CHSEL
RMOD | Res. | Res. | Res. | Res. | DISCEN | | | | rw | rw | rw | rw | rw | | | rw | rw | rw | | | | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | AUTOFF | WAIT | CONT | OVRMOD | EXTE | :N[1:0] | Res. | | EXTSEL[| 2:0] | ALIGN | RES | [1:0] | SCAND
IR | DMAC
FG | DMAEN | | rw | rw | rw | rw | rw | rw | | rw Bit 31 Reserved, must be kept at reset value. ### Bits 30:26 AWD1CH[4:0]: Analog watchdog channel selection These bits are set and cleared by software. They select the input channel to be guarded by the analog watchdog. 00000: ADC analog input Channel 0 monitored by AWD 00001: ADC analog input Channel 1 monitored by AWD 10001: ADC analog input Channel 17 monitored by AWD 10010: ADC analog input Channel 18 monitored by AWD Others: Reserved Note: The channel selected by the AWDCH[4:0] bits must be also set into the CHSELR register. The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). Bits 25:24 Reserved, must be kept at reset value. ### Bit 23 AWD1EN: Analog watchdog enable This bit is set and cleared by software. 0: Analog watchdog 1 disabled 1: Analog watchdog 1 enabled Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). ### Bit 22 AWD1SGL: Enable the watchdog on a single channel or on all channels This bit is set and cleared by software to enable the analog watchdog on the channel identified by the AWDCH[4:0] bits or on all the channels 0: Analog watchdog 1 enabled on all channels 1: Analog watchdog 1 enabled on a single channel Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). 4 RM0444 Rev 5 387/1390 #### Bit 21 CHSELRMOD: Mode selection of the ADC CHSELR register This bit is set and cleared by software to control the ADC CHSELR feature: 0: Each bit of the ADC CHSELR register enables an input 1: ADC CHSELR register is able to sequence up to 8 channels Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored. #### Bits 20:17 Reserved, must be kept at reset value. #### Bit 16 DISCEN: Discontinuous mode This bit is set and cleared by software to enable/disable discontinuous mode. - 0: Discontinuous mode disabled - 1: Discontinuous mode enabled Note: It is not possible to have both discontinuous mode and continuous mode enabled: it is forbidden to set both bits DISCEN = 1 and CONT = 1. The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). #### Bit 15 AUTOFF: Auto-off mode This bit is set and cleared by software to enable/disable auto-off mode. - 0: Auto-off mode disabled - 1: Auto-off mode enabled Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). #### Bit 14 WAIT: Wait conversion mode This bit is set and cleared by software to enable/disable wait conversion mode. - 0: Wait conversion mode off - 1: Wait conversion mode on Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). ### Bit 13 CONT: Single / continuous conversion mode This bit is set and cleared by software. If it is set, conversion takes place continuously until it is cleared. - 0: Single conversion mode - 1: Continuous conversion mode Note: It is not possible to have both discontinuous mode and continuous mode enabled: it is forbidden to set both bits DISCEN = 1 and CONT = 1. The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). ### Bit 12 OVRMOD: Overrun management mode This bit is set and cleared by software and configure the way data overruns are managed. - 0: ADC_DR register is preserved with the old data when an overrun is detected. - 1: ADC_DR register is overwritten with the last conversion result when an overrun is detected. Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). #### Bits 11:10 EXTEN[1:0]: External trigger enable and polarity selection These bits are set and cleared by software to select the external trigger polarity and enable the trigger. - 00: Hardware trigger detection disabled (conversions can be started by software) - 01: Hardware trigger detection on the rising edge - 10: Hardware trigger detection on the falling edge - 11: Hardware trigger detection on both the rising and falling edges Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). Bit 9 Reserved, must be kept at reset value. ### Bits 8:6 EXTSEL[2:0]: External trigger selection These bits select the external event used to trigger the start of conversion (refer to *Table 70: External triggers* for details): 000: TRG0 001: TRG1 010: TRG2 011: TRG3 100: TRG4 101: TRG5 110: TRG6 111: TRG7 Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). #### Bit 5 ALIGN: Data alignment This bit is set and cleared by software to select right or left alignment. Refer to Figure 44: Data alignment and resolution (oversampling disabled: OVSE = 0) on page 363 0: Right alignment 1: Left alignment Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). ### Bits 4:3 RES[1:0]: Data resolution These bits are written by software to select the resolution of the conversion. 00: 12 bits 01: 10 bits 10: 8 bits 11: 6 bits Note: The software is allowed to write these bits only when ADEN = 0. RM0444 Rev 5 389/1390 ### Bit 2 SCANDIR: Scan sequence direction This bit is set and cleared by software to select the direction in which the channels is scanned in the sequence. It is effective only if CHSELMOD bit is cleared to 0. - 0: Upward scan (from CHSEL0 to CHSEL18) - 1: Backward scan (from CHSEL18 to CHSEL0) Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored. #### Bit 1 **DMACFG**: Direct memory access configuration This bit is set and cleared by software to select between two DMA modes of operation and is effective only when DMAEN = 1. - 0: DMA one shot mode selected - 1: DMA circular mode selected For more details, refer to Section 15.5.5: Managing converted data using the DMA on page 365 Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). #### Bit 0 DMAEN: Direct memory access enable This bit is set and cleared by software to enable the generation of DMA requests. This allows the DMA controller to be used to manage automatically the converted data. For more details, refer to Section 15.5.5: Managing converted data using the DMA on page 365. - 0: DMA disabled - 1: DMA enabled Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). # 15.12.5 ADC configuration register 2 (ADC_CFGR2) Address offset: 0x10 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|---------|--------|------|------|------|------|------|------|--------|------|------|----------|------|------|------| | CKMO | DE[1:0] | LFTRIG | Res. | rw | rw | rw | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | Res. | TOVS | | ovs | S[3:0] | | (| OVSR[2:0 |] | Res. | OVSE | | | | | | | | rw | rw | ### Bits 31:30 CKMODE[1:0]: ADC clock mode These bits are set and cleared by software to define how the analog ADC is clocked: 00: ADCCLK (Asynchronous clock mode), generated at product level (refer to RCC section) 01: PCLK/2 (Synchronous clock mode) 10: PCLK/4 (Synchronous clock mode) 11: PCLK (Synchronous clock mode). This configuration must be enabled only if PCLK has a 50% duty clock cycle (APB prescaler configured inside the RCC must be bypassed and the system clock must by 50% duty cycle) In all synchronous clock modes, there is no jitter in the delay from a timer trigger to the start of a conversion. Note: The software is allowed to write these bits only when the ADC is disabled (ADCAL = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0). Bit 29 LFTRIG: Low frequency trigger mode enable This bit is set and cleared by software. 0: Low Frequency Trigger Mode disabled 1: Low Frequency Trigger Mode enabled Note: The software is allowed to write this bit only when ADSTART bit is cleared to 0 (this ensures that no conversion is ongoing). Bits 28:10 Reserved, must be kept at reset value. Bit 9 TOVS: Triggered Oversampling This bit is set and cleared by software. 0: All oversampled conversions for a channel are done consecutively after a trigger 1: Each oversampled conversion for a channel needs a trigger Note: The software is
allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). RM0444 Rev 5 391/1390 ### Bits 8:5 OVSS[3:0]: Oversampling shift This bit is set and cleared by software. 0000: No shift 0001: Shift 1-bit 0010: Shift 2-bits 0011: Shift 3-bits 0100: Shift 4-bits 0101: Shift 5-bits 0110: Shift 6-bits 0111: Shift 7-bits 1000: Shift 8-bits Others: Reserved Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). ### Bits 4:2 OVSR[2:0]: Oversampling ratio This bit filed defines the number of oversampling ratio. 001: 4x 010: 8x 011: 16x 100: 32x 101: 64x 110: 128x 111: 256x Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). #### Bit 1 Reserved, must be kept at reset value. ### Bit 0 OVSE: Oversampler Enable This bit is set and cleared by software. 0: Oversampler disabled 1: Oversampler enabled Note: Software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). #### 15.12.6 **ADC sampling time register (ADC_SMPR)** Address offset: 0x14 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------| | Res. | Res. | Res. | Res. | Res. | SMPSE
L18 | SMPSE
L17 | SMPSE
L16 | SMPSE
L15 | SMPSE
L14 | SMPSE
L13 | SMPSE
L12 | SMPSE
L11 | SMPSE
L10 | SMPSE
L9 | SMPSE
L8 | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SMPSE
L7 | SMPSE
L6 | SMPSE
L5 | SMPSE
L4 | SMPSE
L3 | SMPSE
L2 | SMPSE
L1 | SMPSE
L0 | Res. | SMP2[2:0] | | | Res. | , | SMP1[2:0 |] | | rw | rw | rw | rw | | rw | rw | rw | RM0444 Rev 5 392/1390 Bits 31:27 Reserved, must be kept at reset value. #### Bits 26:8 SMPSEL[18:0] Channel-x sampling time selection These bits are written by software to define which sampling time is used. - 0: Sampling time of CHANNELx use the setting of SMP1[2:0] register. - 1: Sampling time of CHANNELx use the setting of SMP2[2:0] register. Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). Bit 7 Reserved, must be kept at reset value. #### Bits 6:4 SMP2[2:0]: Sampling time selection 2 These bits are written by software to select the sampling time that applies to all channels. 000: 1.5 ADC clock cycles 001: 3.5 ADC clock cycles 010: 7.5 ADC clock cycles 011: 12.5 ADC clock cycles 100: 19.5 ADC clock cycles 101: 39.5 ADC clock cycles 110: 79.5 ADC clock cycles 111: 160.5 ADC clock cycles Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). Bit 3 Reserved, must be kept at reset value. ### Bits 2:0 SMP1[2:0]: Sampling time selection 1 These bits are written by software to select the sampling time that applies to all channels. 000: 1.5 ADC clock cycles 001: 3.5 ADC clock cycles 010: 7.5 ADC clock cycles 011: 12.5 ADC clock cycles 100: 19.5 ADC clock cycles 101: 39.5 ADC clock cycles 110: 79.5 ADC clock cycles 111: 160.5 ADC clock cycles Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). ### 15.12.7 ADC watchdog threshold register (ADC_AWD1TR) Address offset: 0x20 Reset value: 0x0FFF 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | | |------|------|------|------|-----------|-----------|----|----|----|----|----|----|----|----|----|----|--| | Res. | Res. | Res. | Res. | | HT1[11:0] | | | | | | | | | | | | | | | | | rw | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | Res. | Res. | Res. | Res. | LT1[11:0] | | | | | | | | | | | | | | | | | | rw | Bits 31:28 Reserved, must be kept at reset value. Bits 27:16 HT1[11:0]: Analog watchdog 1 higher threshold These bits are written by software to define the higher threshold for the analog watchdog. Refer to Section 15.7: Analog window watchdog (AWD1EN, AWD1SGL, AWD1CH, ADC_AWDxCR, ADC_AWDxTR) on page 369. Bits 15:12 Reserved, must be kept at reset value. Bits 11:0 LT1[11:0]: Analog watchdog 1 lower threshold These bits are written by software to define the lower threshold for the analog watchdog. Refer to Section 15.7: Analog window watchdog (AWD1EN, AWD1SGL, AWD1CH, ADC_AWDxCR, ADC_AWDxTR) on page 369. # 15.12.8 ADC watchdog threshold register (ADC_AWD2TR) Address offset: 0x24 Reset value: 0x0FFF 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | | |------|------|------|------|-----------|-----------|----|----|----|----|----|----|----|----|----|----|--| | Res. | Res. | Res. | Res. | | HT2[11:0] | | | | | | | | | | | | | | | | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | Res. | Res. | Res. | Res. | LT2[11:0] | | | | | | | | | | | | | | | | | | rw | Bits 31:28 Reserved, must be kept at reset value. Bits 27:16 HT2[11:0]: Analog watchdog 2 higher threshold These bits are written by software to define the higher threshold for the analog watchdog. Refer to Section 15.7: Analog window watchdog (AWD1EN, AWD1SGL, AWD1CH, ADC_AWDxCR, ADC_AWDxTR) on page 369. Bits 15:12 Reserved, must be kept at reset value. Bits 11:0 LT2[11:0]: Analog watchdog 2 lower threshold These bits are written by software to define the lower threshold for the analog watchdog. Refer to Section 15.7: Analog window watchdog (AWD1EN, AWD1SGL, AWD1CH, ADC_AWDxCR, ADC_AWDxTR) on page 369. ### 15.12.9 ADC channel selection register [alternate] (ADC_CHSELR) Address offset: 0x28 Reset value: 0x0000 0000 The same register can be used in two different modes: Each ADC_CHSELR bit enables an input (CHSELRMOD = 0 in ADC_CFGR1). Refer to the current section ADC_CHSELR is able to sequence up to 8 channels (CHSELRMOD = 1 in ADC_CFGR1). Refer to next section. ### CHSELRMOD = 0 in ADC_CFGR1: | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------| | Res. CHSEL
18 | CHSEL
17 | CHSEL
16 | | | | | | | | | | | | | | | rw | rw | rw | | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
CHSEL
15 | 14
CHSEL
14 | 13
CHSEL
13 | 12
CHSEL
12 | 11
CHSEL
11 | 10
CHSEL
10 | | 8
CHSEL
8 | 7
CHSEL
7 | 6
CHSEL
6 | 5
CHSEL
5 | 4
CHSEL
4 | 3
CHSEL
3 | 2
CHSEL
2 | 1
CHSEL
1 | | Bits 31:19 Reserved, must be kept at reset value. ### Bits 18:0 CHSEL[18:0]: Channel-x selection These bits are written by software and define which channels are part of the sequence of channels to be converted. 0: Input Channel-x is not selected for conversion 1: Input Channel-x is selected for conversion Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). If CCRDY is not yet asserted after channel configuration (writing ADC_CHSELR register or changing CHSELRMOD or SCANDIR), the value written to this bit is ignored. 4 RM0444 Rev 5 395/1390 # 15.12.10 ADC channel selection register [alternate] (ADC_CHSELR) Address offset: 0x28 Reset value: 0x0000 0000 The same register can be used in two different modes: Each ADC_CHSELR bit enables an input (CHSELRMOD = 0 in ADC_CFGR1). Refer to the current previous section. ADC_CHSELR is able to sequence up to 8 channels (CHSELRMOD = 1 in ADC_CFGR1). Refer to this section. ### CHSELRMOD = 1 in ADC CFGR1: | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----------|----|----|----|----------|----|----|----|-----|-------|----|----------|----|----|----| | | SQ8[3:0] | | | | SQ7[3:0] | | | | SQ6 | [3:0] | | SQ5[3:0] | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | SQ4[3:0] | | | | SQ3[3:0] | | | | SQ2 | [3:0] | | SQ1[3:0] | | | | | rw #### Bits 31:28 SQ8[3:0]: 8th conversion of the sequence These bits are programmed by software with the channel number (0...14) assigned to the 8th conversion of the sequence. 0b1111 indicates the end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. 0000: CH0 0001: CH1 ... 1100: CH12 1101: CH13 1110: CH14 1111: No channel selected (End of sequence) Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). #### Bits 27:24 **SQ7[3:0]**: 7th conversion of the sequence These bits are programmed by software with the channel number (0...14) assigned to the 8th conversion of the sequence. 0b1111 indicates end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. Refer to SQ8[3:0] for a definition of channel selection. Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). ### Bits 23:20 **SQ6[3:0]**: 6th conversion of the sequence These bits are programmed by software with the channel number (0...14) assigned to the 8th conversion of the sequence. 0b1111 indicates end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. Refer to SQ8[3:0] for a definition of channel selection. Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). #### Bits 19:16 SQ5[3:0]: 5th
conversion of the sequence These bits are programmed by software with the channel number (0...14) assigned to the 8th conversion of the sequence. 0b1111 indicates end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. Refer to SQ8[3:0] for a definition of channel selection. Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). #### Bits 15:12 **SQ4[3:0]**: 4th conversion of the sequence These bits are programmed by software with the channel number (0...14) assigned to the 8th conversion of the sequence. 0b1111 indicates end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. Refer to SQ8[3:0] for a definition of channel selection. Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). #### Bits 11:8 SQ3[3:0]: 3rd conversion of the sequence These bits are programmed by software with the channel number (0...14) assigned to the 8th conversion of the sequence. 0b1111 indicates end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. Refer to SQ8[3:0] for a definition of channel selection. Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). #### Bits 7:4 SQ2[3:0]: 2nd conversion of the sequence These bits are programmed by software with the channel number (0...14) assigned to the 8th conversion of the sequence. 0b1111 indicates end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. Refer to SQ8[3:0] for a definition of channel selection. Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). #### Bits 3:0 SQ1[3:0]: 1st conversion of the sequence These bits are programmed by software with the channel number (0...14) assigned to the 8th conversion of the sequence. 0b1111 indicates end of the sequence. When 0b1111 (end of sequence) is programmed to the lower sequence channels, these bits are ignored. Refer to SQ8[3:0] for a definition of channel selection. Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). RM0444 Rev 5 397/1390 # 15.12.11 ADC watchdog threshold register (ADC_AWD3TR) Address offset: 0x2C Reset value: 0x0FFF 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|----|----|----|----|----|------|--------|----|----|----|----|----| | Res. | Res. | Res. | Res. | | | | | | HT3[| [11:0] | | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | | | | | | LT3[| 11:0] | | | | | | | | | | | rw Bits 31:28 Reserved, must be kept at reset value. #### Bits 27:16 HT3[11:0]: Analog watchdog 3 higher threshold These bits are written by software to define the higher threshold for the analog watchdog. Refer to Section 15.7: Analog window watchdog (AWD1EN, AWD1SGL, AWD1CH, ADC_AWDxCR, ADC_AWDxTR) on page 369. Bits 15:12 Reserved, must be kept at reset value. ### Bits 11:0 LT3[11:0]: Analog watchdog 3lower threshold These bits are written by software to define the lower threshold for the analog watchdog. Refer to Section 15.7: Analog window watchdog (AWD1EN, AWD1SGL, AWD1CH, ADC_AWDxCR, ADC_AWDxTR) on page 369. # 15.12.12 ADC data register (ADC_DR) Address offset: 0x40 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|--------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | DATA | [15:0] | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | Bits 31:16 Reserved, must be kept at reset value. #### Bits 15:0 DATA[15:0]: Converted data These bits are read-only. They contain the conversion result from the last converted channel. The data are left- or right-aligned as shown in *Figure 44: Data alignment and resolution (oversampling disabled: OVSE = 0) on page 363.* Just after a calibration is complete, DATA[6:0] contains the calibration factor. 399/1390 # 15.12.13 ADC Analog Watchdog 2 Configuration register (ADC_AWD2CR) Address offset: 0xA0 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |--------------------|--------------------|--------------------|--------------------|--------------|--------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | Res. AWD2
CH18 | AWD2
CH17 | AWD2
CH16 | | | | | | | | | | | | | | | rw | rw | rw | | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
AWD2
CH15 | 14
AWD2
CH14 | 13
AWD2
CH13 | 12
AWD2
CH12 | AWD2
CH11 | 10
AWD2
CH10 | 9
AWD2
CH9 | 8
AWD2
CH8 | 7
AWD2
CH7 | 6
AWD2
CH6 | 5
AWD2
CH5 | 4
AWD2
CH4 | 3
AWD2
CH3 | 2
AWD2
CH2 | 1
AWD2
CH1 | 0
AWD2
CH0 | Bits 31:19 Reserved, must be kept at reset value. #### Bits 18:0 AWD2CH[18:0]: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 2 (AWD2). - 0: ADC analog channel-x is not monitored by AWD2 - 1: ADC analog channel-x is monitored by AWD2 Note: The channels selected through ADC_AWD2CR must be also configured into the ADC_CHSELR registers. Refer to SQ8[3:0] for a definition of channel selection. The software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). # 15.12.14 ADC Analog Watchdog 3 Configuration register (ADC_AWD3CR) Address offset: 0xA4 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | Res. AWD3
CH18 | AWD3
CH17 | AWD3
CH16 | | | | | | | | | | | | | | | rw | rw | rw | | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
AWD3
CH15 | 14
AWD3
CH14 | 13
AWD3
CH13 | 12
AWD3
CH12 | 11
AWD3
CH11 | 10
AWD3
CH10 | 9
AWD3
CH9 | 8
AWD3
CH8 | 7
AWD3
CH7 | 6
AWD3
CH6 | 5
AWD3
CH5 | 4
AWD3
CH4 | 3
AWD3
CH3 | 2
AWD3
CH2 | 1
AWD3
CH1 | 0
AWD3
CH0 | Bits 31:19 Reserved, must be kept at reset value. ### Bits 18:0 AWD3CH[18:0]: Analog watchdog channel selection These bits are set and cleared by software. They enable and select the input channels to be guarded by analog watchdog 3 (AWD3). - 0: ADC analog channel-x is not monitored by AWD3 - 1: ADC analog channel-x is monitored by AWD3 Note: The channels selected through ADC_AWD3CR must be also configured into the ADC_CHSELR registers. Refer to SQ8[3:0] for a definition of channel selection. The software is allowed to write this bit only when ADSTART=0 (which ensures that no conversion is ongoing). RM0444 Rev 5 # 15.12.15 ADC Calibration factor (ADC_CALFACT) Address offset: 0xB4 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|-------|------|------|------|------|------|------|------|------|------|------|----------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | Res. | 0 | 0 | D | | | 0.1 | | | | | | | 1165. | Res. | | CA | ALFACT[6 | 5:0] | | | Bits 31:7 Reserved, must be kept at reset value. #### Bits 6:0 CALFACT[6:0]: Calibration factor These bits are written by hardware or by software. - Once a calibration is complete, they are updated by hardware with the calibration factors. - Software can write these bits with a new calibration factor. If the new calibration factor is different from the current one stored into the analog ADC, it is then applied once a new calibration is launched. - Just after a calibration is complete, DATA[6:0] contains the calibration factor. Note: Software can write these bits only when ADEN=1 (ADC is enabled and no calibration is ongoing and no conversion is ongoing). Refer to SQ8[3:0] for a definition of channel selection. # 15.12.16 ADC common configuration register (ADC_CCR) Address offset: 0x308 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------------|------|------------|------|------|---------|------|------|------| | Res. VBAT
EN | TSEN | VREF
EN | | PRES | SC[3:0] | | Res. | Res. | | | | | | | | | rw | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | | | | | | | | | | | | | | | Bits 31:25 Reserved, must be kept at reset value. #### Bit 24 **VBATEN**: V_{BAT} enable This bit is set and cleared by software to enable/disable the V_{BAT} channel. 0: V_{BAT} channel disabled, DAC_OUT2 connected to ADC channel 14 1: V_{BAT} channel enabled Note: The software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing) #### Bit 23 **TSEN**: Temperature sensor enable This bit is set and cleared by
software to enable/disable the temperature sensor. 0: Temperature sensor disabled, DAC OUT1 connected to ADC channel 12 1: Temperature sensor enabled Note: Software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). ## Bit 22 VREFEN: V_{REFINT} enable This bit is set and cleared by software to enable/disable the V_{RFFINT}. 0: V_{RFFINT} disabled 1: V_{REFINT} enabled Note: Software is allowed to write this bit only when ADSTART = 0 (which ensures that no conversion is ongoing). #### Bits 21:18 PRESC[3:0]: ADC prescaler Set and cleared by software to select the frequency of the clock to the ADC. 0000: input ADC clock not divided 0001: input ADC clock divided by 2 0010: input ADC clock divided by 4 0011: input ADC clock divided by 6 0100: input ADC clock divided by 8 0101: input ADC clock divided by 10 0110: input ADC clock divided by 12 0111: input ADC clock divided by 16 1000: input ADC clock divided by 32 1001: input ADC clock divided by 64 1010: input ADC clock divided by 128 1011: input ADC clock divided by 256 Other: Reserved Note: Software is allowed to write these bits only when the ADC is disabled (ADCAL = 0, ADSTART = 0, ADSTP = 0, ADDIS = 0 and ADEN = 0). Bits 17:0 Reserved, must be kept at reset value. RM0444 Rev 5 401/1390 # 15.13 ADC register map The following table summarizes the ADC registers. Table 78. ADC register map and reset values | | | | T | T | <u> </u> | | T | | | | Ť | Ì | | | цρ | | ı | | | | | | | | | | | | | | | | | |--------------|---------------------------------|-------------|------|--------|----------|-------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|---------|--------------|---------|---------|---------|---------|------------|---------|---------------|---------------|-------------|---------|-------------|-----------|-----------|---------|-------------|---------| | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | က | 2 | 1 | 0 | | 0x00 | ADC_ISR | Res. CCRDY. | Res. | EOCAL | Res. | AWD3 | AWD2 | AWD1 | Res. | Res. | | EOS | | | ADRDY | | | Reset value | | | | | | | | | | | | | | | | | | | 0 | | 0 | | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | | 0x04 | ADC_IER | Res. CCRDYIE | Res. | EOCALIE | Res. | AWD3IE | AWD2IE | AWD11E | Res. | Res. | OVRIE | EOSIE | | | ADRDYIE | | | Reset value | | | | | | | | | | | | | | | | | | | 0 | | 0 | | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | | 0x08 | ADC_CR | ADCAL | Res. | Res. | ADVREGEN | Res. ADSTP | Res. | ADSTART | ADDIS | ADEN | | | Reset value | 0 | | | 0 | 0 | | 0 | 0 | 0 | | 0x0C | ADC_CFGR1 | Res. | , | ٩WI | DCF | I[4:0 |)] | Res. | Res. | AWD1EN | AWD1SGL | CHSELRMOD | Res. | Res. | Res. | Res. | DISCEN | AUTOFF | WAIT | CONT | OVRMOD | EXTENI1-01 | [0:1] | Res. | | XTS
[2:0 | EL
] | ALIGN | RE
[1: | | SCANDIR | DMACFG | DMAEN | | | Reset value | | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x10 | ADC_CFGR2 | CKMODEI1-01 | | LFTRIG | Res. TOVS | | 0/0013-01 | | | | OVSR[2:0] | | Res. | OVSE | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x14 | ADC_SMPR | Res | Res | Res | Res | Res | SMPSEL18 | SMPSEL17 | SMPSEL16 | SMPSEL15 | SMPSEL14 | SMPSEL13 | SMPSEL12 | SMPSEL11 | SMPSEL10 | SMPSEL9 | SMPSEL8 | SMPSEL7 | SMPSEL6 | SMPSEL5 | SMPSEL4 | SMPSEL3 | SMPSEL2 | SMPSEL1 | SMPSEL0 | Res. | | MP
[2:0] | | Res. | | MP
[2:0] | | | 0.40 | Reset value | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | 0 | 0 | 0 | | 0x18
0x1C | Reserved | | | | | | | | | | | | | | | F | kese
Rese | rve | u
d | | | | | | | | | | | | | | | | 0::00 | ADC_AWD1TR | es. | es. | es. | es. | | | | | F | IT1[| 11:0 |)] | | | | | Res. | es. | es. | es. | | | | | L | .T1[| 11:0 |] | | | | | | 0x20 | Reset value | L. | LE. | LF. | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | T. | Ľ. | Ľ. | L. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0×24 | ADC_AWD2TR | Res. | ses. | Res. | Res. | | | | | - | IT2[| 11:0 |)] | | | | | Res. | Res. | Res. | Res. | | | | | L | T2[| | | | | | | | 0x24 | Reset value | Ľ | Ľ | Ľ | Ľ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Ľ | Ľ | Ľ | Ľ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x28 | ADC_CHSELR
(CHSELRMOD=
0) | Res. Res | Res | Res | Res | Res | | CHSEL17 | CHSEL16 | CHSEL15 | CHSEL14 | CHSEL13 | CHSEL12 | | CHSEL10 | CHSEL9 | CHSEL8 | _ | 1 | _ | | CHSEL3 | - | | CHSEL0 | | | Reset value | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x28 | ADC_CHSELR
(CHSELRMOD=
1) | | | 3:0 | | | | [3:0 | | | | [3:0 | | | SQ5 | - | | | SQ4 | | | | | [3:0 | | | SQ2 | | | | SQ1 | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | 0x2C | ADC_AWD3TR | Res | Res | Res | Res | | | | | ۲ | | 11:0 |)] | | | | | Res | Res | Res | Res | | | | | | T3[| | | | | | | | | Reset value | | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 78. ADC register map and reset values (continued) | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 1 | 10 | စ | 80 | 7 | 9 | 2 | 4 | က | 2 | - | 0 | |------------------------------|-------------|------|----------|----------|------|----------|------|----------|--------|----------|----------|----------|--------|--------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|----------|---------|---------|---------|---------|---------|---------|---------| | 0x30
0x34
0x38
0x3C | Reserved | | <u> </u> | <u> </u> | | <u> </u> | | <u> </u> | | <u> </u> | <u> </u> | <u> </u> | | | | F | Rese | erve | d | <u> </u> | <u> </u> | | | I | l | <u> </u> | | | | | | | | | 0x40 | ADC_DR | Res. | | | | | | D. | ATA | [15: | 0] | | | | | | | | 0,40 | Reset value | | | | lub. | | | | Liber. | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reserved | | | | | | | | | | | | | | | F | Rese | erve | d | | | | | | | | | | | | | | | | 0xA0 | ADC_AWD2CR | Res. Res | Res | Res | Res | Res | AWD2CH18 | AWD2CH17 | AWD2CH16 | AWD2CH15 | AWD2CH14 | AWD2CH13 | AWD2CH12 | AWD2CH11 | AWD2CH10 | АМD2СН9 | AWD2CH8 | AWD2CH7 | AWD2CH6 | AWD2CH5 | AWD2CH4 | AWD2CH3 | AWD2CH2 | AWD2CH1 | АМР2СН0 | | | Reset value | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0xA4 | ADC_AWD3CR | Res. Res | Res | Res | Res | Res | AWD3CH18 | AWD3CH17 | AWD3CH16 | AWD3CH15 | AWD3CH14 | AWD3CH13 | AWD3CH12 | AWD3CH11 | AWD3CH10 | АМРЗСН9 | АМРЗСНВ | AWD3CH7 | АМРЗСН6 | AWD3CH5 | AWD3CH4 | АМРЗСНЗ | AWD3CH2 | AWD3CH1 | АМРЗСНО | | | Reset value | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reserved | | | | | | | 1 . | | 1 . | | | | | | F | Rese | erve | d | 1 . | 1 . | | | | | 1 . | | | | | | | _ | | 0xB4 | ADC_CALFACT | Res | Res. | Res. | Res | Res | Res | Res. | Res. | Res | Res. | Res | Res | Res | Res | Res | Res. | Res. | Res. | Res. | Res | Res | Res | Res | Res. | Res. | | С | ALF | AC | T[6: | 0] | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reserved | | | | | | | | | | | | | | | F | Rese | erve | d | | | | | | | | | | | | | | | | 0x308 | ADC_CCR | Res. VBATEN | TSEN | VREFEN | PRESC3 | PRESC2 | PRESC1 | PRESC0 | Res. | | Reset value | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | | | | | Refer to Section 2.2 on page 58 for the register boundary addresses. RM0444 Rev 5 403/1390 # 16 Digital-to-analog converter (DAC) ## 16.1 Introduction The DAC module is a 12-bit, voltage output digital-to-analog converter. The DAC can be configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. In 12-bit mode, the data could be left- or right-aligned. The DAC features two output channels, each with its own converter. In dual DAC channel mode, conversions could be done independently or simultaneously when both channels are grouped together for synchronous update operations. An input reference pin, V_{REF+} (shared with others analog peripherals) is available for better resolution. An internal reference can also be set on the same input. Refer to *voltage reference buffer (VREFBUF)* section. The DAC_OUTx pin can be used as general purpose input/output (GPIO) when the DAC output is disconnected from output pad and connected to on chip peripheral. The DAC output buffer can be optionally enabled to allow a high drive output current. An individual calibration can be applied on each DAC output channel. The DAC output channels support a low power mode, the Sample and hold mode. # 16.2 DAC main features The DAC main features are the following (see Figure 59: Dual-channel DAC block diagram) - One DAC interface, maximum two output channels - Left or right data alignment in 12-bit mode - Synchronized update capability - Noise-wave and Triangular-wave generation - Dual DAC channel for independent or simultaneous conversions - DMA capability for each channel including DMA underrun error detection - External triggers for conversion - DAC output channel buffered/unbuffered modes - Buffer offset calibration - Each DAC output can be disconnected from the DAC_OUTx output pin - DAC output connection to on chip peripherals - Sample and hold mode for low power operation in Stop mode - Input voltage reference, V_{RFF+} *Figure 59* shows the block diagram of a DAC channel and *Table
80* gives the pin description. # 16.3 DAC implementation Table 79. DAC features | DAC features | DAC1 ⁽¹⁾ | |-----------------------|------------------------------------| | Dual channel | Х | | Output buffer | Х | | I/O connection | DAC1_OUT1 on PA4, DAC1_OUT2 on PA5 | | Maximum sampling time | 1MSPS | | Autonomous mode | - | ^{1.} There is no DAC on STM32G031xx and STM32G041xx. MSv46119V5 # 16.4 DAC functional description # 16.4.1 DAC block diagram MODEx bits in the DAC_MCR control the output mode and allow switching between the Normal mode in buffer/unbuffered configuration and the Sample and hold mode. VSS 2. Refer to Section 16.3: DAC implementation for channel2 availability. # 16.4.2 DAC pins and internal signals The DAC includes: - Up to two output channels - The DAC_OUTx can be disconnected from the output pin and used as an ordinary GPIO - The dac_outx can use an internal pin connection to on-chip peripherals such as comparator, operational amplifier and ADC (if available). - DAC output channel buffered or non buffered - Sample and hold block and registers operational in Stop mode, using the LSI clock source (dac_hold_ck) for static conversion. The DAC includes up to two separate output channels. Each output channel can be connected to on-chip peripherals such as comparator, operational amplifier and ADC (if available). In this case, the DAC output channel can be disconnected from the DAC_OUTx output pin and the corresponding GPIO can be used for another purpose. The DAC output can be buffered or not. The Sample and hold block and its associated registers can run in Stop mode using the LSI clock source (dac_hold_ck). Pin name Signal type Remarks The higher/positive reference voltage for the DAC, Input, analog reference VREF+ V_{REF+} ≤ V_{DDAmax} (refer to datasheet) positive VDD Analog power supply Input, analog supply VSS Input, analog supply ground Ground for analog power supply DAC OUTx Analog output signal DAC channelx analog output Table 80. DAC input/output pins | Table 81. DAG | Cinternal | input/out | put signals | |---------------|-----------|-----------|-------------| |---------------|-----------|-----------|-------------| | Internal signal name | Signal type | Description | |----------------------------|---------------|--| | dac_ch1_dma | Bidirectional | DAC channel1 DMA request/acknowledge | | dac_ch2_dma | Bidirectional | DAC channel2 DMA request/acknowledge | | dac_ch1_trgx (x = 1 to 15) | Inputs | DAC channel1 trigger inputs | | dac_ch2_trgx (x = 1 to 15) | Inputs | DAC channel2 trigger inputs | | dac_unr_it | Output | DAC underrun interrupt | | dac_pclk | Input | DAC peripheral clock | | dac_hold_ck | Input | DAC low-power clock used in Sample and hold mode | | dac_out1 | Analog output | DAC channel1 output for on-chip peripherals | | dac_out2 | Analog output | DAC channel2 output for on-chip peripherals | RM0444 Rev 5 407/1390 | Signal name | Source | Туре | |--------------------------|------------------------------|-------------------------------------| | dac_hold_ck | ck_lsi (selected in the RCC) | LSI clock selected in the RCC | | dac_chx_trg1 (x = 1, 2) | tim1_trgo | Internal signal from on-chip timers | | dac_chx_trg2 (x = 1, 2) | tim2_trgo | Internal signal from on-chip timers | | dac_chx_trg3 (x = 1, 2) | tim3_trgo | Internal signal from on-chip timers | | dac_chx_trg5 (x = 1, 2) | tim6_trgo | Internal signal from on-chip timers | | dac_chx_trg6 (x = 1, 2) | tim7_trgo | Internal signal from on-chip timers | | dac_chx_trg8 (x = 1, 2) | tim15_trgo | Internal signal from on-chip timers | | dac_chx_trg11 (x = 1, 2) | lptim1_out | Internal signal from on-chip timers | | dac_chx_trg12 (x = 1, 2) | lptim2_out | Internal signal from on-chip timers | | dac_chx_trg13 (x = 1, 2) | exti9 | External pin | Table 82. DAC interconnection #### 16.4.3 DAC channel enable Each DAC channel can be powered on by setting its corresponding ENx bit in the DAC_CR register. The DAC channel is then enabled after a $t_{WAKFIJP}$ startup time. Note: The ENx bit enables the analog DAC channelx only. The DAC channelx digital interface is enabled even if the ENx bit is reset. #### 16.4.4 DAC data format Depending on the selected configuration mode, the data have to be written into the specified register as described below: Single DAC channel There are three possibilities: - 8-bit right alignment: the software has to load data into the DAC_DHR8Rx[7:0] bits (stored into the DHRx[11:4] bits) - 12-bit left alignment: the software has to load data into the DAC_DHR12Lx [15:4] bits (stored into the DHRx[11:0] bits) - 12-bit right alignment: the software has to load data into the DAC_DHR12Rx [11:0] bits (stored into the DHRx[11:0] bits) Depending on the loaded DAC_DHRyyyx register, the data written by the user is shifted and stored into the corresponding DHRx (data holding registerx, which are internal non-memory-mapped registers). The DHRx register is then loaded into the DORx register either automatically, by software trigger or by an external event trigger. Figure 60. Data registers in single DAC channel mode Dual DAC channels (when available) There are three possibilities: - 8-bit right alignment: data for DAC channel1 to be loaded into the DAC_DHR8RD [7:0] bits (stored into the DHR1[11:4] bits) and data for DAC channel2 to be loaded into the DAC_DHR8RD [15:8] bits (stored into the DHR2[11:4] bits) - 12-bit left alignment: data for DAC channel1 to be loaded into the DAC_DHR12LD [15:4] bits (stored into the DHR1[11:0] bits) and data for DAC channel2 to be loaded into the DAC_DHR12LD [31:20] bits (stored into the DHR2[11:0] bits) - 12-bit right alignment: data for DAC channel1 to be loaded into the DAC_DHR12RD [11:0] bits (stored into the DHR1[11:0] bits) and data for DAC channel2 to be loaded into the DAC_DHR12RD [27:16] bits (stored into the DHR2[11:0] bits) Depending on the loaded DAC_DHRyyyD register, the data written by the user is shifted and stored into DHR1 and DHR2 (data holding registers, which are internal non-memory-mapped registers). The DHR1 and DHR2 registers are then loaded into the DAC_DOR1 and DOR2 registers, respectively, either automatically, by software trigger or by an external event trigger. 31 24 15 7 0 8-bit right aligned 12-bit left aligned 12-bit right aligned Figure 61. Data registers in dual DAC channel mode 5/ RM0444 Rev 5 409/1390 #### 16.4.5 **DAC** conversion The DAC DORx cannot be written directly and any data transfer to the DAC channelx must be performed by loading the DAC DHRx register (write operation to DAC DHR8Rx, DAC_DHR12Lx, DAC_DHR12Rx, DAC_DHR8RD, DAC_DHR12RD or DAC_DHR12LD). Data stored in the DAC_DHRx register are automatically transferred to the DAC_DORx register after one dac pclk clock cycle, if no hardware trigger is selected (TENx bit in DAC CR register is reset). However, when a hardware trigger is selected (TENx bit in DAC_CR register is set) and a trigger occurs, the transfer is performed three dac_pclk clock cycles after the trigger signal. When DAC_DORx is loaded with the DAC_DHRx contents, the analog output voltage becomes available after a time t_{SETTLING} that depends on the power supply voltage and the analog output load. #### 16.4.6 DAC output voltage Digital inputs are converted to output voltages on a linear conversion between 0 and V_{RFF+}. The analog output voltages on each DAC channel pin are determined by the following equation: DACoutput = $$V_{REF} \times \frac{DOR}{4096}$$ #### 16.4.7 **DAC** trigger selection If the TENx control bit is set, the conversion can then be triggered by an external event (timer counter, external interrupt line). The TSELx[3:0] control bits determine which out of 16 possible events triggers the conversion as shown in TSELx[3:0] bits of the DAC CR register. These events can be either the software trigger or hardware triggers. Refer to the interconnection table in Section 16.4.2: DAC pins and internal signals. Each time a DAC interface detects a rising edge on the selected trigger source (refer to the table below), the last data stored into the DAC DHRx register are transferred into the DAC DORx register. The DAC DORx register is updated three dac pclk cycles after the trigger occurs. If the software trigger is selected, the conversion starts once the SWTRIG bit is set. SWTRIG is reset by hardware once the DAC_DORx register has been loaded with the DAC_DHRx register contents. Note: TSELx[3:0] bit cannot be changed when the ENx bit is set. When software trigger is selected, the transfer from the DAC_DHRx register to the DAC_DORx register takes only one dac_pclk clock cycle. ## 16.4.8 DMA requests Each DAC channel has a DMA capability. Two DMA channels are used to service DAC channel DMA requests. When an external trigger (but not a software trigger) occurs while the DMAENx bit is set, the value of the DAC_DHRx register is transferred into the DAC_DORx register when the transfer is complete, and a DMA request is generated. In dual mode, if both DMAENx bits are set, two DMA requests are generated. If only one DMA request is needed, only the corresponding DMAENx bit must be set. In this way, the application can manage both DAC channels in dual mode by using one DMA request and a unique DMA channel. As DAC_DHRx to DAC_DORx data transfer occurred before the DMA request, the very first data has to be written to the DAC_DHRx before the first trigger event occurs. #### **DMA** underrun The DAC DMA request is not queued so that if a second external trigger arrives before the acknowledgment for the first external trigger is received (first request), then no new request is issued and the DMA channelx underrun flag DMAUDRx in the DAC_SR register is set, reporting the error condition. The DAC channelx continues to convert old data. The software must clear the DMAUDRx flag by writing 1, clear the DMAEN bit of the used DMA stream and re-initialize both DMA and DAC channelx to restart the
transfer correctly. The software must modify the DAC trigger conversion frequency or lighten the DMA workload to avoid a new DMA underrun. Finally, the DAC conversion could be resumed by enabling both DMA data transfer and conversion trigger. For each DAC channelx, an interrupt is also generated if its corresponding DMAUDRIEx bit in the DAC_CR register is enabled. ## 16.4.9 Noise generation In order to generate a variable-amplitude pseudonoise, an LFSR (linear feedback shift register) is available. DAC noise generation is selected by setting WAVEx[1:0] to 01. The preloaded value in LFSR is 0xAAA. This register is updated three dac_pclk clock cycles after each trigger event, following a specific calculation algorithm. RM0444 Rev 5 411/1390 Figure 63. DAC LFSR register calculation algorithm The LFSR value, that may be masked partially or totally by means of the MAMPx[3:0] bits in the DAC_CR register, is added up to the DAC_DHRx contents without overflow and this value is then transferred into the DAC_DORx register. If LFSR is 0x0000, a '1 is injected into it (antilock-up mechanism). It is possible to reset LFSR wave generation by resetting the WAVEx[1:0] bits. Figure 64. DAC conversion (SW trigger enabled) with LFSR wave generation Note: The DAC trigger must be enabled for noise generation by setting the TENx bit in the DAC CR register. # 16.4.10 Triangle-wave generation It is possible to add a small-amplitude triangular waveform on a DC or slowly varying signal. DAC triangle-wave generation is selected by setting WAVEx[1:0] to 10". The amplitude is configured through the MAMPx[3:0] bits in the DAC_CR register. An internal triangle counter is incremented three dac_pclk clock cycles after each trigger event. The value of this counter is then added to the DAC_DHRx register without overflow and the sum is transferred into the DAC_DORx register. The triangle counter is incremented as long as it is less than the maximum amplitude defined by the MAMPx[3:0] bits. Once the configured amplitude is reached, the counter is decremented down to 0, then incremented again and so on. It is possible to reset triangle wave generation by resetting the WAVEx[1:0] bits. Figure 66. DAC conversion (SW trigger enabled) with triangle wave generation Note: The DAC trigger must be enabled for triangle wave generation by setting the TENx bit in the DAC_CR register. The MAMPx[3:0] bits must be configured before enabling the DAC, otherwise they cannot be changed. #### 16.4.11 DAC channel modes Each DAC channel can be configured in Normal mode or Sample and hold mode. The output buffer can be enabled to allow a high drive capability. Before enabling output buffer, the voltage offset needs to be calibrated. This calibration is performed at the factory (loaded after reset) and can be adjusted by software during application operation. #### Normal mode In Normal mode, there are four combinations, by changing the buffer state and by changing the DAC OUTx pin interconnections. To enable the output buffer, the MODEx[2:0] bits in DAC_MCR register must be: - 000: DAC is connected to the external pin - 001: DAC is connected to external pin and to on-chip peripherals To disable the output buffer, the MODEx[2:0] bits in DAC_MCR register must be: - 010: DAC is connected to the external pin - 011: DAC is connected to on-chip peripherals ### Sample and hold mode In Sample and hold mode, the DAC core converts data on a triggered conversion, and then holds the converted voltage on a capacitor. When not converting, the DAC cores and buffer are completely turned off between samples and the DAC output is tri-stated, therefore reducing the overall power consumption. A stabilization period, which value depends on the buffer state, is required before each new conversion. In this mode, the DAC core and all corresponding logic and registers are driven by the LSI low-speed clock (dac_hold_ck) in addition to the dac_pclk clock, allowing to use the DAC channels in deep low power modes such as Stop mode. The LSI low-speed clock (dac_hold_ck) must not be stopped when the Sample and hold mode is enabled. The sample/hold mode operations can be divided into 3 phases: - Sample phase: the sample/hold element is charged to the desired voltage. The charging time depends on capacitor value (internal or external, selected by the user). The sampling time is configured with the TSAMPLEx[9:0] bits in DAC_SHSRx register. During the write of the TSAMPLEx[9:0] bits, the BWSTx bit in DAC_SR register is set to 1 to synchronize between both clocks domains (APB and low speed clock) and allowing the software to change the value of sample phase during the DAC channel operation - 2. Hold phase: the DAC output channel is tri-stated, the DAC core and the buffer are turned off, to reduce the current consumption. The hold time is configured with the THOLDx[9:0] bits in DAC SHHR register - Refresh phase: the refresh time is configured with the TREFRESHx[7:0] bits in DAC SHRR register The timings for the three phases above are in units of LSI clock periods. As an example, to configure a sample time of 350 μ s, a hold time of 2 ms and a refresh time of 100 μ s assuming LSI ~32 KHz is selected: ``` 12 cycles are required for sample phase: TSAMPLEx[9:0] = 11, 62 cycles are required for hold phase: THOLDx[9:0] = 62, and 4 cycles are required for refresh period: TREFRESHx[7:0] = 4. ``` In this example, the power consumption is reduced by almost a factor of 15 versus Normal modes. The formulas to compute the right sample and refresh timings are described in the table below, the Hold time depends on the leakage current. Table 83. Sample and refresh timings | Buffer
State | t _{SAMP} ⁽¹⁾⁽²⁾ | t _{REFRESH} (2)(3) | |-----------------|---|--| | Enable | 7 μs + (10*R _{BON} *C _{SH}) | 7 μ s + ($R_{BON}^{*}C_{SH}^{}$)* $In(2*N_{LSB}^{})$ | | Disable | 3 μs + (10*R _{BOFF} *C _{SH}) | 3 μ s + ($R_{BOFF}^*C_{SH}$)* $In(2*N_{LSB})$ | - 1. In the above formula the settling to the desired code value with ½ LSB or accuracy requires 10 constant time for 12 bits resolution. For 8 bits resolution, the settling time is 7 constant time. - 2. C_{SH} is the capacitor in Sample and hold mode. - 3. The tolerated voltage drop during the hold phase "Vd" is represented by the number of LSBs after the capacitor discharging with the output leakage current. The settling back to the desired value with ½ LSB error accuracy requires ln(2*Nlsb) constant time of the DAC. ## Example of the sample and refresh time calculation with output buffer on The values used in the example below are provided as indication only. Please refer to the product datasheet for product data. ``` C_{SH} = 100 nF ``` V_{DD} = 3.0 V Sampling phase: $$t_{SAMP} = 7 \mu s + (10 * 2000 * 100 * 10^{-9}) = 2.007 ms$$ (where $R_{BON} = 2 k\Omega$) Refresh phase: $$t_{REFRESH}$$ = 7 µs + (2000 * 100 * 10⁻⁹) * In(2*10) = 606.1 µs (where N_{LSB} = 10 (10 LSB drop during the hold phase) Hold phase: $$D_{v} = i_{leak} * t_{hold} / C_{SH} = 0.0073 \text{ V (10 LSB of 12bit at 3 V)}$$ $i_{leak} = 150 \text{ nA (worst case on the IO leakage on all the temperature range)}$ $t_{hold} = 0.0073 * 100 * 10^{-9} / (150 * 10^{-9}) = 4.867 \text{ ms}$ RM0444 Rev 5 415/1390 Figure 67. DAC Sample and hold mode phase diagram Like in Normal mode, the Sample and hold mode has different configurations. To enable the output buffer, MODEx[2:0] bits in DAC_MCR register must be set to: - 100: DAC is connected to the external pin - 101: DAC is connected to external pin and to on chip peripherals To disabled the output buffer, MODEx[2:0] bits in DAC_MCR register must be set to: - 110: DAC is connected to external pin and to on chip peripherals - 111: DAC is connected to on chip peripherals When MODEx[2:0] bits are equal to 111, an internal capacitor, C_{Lint} holds the voltage output of the DAC core and then drive it to on-chip peripherals. All Sample and hold phases are interruptible, and any change in DAC_DHRx immediately triggers a new sample phase. MODEx[2:0] Mode **Buffer Output connections** 0 0 0 Connected to external pin Enabled Connected to external pin and to on chip-peripherals (such as 0 0 1 comparators) Normal mode 0 1 0 Connected to external pin Disabled 0 1 1 Connected to on chip peripherals (such as comparators) Table 84. Channel output modes summary | МО | DEx[| 2:0] | Mode | Buffer | Output connections | |----|------|------|------------|----------|--| | 1 | 0 | 0 | | | Connected to external pin | | 1 | 0 | 1 | Sample and | Enabled | Connected to external pin and to on chip peripherals (such as comparators) | | 1 | 1 | 0 | hold mode | Disabled | Connected to external pin and to on chip peripherals (such as comparators) | | 1 | 1 | 1 | | | Connected to on chip peripherals (such as comparators) | Table 84. Channel output modes summary (continued) #### 16.4.12 DAC channel buffer calibration The transfer function for an N-bit digital-to-analog converter (DAC) is: $$V_{out} = ((D/2^{N-1}) \times G \times V_{ref}) + V_{OS}$$ Where V_{OUT} is the analog output, D is the digital input, G is the gain, V_{ref} is the nominal full-scale voltage, and V_{os} is the offset voltage. For an ideal DAC channel, G = 1 and V_{os} = 0. Due to output buffer characteristics, the voltage offset may differ from part-to-part and introduce an absolute offset error on the analog output. To compensate the V_{os} , a calibration is required by a trimming technique. The calibration is only valid when the DAC channelx is operating with buffer enabled (MODEx[2:0] = 000b or 001b or 100b or 101b). if applied in other modes when the buffer is off, it has no effect. During the calibration: - The buffer output is disconnected from the pin internal/external connections and put in tristate mode (HiZ).
- The buffer acts as a comparator to sense the middle-code value 0x800 and compare it to VREF+/2 signal through an internal bridge, then toggle its output signal to 0 or 1 depending on the comparison result (CAL_FLAGx bit). Two calibration techniques are provided: - Factory trimming (default setting) The DAC buffer offset is factory trimmed. The default value of OTRIMx[4:0] bits in DAC_CCR register is the factory trimming value and it is loaded once DAC digital interface is reset. - User trimming The user trimming can be done when the operating conditions differs from nominal factory trimming conditions and in particular when V_{DDA} voltage, temperature, VREF+ values change and can be done at any point during application by software. Note: Refer to the datasheet for more details of the Nominal factory trimming conditions In addition, when V_{DD} is removed (example the device enters in STANDBY or VBAT modes) the calibration is required. The steps to perform a user trimming calibration are as below: RM0444 Rev 5 417/1390 - If the DAC channel is active, write 0 to ENx bit in DAC CR to disable the channel. - 2. Select a mode where the buffer is enabled, by writing to DAC_MCR register, MODEx[2:0] = 000b or 001b or 100b or 101b. - 3. Start the DAC channelx calibration, by setting the CENx bit in DAC CR register to 1. - 4. Apply a trimming algorithm: - a) Write a code into OTRIMx[4:0] bits, starting by 00000b. - b) Wait for t_{TRIM} delay. - c) Check if CAL_FLAGx bit in DAC_SR is set to 1. - d) If CAL_FLAGx is set to 1, the OTRIMx[4:0] trimming code is found and can be used during *device* operation to compensate the output value, else increment OTRIMx[4:0] and repeat sub-steps from (a) to (d) again. The software algorithm may use either a successive approximation or dichotomy techniques to compute and set the content of OTRIMx[4:0] bits in a faster way. The commutation/toggle of CAL_FLAGx bit indicates that the offset is correctly compensated and the corresponding trim code must be kept in the OTRIMx[4:0] bits in DAC_CCR register. Note: A t_{TRIM} delay must be respected between the write to the OTRIMx[4:0] bits and the read of the CAL_FLAGx bit in DAC_SR register in order to get a correct value. This parameter is specified into datasheet electrical characteristics section. If V_{DDA} , VREF+ and temperature conditions do not change during device operation while it enters more often in standby and VBAT mode, the software may store the OTRIMx[4:0] bits found in the first user calibration in the flash or in back-up registers. then to load/write them directly when the device power is back again thus avoiding to wait for a new calibration time. When CENx bit is set, it is not allowed to set ENx bit. # 16.4.13 Dual DAC channel conversion modes (if dual channels are available) To efficiently use the bus bandwidth in applications that require the two DAC channels at the same time, three dual registers are implemented: DHR8RD, DHR12RD and DHR12LD. A unique register access is then required to drive both DAC channels at the same time. For the wave generation, no accesses to DHRxxxD registers are required. As a result, two output channels can be used either independently or simultaneously. 11 conversion modes are possible using the two DAC channels and these dual registers. All the conversion modes can nevertheless be obtained using separate DHRx registers if needed. All modes are described in the paragraphs below. # Independent trigger without wave generation To configure the DAC in this conversion mode, the following sequence is required: - Set the two DAC channel trigger enable bits TEN1 and TEN2. - Configure different trigger sources by setting different values in the TSEL1 and TSEL2 bitfields. - 3. Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD). 47/ When a DAC channel1 trigger arrives, the DHR1 register is transferred into DAC_DOR1 (three dac_pclk clock cycles later). When a DAC channel2 trigger arrives, the DHR2 register is transferred into DAC_DOR2 (three dac_pclk clock cycles later). ### Independent trigger with single LFSR generation To configure the DAC in this conversion mode, the following sequence is required: - 1. Set the two DAC channel trigger enable bits TEN1 and TEN2. - Configure different trigger sources by setting different values in the TSEL1 and TSEL2 bitfields. - 3. Configure the two DAC channel WAVEx[1:0] bits as 01 and the same LFSR mask value in the MAMPx[3:0] bits. - Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD). When a DAC channel1 trigger arrives, the LFSR1 counter, with the same mask, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three dac_pclk clock cycles later). Then the LFSR1 counter is updated. When a DAC channel2 trigger arrives, the LFSR2 counter, with the same mask, is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three dac_pclk clock cycles later). Then the LFSR2 counter is updated. ### Independent trigger with different LFSR generation To configure the DAC in this conversion mode, the following sequence is required: - Set the two DAC channel trigger enable bits TEN1 and TEN2. - 2. Configure different trigger sources by setting different values in the TSEL1 and TSEL2 bitfields. - 3. Configure the two DAC channel WAVEx[1:0] bits as 01 and set different LFSR masks values in the MAMP1[3:0] and MAMP2[3:0] bits. - 4. Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD). When a DAC channel1 trigger arrives, the LFSR1 counter, with the mask configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three dac_pclk clock cycles later). Then the LFSR1 counter is updated. When a DAC channel2 trigger arrives, the LFSR2 counter, with the mask configured by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three dac_pclk clock cycles later). Then the LFSR2 counter is updated. RM0444 Rev 5 419/1390 ### Independent trigger with single triangle generation To configure the DAC in this conversion mode, the following sequence is required: - 1. Set the two DAC channel trigger enable bits TEN1 and TEN2. - Configure different trigger sources by setting different values in the TSEL1 and TSEL2 bitfields. - Configure the two DAC channel WAVEx[1:0] bits as 1x and the same maximum amplitude value in the MAMPx[3:0] bits. - 4. Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD). When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with the same triangle amplitude, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three dac_pclk clock cycles later). The DAC channel1 triangle counter is then updated. When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with the same triangle amplitude, is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three dac_pclk clock cycles later). The DAC channel2 triangle counter is then updated. ### Independent trigger with different triangle generation To configure the DAC in this conversion mode, the following sequence is required: - 1. Set the two DAC channel trigger enable bits TEN1 and TEN2. - Configure different trigger sources by setting different values in the TSEL1 and TSEL2 bits - 3. Configure the two DAC channel WAVEx[1:0] bits as 1x and set different maximum amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits. - 4. Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD). When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with a triangle amplitude configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three dac_pclk clock cycles later). The DAC channel1 triangle counter is then updated. When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with a triangle amplitude configured by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three dac_pclk clock cycles later). The DAC channel2 triangle counter is then updated. ### Simultaneous software start To configure the DAC in this conversion mode, the following sequence is required: Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD). In this configuration, one dac_pclk clock cycle later, the DHR1 and DHR2 registers are transferred into DAC DOR1 and DAC DOR2, respectively. #### Simultaneous trigger without wave generation To configure the DAC in this conversion mode, the following sequence is required: - 1. Set the two DAC channel trigger enable bits TEN1 and TEN2. - 2. Configure the same trigger source for both DAC channels by setting the same value in the TSEL1 and TSEL2 bitfields. - Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD). When a trigger arrives, the DHR1 and DHR2 registers are transferred into DAC_DOR1 and DAC_DOR2, respectively (after three dac_pclk clock cycles). ## Simultaneous trigger with single LFSR generation - To configure the DAC in this conversion mode, the following sequence is required: - 2. Set the two DAC channel trigger enable bits TEN1 and TEN2. - 3. Configure the same trigger source for both DAC channels by setting the same value in the TSEL1 and TSEL2 bitfields. - 4. Configure the two DAC channel WAVEx[1:0] bits as 01 and the same LFSR mask value in the MAMPx[3:0] bits. - Load the dual DAC channel data to the desired DHR register (DHR12RD, DHR12LD or DHR8RD). When a trigger arrives, the LFSR1 counter, with the same mask, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three dac_pclk clock cycles later). The LFSR1 counter is then updated. At the same time, the LFSR2 counter, with the same mask, is added to the DHR2
register and the sum is transferred into DAC_DOR2 (three dac_pclk clock cycles later). The LFSR2 counter is then updated. ### Simultaneous trigger with different LFSR generation To configure the DAC in this conversion mode, the following sequence is required: - 1. Set the two DAC channel trigger enable bits TEN1 and TEN2 - 2. Configure the same trigger source for both DAC channels by setting the same value in the TSEL1 and TSEL2 bitfields. - 3. Configure the two DAC channel WAVEx[1:0] bits as 01 and set different LFSR mask values using the MAMP1[3:0] and MAMP2[3:0] bits. - 4. Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD). When a trigger arrives, the LFSR1 counter, with the mask configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three dac_pclk clock cycles later). The LFSR1 counter is then updated. At the same time, the LFSR2 counter, with the mask configured by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three dac_pclk clock cycles later). The LFSR2 counter is then updated. #### Simultaneous trigger with single triangle generation To configure the DAC in this conversion mode, the following sequence is required: RM0444 Rev 5 421/1390 - Set the two DAC channel trigger enable bits TEN1 and TEN2 - 2. Configure the same trigger source for both DAC channels by setting the same value in the TSEL1 and TSEL2 bitfields. - 3. Configure the two DAC channel WAVEx[1:0] bits as 1x and the same maximum amplitude value using the MAMPx[3:0] bits. - 4. Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD). When a trigger arrives, the DAC channel1 triangle counter, with the same triangle amplitude, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three dac pclk clock cycles later). The DAC channel1 triangle counter is then updated. At the same time, the DAC channel2 triangle counter, with the same triangle amplitude, is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three dac_pclk clock cycles later). The DAC channel2 triangle counter is then updated. ### Simultaneous trigger with different triangle generation To configure the DAC in this conversion mode, the following sequence is required: - 1. Set the two DAC channel trigger enable bits TEN1 and TEN2 - 2. Configure the same trigger source for both DAC channels by setting the same value in the TSEL1 and TSEL2 bitfields. - 3. Configure the two DAC channel WAVEx[1:0] bits as 1x and set different maximum amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits. - 4. Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD). When a trigger arrives, the DAC channel1 triangle counter, with a triangle amplitude configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB clock cycles later). Then the DAC channel1 triangle counter is updated. At the same time, the DAC channel2 triangle counter, with a triangle amplitude configured by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three dac_pclk clock cycles later). Then the DAC channel2 triangle counter is updated. # 16.5 DAC low-power modes Table 85. Effect of low-power modes on DAC | Mode | Description | |----------|---| | Sleep | No effect, DAC used with DMA | | Stop 0 | DAC remains active with a static value, if Sample and hold mode is selected using LSI clock | | Standby | The DAC peripheral is powered down and must be reinitialized after exiting | | Shutdown | Standby or Shutdown mode. | # 16.6 DAC interrupts **Table 86. DAC interrupts** | Interrupt
acronym | Interrupt
event | Event flag | Enable control bit | Interrupt clear method | Exit Sleep
mode | Exit Stop
mode | Exit Standby mode | |----------------------|--------------------|------------|--------------------|------------------------|--------------------|-------------------|-------------------| | DAC | DMA
underrun | DMAUDRx | DMAUDRI
Ex | Write
DMAUDRx = 1 | Yes | No | No | 423/1390 # 16.7 DAC registers Refer to Section 1 on page 53 for a list of abbreviations used in register descriptions. The peripheral registers have to be accessed by words (32-bit). # 16.7.1 DAC control register (DAC_CR) Address offset: 0x00 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|---------------|------------|------------|-----|---------|----|------|---------|----------|----------|----------|----------|------|-----| | Res. | CEN2 | DMAU
DRIE2 | DMAE
N2 | | MAM | P2[3:0] | | WAVE | [2[1:0] | TSEL2[3] | TSEL2[2] | TSEL2[1] | TSEL2[0] | TEN2 | EN2 | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | DMAU | DMAE | MAMP1[3:0] | | | | | | | | | | | | | Res. | CEN1 | DRIE1 | N1 | | MAM | P1[3:0] | | WAVE | [1:0] | TSEL1[3] | TSEL1[2] | TSEL1[1] | TSEL1[0] | TEN1 | EN1 | Bit 31 Reserved, must be kept at reset value. #### Bit 30 CEN2: DAC channel2 calibration enable This bit is set and cleared by software to enable/disable DAC channel2 calibration, it can be written only if EN2 bit is set to 0 into DAC_CR (the calibration mode can be entered/exit only when the DAC channel is disabled) Otherwise, the write operation is ignored. 0: DAC channel2 in Normal operating mode 1: DAC channel2 in calibration mode Note: This bit is available only on dual-channel DACs. Refer to Section 16.3: DAC implementation. #### Bit 29 DMAUDRIE2: DAC channel2 DMA underrun interrupt enable This bit is set and cleared by software. 0: DAC channel2 DMA underrun interrupt disabled 1: DAC channel2 DMA underrun interrupt enabled Note: This bit is available only on dual-channel DACs. Refer to Section 16.3: DAC implementation. ### Bit 28 DMAEN2: DAC channel2 DMA enable This bit is set and cleared by software. 0: DAC channel2 DMA mode disabled 1: DAC channel2 DMA mode enabled Note: This bit is available only on dual-channel DACs. Refer to Section 16.3: DAC implementation. #### Bits 27:24 MAMP2[3:0]: DAC channel2 mask/amplitude selector These bits are written by software to select mask in wave generation mode or amplitude in triangle generation mode. 0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1 0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3 0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7 0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15 0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31 0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63 0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127 0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255 1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511 1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023 1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047 ≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095 Note: These bits are available only on dual-channel DACs. Refer to Section 16.3: DAC implementation. #### Bits 23:22 WAVE2[1:0]: DAC channel2 noise/triangle wave generation enable These bits are set/reset by software. 00: wave generation disabled 01: Noise wave generation enabled 1x: Triangle wave generation enabled Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled) These bits are available only on dual-channel DACs. Refer to Section 16.3: DAC implementation. #### Bits 21:18 TSEL2[3:0]: DAC channel2 trigger selection These bits select the external event used to trigger DAC channel2 0000: SWTRIG2 0001: dac_ch2_trg1 0010: dac_ch2_trg2 --- 1111: dac_ch2_trg15 Refer to the trigger selection tables in *Section 16.4.2: DAC pins and internal signals* for details on trigger configuration and mapping. Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled). These bits are available only on dual-channel DACs. Refer to Section 16.3: DAC implementation. #### Bit 17 TEN2: DAC channel2 trigger enable This bit is set and cleared by software to enable/disable DAC channel2 trigger 0: DAC channel2 trigger disabled and data written into the DAC_DHR2 register are transferred one dac_pclk clock cycle later to the DAC_DOR2 register 1: DAC channel2 trigger enabled and data from the DAC_DHR2 register are transferred three dac_pclk clock cycles later to the DAC_DOR2 register Note: When software trigger is selected, the transfer from the DAC_DHR2 register to the DAC_DOR2 register takes only one dac_pclk clock cycle. These bits are available only on dual-channel DACs. Refer to Section 16.3: DAC implementation. RM0444 Rev 5 425/1390 #### Bit 16 EN2: DAC channel2 enable This bit is set and cleared by software to enable/disable DAC channel2. 0: DAC channel2 disabled 1: DAC channel2 enabled Note: These bits are available only on dual-channel DACs. Refer to Section 16.3: DAC implementation. Bit 15 Reserved, must be kept at reset value. #### Bit 14 CEN1: DAC channel1 calibration enable This bit is set and cleared by software to enable/disable DAC channel1 calibration, it can be written only if bit EN1=0 into DAC_CR (the calibration mode can be entered/exit only when the DAC channel is disabled) Otherwise, the write operation is ignored. 0: DAC channel1 in Normal operating mode 1: DAC channel1 in calibration mode #### Bit 13 DMAUDRIE1: DAC channel1 DMA Underrun Interrupt enable This bit is set and cleared by software. 0: DAC channel1 DMA Underrun Interrupt disabled 1: DAC channel1 DMA Underrun Interrupt enabled #### Bit 12 DMAEN1: DAC channel1 DMA enable This bit is set and cleared by software. 0: DAC channel1 DMA mode disabled 1: DAC channel1 DMA mode enabled ### Bits 11:8 MAMP1[3:0]: DAC channel1 mask/amplitude selector These bits are written by software to select mask in wave
generation mode or amplitude in triangle generation mode. 0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1 0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3 0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7 0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15 0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31 0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63 0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127 0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255 1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511 1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023 1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047 ≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095 ## Bits 7:6 WAVE1[1:0]: DAC channel1 noise/triangle wave generation enable These bits are set and cleared by software. 00: wave generation disabled 01: Noise wave generation enabled 1x: Triangle wave generation enabled Only used if bit TEN1 = 1 (DAC channel1 trigger enabled). ## Bits 5:2 TSEL1[3:0]: DAC channel1 trigger selection These bits select the external event used to trigger DAC channel1 0000: SWTRIG1 0001: dac_ch1_trg1 0010: dac_ch1_trg2 1111: dac ch1 trg15 Refer to the trigger selection tables in *Section 16.4.2: DAC pins and internal signals* for details on trigger configuration and mapping. Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled). #### Bit 1 TEN1: DAC channel1 trigger enable This bit is set and cleared by software to enable/disable DAC channel1 trigger. 0: DAC channel1 trigger disabled and data written into the DAC_DHR1 register are transferred one dac_pclk clock cycle later to the DAC_DOR1 register 1: DAC channel1 trigger enabled and data from the DAC_DHR1 register are transferred three dac_pclk clock cycles later to the DAC_DOR1 register Note: When software trigger is selected, the transfer from the DAC_DHR1 register to the DAC_DOR1 register takes only one dac_pclk clock cycle. #### Bit 0 EN1: DAC channel1 enable This bit is set and cleared by software to enable/disable DAC channel1. 0: DAC channel1 disabled 1: DAC channel1 enabled # 16.7.2 DAC software trigger register (DAC_SWTRGR) Address offset: 0x04 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------|---------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. SWTRIG2 | SWTRIG1 | | | | | | | | | | | | | | | | w | w | RM0444 Rev 5 427/1390 Bits 31:2 Reserved, must be kept at reset value. #### Bit 1 SWTRIG2: DAC channel2 software trigger This bit is set by software to trigger the DAC in software trigger mode. 0: No trigger 1: Trigger Note: This bit is cleared by hardware (one dac_pclk clock cycle later) once the DAC_DHR2 register value has been loaded into the DAC_DOR2 register. This bit is available only on dual-channel DACs. Refer to Section 16.3: DAC implementation. #### Bit 0 SWTRIG1: DAC channel1 software trigger This bit is set by software to trigger the DAC in software trigger mode. 0: No trigger 1: Trigger Note: This bit is cleared by hardware (one dac_pclk clock cycle later) once the DAC_DHR1 register value has been loaded into the DAC_DOR1 register. # 16.7.3 DAC channel1 12-bit right-aligned data holding register (DAC_DHR12R1) Address offset: 0x08 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------|------|------|------|------|------|---------------|------|------|------|------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11 | 10 | 9 | 8 | 7 | | 5
HR[11:0] | 4 | 3 | 2 | 1 | 0 | Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data These bits are written by software. They specify 12-bit data for DAC channel1. # 16.7.4 DAC channel1 12-bit left aligned data holding register (DAC_DHR12L1) Address offset: 0x0C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|-------|-----------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | DACC1 | DHR[11:0] | | | | | | Res. | Res. | Res. | Res. | | rw | | | | Bits 31:16 Reserved, must be kept at reset value. Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data These bits are written by software. They specify 12-bit data for DAC channel1. Bits 3:0 Reserved, must be kept at reset value. # 16.7.5 DAC channel1 8-bit right aligned data holding register (DAC_DHR8R1) Address offset: 0x10 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|--------|----------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | DACC1I | OHR[7:0] | | | | | | | | | | | | | rw Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data These bits are written by software. They specify 8-bit data for DAC channel1. # 16.7.6 DAC channel2 12-bit right aligned data holding register (DAC_DHR12R2) This register is available only on dual-channel DACs. Refer to Section 16.3: DAC implementation. Address offset: 0x14 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|--------|----------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | | | | | | DACC2D | HR[11:0] | | | | | | | | | | | rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data These bits are written by software. They specify 12-bit data for DAC channel2. RM0444 Rev 5 429/1390 # 16.7.7 DAC channel2 12-bit left aligned data holding register (DAC_DHR12L2) This register is available only on dual-channel DACs. Refer to *Section 16.3: DAC implementation*. Address offset: 0x18 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|--------|-----------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | DACC2E | DHR[11:0] | | | | | | Res. | Res. | Res. | Res. | Bits 31:16 Reserved, must be kept at reset value. Bits 15:4 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data These bits are written by software which specify 12-bit data for DAC channel2. Bits 3:0 Reserved, must be kept at reset value. # 16.7.8 DAC channel2 8-bit right-aligned data holding register (DAC_DHR8R2) This register is available only on dual-channel DACs. Refer to *Section 16.3: DAC implementation*. Address offset: 0x1C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|----------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 0 | 0 | 7 | | | | | 0 | - 4 | _ | | . • | 17 | 13 | 12 | 11 | 10 | 9 | 8 | 1 | 6 | 5 | 4 | 3 | 2 | 1 | U | | Res. / | | . 5 | | OHR[7:0] | | . 1 | | Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data These bits are written by software which specifies 8-bit data for DAC channel2. # 16.7.9 Dual DAC 12-bit right-aligned data holding register (DAC_DHR12RD) Address offset: 0x20 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|----------------|----------------|----|----|----|--------|----------|----|----|----|----|----| | Res. | Res. | Res. | Res. | | DACC2DHR[11:0] | | | | | | | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | | DACC1DHR[11:0] | | | | | | | | | | | | | Res. | Res. | Res. | Res. | | | | | | DACC1D | HR[11:0] | | | | | | Bits 31:28 Reserved, must be kept at reset value. Bits 27:16 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data These bits are written by software which specifies 12-bit data for DAC channel2. Bits 15:12 Reserved, must be kept at reset value. Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data These bits are written by software which specifies 12-bit data for DAC channel1. # 16.7.10 Dual DAC 12-bit left aligned data holding register (DAC_DHR12LD) Address offset: 0x24 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----------------|----|----|----|----|----|----|----|----|----|----|------|------|------|------| | | DACC2DHR[11:0] | | | | | | | | | | | | | Res. | Res. | | rw | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | DACC1DHR[11:0] | | | | | | | | | | | Res. | Res. | Res. | Res. | | rw | | | | Bits 31:20 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data These bits are written by software which specifies 12-bit data for DAC channel2. Bits 19:16 Reserved, must be kept at reset value. Bits 15:4
DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data These bits are written by software which specifies 12-bit data for DAC channel1. Bits 3:0 Reserved, must be kept at reset value. RM0444 Rev 5 431/1390 # 16.7.11 Dual DAC 8-bit right aligned data holding register (DAC_DHR8RD) Address offset: 0x28 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|----------------|------|------|------|------|------|------|------------|---------------|------|------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15 | 14 | 13 | | 11
DHR[7:0] | | 9 | 8 | 7 | 6 | 5 | 4
DACC1 | 3
DHR[7:0] | 2 | 1 | 0 | Bits 31:16 Reserved, must be kept at reset value. Bits 15:8 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data These bits are written by software which specifies 8-bit data for DAC channel2. Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data These bits are written by software which specifies 8-bit data for DAC channel1. # 16.7.12 DAC channel1 data output register (DAC_DOR1) Address offset: 0x2C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|----------------|------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | | DACC1DOR[11:0] | Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 DACC1DOR[11:0]: DAC channel1 data output These bits are read-only, they contain data output for DAC channel1. ## 16.7.13 DAC channel2 data output register (DAC_DOR2) This register is available only on dual-channel DACs. Refer to *Section 16.3: DAC implementation*. Address offset: 0x30 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|--------|----------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | | | | | | DACC2D | OR[11:0] | | | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | Bits 31:12 Reserved, must be kept at reset value. ### Bits 11:0 DACC2DOR[11:0]: DAC channel2 data output These bits are read-only, they contain data output for DAC channel2. ## 16.7.14 DAC status register (DAC_SR) Address offset: 0x34 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------------|---------------------|-------------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------|-----------|-----------|-----------| | BWST2 | CAL_
FLAG2 | DMAU
DR2 | Res. | r | r | rc_w1 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
BWST1 | 14
CAL_
FLAG1 | 13
DMAU
DR1 | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | Res. | 2
Res. | 1
Res. | 0
Res. | RM0444 Rev 5 433/1390 #### Bit 31 BWST2: DAC channel2 busy writing sample time flag This bit is systematically set just after Sample and hold mode enable. It is set each time the software writes the register DAC SHSR2, It is cleared by hardware when the write operation of DAC SHSR2 is complete. (It takes about 3 LSI periods of synchronization). 0:There is no write operation of DAC SHSR2 ongoing: DAC SHSR2 can be written 1:There is a write operation of DAC SHSR2 ongoing: DAC SHSR2 cannot be written Note: This bit is available only on dual-channel DACs. Refer to Section 16.3: DAC implementation. #### Bit 30 CAL_FLAG2: DAC channel2 calibration offset status This bit is set and cleared by hardware 0: calibration trimming value is lower than the offset correction value 1: calibration trimming value is equal or greater than the offset correction value Note: This bit is available only on dual-channel DACs. Refer to Section 16.3: DAC implementation. #### Bit 29 DMAUDR2: DAC channel2 DMA underrun flag This bit is set by hardware and cleared by software (by writing it to 1). 0: No DMA underrun error condition occurred for DAC channel2 1: DMA underrun error condition occurred for DAC channel2 (the currently selected trigger is driving DAC channel2 conversion at a frequency higher than the DMA service capability rate). Note: This bit is available only on dual-channel DACs. Refer to Section 16.3: DAC implementation. - Bit 28 Reserved, must be kept at reset value. - Bit 27 Reserved, must be kept at reset value. - Bits 26:16 Reserved, must be kept at reset value. #### Bit 15 BWST1: DAC channel1 busy writing sample time flag This bit is systematically set just after Sample and hold mode enable and is set each time the software writes the register DAC SHSR1, It is cleared by hardware when the write operation of DAC SHSR1 is complete. (It takes about 3 LSI periods of synchronization). 0:There is no write operation of DAC_SHSR1 ongoing: DAC_SHSR1 can be written 1:There is a write operation of DAC_SHSR1 ongoing: DAC_SHSR1 cannot be written #### Bit 14 CAL_FLAG1: DAC channel1 calibration offset status This bit is set and cleared by hardware 0: calibration trimming value is lower than the offset correction value 1: calibration trimming value is equal or greater than the offset correction value #### Bit 13 DMAUDR1: DAC channel1 DMA underrun flag This bit is set by hardware and cleared by software (by writing it to 1). - 0: No DMA underrun error condition occurred for DAC channel1 - 1: DMA underrun error condition occurred for DAC channel1 (the currently selected trigger is driving DAC channel1 conversion at a frequency higher than the DMA service capability rate) - Bit 12 Reserved, must be kept at reset value. - Bit 11 Reserved, must be kept at reset value. - Bits 10:0 Reserved, must be kept at reset value. ## 16.7.15 DAC calibration control register (DAC_CCR) Address offset: 0x38 Reset value: 0x00XX 00XX | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|----|----|----------|----|----| | Res. | С | TRIM2[4: | 0] | | | | | | | | | | | | | | rw | rw | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | С | TRIM1[4: | 0] | | | | | | | | | | | | | | rw | rw | rw | rw | rw | Bits 31:21 Reserved, must be kept at reset value. Bits 20:16 OTRIM2[4:0]: DAC channel2 offset trimming value These bits are available only on dual-channel DACs. Refer to Section 16.3: DAC implementation. Bits 15:5 Reserved, must be kept at reset value. Bits 4:0 OTRIM1[4:0]: DAC channel1 offset trimming value ## 16.7.16 DAC mode control register (DAC_MCR) Address offset: 0x3C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|----|----------|----| | Res. N | IODE2[2: | 0] | | | | | | | | | | | | | | | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. N | IODE1[2: | 0] | | | | | | | | | | | | | | | rw | rw | rw | Bits 31:26 Reserved, must be kept at reset value. Bit 25 Reserved, must be kept at reset value. Bit 24 Reserved, must be kept at reset value. Bits 23:19 Reserved, must be kept at reset value. RM0444 Rev 5 435/1390 #### Bits 18:16 MODE2[2:0]: DAC channel2 mode These bits can be written only when the DAC is disabled and not in the calibration mode (when bit EN2=0 and bit CEN2 =0 in the DAC_CR register). If EN2=1 or CEN2 =1 the write operation is ignored. They can be set and cleared by software to select the DAC channel2 mode: - DAC channel2 in Normal mode - 000: DAC channel2 is connected to external pin with Buffer enabled - 001: DAC channel2 is connected to external pin and to on chip peripherals with buffer enabled - 010: DAC channel2 is connected to external pin with buffer disabled - 011: DAC channel2 is connected to on chip peripherals with Buffer disabled - DAC channel2 in Sample and hold mode - 100: DAC channel2 is connected to external pin with Buffer enabled - 101: DAC channel2 is connected to external pin and to on chip peripherals with Buffer enabled - 110: DAC channel2 is connected to external pin and to on chip peripherals with Buffer disabled - 111: DAC channel2 is connected to on chip peripherals with Buffer disabled Note: This register can be modified only when EN2=0. Refer to Section 16.3: DAC implementation for the availability of DAC channel2. - Bits 15:14 Reserved, must be kept at reset value. - Bits 13:10 Reserved, must be kept at reset value. - Bit 9 Reserved, must be kept at reset value. - Bit 8 Reserved, must be kept at reset value. - Bits 7:3 Reserved, must be kept at reset value. - Bits 2:0 MODE1[2:0]: DAC channel1 mode These bits can be written only when the DAC is disabled and not in the calibration mode (when bit EN1=0 and bit CEN1 =0 in the DAC_CR register). If EN1=1 or CEN1 =1 the write operation is ignored. They can be set and cleared by software to select the DAC channel1 mode: - DAC channel1 in Normal mode - 000: DAC channel1 is connected to external pin with Buffer enabled - 001: DAC channel1 is connected to external pin and to on chip peripherals with Buffer enabled - 010: DAC channel1 is connected to external pin with Buffer disabled - 011: DAC channel1 is connected to on chip peripherals with Buffer disabled - DAC channel1 in sample & hold mode - 100: DAC channel1 is connected to external pin with Buffer enabled - 101: DAC
channel1 is connected to external pin and to on chip peripherals with Buffer enabled - 110: DAC channel1 is connected to external pin and to on chip peripherals with Buffer disabled - 111: DAC channel1 is connected to on chip peripherals with Buffer disabled Note: This register can be modified only when EN1=0. # 16.7.17 DAC channel1 sample and hold sample time register (DAC_SHSR1) Address offset: 0x40 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------------|------|------|------|------|------|------|------|--------|---------------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | | | 40 | 4.4 | 40 | _ | _ | | | | | _ | _ | | | | 10 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | 13
Res. | Res. | Res. | Res. | 9 | | / | 6 | TSAMPI | 4
LE1[9:0] | 3 | 2 | 1 | 0 | Bits 31:10 Reserved, must be kept at reset value. Bits 9:0 TSAMPLE1[9:0]: DAC channel1 sample time (only valid in Sample and hold mode) These bits can be written when the DAC channel1 is disabled or also during normal operation. in the latter case, the write can be done only when BWST1 of DAC_SR register is low, If BWST1=1, the write operation is ignored. Note: It represents the number of LSI clocks to perform a sample phase. Sampling time = (TSAMPLE1[9:0] + 1) x LSI clock period. # 16.7.18 DAC channel2 sample and hold sample time register (DAC SHSR2) This register is available only on dual-channel DACs. Refer to Section 16.3: DAC implementation. Address offset: 0x44 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|-------|----------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | Res. | | | | | TSAMP | LE2[9:0] | | | | | | | | | | | | rw Bits 31:10 Reserved, must be kept at reset value. Bits 9:0 **TSAMPLE2[9:0]:** DAC channel2 sample time (only valid in Sample and hold mode) These bits can be written when the DAC channel2 is disabled or also during normal operation. in the latter case, the write can be done only when BWST2 of DAC_SR register is low, if BWST2=1, the write operation is ignored. Note: It represents the number of LSI clocks to perform a sample phase. Sampling time = $(TSAMPLE1[9:0] + 1) \times LSI$ clock period. RM0444 Rev 5 437/1390 ## 16.7.19 DAC sample and hold time register (DAC_SHHR) Address offset: 0x48 Reset value: 0x0001 0001 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|----|----|----|----|------|---------|----|----|----|----| | Res. | Res. | Res. | Res. | Res. | Res. | | | | | THOL | D2[9:0] | | | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | Res. | | | | | THOL | D1[9:0] | | | | | | | | | | | | rw Bits 31:26 Reserved, must be kept at reset value. Bits 25:16 THOLD2[9:0]: DAC channel2 hold time (only valid in Sample and hold mode). Hold time= (THOLD[9:0]) x LSI clock period Note: This register can be modified only when EN2=0. These bits are available only on dual-channel DACs. Refer to Section 16.3: DAC implementation. Bits 15:10 Reserved, must be kept at reset value. Bits 9:0 THOLD1[9:0]: DAC channel1 hold time (only valid in Sample and hold mode) Hold time= (THOLD[9:0]) x LSI clock period Note: This register can be modified only when EN1=0. Note: These bits can be written only when the DAC channel is disabled and in Normal operating mode (when bit ENx=0 and bit CENx=0 in the DAC_CR register). If ENx=1 or CENx=1 the write operation is ignored. ## 16.7.20 DAC sample and hold refresh time register (DAC_SHRR) Address offset: 0x4C Reset value: 0x0001 0001 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|----|----|----|--------|----------|----|----|----| | Res. | | | TREFRE | SH2[7:0] | | | | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | TREFRE | SH1[7:0] | | | | | | | | | | | | | rw Bits 31:24 Reserved, must be kept at reset value. Bits 23:16 TREFRESH2[7:0]: DAC channel2 refresh time (only valid in Sample and hold mode) Refresh time= (TREFRESH[7:0]) x LSI clock period Note: This register can be modified only when EN2=0. These bits are available only on dual-channel DACs. Refer to Section 16.3: DAC implementation. Bits 15:8 Reserved, must be kept at reset value. Bits 7:0 TREFRESH1[7:0]: DAC channel1 refresh time (only valid in Sample and hold mode) Refresh time= (TREFRESH[7:0]) x LSI clock period Note: This register can be modified only when EN1=0. Note: These bits can be written only when the DAC channel is disabled and in Normal operating mode (when bit ENx=0 and bit CENx=0 in the DAC_CR register). If ENx=1 or CENx=1 the write operation is ignored. RM0444 Rev 5 439/1390 ## 16.7.21 DAC register map Table 87 summarizes the DAC registers. Table 87. DAC register map and reset values | Offset Register of name | | | _ | _ | | | | | | | | | - 9 | _ | CI I | | - P | | | | | 1 | | _ | | | | | | | | | | | |--|--------|-----------------|-------|-----------|------------------|--------|------|------------|-------|------|-------------|------|--------|--------|--------|--------|------|------|-------|-----------|-----------|--------|------|------------|------|----------|-------------|-------------|--------|--------|--------|--------|---------|---------| | Reset value | Offset | Register name | 31 | 30 | 53 | 28 | 27 | 56 | 52 | 24 | 23 | 77 | 17 | 70 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | ∞ | 2 | 9 | 2 | 4 | ဗ | 2 | l | 0 | | DAC | 0x00 | DAC_CR | Res. | CEN2 | DMAUDRIE2 | DMAEN2 | | MAMP2F3-01 | [0:0] | | WAVE 212-01 | | TSEL23 | TSEL22 | TSEL21 | TSEL20 | TEN2 | EN2 | Res. | CEN1 | DMAUDRIE1 | DMAEN1 | | MAMP1[3:0] | | | WAVE 1[1.0] | WAVE 1[1:0] | TSEL13 | TSEL12 | TSEL11 | TSEL10 | TEN1 | EN1 | | Reset value | | Reset value | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DAC DHR12R1 DAC DHR11R1 DACCIDHR[11:0] DACCIDHR[1 | 0x04 | | Res. SWTRIG2 | SWTRIG1 | | DHRIZEN | | Reset value | 0 | 0 | | DAC DHR721 | 0x08 | | Res. | | ı | [| DAC | C1[| OHR | [11: | 0] | ı | | | | MR-12L1 MR-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DAC DHR8F1 | 0x0C | DHR12L1 | Res. | | | | | | | | | | 1 | | Res. | Res. | Res. | Res. | | DAC DHR8R1 | | | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | DAC DAC DHR1Z2 Reset value v | 0x10 | DHR8R1 | Res. | | | | | | | | | DAC DAC DHR12RD DAC DHR12RD DAC DHR12RD DAC DAC DHR12RD DAC DA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DAC | 0x14 | | Res. | | | [| DAC | C2[| OHR | [11: | 0] | | | | | DHR1ŽIL Reset value | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DAC DHR8R2 | 0x18 | | Res. | | | | DAC | C2E | HR | [11: | 0] | | | | Res. | Res. | Res. | Res. | | DHR8R2 | | | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | ì | | DAC_DHR12RD B B B B B B B B B | 0x1C | | Res. | | DAC | C2I | OHF | [7:0 |] | | | DHR12RD Reset value DHR12RD DHR12LD | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DAC_DHR12LD Reset value 0 0 0 0 0 0 0 0 0 | 0x20 | | Res. | Res. | Res. | Res. | | | | С | AC | C2E | HR | [11:(| 0] | | | | Res. | Res. | Res. | Res. | | | | [| DAC | C1E
| OHR | [11: | 0] | | | | | DHR12LD | | Reset value | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | DAC DHR8RD DAC DHR8RD DAC | 0x24 | DAC_
DHR12LD | | | | [| DAC | C2E | HR | [11: | 0] | | | | Res. | Res. | Res. | Res. | | | | | DAC | C1E | HR | [11: | 0] | | | | Res. | Res. | Res. | Res. | | DHR8RD | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | i . | | DAC_DOR1 | 0x28 | | Res. | [| DAC | C2I | OHR | [7:0 |)] | | | | DAC | C1I | OHR | [7:0 | | | | 0x2C DOR1 2 3 3 2 2 2 2 2 2 2 2 3 2 </td <td></td> <td>0</td> | | | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x30 DAC_BR Reset value DAC_SR DAC | 0x2C | DOR1 | Res. | | | [| DAC | C1E | OOR | [11: | 0] | | | | | 0x30 DOR2 Reset value DAC_SR Reset value R | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | BWST2 | 0x30 | DAC_
DOR2 | Res. | | | | DAC | C2E | OOR | [11: | 0] | | | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0x34 | DAC_SR | BWST2 | CAL_FLAG2 | DMAUDR2 | Res. BWST1 | CAL_FLAG1 | DMAUDR1 | Res. | | | Reset value | 0 | 0 | 0 | | | | | | | | | | | | | | 0 | 0 | 0 | | | | | | | | | | | | | | Table 87. DAC register map and reset values (continued) | Offset | Register name | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 2 | 1 | 0 | |--------|---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|--------------|---| | 0x38 | DAC_CCR | Res. (| OTR | IM2 | 2[4:0 |] | Res. (| OTR | RIM1 | [4:0] | ı | | | Reset value | | | | | | | | | | | | Х | Х | Х | Х | Х | | | | | | | | | | | | Χ | Χ | Х | Χ | Х | | 0x3C | DAC_MCR | Res. | IODI
[2:0 | | Res. | ODE
[2:0] | | | | Reset value | | | | | | | | | | | | | | 0 | 0 | 0 | | | | | | | | | | | | | | 0 | 0 | 0 | | 0x40 | DAC_
SHSR1 | Res. | | | TSA | MP | LE1 | [9:0] |] | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x44 | DAC_
SHSR2 | Res. | | | TSA | MP | LE2 | [9:0 |] | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x48 | DAC_
SHHR | Res. | Res. | Res. | Res. | Res. | Res. | | | | TH | IOL | D2[9 | 0:0] | | | | Res. | Res. | Res. | Res. | Res. | Res. | | | | TH | IOLI | D1[9 | 9:0] | | | | | | Reset value | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 0x4C | DAC_
SHRR | Res. | 1 | RE | FRE | SH2 | 2[7:0 | 0] | • | Res. | 1 | REI | FRE | SH | 1[7:0 |)] | | | | Reset value | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Refer to Section 2.2 on page 58 for the register boundary addresses. RM0444 Rev 5 441/1390 ## 17 Voltage reference buffer (VREFBUF) ## 17.1 Introduction The devices embed a voltage reference buffer which can be used as voltage reference for ADC, DAC and also as voltage reference for external components through the VREF+ pin. When the VREF+ pin is double-bonded with VDDA pin in a package, the voltage reference buffer is not available and must be kept disabled (refer to datasheet for packages pinout description). ## 17.2 VREFBUF functional description The internal voltage reference buffer supports two voltages^(a), which are configured with VRS bits in the VREFBUF_CSR register: - VRS = 0: V_{REF OUT1} around 2.048 V. - VRS = 1: $V_{REF\ OUT2}$ around 2.5 V. The internal voltage reference can be configured in four different modes depending on ENVR and HIZ bits configuration. These modes are provided in the table below: | ENVR | HIZ | VREF buffer configuration | |------|-----|--| | 0 | 0 | VREFBUF buffer off: – V _{REF+} pin pulled-down to V _{SSA} | | 0 | 1 | External voltage reference mode (default value): - VREFBUF buffer off - V _{REF+} pin input mode | | 1 | 0 | Internal voltage reference mode: - VREFBUF buffer ON - V _{REF+} pin connected to VREFBUF buffer output | | 1 | 1 | Hold mode: - VREFBUF buffer off - V _{REF+} pin floating. The voltage is held with the external capacitor - VRR detection disabled and VRR bit keeps last state | Table 88. VREF buffer modes After enabling the VREFBUF by setting ENVR bit and clearing HIZ bit in the VREFBUF_CSR register, the user must wait until VRR bit is set, meaning that the voltage reference output has reached its expected value. a. The minimum V_{DDA} voltage depends on VRS setting, refer to the product datasheet. ## 17.3 VREFBUF registers ## 17.3.1 VREFBUF control and status register (VREFBUF_CSR) Address offset: 0x00 Reset value: 0x0000 0002 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. VRR | VRS | HIZ | ENVR | | | | | | 1 | | | | | | | 1 | | | | | Bits 31:4 Reserved, must be kept at reset value. Bit 3 VRR: Voltage reference buffer ready 0: the voltage reference buffer output is not ready. 1: the voltage reference buffer output reached the requested level. #### Bit 2 VRS: Voltage reference scale This bit selects the value generated by the voltage reference buffer. 0: Voltage reference set to $V_{\mbox{\scriptsize REF}}$ OUT1 (around 2.048 V). 1: Voltage reference set to V_{REF OUT2} (around 2.5 V). #### Bit 1 HIZ: High impedance mode This bit controls the analog switch to connect or not the V_{RFF+} pin. 0: V_{REF+} pin is internally connected to the voltage reference buffer output. 1: V_{REF+} pin is high impedance. Refer to *Table 88: VREF buffer modes* for the mode descriptions depending on ENVR bit configuration. ### Bit 0 ENVR: Voltage reference buffer mode enable This bit is used to enable the voltage reference buffer mode. 0: Internal voltage reference mode disable (external voltage reference mode). 1: Internal voltage reference mode (reference buffer enable or hold mode) enable. 4 RM0444 Rev 5 443/1390 ## 17.3.2 VREFBUF calibration control register (VREFBUF_CCR) Address offset: 0x04 Reset value: 0x0000 00XX | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|--------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | TRIM | 1[5:0] | | | | | | | | | | | | | | rw | rw | rw | rw | rw | rw | Bits 31:6 Reserved, must be kept at reset value. #### Bits 5:0 TRIM[5:0]: Trimming code These bits are automatically initialized after reset with the trimming value stored in the Flash memory during the production test. Writing into these bits allows the tuning of the internal reference buffer voltage. Note: If the user application performs the trimming, the trimming code must start from 000000 to 111111 in ascending order. ## 17.3.3 VREFBUF register map The following table gives the VREFBUF register map and the reset values. Table 89. VREFBUF register map and reset values | Offset | Register name | 31 | 30 | 59 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 91 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 2 | 9 | 2 | 4 | 3 | 7 | 1 | 0 | |--------|---------------|-----|-------|-----|------| | 0x00 | VREFBUF_CSR | Res. VRR | VRS | ZIH | ENVR | | | Reset value | 0 | 0 | 1 | 0 | | 0x04 | VREFBUF_CCR | Res. | Т | RIM | 1[5:0 |)] | | | | Reset value | х | Х | х | х | х | х | Refer to Section 2.2 on page 58 for the register boundary addresses. RM0444 Comparator (COMP) ## 18 Comparator (COMP) ### 18.1 Introduction The devices embed COMP1, COMP2, and COMP3 (the last on STM32G0B1xx and STM32G0C1xx only) ultra-low-power comparators. The comparators can be used for a variety of functions including: - Wakeup from low-power mode triggered by an analog signal, - Analog signal conditioning, - Cycle-by-cycle current control loop when combined with a PWM output from a timer. #### 18.2 COMP main features - Each comparator has configurable plus and minus inputs used for flexible voltage selection: - Multiplexed I/O pins - DAC Channel1 and Channel2 - Internal reference voltage and three submultiple values (1/4, 1/2, 3/4) provided by scaler (buffered voltage divider) - Programmable hysteresis - Programmable speed / consumption - The outputs can be redirected to an I/O or to timer inputs for triggering: - Break events for fast PWM shutdowns - Comparator outputs with blanking source - The two comparators can be combined in a window comparator - Each comparator has interrupt generation capability with wakeup from Sleep and Stop modes (through the EXTI controller) Comparator (COMP) RM0444 ## 18.3 COMP functional description ## 18.3.1 COMP block diagram The block diagram
of the comparators is shown in Figure 68. COMPx INPSEL COMPx WINMODE COMPx POLARITY COMPx_INP I/Os 🗇 COMPy_INP COMPx COMPx INM COMPx INMSEL GPIO alternate function COMPx_INM I/Os 🗇 ⊕ COMPx_OUT DAC CH1 DAC CH2 COMPx_VALUE V_{REFINT} Wakeup COMPx OUT **EXTI line** 3/4 V_{REFINT} Blank source interrupt 1/2 V_{REFINT} 1/4 V_{REFINT} **COMPx WINOUT** ► TIMERS COMPy_VALUE -MSv42190V1 Figure 68. Comparator block diagram ## 18.3.2 COMP pins and internal signals The I/Os used as comparators inputs must be configured in analog mode in the GPIOs registers. The comparator output can be connected to the I/Os using the alternate function channel given in "Alternate function mapping" table in the datasheet. The output can also be internally redirected to a variety of timer input for the following purposes: - Emergency shut-down of PWM signals, using BKIN and BKIN2 inputs - Cycle-by-cycle current control, using OCREF_CLR inputs - Input capture for timing measures It is possible to have the comparator output simultaneously redirected internally and externally. | COMP1_INP | COMP1_INPSEL[1:0] | |-----------|-------------------| | PC5 | 00 | | PB2 | 01 | | PA1 | 10 | | Open | 11 | Table 90. COMP1 non-inverting input assignment RM0444 Comparator (COMP) Table 91. COMP1 inverting input assignment | COMP1_INM | COMP1_INMSEL[3:0] | |-------------------------|-------------------| | ½ V _{REFINT} | 0000 | | ½ V _{REFINT} | 0001 | | ¾ V _{REFINT} | 0010 | | V _{REFINT} | 0011 | | DAC Channel1 | 0100 | | DAC Channel2 | 0101 | | PB1 | 0110 | | PC4 | 0111 | | PA0 | 1000 | | 1/4 V _{REFINT} | > 1000 | Table 92. COMP2 non-inverting input assignment | COMP2_INP | COMP2_INPSEL[1:0] | |-----------|-------------------| | PB4 | 00 | | PB6 | 01 | | PA3 | 10 | | Open | 11 | Table 93. COMP2 inverting input assignment | COMP2_INM | COMP2_INMSEL[3:0] | |-------------------------|-------------------| | 1/4 V _{REFINT} | 0000 | | ½ V _{REFINT} | 0001 | | ³¼ V _{REFINT} | 0010 | | V _{REFINT} | 0011 | | DAC Channel1 | 0100 | | DAC Channel2 | 0101 | | PB3 | 0110 | | PB7 | 0111 | | PA2 | 1000 | | 1/4 V _{REFINT} | > 1000 | Comparator (COMP) RM0444 Table 94. COMP3 non-inverting input assignment | COMP3_INP | COMP3_INPSEL[1:0] | |-----------|-------------------| | PB0 | 00 | | PC1 | 01 | | PE7 | 10 | | Open | 11 | Table 95. COMP3 inverting input assignment | COMP3_INM | COMP3_INMSEL[3:0] | |-------------------------|-------------------| | 1/4 V _{REFINT} | 0000 | | ½ V _{REFINT} | 0001 | | ¾ V _{REFINT} | 0010 | | V _{REFINT} | 0011 | | DAC Channel1 | 0100 | | DAC Channel2 | 0101 | | PB2 | 0110 | | PC0 | 0111 | | PE8 | 1000 | | 1/4 V _{REFINT} | > 1000 | #### 18.3.3 COMP reset and clocks The COMP clock provided by the clock controller is synchronous with the APB2 clock. There is no clock enable control bit provided in the RCC controller. Reset and clock enable bits are common for COMP and SYSCFG. **Important:** The polarity selection logic and the output redirection to the port works independently from the APB2 clock. This allows the comparator to work even in Stop mode. ## 18.3.4 Comparator LOCK mechanism The comparators can be used for safety purposes, such as over-current or thermal protection. For applications having specific functional safety requirements, it is necessary to insure that the comparator programming cannot be altered in case of spurious register access or program counter corruption. For this purpose, the comparator control and status registers can be write-protected (read-only). Once the programming is completed, the COMPx LOCK bit can be set to 1. This causes the whole register to become read-only, including the COMPx LOCK bit. The write protection can only be reset by a MCU reset. RM0444 Comparator (COMP) ### 18.3.5 Window comparator The purpose of window comparator is to monitor the analog voltage if it is within specified voltage range defined by lower and upper threshold. COMP1 and COMP2 or COMP2 and COMP3 can combine to create a window comparator. The monitored analog voltage is connected to the non-inverting (plus) inputs of comparators connected together and the upper and lower threshold voltages are connected to the inverting (minus) inputs of the comparators. Two non-inverting inputs can be connected internally together by enabling WINMODE bit to save one IO for other purposes. Figure 69. Window mode ## 18.3.6 Hysteresis The comparator includes a programmable hysteresis to avoid spurious output transitions in case of noisy signals. The hysteresis can be disabled if it is not needed (for instance when exiting from low-power mode) to be able to force the hysteresis value using external components. Figure 70. Comparator hysteresis 5 Comparator (COMP) RM0444 ## 18.3.7 Comparator output blanking function The purpose of the blanking function is to prevent the current regulation to trip upon short current spikes at the beginning of the PWM period (typically the recovery current in power switches anti parallel diodes). It consists of a selection of a blanking window which is a timer output compare signal. The selection is done by software (refer to the comparator register description for possible blanking signals). Then, the complementary of the blanking signal is ANDed with the comparator output to provide the wanted comparator output. See the example provided in the figure below. Figure 71. Comparator output blanking ## 18.3.8 COMP power and speed modes COMPx power consumption versus propagation delay can be adjusted to have the optimum trade-off for a given application. The PWRMODE[1:0] bitfileds of the COMPx_CSR registers allow setting the comparators to high speed with full power or medium speed with medium power. Refer to Section 18.6: COMP registers. RM0444 Comparator (COMP) ## 18.4 COMP low-power modes Table 96. Comparator behavior in the low power modes | Mode | Description | |-----------------|--| | Sleep | No effect on the comparators. Comparator interrupts cause the device to exit the Sleep mode. | | Low-power run | No effect. | | Low-power sleep | No effect. COMP interrupts cause the device to exit the Low-power sleep mode. | | Stop 0 | No effect on the comparators. | | Stop 1 | Comparator interrupts cause the device to exit the Stop mode. | | Standby | The COMP registers are powered down and must be reinitialized after exiting | | Shutdown | Standby or Shutdown mode. | ## 18.5 COMP interrupts The comparator outputs are internally connected to the Extended interrupts and events controller. Each comparator has its own EXTI line and can generate either interrupts or events. The same mechanism is used to exit from low-power modes. Refer to Interrupt and events section for more details. To enable COMPx interrupt, it is required to follow this sequence: - 1. Configure and enable the EXTI line corresponding to the COMPx output event in interrupt mode and select the rising, falling or both edges sensitivity - 2. Configure and enable the NVIC IRQ channel mapped to the corresponding EXTI lines - 3. Enable COMPx. Table 97. Interrupt control bits | Interrupt event | Enable
control bit | Exit from
Sleep mode | Exit from
Stop modes | Exit from
Standby mode | |-----------------|-----------------------|-------------------------|-------------------------|---------------------------| | COMP1 output | Through EXTI | Yes | Yes | N/A | | COMP2 output | Through EXTI | Yes | Yes | N/A | | COMP3 output | Through EXTI | Yes | Yes | N/A | ## 18.6 COMP registers ## 18.6.1 Comparator 1 control and status register (COMP1_CSR) Address offset: 0x00 RM0444 Rev 5 451/1390 Comparator (COMP) RM0444 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----------|--------|------|------|---------|------|------|-----|----|--------|-----|----|------|------|------|-----| | LOCK | VALUE | Res. | Res. | Res. | Res. | Res. | | В | LANKSE | L | | PWRI | MODE | HY | ′ST | | rw | r | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | POLARITY | WINOUT | Res. | Res. | WINMODE | Res. | INP | SEL | | INM | SEL | | Res. | Res. | Res. | EN | | rw | rw | • | | rw | | rw | rw | rw | rw | rw | rw | | | | rw | #### Bit 31 LOCK: COMP1 CSR register lock This bit is set by software and cleared by a system reset. It locks the comparator 3 control bits. When locked, all register bits are read-only. 0: Not locked 1: Locked #### Bit 30 VALUE: Comparator 1 output status This bit is read-only. It reflects the level of the comparator 1 output after the polarity selector and blanking, as indicated in *Figure 68*. #### Bits 29:25 Reserved, must be kept at reset value #### Bit 24:20 BLANKSEL[4:0]: Comparator 1 blanking source selector This bitfield is controlled by software (if not locked). It selects the blanking source: 00000: None (no blanking) xxxx1: TIM1 OC4 xxx1x: TIM1 OC5 xx1xx: TIM2 OC3 x1xxx: TIM3 OC3 1xxxx: TIM15 OC2 #### Bit 19:18 PWRMODE[1:0]: Comparator 1 power mode selector This bitfield is controlled by software (if not locked). It selects the power consumption and as a consequence the speed of the comparator 1: 00: High speed 01: Medium speed others: Reserved #### Bit 17:16 HYST[1:0]: Comparator 1 hysteresis selector This bitfield is controlled by software (if not locked). It selects the hysteresis of the comparator 1: 00: None 01: Low 10: Medium 11: High #### Bit 15 POLARITY: Comparator 1 polarity selector This bit is controlled by software (if not locked). It selects the comparator 1 output polarity: 0: Non-inverted1: Inverted #### Bit 14 WINOUT: Comparator 1 output selector This bit is controlled by software (if not locked). It selects the comparator 1 output: 0: COMP1_VALUE 1: COMP1_VALUE XOR COMP2_VALUE (required for window mode, see Figure 69) Bits 13:12 Reserved, must be kept at reset value RM0444 Comparator (COMP) #### Bit 11 WINMODE: Comparator 1
non-inverting input selector for window mode This bit is controlled by software (if not locked). It selects the signal for COMP1_INP input of the comparator 1: - 0: Signal selected with INPSEL[1:0] bitfield of this register - 1: COMP2 INP signal of the comparator 2 (required for window mode, see Figure 69) #### Bit 10 Reserved, must be kept at reset value #### Bits 9:8 INPSEL[1:0]: Comparator 1 signal selector for non-inverting input This bitfield is controlled by software (if not locked). It selects the signal for the non-inverting input COMP1 INP of the comparator 1 (also see the WINMODE bit): 00: PC5 01: PB2 10: PA1 11: None (open) #### Bits 7:4 INMSEL[3:0]: Comparator 1 signal selector for inverting input INM This bitfield is controlled by software (if not locked). It selects the signal for the inverting input COMP1_INM of the comparator 1: 0000: 1/4 V_{REFINT} 0001: 1/2 V_{REFINT} 0010: 3/4 V_{REFINT} 0011: V_{REFINT} 0100: DAC channel 1 0101: DAC channel 2 0110: PB1 0110: PB1 0111: PC4 1000: PA0 > 1000: 1/4 V_{REFINT} #### Bits 3:1 Reserved, must be kept at reset value #### Bit 0 EN: Comparator 1 enable bit This bit is controlled by software (if not locked). It enables the comparator 1: 0: Disable 1: Enable ## 18.6.2 Comparator 2 control and status register (COMP2_CSR) Address offset: 0x04 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----------|--------|------|------|---------|------|------|-----|----|--------|-----|----|------|------|------|----| | LOCK | VALUE | Res. | Res. | Res. | Res. | Res. | | В | LANKSE | :L | | PWRI | MODE | HY | ST | | rw | r | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | POLARITY | WINOUT | Res. | Res. | WINMODE | Res. | INP | SEL | | INM | SEL | | Res. | Res. | Res. | EN | | rw | rw | | | rw | | rw | rw | rw | rw | rw | rw | | | | rw | Comparator (COMP) RM0444 #### Bit 31 LOCK: COMP2_CSR register lock This bit is set by software and cleared by a system reset. It locks the comparator 3 control bits. When locked, all register bits are read-only. 0: Not locked 1: Locked #### Bit 30 VALUE: Comparator 2 output status This bit is read-only. It reflects the level of the comparator 2 output after the polarity selector and blanking, as indicated in *Figure 68*. #### Bits 29:25 Reserved, must be kept at reset value #### Bit 24:20 BLANKSEL[4:0]: Comparator 2 blanking source selector This bitfield is controlled by software (if not locked). It selects the blanking source: 00000: None (no blanking) xxxx1: TIM1 OC4 xxx1x: TIM1 OC5 xx1xx: TIM2 OC3 x1xxx: TIM3 OC3 1xxxx: TIM15 OC2 #### Bit 19:18 PWRMODE[1:0]: Comparator 2 power mode selector This bitfield is controlled by software (if not locked). It selects the power consumption and as a consequence the speed of the comparator 2: 00: High speed 01: Medium speed others: Reserved #### Bit 17:16 HYST[1:0]: Comparator 2 hysteresis selector This bitfield is controlled by software (if not locked). It selects the hysteresis of the comparator 2: 00: None 01: Low 10: Medium 11: High #### Bit 15 POLARITY: Comparator 2 polarity selector This bit is controlled by software (if not locked). It selects the comparator 2 output polarity: 0: Non-inverted 1: Inverted ### Bit 14 WINOUT: Comparator 2 output selector This bit is controlled by software (if not locked). It selects the comparator 2 output: 0: COMP2_VALUE 1: COMP1_VALUE XOR COMP2_VALUE (required for window mode, see Figure 69) #### Bits 13:12 Reserved, must be kept at reset value #### Bit 11 WINMODE: Comparator 2 non-inverting input selector for window mode This bit is controlled by software (if not locked). It selects the signal for COMP2_INP input of the comparator 2: 0: Signal selected with INPSEL[1:0] bitfield of this register 1: COMP1_INP signal of the comparator 1 (required for window mode, see Figure 69) Bit 10 Reserved, must be kept at reset value RM0444 Comparator (COMP) #### Bits 9:8 INPSEL[1:0]: Comparator 2 signal selector for non-inverting input This bitfield is controlled by software (if not locked). It selects the signal for the non-inverting input COMP2_INP of the comparator 2 (also see the WINMODE bit): 00: PB4 01: PB6 10: PA3 11: None (open) #### Bits 7:4 INMSEL[3:0]: Comparator 2 signal selector for inverting input INM This bitfield is controlled by software (if not locked). It selects the signal for the inverting input COMP2_INM of the comparator 2: 0000: 1/4 V_{REFINT} 0001: 1/2 V_{REFINT} 0010: 3/4 V_{REFINT} 0011: V_{REFINT} 0100: DAC channel 1 0101: DAC channel 2 0110: PB3 0111: PB7 1000: PA2 > 1000: 1/4 V_{REFINT} #### Bits 3:1 Reserved, must be kept at reset value #### Bit 0 EN: Comparator 2 enable bit This bit is controlled by software (if not locked). It enables the comparator 2: 0: Disable 1: Enable ## 18.6.3 Comparator 3 control and status register (COMP3_CSR) Address offset: 0x08 System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----------|--------|------|------|---------|------|------|-----|----|--------|-----|----|------|------|------|-----| | LOCK | VALUE | Res. | Res. | Res. | Res. | Res. | | В | LANKSE | L | | PWRI | MODE | HY | 'ST | | rw | r | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | POLARITY | WINOUT | Res. | Res. | WINMODE | Res. | INP | SEL | | INM | SEL | | Res. | Res. | Res. | EN | | rw | rw | | | rw | | rw | rw | rw | rw | rw | rw | | | | rw | #### Bit 31 LOCK: COMP3_CSR register lock This bit is set by software and cleared by a system reset. It locks the comparator 3 control bits. When locked, all register bits are read-only. 0: Not locked 1: Locked #### Bit 30 VALUE: Comparator 3 output status This bit is read-only. It reflects the level of the comparator 3 output after the polarity selector and blanking, as indicated in *Figure 68*. Bits 29:25 Reserved, must be kept at reset value RM0444 Rev 5 455/1390 Comparator (COMP) RM0444 #### Bit 24:20 BLANKSEL[4:0]: Comparator 3 blanking source selector This bitfield is controlled by software (if not locked). It selects the blanking source: 00000: None (no blanking) xxxx1: TIM1 OC4 xxx1x: TIM1 OC5 xx1xx: TIM2 OC3 x1xxx: TIM3 OC3 1xxxx: TIM15 OC2 #### Bit 19:18 PWRMODE[1:0]: Comparator 3 power mode selector This bitfield is controlled by software (if not locked). It selects the power consumption and as a consequence the speed of the comparator 3: 00: High speed 01: Medium speed others: Reserved #### Bit 17:16 HYST[1:0]: Comparator 3 hysteresis selector This bitfield is controlled by software (if not locked). It selects the hysteresis of the comparator 3: 00: None 01: Low 10: Medium 11: High #### Bit 15 POLARITY: Comparator 3 polarity selector This bit is controlled by software (if not locked). It selects the comparator 3 output polarity: 0: Non-inverted 1: Inverted #### Bit 14 WINOUT: Comparator 3 output selector This bit is controlled by software (if not locked). It selects the comparator 3 output: 0: COMP3 VALUE 1: COMP2_VALUE XOR COMP3_VALUE (required for window mode, see Figure 69) #### Bits 13:12 Reserved, must be kept at reset value #### Bit 11 WINMODE: Comparator 3 non-inverting input selector for window mode This bit is controlled by software (if not locked). It selects the signal for COMP3_INP input of the comparator 3: 0: Signal selected with INPSEL[1:0] bitfield of this register 1: COMP2_INP signal of the comparator 2 (required for window mode, see Figure 69) Bit 10 Reserved, must be kept at reset value #### Bits 9:8 INPSEL[1:0]: Comparator 3 signal selector for non-inverting input This bitfield is controlled by software (if not locked). It selects the signal for the non-inverting input COMP3_INP of the comparator 3 (also see the WINMODE bit): 00: PB0 01: PC1 10: PE7 11: None (open) RM0444 Comparator (COMP) #### Bits 7:4 INMSEL[3:0]: Comparator 3 signal selector for inverting input INM This bitfield is controlled by software (if not locked). It selects the signal for the inverting input COMP3_INM of the comparator 3: 0000: 1/4 V_{REFINT} 0001: 1/2 V_{REFINT} 0010: 3/4 V_{REFINT} 0011: V_{REFINT} 0100: DAC channel 1 0101: DAC channel 2 0110: PB2 0111: PC0 1000: PE8 > 1000: 1/4 V_{REFINT} #### Bits 3:1 Reserved, must be kept at reset value #### Bit 0 EN: Comparator 3 enable bit This bit is controlled by software (if not locked). It enables the comparator 3: 0: Disable 1: Enable RM0444 Rev 5 457/1390 Comparator (COMP) RM0444 ## 18.6.4 COMP register map The following table summarizes the comparator registers. The comparator registers share SYSCFG peripheral register base addresses. Table 98. COMP register map and reset values | Offset | Register | 31 | 30 | 53 | 28 | 22 | 56 | 52 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 2 | 9 | 2 | 4 | 3 | 2 | 1 | 0 | |--------|-------------|------|-------|------|------|------|------|------|---------------|-----|-----|-------|-----|--------------|----|------|-----|--------|------|------|---------|------|--------------|---|---|-------------|---|---|------|------|------|----| | 0x00 | COMP1_CSR | LOCK | VALUE | Res. | Res. | Res. | Res. | Res. | BL | _AN | KSE | EL[4: | :0] | PWRMODE[1:0] | | HYST | POL | WINOUT | Res. | Res. | WINMODE | Res. | INPSEL[1:0]. | | | INMSEL[3:0] | | | Res. | Res. | Res. | EN | | | Reset value | 0 | 0 | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 |) (| 0 | 0 | | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | | | 0 | | 0x04 | COMP2_CSR | LOCK | VALUE | Res. | Res. | Res. | Res. | Res. | BL | -AN | KSE | EL[4: | :0] | PWRMODE[1:0] | | HYST | POL | WINOUT | Res. | Res. | WINMODE | Res. | INPSEL[1:0]. | , | | INMSEL[3:0] | | | Res. | Res. | Res. | EN | | | Reset value | 0 | 0 | | | | | | 0 | 0 | 0 | 0 | 0 | 0 (| 0 |) (| 0 | 0 | | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | | | 0 | | 0x08 | COMP3_CSR | LOCK | VALUE | Res. | Res. | Res. | Res. | Res. | BLANKSEL[4:0] | | | | | PWRMODE[1:0] | | HYST | POL | WINOUT | Res. |
Res. | WINMODE | Res. | INPSEL[1:0]. | , | | INMSEL[3:0] | | | Res. | Res. | Res. | EN | | | Reset value | 0 | 0 | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 |) (| 0 | 0 | | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | | | 0 | Refer to Section 2.2 on page 58 for the register boundary addresses. ## 19 True random number generator (RNG) ### 19.1 Introduction The RNG is a true random number generator that provides full entropy outputs to the application as 32-bit samples. It is composed of a live entropy source (analog) and an internal conditioning component. The RNG can be used to construct a NIST compliant Deterministic Random Bit Generator (DRBG), acting as a live entropy source. The RNG true random number generator has been tested using German BSI statistical tests of AIS-31 (T0 to T8). ## 19.2 RNG main features - The RNG delivers 32-bit true random numbers, produced by an analog entropy source processed by a high quality conditioning stage. - It produces four 32-bit random samples every 16x f_{AHB}/f_{RNG} AHB clock cycles, if value is higher than 213 cycles (213 cycles otherwise). - It allows embedded continuous basic health tests with associated error management - Includes too low sampling clock detection and repetition count tests. - It can be disabled to reduce power consumption. - It has an AMBA AHB slave peripheral, accessible through 32-bit word single accesses only (else an AHB bus error is generated, and the write accesses are ignored). RM0444 Rev 5 459/1390 ## 19.3 RNG functional description ## 19.3.1 RNG block diagram Figure 72 shows the RNG block diagram. **True RNG** rng_it **⋖** Conditioning logic Banked Registers RNG CR control Bus RNG_DR 32-bit AHB AHB interface RNG SR status Fault detection AHB clock domain Raw data shift reg Clock checker 2-bit rng_clk-Sampling & Normalization (x 2) RNG clock domain Analog Analog noise noise source 1 source 2 Analog noise source MSv42097V2 Figure 72. RNG block diagram ## 19.3.2 RNG internal signals *Table 99* describes a list of useful-to-know internal signals available at the RNG level, not at the STM32 product level (on pads). | Signal name | Signal type | Description | |-------------|----------------|---| | rng_it | Digital output | RNG global interrupt request | | rng_hclk | Digital input | AHB clock | | rng_clk | Digital input | RNG dedicated clock, asynchronous to rng_hclk | Table 99. RNG internal input/output signals ### 19.3.3 Random number generation The true random number generator (RNG) delivers truly random data through its AHB interface at deterministic intervals. Within its boundary the RNG implements the entropy source model pictured on *Figure 73*. It includes an analog noise source, a digitization stage with post-processing, a conditioning algorithm, a health monitoring block and two interfaces that are used to interact with the entropy source: GetEntropy and HealthTest. Figure 73. Entropy source model The components pictured above are detailed hereafter: #### **Noise source** The noise source is the component that contains the non-deterministic, entropy-providing activity that is ultimately responsible for the uncertainty associated with the bitstring output by the entropy source. It is composed of: - Two analog noise sources, each based on three XORed free-running ring oscillator outputs. It is possible to disable those analog oscillators to save power, as described in Section 19.3.8: RNG low-power usage. - A sampling stage of these outputs clocked by a dedicated clock input (rng_clk), delivering a 2-bit raw data output. This noise source sampling is independent to the AHB interface clock frequency (rng_hclk). Note: In Section 19.6: RNG entropy source validation recommended RNG clock frequencies are given. RM0444 Rev 5 ### Post processing The sample values obtained from a true random noise source consist of 2-bit bitstrings. Because this noise source output is biased, the RNG implements a post-processing component that reduces that bias to a tolerable level. More specifically, for each of the two noise source bits the RNG takes half of the bits from the sampled noise source, and half of the bits from inverted sampled noise source. Thus, if the source generates more '1' than '0' (or the opposite), it is filtered #### Conditioning The conditioning component in the RNG is a deterministic function that increases the entropy rate of the resulting fixed-length bitstrings output (128-bit). Also note that post-processing computations are triggered when at least 32 bits of raw data has been received and when output FIFO needs a refill. Thus the RNG output entropy is maximum when the RNG 128-bit FIFO is emptied by application after 64 RNG clock cycles. The times required between two random number generations, and between the RNG initialization and availability of first sample are described in *Section 19.5: RNG processing time*. The conditioning component is clocked by the faster AHB clock. #### **Output buffer** A data output buffer can store up to four 32-bit words which have been output from the conditioning component. When four words have been read from the output FIFO through the RNG_DR register, the content of the 128-bit conditioning output register is pushed into the output FIFO, and a new conditioning round is automatically started. Four new words are added to the conditioning output register 213 AHB clock cycles later. Whenever a random number is available through the RNG_DR register the DRDY flag transitions from "0" to "1". This flag remains high until output buffer becomes empty after reading four words from the RNG_DR register. Note: 462/1390 When interrupts are enabled an interrupt is generated when this data ready flag transitions from "0" to "1". Interrupt is then cleared automatically by the RNG as explained above. #### Health checks This component ensures that the entire entropy source (with its noise source) starts then operates as expected, obtaining assurance that failures are caught quickly and with a high probability and reliability. The RNG implements the following health check features. - 1. Continuous health tests, running indefinitely on the output of the noise source - Repetition count test, flagging an error when: - a) One of the noise source has provided more than 64 consecutive bits at a constant value ("0" or "1"), or more than 32 consecutive occurrence of two bits patterns ("01" or "10") - b) Both noise sources have delivered more than 32 consecutive bits at a constant value ("0" or "1"), or more than 16 consecutive occurrence of two bits patterns ("01" or "10") - 2. Vendor specific continuous test - Real-time "too slow" sampling clock detector, flagging an error when one RNG clock cycle is smaller than AHB clock cycle divided by 32. The CECS and SECS status bits in the RNG_SR register indicate when an error condition is detected, as detailed in *Section 19.3.7: Error management*. Note: An interrupt can be generated when an error is detected. #### 19.3.4 RNG initialization The RNG simplified state machine is pictured on Figure 74 After enabling the RNG (RNGEN=1 in RNG CR) the following chain of events occurs: - 1. The analog noise source is enabled, and logic immediately starts sampling the analog output, filling 128-bit conditioning shift register - 2. The conditioning logic is enabled and post-processing context is initialized using two 128 noise source bits. - 3. The conditioning stage internal input data buffer is filled again with 128-bit and one conditioning round is performed. The output buffer is then filled with post processing result. - 4. The output buffer is refilled automatically according to the RNG usage. MSv44203V3 RNGEN=0, then RNGEN=1 Conditioning hardware init Generate samples Continuous test(s) not OK Trop samples then check again Continuous test(s) not OK The associated initialization time can be found in Section 19.5: RNG processing time. ## 19.3.5 RNG operation #### Normal operations To run the RNG using interrupts the following steps are recommended: - 1. Enable the interrupts by setting the IE bit in the RNG_CR register. At the same time enable the RNG by setting the bit RNGEN=1. - An interrupt is now generated when a random number is ready or when an error occurs. Therefore at each interrupt, check that: - No error occurred. The SEIS and CEIS bits should be set to 0 in the RNG_SR register. - A random number is ready. The DRDY bit must be set to 1 in the RNG_SR register. - If above two conditions are true the content of the RNG_DR register can be read up to four consecutive times. If valid data is available in the conditioning output buffer, four additional words can be read by the application (in this case the DRDY bit is still high). If one or both of above conditions are false, the RNG_DR register must not be read. If an error occurred error recovery sequence described in Section 19.3.7 must be used. To run the RNG in polling mode following steps are recommended: - 1. Enable the random number generation by setting the RNGEN bit to "1" in the RNG_CR register. - 2. Read the RNG SR register and check that: - No error occurred (the SEIS and CEIS bits should be set to 0) - A random number is ready (the DRDY bit should be set to 1) - 3. If above conditions are true read the content of the RNG_DR register up to four consecutive times. If valid data is available in the conditioning output buffer four additional words can be read by the application (in this case the DRDY bit is still high). If one or both of above conditions are false, the RNG_DR register must not be read. If an error occurred error recovery sequence described in Section 19.3.7 must be used. Note: When data is not ready (DRDY="0") RNG DR returns zero. It is recommended to always verify that RNG_DR is different from zero. Because when it is the case a seed error occurred between RNG_SR polling and RND_DR output reading (rare event). ### Low-power operations If the power consumption is a concern to the
application, low-power strategies can be used, as described in *Section 19.3.8: RNG low-power usage*. #### Software post-processing If a NIST approved DRBG with 128 bits of security strength is required an approved random generator software must be built around the RNG true random number generator. Built-in health check functions are described in Section 19.3.3: Random number generation. #### 19.3.6 RNG clocking The RNG runs on two different clocks: the AHB bus clock and a dedicated RNG clock. The AHB clock is used to clock the AHB banked registers and conditioning component. The RNG clock is used for noise source sampling. Recommended clock configurations are detailed in *Section 19.6: RNG entropy source validation*. Note: When the CED bit in the RNG_CR register is set to "0", the RNG clock frequency **should be higher** than AHB clock frequency divided by 32, otherwise the clock checker always flags a clock error (CECS=1 in the RNG_SR register). See Section 19.3.1: RNG block diagram for details (AHB and RNG clock domains). #### 19.3.7 Error management In parallel to random number generation an health check block verifies the correct noise source behavior and the frequency of the RNG source clock as detailed in this section. Associated error state is also described. #### **Clock error detection** When the clock error detection is enabled (CED = 0) and if the RNG clock frequency is too low, the RNG sets to "1" both the **CEIS** and **CECS** bits to indicate that a clock error occurred. In this case, the application should check that the RNG clock is configured RM0444 Rev 5 465/1390 correctly (see Section 19.3.6: RNG clocking) and then it must clear the CEIS bit interrupt flag. The CECS bit is automatically cleared when clocking condition is normal. Note: The clock error has no impact on generated random numbers, i.e. application can still read RNG DR register. CEIS is set only when CECS is set to "1" by RNG. #### Noise source error detection When a noise source (or seed) error occurs, the RNG stops generating random numbers and sets to "1" both **SEIS** and **SECS** bits to indicate that a seed error occurred. If a value is available in the RNG_DR register, it must not be used as it may not have enough entropy. If the error was detected during the initialization phase the whole initialization sequence will be automatically restarted by the RNG. The following sequence must be used to fully recover from a seed error after the RNG initialization: - Clear the SEIS bit by writing it to "0". - 2. Read out 12 words from the RNG_DR register, and discard each of them in order to clean the pipeline. - 3. Confirm that SEIS is still cleared. Random number generation is back to normal. ### 19.3.8 RNG low-power usage If power consumption is a concern, the RNG can be disabled as soon as the DRDY bit is set to "1" by setting the RNGEN bit to "0" in the RNG_CR register. As the post-processing logic and the output buffer remain operational while RNGEN='0' following features are available to software: - If there are valid words in the output buffer four random numbers can still be read from the RNG_DR register. - If there are valid bits in the conditioning output internal register four additional random numbers can be still be read from the RNG_DR register. If it is not the case the RNG must be re-enabled by the application until at least 32 new bits have been collected from the noise source and a complete conditioning round has been done. It corresponds to 16 RNG clock cycles to sample new bits, and 216 AHB clock cycles to run a conditioning round. When disabling the RNG the user deactivates all the analog seed generators, whose power consumption is given in the datasheet electrical characteristics section. The user also gates all the logic clocked by the RNG clock. Note that this strategy is adding latency before a random sample is available on the RNG_DR register, because of the RNG initialization time. If the RNG block is disabled during initialization (i.e. well before the DRDY bit rises for the first time), the initialization sequence resumes from where it was stopped when RNGEN bit is set to "1". ## 19.4 RNG interrupts In the RNG an interrupt can be produced on the following events: - Data ready flag - Seed error, see Section 19.3.7: Error management - Clock error, see Section 19.3.7: Error management Dedicated interrupt enable control bits are available as shown in *Table 100*. Interrupt acronym **Enable control bit** Interrupt event **Event flag** Interrupt clear method **DRDY** Data ready flag ΙE None (automatic) **RNG SEIS** ΙE Write 0 to SEIS Seed error flag **CEIS** ΙE Write 0 to CEIS Clock error flag Table 100. RNG interrupt requests The user can enable or disable the above interrupt sources individually by changing the mask bits or the general interrupt control bit IE in the RNG_CR register. The status of the individual interrupt sources can be read from the RNG_SR register. Note: Interrupts are generated only when RNG is enabled. ## 19.5 RNG processing time The conditioning stage can produce four 32-bit random numbers every $16x \frac{f_{AHB}}{f_{RNG}}$ clock cycles, if the value is higher than 213 cycles (213 cycles otherwise). More time is needed for the first set of random numbers after the device exits reset (see Section 19.3.4: RNG initialization). Indeed, after enabling the RNG for the first time, random data is first available after either: - 128 RNG clock cycles + 426 AHB cycles, if f_{AHB} < f_{threshold} - 192 RNG clock cycles + 213 AHB cycles, if $f_{AHB} \ge f_{threshold}$ With $f_{threshold} = (213 \text{ x } f_{RNG})/64$ ## 19.6 RNG entropy source validation #### 19.6.1 Introduction In order to assess the amount of entropy available from the RNG, STMicroelectronics has tested the peripheral using German BSI AIS-31 statistical tests (T0 to T8). The results can be provided on demand or the customer can reproduce the tests. #### 19.6.2 Validation conditions STMicroelectronics has tested the RNG true random number generator in the following conditions: • RNG clock rng_clk= 48 MHz (CED bit = '0' in RNG_CR register) and rng_clk = 400 kHz (CED bit = '1' in RNG_CR register). RM0444 Rev 5 467/1390 ## 19.6.3 Data collection In order to run statistical tests it is required to collect samples from the entropy source at raw data level as well as at the output of the entropy source. Contact STMicroelectronics if above samples need to be retrieved for your product. # 19.7 RNG registers The RNG is associated with a control register, a data register and a status register. # 19.7.1 RNG control register (RNG_CR) Address offset: 0x000 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. CED | Res. | IE | RNGEN | Res. | Res. | | | | | | | | | | | | rw | | rw | rw | | | Bits 31:6 Reserved, must be kept at reset value. Bit 5 CED: Clock error detection 0: Clock error detection is enable 1: Clock error detection is disable The clock error detection cannot be enabled nor disabled on-the-fly when the RNG is enabled, i.e. to enable or disable CED the RNG must be disabled. Bit 4 Reserved, must be kept at reset value. Bit 3 IE: Interrupt Enable 0: RNG Interrupt is disabled 1: RNG Interrupt is enabled. An interrupt is pending as soon as DRDY='1', SEIS='1' or CEIS=1 in the RNG_SR register. Bit 2 RNGEN: True random number generator enable 0: True random number generator is disabled. Analog noise sources are powered off and logic clocked by the RNG clock is gated. 1: True random number generator is enabled. Bits 1:0 Reserved, must be kept at reset value. # 19.7.2 RNG status register (RNG_SR) Address offset: 0x004 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|-------|-------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. SEIS | CEIS | Res. | Res. | SECS | CECS | DRDY | | | | | | | | | | | rc_w0 | rc_w0 | | | r | r | r | Bits 31:7 Reserved, must be kept at reset value. #### Bit 6 SEIS: Seed error interrupt status This bit is set at the same time as SECS. It is cleared by writing 0. Writing 1 has no effect. 0: No faulty sequence detected 1: At least one faulty sequence has been detected. See **SECS** bit description for details. An interrupt is pending if IE = 1 in the RNG_CR register. #### Bit 5 CEIS: Clock error interrupt status This bit is set at the same time as CECS. It is cleared by writing 0. Writing 1 has no effect. 0: The RNG clock is correct (fRNGCLK> fHCLK/32) 1: The RNG has been detected too slow (fRNGCLK< fHCLK/32) An interrupt is pending if IE = 1 in the RNG CR register. #### Bits 4:3 Reserved, must be kept at reset value. #### Bit 2 SECS: Seed error current status 0: No faulty sequence has currently been detected. If the SEIS bit is set, this means that a faulty sequence was detected and the situation has been recovered. 1: At least one of the following faulty sequence has been detected: - One of the noise source has provided more than 64 consecutive bits at a constant value ("0" or "1"), or more than 32 consecutive occurrence of two bit patterns ("01" or "10") - Both noise sources have delivered more than 32 consecutive bits at a constant value ("0" or "1"), or more than 16 consecutive occurrence of two bit patterns ("01" or "10") #### Bit 1 CECS: Clock error current status 0: The RNG clock is correct (fRNGCLK> fHCLK/32). If the CEIS bit is set, this means that a slow clock was detected and the situation has been recovered. 1: The RNG clock is too slow (fRNGCLK< fHCLK/32). Note: CECS bit is valid only if
the CED bit in the RNG_CR register is set to 0. ### Bit 0 DRDY: Data Ready 0: The RNG_DR register is not yet valid, no random data is available. 1: The RNG DR register contains valid random data. Once the output buffer becomes empty (after reading the RNG_DR register), this bit returns to 0 until a new random value is generated. Note: The DRDY bit can rise when the peripheral is disabled (RNGEN=0 in the RNG_CR register). If IE=1 in the RNG_CR register, an interrupt is generated when DRDY=1. # 19.7.3 RNG data register (RNG_DR) Address offset: 0x008 Reset value: 0x0000 0000 The RNG_DR register is a read-only register that delivers a 32-bit random value when read. After being read this register delivers a new random value after 216 periods of AHB clock if the output FIFO is empty. The content of this register is valid when DRDY=1 and value is not 0x0, even if RNGEN=0. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|---------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----| | | RNDATA[31:16] | | | | | | | | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | RNDATA[15:0] | | | | | | | | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | Bits 31:0 RNDATA[31:0]: Random data 32-bit random data which are valid when DRDY=1. When DRDY=0 RNDATA value is zero. It is recommended to always verify that RNG_DR is different from zero. Because when it is the case a seed error occurred between RNG_SR polling and RND_DR output reading (rare event). # 19.7.4 RNG register map Table 101 gives the RNG register map and reset values. Table 101. RNG register map and reset map | - | | | | | | | | | | | | |--------|---------------|-------|------|------| | Offset | Register name | 31 | 30 | 53 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | ဗ | 2 | 1 | 0 | | 0x000 | RNG_CR | Kes. | Kes. | Kes. | Res. | Res. | Kes. | Kes. | Res. | Kes. | Res. Kes. | Res. | Res. | Res. | Kes. | Res. | Res. | Kes. | Kes. | Kes. | CED | Res. | | RNGEN | Res. | Res. | | | Reset value | 0 | | 0 | 0 | | | | 0x004 | RNG_SR | Res. Kes. | Res. | Res. | Res. | Res. | Res. | SEIS | CEIS | Res. | Res. | SECS | CECS | DRDY | | | Reset value | 0 | 0 | | | 0 | 0 | 0 | | 0x008 | RNG_DR | | | | • | • | • | • | • | | • | • | • | | R | NΓ |)AT | A[| 31: | 0] | • | | | | | • | • | • | • | • | • | | | | 0,000 | Reset value | 0 | Refer to Section 2.2 for the register boundary addresses. # 20 AES hardware accelerator (AES) ## 20.1 Introduction The AES hardware accelerator (AES) encrypts or decrypts data, using an algorithm and implementation fully compliant with the advanced encryption standard (AES) defined in Federal information processing standards (FIPS) publication 197. The peripheral supports CTR, GCM, GMAC, CCM, ECB, and CBC chaining modes for key sizes of 128 or 256 bits. AES is an AMBA AHB slave peripheral accessible through 32-bit single accesses only. Other access types generate an AHB error, and other than 32-bit writes may corrupt the register content. The peripheral supports DMA single transfers for incoming and outgoing data (two DMA channels required). ## 20.2 AES main features - Compliance with NIST "Advanced encryption standard (AES), FIPS publication 197" from November 2001 - 128-bit data block processing - Support for cipher key lengths of 128-bit and 256-bit - Encryption and decryption with multiple chaining modes: - Electronic codebook (ECB) mode - Cipher block chaining (CBC) mode - Counter (CTR) mode - Galois counter mode (GCM) - Galois message authentication code (GMAC) mode - Counter with CBC-MAC (CCM) mode - 51 or 75 clock cycle latency in ECB mode for processing one 128-bit block of data with, respectively, 128-bit or 256-bit key - Integrated round key scheduler to compute the last round key for ECB/CBC decryption - AMBA AHB slave peripheral, accessible through 32-bit word single accesses only - 256-bit write-only register for storing the cryptographic key (eight 32-bit registers) - 128-bit register for storing initialization vector (four 32-bit registers) - 32-bit buffer for data input and output - Automatic data flow control with support of single-transfer direct memory access (DMA) using two channels (one for incoming data, one for processed data) - Data-swapping logic to support 1-, 8-, 16- or 32-bit data - Possibility for software to suspend a message if AES needs to process another message with a higher priority, then resume the original message # 20.3 AES implementation The devices have one AES peripheral. # 20.4 AES functional description # 20.4.1 AES block diagram Figure 75 shows the block diagram of AES. Figure 75. AES block diagram # 20.4.2 AES internal signals Table 102 describes the user relevant internal signals interfacing the AES peripheral. Signal name Signal type Description aes_hclk Input AHB bus clock aes_it Output AES interrupt request aes_in_dma Input/Output Input DMA single request/acknowledge aes_out_dma Input/Output Output DMA single request/acknowledge Table 102. AES internal input/output signals # 20.4.3 AES cryptographic core #### Overview The AES cryptographic core consists of the following components: - AES core algorithm (AEA) - multiplier over a binary Galois field (GF2mul) - key input - initialization vector (IV) input - chaining algorithm logic (XOR, feedback/counter, mask) The AES core works on 128-bit data blocks (four words) with 128-bit or 256-bit key length. Depending on the chaining mode, the AES requires zero or one 128-bit initialization vector IV. The AES features the following modes of operation: #### Mode 1: Plaintext encryption using a key stored in the AES_KEYRx registers #### Mode 2: ECB or CBC decryption key preparation. It must be used prior to selecting Mode 3 with ECB or CBC chaining modes. The key prepared for decryption is stored automatically in the AES_KEYRx registers. Now the AES peripheral is ready to switch to Mode 3 for executing data decryption. #### Mode 3: Ciphertext decryption using a key stored in the AES_KEYRx registers. When ECB and CBC chaining modes are selected, the key must be prepared beforehand, through Mode 2. ### Mode 4: ECB or CBC ciphertext single decryption using the key stored in the AES_KEYRx registers (the initial key is derived automatically). Note: Mode 2 and mode 4 are only used when performing ECB and CBC decryption. When Mode 4 is selected only one decryption can be done, therefore usage of Mode 2 and Mode 3 is recommended instead. The operating mode is selected by programming the MODE[1:0] bitfield of the AES_CR register. It may be done only when the AES peripheral is disabled. ## Typical data processing Typical usage of the AES is described in *Section 20.4.4: AES procedure to perform a cipher operation on page 480*. Note: The outputs of the intermediate AEA stages are never revealed outside the cryptographic boundary, with the exclusion of the IVI bitfield. 77 RM0444 Rev 5 475/1390 # **Chaining modes** The following chaining modes are supported by AES, selected through the CHMOD[2:0] bitfield of the AES CR register: - Electronic code book (ECB) - Cipher block chaining (CBC) - Counter (CTR) - Galois counter mode (GCM) - Galois message authentication code (GMAC) - Counter with CBC-MAC (CCM) Note: The chaining mode may be changed only when AES is disabled (bit EN of the AES CR register cleared). Principle of each AES chaining mode is provided in the following subsections. Detailed information is in dedicated sections, starting from Section 20.4.8: AES basic chaining modes (ECB, CBC). # Electronic codebook (ECB) mode Figure 76. ECB encryption and decryption principle ECB is the simplest mode of operation. There are no chaining operations, and no special initialization stage. The message is divided into blocks and each block is encrypted or decrypted separately. Note: For decryption, a special key scheduling is required before processing the first block. RM0444 Rev 5 476/1390 # Cipher block chaining (CBC) mode Figure 77. CBC encryption and decryption principle In CBC mode the output of each block chains with the input of the following block. To make each message unique, an initialization vector is used during the first block processing. Note: For decryption, a special key scheduling is required before processing the first block. RM0444 Rev 5 477/1390 # Counter (CTR) mode Figure 78. CTR encryption and decryption principle The CTR mode uses the AES core to generate a key stream. The keys are then XORed with the plaintext to obtain the ciphertext as specified in NIST *Special Publication 800-38A, Recommendation for Block Cipher Modes of Operation*. Note: Unlike with ECB and CBC modes, no key scheduling is required for the CTR decryption, since in this chaining scheme the AES core is always used in encryption mode for producing the key stream, or counter blocks. # Galois/counter mode (GCM) Initialization Counter Counter Counter vector value + 2 key Init key key key Encrypt Encrypt Encrypt (Encrypt) Plaintext block 2 Plaintext block 3 Plaintext block 1 Ciphertext block 1 Ciphertext block 2 Ciphertext block 3 Н Legend GF2mul GF2mul GF2mul input output XOR Final TAG MSv42143V1 Figure 79. GCM encryption and authentication principle In Galois/counter mode (GCM), the plaintext message is encrypted while a message authentication code (MAC) is
computed in parallel, thus generating the corresponding ciphertext and its MAC (also known as authentication tag). It is defined in NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation -Galois/Counter Mode (GCM) and GMAC. GCM mode is based on AES in counter mode for confidentiality. It uses a multiplier over a fixed finite field for computing the message authentication code. It requires an initial value and a particular 128-bit block at the end of the message. ## Galois message authentication code (GMAC) principle Galois message authentication code (GMAC) allows authenticating a message and generating the corresponding message authentication code (MAC). It is defined in NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation -Galois/Counter Mode (GCM) and GMAC. (7) RM0444 Rev 5 479/1390 GMAC is similar to GCM, except that it is applied on a message composed only by plaintext authenticated data (that is, only header, no payload). ### Counter with CBC-MAC (CCM) principle Figure 81. CCM encryption and authentication principle In Counter with cipher block chaining-message authentication code (CCM) mode, the plaintext message is encrypted while a message authentication code (MAC) is computed in parallel, thus generating the corresponding ciphertext and the corresponding MAC (also known as tag). It is described by NIST in *Special Publication 800-38C*, *Recommendation for Block Cipher Modes of Operation - The CCM Mode for Authentication and Confidentiality*. CCM mode is based on AES in counter mode for confidentiality and it uses CBC for computing the message authentication code. It requires an initial value. Like GCM, the CCM chaining mode can be applied on a message composed only by plaintext authenticated data (that is, only header, no payload). Note that this way of using CCM is not called CMAC (it is not similar to GCM/GMAC), and its usage is not recommended by NIST. # 20.4.4 AES procedure to perform a cipher operation #### Introduction A typical cipher operation is explained below. Detailed information is provided in sections starting from Section 20.4.8: AES basic chaining modes (ECB, CBC). #### Initialization of AES To initialize AES, first disable it by clearing the EN bit of the AES_CR register. Then perform the following steps in any order: - Configure the AES mode, by programming the MODE[1:0] bitfield of the AES_CR register. - For encryption, select Mode 1 (MODE[1:0] = 00). - For decryption, select Mode 3 (MODE[1:0] = 10), unless ECB or CBC chaining modes are used. In this latter case, perform an initial key derivation of the encryption key, as described in Section 20.4.5: AES decryption round key preparation. - Select the chaining mode, by programming the CHMOD[2:0] bitfield of the AES_CR register. - Configure the data type (1-, 8-, 16- or 32-bit), with the DATATYPE[1:0] bitfield in the AES CR register. - When it is required (for example in CBC or CTR chaining modes), write the initialization vector into the AES_IVRx registers. - Configure the key size (128-bit or 256-bit), with the KEYSIZE bitfield of the AES_CR register. - Write a symmetric key into the AES_KEYRx registers (4 or 8 registers depending on the key size). ### Data append This section describes different ways of appending data for processing, where the size of data to process is not a multiple of 128 bits. For ECB or CBC mode, refer to Section 20.4.6: AES ciphertext stealing and data padding. The last block management in these cases is more complex than in the sequence described in this section. ### Data append through polling This method uses flag polling to control the data append through the following sequence: - 1. Enable the AES peripheral by setting the EN bit of the AES_CR register. - 2. Repeat the following sub-sequence until the payload is entirely processed: - a) Write four input data words into the AES DINR register. - b) Wait until the status flag CCF is set in the AES_SR, then read the four data words from the AES_DOUTR register. - c) Clear the CCF flag, by setting the CCFC bit of the AES_CR register. - d) If the data block just processed is the second-last block of the message and the significant data in the last block to process is inferior to 128 bits, pad the remainder of the last block with zeros and, in case of GCM payload encryption or CCM payload decryption, specify the number of non-valid bytes, using the NPBLB bitfield of the AES_CR register, for AES to compute a correct tag;. - 3. As it is the last block, discard the data that is not part of the data, then disable the AES peripheral by clearing the EN bit of the AES CR register. Up to three wait cycles are automatically inserted between two consecutive writes to the AES_DINR register, to allow sending the key to the AES processor. NPBLB bits are not used in header phase of GCM, GMAC and CCM chaining modes. Note: RM0444 Rev 5 481/1390 ### Data append using interrupt The method uses interrupt from the AES peripheral to control the data append, through the following sequence: - 1. Enable interrupts from AES by setting the CCFIE bit of the AES_CR register. - 2. Enable the AES peripheral by setting the EN bit of the AES_CR register. - Write first four input data words into the AES DINR register. - 4. Handle the data in the AES interrupt service routine, upon interrupt: - a) Read four output data words from the AES_DOUTR register. - b) Clear the CCF flag and thus the pending interrupt, by setting the CCFC bit of the AES_CR register. - c) If the data block just processed is the second-last block of an message and the significant data in the last block to process is inferior to 128 bits, pad the remainder of the last block with zeros and, in case of GCM payload encryption or CCM payload decryption, specify the number of non-valid bytes, using the NPBLB bitfield of the AES_CR register, for AES to compute a correct tag;. Then proceed with point 4e). - d) If the data block just processed is the last block of the message, discard the data that is not part of the data, then disable the AES peripheral by clearing the EN bit of the AES_CR register and quit the interrupt service routine. - e) Write next four input data words into the AES_DINR register and quit the interrupt service routine. Note: AES is tolerant of delays between consecutive read or write operations, which allows, for example, an interrupt from another peripheral to be served between two AES computations. NPBLB bits are not used in header phase of GCM, GMAC and CCM chaining modes. ### Data append using DMA With this method, all the transfers and processing are managed by DMA and AES. To use the method, proceed as follows: - 1. Prepare the last four-word data block (if the data to process does not fill it completely), by padding the remainder of the block with zeros. - 2. Configure the DMA controller so as to transfer the data to process from the memory to the AES peripheral input and the processed data from the AES peripheral output to the memory, as described in Section 20.4.16: AES DMA interface. Configure the DMA controller so as to generate an interrupt on transfer completion. In case of GCM payload encryption or CCM payload decryption, DMA transfer must not include the last four-word block if padded with zeros. The sequence described in Data append through polling must be used instead for this last block, because NPBLB bits must be setup before processing the block, for AES to compute a correct tag. - 3. Enable the AES peripheral by setting the EN bit of the AES_CR register - 4. Enable DMA requests by setting the DMAINEN and DMAOUTEN bits of the AES_CR register. - 5. Upon DMA interrupt indicating the transfer completion, get the AES-processed data from the memory. Note: The CCF flag has no use with this method, because the reading of the AES_DOUTR register is managed by DMA automatically, without any software action, at the end of the computation phase. NPBLB bits are not used in header phase of GCM, GMAC, and CCM chaining modes. 4 # 20.4.5 AES decryption round key preparation Internal key schedule is used to generate AES round keys. In AES encryption, the round 0 key is the one stored in the key registers. AES decryption must start using the last round key. As the encryption key is stored in memory, a special key scheduling must be performed to obtain the decryption key. This key scheduling is only required for AES decryption in ECB and CBC modes. Recommended method is to select the Mode 2 by setting to 01 the MODE[1:0] bitfield of the AES_CR (key process only), then proceed with the decryption by setting MODE[1:0] to 10 (Mode 3, decryption only). Mode 2 usage is described below: - 1. Disable the AES peripheral by clearing the EN bit of the AES_CR register. - 2. Select Mode 2 by setting to 01 the MODE[1:0] bitfield of the AES_CR. The CHMOD[2:0] bitfield is not significant in this case because this key derivation mode is independent of the chaining algorithm selected. - 3. Set key length to 128 or 256 bits, via KEYSIZE bit of AES_CR register. - 4. Write the AES_KEYRx registers (128 or 256 bits) with encryption key. Writes to the AES_IVRx registers have no effect. - 5. Enable the AES peripheral, by setting the EN bit of the AES CR register. - 6. Wait until the CCF flag is set in the AES_SR register. - 7. Clear the CCF flag. Derived key is available in AES core, ready to use for decryption. Note: The AES is disabled by hardware when the derivation key is available. To restart a derivation key computation, repeat steps 4, 5, 6, and 7. Note: The operation of the key preparation lasts 59 or 82 clock cycles, depending on the key size (128- or 256-bit). ## 20.4.6 AES ciphertext stealing and data padding When using AES in ECB or CBC modes to manage messages the size of which is not a multiple of the block size (128 bits), ciphertext stealing techniques are used, such as those described in NIST Special Publication 800-38A, Recommendation for Block Cipher
Modes of Operation: Three Variants of Ciphertext Stealing for CBC Mode. Since the AES peripheral does not support such techniques, the application must complete the last block of input data using data from the second last block. Note: Ciphertext stealing techniques are not documented in this reference manual. Similarly, when AES is used in other modes than ECB or CBC, an incomplete input data block (that is, block with input data shorter than 128 bits) must be padded with zeros prior to encryption (that is, extra bits must be appended to the trailing end of the data string). After decryption, the extra bits must be discarded. As AES does not implement automatic data padding operation to **the last block**, the application must follow the recommendation given in Section 20.4.4: AES procedure to perform a cipher operation on page 480 to manage messages the size of which is not a multiple of 128 bits. Padding data are swapped in a similar way as normal data, according to the DATATYPE[1:0] field of the AES_CR register (see Section 20.4.13: AES data registers and data swapping for details). Note: RM0444 Rev 5 483/1390 # 20.4.7 AES task suspend and resume A message can be suspended if another message with a higher priority must be processed. When this highest priority message is sent, the suspended message can resume in both encryption or decryption mode. Suspend/resume operations do not break the chaining operation and the message processing can resume as soon as AES is enabled again to receive the next data block. *Figure 82* gives an example of suspend/resume operation: Message 1 is suspended in order to send a shorter and higher-priority Message 2. Figure 82. Example of suspend mode management A detailed description of suspend/resume operations is in the sections dedicated to each AES mode. # 20.4.8 AES basic chaining modes (ECB, CBC) ### **Overview** This section gives a brief explanation of the four basic operation modes provided by the AES core: ECB encryption, ECB decryption, CBC encryption and CBC decryption. For detailed information, refer to the FIPS publication 197 from November 26, 2001. Figure 83 illustrates the electronic codebook (ECB) encryption. ### Figure 83. ECB encryption In ECB encrypt mode, the 128-bit plaintext input data block Px in the AES_DINR register first goes through bit/byte/half-word swapping. The swap result Ix is processed with the AES core set in encrypt mode, using a 128- or 256-bit key. The encryption result Ox goes through bit/byte/half-word swapping, then is stored in the AES_DOUTR register as 128-bit ciphertext output data block Cx. The ECB encryption continues in this way until the last complete plaintext block is encrypted. Figure 84 illustrates the electronic codebook (ECB) decryption. Figure 84. ECB decryption To perform an AES decryption in the ECB mode, the secret key has to be prepared by collecting the last-round encryption key (which requires to first execute the complete key schedule for encryption), and using it as the first-round key for the decryption of the ciphertext. This preparation is supported by the AES core. In ECB decrypt mode, the 128-bit ciphertext input data block C1 in the AES_DINR register first goes through bit/byte/half-word swapping. The keying sequence is reversed compared to that of the ECB encryption. The swap result I1 is processed with the AES core set in decrypt mode, using the formerly prepared decryption key. The decryption result goes through bit/byte/half-word swapping, then is stored in the AES_DOUTR register as 128-bit plaintext output data block P1. The ECB decryption continues in this way until the last complete ciphertext block is decrypted. 4 RM0444 Rev 5 485/1390 Figure 85 illustrates the cipher block chaining (CBC) encryption. Figure 85. CBC encryption In CBC encrypt mode, the first plaintext input block, after bit/byte/half-word swapping (P1'), is XOR-ed with a 128-bit IVI bitfield (initialization vector and counter), producing the I1 input data for encrypt with the AES core, using a 128- or 256-bit key. The resulting 128-bit output block O1, after swapping operation, is used as ciphertext C1. The O1 data is then XOR-ed with the second-block plaintext data P2' to produce the I2 input data for the AES core to produce the second block of ciphertext data. The chaining of data blocks continues in this way until the last plaintext block in the message is encrypted. If the message size is not a multiple of 128 bits, the final partial data block is encrypted in the way explained in *Section 20.4.6: AES ciphertext stealing and data padding*. Figure 86 illustrates the cipher block chaining (CBC) decryption. Figure 86. CBC decryption In CBC decrypt mode, like in ECB decrypt mode, the secret key must be prepared to perform an AES decryption. After the key preparation process, the decryption goes as follows: the first 128-bit ciphertext block (after the swap operation) is used directly as the AES core input block I1 for decrypt operation, using the 128-bit or 256-bit key. Its output O1 is XOR-ed with the 128-bit IVI field (that must be identical to that used during encryption) to produce the first plaintext block P1. The second ciphertext block is processed in the same way as the first block, except that the I1 data from the first block is used in place of the initialization vector. The decryption continues in this way until the last complete ciphertext block is decrypted. If the message size is not a multiple of 128 bits, the final partial data block is decrypted in the way explained in *Section 20.4.6: AES ciphertext stealing and data padding*. For more information on data swapping, refer to Section 20.4.13: AES data registers and data swapping. ### ECB/CBC encryption sequence The sequence of events to perform an ECB/CBC encryption (more detail in Section 20.4.4): - 1. Disable the AES peripheral by clearing the EN bit of the AES_CR register. - 2. Select the Mode 1 by setting to 00 the MODE[1:0] bitfield of the AES_CR register and select ECB or CBC chaining mode by setting the CHMOD[2:0] bitfield of the AES_CR register to 000 or 001, respectively. Data type can also be defined, using DATATYPE[1:0] bitfield. - Select 128- or 256-bit key length through the KEYSIZE bit of the AES_CR register. - 4. Write the AES_KEYRx registers (128 or 256 bits) with encryption key. Fill the AES_IVRx registers with the initialization vector data if CBC mode has been selected. - 5. Enable the AES peripheral by setting the EN bit of the AES CR register. - 6. Write the AES_DINR register four times to input the plaintext (MSB first), as shown in *Figure 87*. - 7. Wait until the CCF flag is set in the AES_SR register. - 8. Read the AES_DOUTR register four times to get the ciphertext (MSB first) as shown in *Figure 87*. Then clear the CCF flag by setting the CCFC bit of the AES_CR register. - 9. Repeat steps 6-7-8 to process all the blocks with the same encryption key. Figure 87. ECB/CBC encryption (Mode 1) #### ECB/CBC decryption sequence The sequence of events to perform an AES ECB/CBC decryption is as follows (More detail in Section 20.4.4). - 1. Follow the steps described in *Section 20.4.5: AES decryption round key preparation*, in order to prepare the decryption key in AES core. - Select the Mode 3 by setting to 10 the MODE[1:0] bitfield of the AES_CR register and select ECB or CBC chaining mode by setting the CHMOD[2:0] bitfield of the AES_CR 4 RM0444 Rev 5 487/1390 - register to 000 or 001, respectively. Data type can also be defined, using DATATYPE[1:0] bitfield. KEYSIZE bitfield must be kept as-is. - 3. Write the AES_IVRx registers with the initialization vector (required in CBC mode only). - Enable AES by setting the EN bit of the AES CR register. - 5. Write the AES_DINR register four times to input the cipher text (MSB first), as shown in *Figure 88*. - 6. Wait until the CCF flag is set in the AES_SR register. - 7. Read the AES_DOUTR register four times to get the plain text (MSB first), as shown in *Figure 88*. Then clear the CCF flag by setting the CCFC bit of the AES_CR register. - Repeat steps 5-6-7 to process all the blocks encrypted with the same key. ### Suspend/resume operations in ECB/CBC modes To suspend the processing of a message, proceed as follows: - If DMA is used, stop the AES DMA transfers to the IN FIFO by clearing the DMAINEN bit of the AES CR register. - If DMA is not used, read four times the AES_DOUTR register to save the last processed block. If DMA is used, wait until the CCF flag is set in the AES_SR register then stop the DMA transfers from the OUT FIFO by clearing the DMAOUTEN bit of the AES_CR register. - 3. If DMA is not used, poll the CCF flag of the AES_SR register until it becomes 1 (computation completed). - 4. Clear the CCF flag by setting the CCFC bit of the AES_CR register. - 5. Save initialization vector registers (only required in CBC mode as AES_IVRx registers are altered during the data processing). - 6. Disable the AES peripheral by clearing the bit EN of the AES CR register. - 7. Save the AES_CR register and clear the key registers if they are not needed, to process the higher priority message. - 8. If DMA is used, save the DMA controller status (pointers for IN and OUT data transfers, number of remaining bytes, and so on). ### To resume the processing of a message, proceed as follows: - If DMA is used, configure the DMA controller so as to complete the rest of the FIFO IN and FIFO OUT transfers. - Ensure that AES is disabled (the EN bit of the AES CR must be 0). - 3. Restore AES_CR register (with correct KEYSIZE) then restore AES_KEYRx registers. - 4. Prepare the decryption key as described in Section 20.4.5: AES decryption round key preparation (only required for ECB or CBC decryption). - 5. Restore AES_IVRx registers using the saved configuration (only required in CBC mode). - Enable the AES peripheral by setting the EN bit of the AES_CR register. - 7. If DMA is used, enable AES DMA transfers by setting the
DMAINEN and DMAOUTEN bits of the AES_CR register. ## Alternative single ECB/CBC decryption using Mode 4 The sequence of events to perform a single round of ECB/CBC decryption using Mode 4 is: - 1. Disable the AES peripheral by clearing the EN bit of the AES CR register. - 2. Select the Mode 4 by setting to 11 the MODE[1:0] bitfield of the AES_CR register and select ECB or CBC chaining mode by setting the CHMOD[2:0] bitfield of the AES_CR register to 0x0 or 0x1, respectively. - 3. Select key length of 128 or 256 bits via KEYSIZE bitfield of the AES_CR register. - 4. Write the AES_KEYRx registers with the encryption key. Write the AES_IVRx registers if the CBC mode is selected. - 5. Enable the AES peripheral by setting the EN bit of the AES CR register. - 6. Write the AES DINR register four times to input the cipher text (MSB first). - 7. Wait until the CCF flag is set in the AES SR register. - 8. Read the AES_DOUTR register four times to get the plain text (MSB first). Then clear the CCF flag by setting the CCFC bit of the AES_CR register. Note: When mode 4 is selected mode 3 cannot be used. In mode 4, the AES_KEYRx registers contain the encryption key during all phases of the processing. No derivation key is stored in these registers. It is stored internally in AES. # 20.4.9 AES counter (CTR) mode ### Overview The counter mode (CTR) uses AES as a key-stream generator. The generated keys are then XOR-ed with the plaintext to obtain the ciphertext. CTR chaining is defined in NIST Special Publication 800-38A, Recommendation for Block Cipher Modes of Operation. A typical message construction in CTR mode is given in Figure 89. RM0444 Rev 5 489/1390 Figure 89. Message construction in CTR mode The structure of this message is: - A 16-byte initial counter block (ICB), composed of two distinct fields: - Initialization vector (IV): a 96-bit value that must be unique for each encryption cycle with a given key. - Counter: a 32-bit big-endian integer that is incremented each time a block processing is completed. The initial value of the counter must be set to 1. - The plaintext P is encrypted as ciphertext C, with a known length. This length can be non-multiple of 16 bytes, in which case a plaintext padding is required. ## CTR encryption and decryption *Figure 90* and *Figure 91* describe the CTR encryption and decryption process, respectively, as implemented in the AES peripheral. The CTR mode is selected by writing 010 to the CHMOD[2:0] bitfield of AES_CR register. Figure 91. CTR decryption In CTR mode, the cryptographic core output (also called keystream) Ox is XOR-ed with relevant input block (Px' for encryption, Cx' for decryption), to produce the correct output block (Cx' for encryption, Px' for decryption). Initialization vectors in AES must be initialized as shown in Table 103. Table 103. CTR mode initialization vector definition | AES_IVR3[31:0] | AES_IVR2[31:0] | AES_IVR1[31:0] | AES_IVR0[31:0] | |----------------|----------------|----------------|-------------------------| | Nonce[31:0] | Nonce[63:32] | Nonce[95:64] | 32-bit counter = 0x0001 | Unlike in CBC mode that uses the AES IVRx registers only once when processing the first data block, in CTR mode AES_IVRx registers are used for processing each data block, and the AES peripheral increments the counter bits of the initialization vector (leaving the nonce bits unchanged). CTR decryption does not differ from CTR encryption, since the core always encrypts the current counter block to produce the key stream that is then XOR-ed with the plaintext (CTR encryption) or ciphertext (CTR decryption) input. In CTR mode, the MODE[1:0] bitfield setting 01 (key derivation) is forbidden and all the other settings default to encryption mode. The sequence of events to perform an encryption or a decryption in CTR chaining mode: - Ensure that AES is disabled (the EN bit of the AES_CR must be 0). - Select CTR chaining mode by setting to 010 the CHMOD[2:0] bitfield of the AES CR register. Set MODE[1:0] bitfield to any value other than 01. - 3. Initialize the AES_KEYRx registers, and load the AES_IVRx registers as described in Table 103. - Set the EN bit of the AES_CR register, to start encrypting the current counter (EN is automatically reset when the calculation finishes). - If it is the last block, pad the data with zeros to have a complete block, if needed. - Append data in AES, and read the result. The three possible scenarios are described in Section 20.4.4: AES procedure to perform a cipher operation. - Repeat the previous step till the second-last block is processed. For the last block, apply the two previous steps and discard the bits that are not part of the payload (if the size of the significant data in the last input block is less than 16 bytes). RM0444 Rev 5 491/1390 # Suspend/resume operations in CTR mode Like for the CBC mode, it is possible to interrupt a message to send a higher priority message, and resume the message that was interrupted. Detailed CBC suspend/resume sequence is described in *Section 20.4.8: AES basic chaining modes (ECB, CBC)*. Note: Like for CBC mode, the AES_IVRx registers must be reloaded during the resume operation. # 20.4.10 AES Galois/counter mode (GCM) #### Overview The AES Galois/counter mode (GCM) allows encrypting and authenticating a plaintext message into the corresponding ciphertext and tag (also known as message authentication code). To ensure confidentiality, GCM algorithm is based on AES counter mode. It uses a multiplier over a fixed finite field to generate the tag. GCM chaining is defined in NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation - Galois/Counter Mode (GCM) and GMAC. A typical message construction in GCM mode is given in Figure 92. Figure 92. Message construction in GCM The message has the following structure: - 16-byte initial counter block (ICB), composed of two distinct fields: - Initialization vector (IV): a 96-bit value that must be unique for each encryption cycle with a given key. Note that the GCM standard supports IVs with less than 96 bits, but in this case strict rules apply. - Counter: a 32-bit big-endian integer that is incremented each time a block processing is completed. According to NIST specification, the counter value is 0x2 when processing the first block of payload. - Authenticated header AAD (also knows as additional authentication data) has a known length Len(A) that may be a non-multiple of 16 bytes, and must not exceed 2⁶⁴ 1 bits. This part of the message is only authenticated, not encrypted. - **Plaintext message P** is both authenticated and encrypted as ciphertext C, with a known length Len(P) that may be non-multiple of 16 bytes, and cannot exceed 2³² 2 128-bit blocks. - **Last block** contains the AAD header length (bits [32:63]) and the payload length (bits [96:127]) information, as shown in *Table 104*. The GCM standard specifies that ciphertext C has the same bit length as the plaintext P. When a part of the message (AAD or P) has a length that is a non-multiple of 16-bytes a special padding scheme is required. Table 104. GCM last block definition | Endianness | Bit[0] Bit[31] | Bit[32] Bit[63] | Bit[64] Bit[95] | Bit[96] Bit[127] | |------------|----------------|------------------|-----------------|----------------------| | Input data | 0x0 | AAD length[31:0] | 0x0 | Payload length[31:0] | RM0444 Rev 5 493/1390 ### **GCM** processing *Figure 93* describes the GCM implementation in the AES peripheral. The GCM is selected by writing 011 to the CHMOD[2:0] bitfield of the AES_CR register. Figure 93. GCM authenticated encryption The mechanism for the confidentiality of the plaintext in GCM mode is similar to that in the Counter mode, with a particular increment function (denoted 32-bit increment) that generates the sequence of input counter blocks. AES_IVRx registers keeping the **counter block** of data are used for processing each data block. The AES peripheral automatically increments the Counter[31:0] bitfield. The first counter block (CB1) is derived from the initial counter block ICB by the application software (see *Table 105*). Register AES_IVR3[31:0] AES_IVR2[31:0] AES_IVR1[31:0] AES_IVR0[31:0] Input data ICB[31:0] ICB[63:32] ICB[95:64] Counter[31:0] = 0x2 Table 105. GCM mode IVI bitfield initialization Note: In this mode, the settings 01 and 11 of the MODE[1:0] bitfield are forbidden. The authentication mechanism in GCM mode is based on a hash function called **GF2mul** that performs multiplication by a fixed parameter, called hash subkey (H), within a binary Galois field. A GCM message is processed through the following phases, further described in next subsections: - Init phase: AES prepares the GCM hash subkey (H). - Header phase: AES processes the additional authenticated data (AAD), with hash computation only. - **Payload phase**: AES processes the plaintext (P) with hash computation, counter block encryption and data XOR-ing. It operates in a similar way for ciphertext (C). - **Final phase**: AES generates the authenticated tag (T) using the last block of the message. ### **GCM** init phase During this first step, the GCM hash subkey (H) is calculated and saved internally, to be used for processing all the blocks. The recommended sequence is: - 1. Ensure that AES is disabled (the EN bit of the AES_CR must be 0). - 2. Select GCM chaining mode, by setting to 011 the CHMOD[2:0] bitfield of the AES_CR register, and optionally, set the DATATYPE[1:0] bitfield. - 3. Indicate the Init phase, by setting to 00 the GCMPH[1:0] bitfield of the AES_CR register. - 4. Set the MODE[1:0] bitfield of the AES_CR register to 00 or 10. Although the bitfield is only used in payload phase, it is recommended to set it in the Init phase and keep it unchanged in all subsequent phases. - 5. Initialize the AES_KEYRx registers with a key, and initialize AES_IVRx registers with the information as defined in *Table 105*. - 6. Start the calculation of the hash key,
by setting to 1 the EN bit of the AES_CR register (EN is automatically reset when the calculation finishes). - 7. Wait until the end of computation, indicated by the CCF flag of the AES_SR transiting to 1. Alternatively, use the corresponding interrupt. - 8. Clear the CCF flag of the AES_SR register, by setting the CCFC bit of the AES_CR register. #### **GCM** header phase This phase coming after the GCM Init phase must be completed before the payload phase. The sequence to execute, identical for encryption and decryption, is: - Indicate the header phase, by setting to 01 the GCMPH[1:0] bitfield of the AES_CR register. Do not modify the MODE[1:0] bitfield as set in the Init phase. - 2. Enable the AES peripheral by setting the EN bit of the AES CR register. - 3. If it is the last block and the AAD size in the block is inferior to 128 bits, pad the remainder of the block with zeros. Then append the data block into AES in one of ways described in *Section 20.4.4: AES procedure to perform a cipher operation*. No data is read during this phase. - 4. Repeat the step 3 until the last additional authenticated data block is processed. Note: The header phase can be skipped if there is no AAD, that is, Len(A) = 0. RM0444 Rev 5 495/1390 ### GCM payload phase This phase, identical for encryption and decryption, is executed after the GCM header phase. During this phase, the encrypted/decrypted payload is stored in the AES_DOUTR register. The sequence to execute is: - Indicate the payload phase, by setting to 10 the GCMPH[1:0] bitfield of the AES_CR register. Do not modify the MODE[1:0] bitfield as set in the Init phase. - If the header phase was skipped, enable the AES peripheral by setting the EN bit of the AES_CR register. - If it is the last block and the plaintext (encryption) or ciphertext (decryption) size in the block is inferior to 128 bits, pad the remainder of the block with zeros. - Append the data block into AES in one of ways described in Section 20.4.4: AES procedure to perform a cipher operation on page 480, and read the result. - Repeat the previous step till the second-last plaintext block is encrypted or till the last block of ciphertext is decrypted. For the last block of plaintext (encryption only), execute the two previous steps. For the last block, discard the bits that are not part of the payload when the last block size is less than 16 bytes. Note: The payload phase can be skipped if there is no payload data, that is, Len(C) = 0 (see GMAC mode). ### **GCM** final phase In this last phase, the AES peripheral generates the GCM authentication tag and stores it in the AES DOUTR register. The sequence to execute is: - Indicate the final phase, by setting to 11 the GCMPH[1:0] bitfield of the AES_CR register. - 2. Compose the data of the block, by concatenating the AAD bit length and the payload bit length, as shown in *Table 104*. Write the block into the AES DINR register. - 3. Wait until the end of computation, indicated by the CCF flag of the AES SR transiting - Get the GCM authentication tag, by reading the AES_DOUTR register four times. - 5. Clear the CCF flag of the AES SR register, by setting the CCFC bit of the AES CR register. - Disable the AES peripheral, by clearing the bit EN of the AES_CR register. If it is an authenticated decryption, compare the generated tag with the expected tag passed with the message. Note: In the final phase, data is written to AES DINR normally (no swapping), while swapping is applied to tag data read from AES_DOUTR. > When transiting from the header or the payload phase to the final phase, the AES peripheral must not be disabled, otherwise the result is wrong. ## Suspend/resume operations in GCM mode ### To suspend the processing of a message, proceed as follows: - If DMA is used, stop the AES DMA transfers to the IN FIFO by clearing the DMAINEN bit of the AES_CR register. If DMA is not used, make sure that the current computation is completed, which is indicated by the CCF flag of the AES_SR register set to 1. - In the payload phase, if DMA is not used, read four times the AES_DOUTR register to save the last-processed block. If DMA is used, wait until the CCF flag is set in the AES_SR register then stop the DMA transfers from the OUT FIFO by clearing the DMAOUTEN bit of the AES_CR register. - Clear the CCF flag of the AES_SR register, by setting the CCFC bit of the AES_CR register. - 4. Save the AES SUSPxR registers in the memory, where x is from 0 to 7. - In the payload phase, save the AES_IVRx registers as, during the data processing, they changed from their initial values. In the header phase, this step is not required. - 6. Disable the AES peripheral, by clearing the EN bit of the AES CR register. - 7. Save the current AES configuration in the memory, excluding the initialization vector registers AES_IVRx. Key registers do not need to be saved as the original key value is known by the application. - 8. If DMA is used, save the DMA controller status (pointers for IN data transfers, number of remaining bytes, and so on). In the payload phase, pointers for OUT data transfers must also be saved. #### To resume the processing of a message, proceed as follows: - If DMA is used, configure the DMA controller in order to complete the rest of the FIFO IN transfers. In the payload phase, the rest of the FIFO OUT transfers must also be configured in the DMA controller. - 2. Ensure that the AES peripheral is disabled (the EN bit of the AES_CR register must be 0). - 3. Write the suspend register values, previously saved in the memory, back into their corresponding AES_SUSPxR registers, where x is from 0 to 7. - 4. In the payload phase, write the initialization vector register values, previously saved in the memory, back into their corresponding AES_IVRx registers. In the header phase, write initial setting values back into the AES_IVRx registers. - 5. Restore the initial setting values in the AES CR and AES KEYRx registers. - 6. Enable the AES peripheral by setting the EN bit of the AES CR register. If DMA is used, enable AES DMA requests by setting the DMAINEN bit (and DMAOUTEN bit if in payload phase) of the AES_CR register. # 20.4.11 AES Galois message authentication code (GMAC) ### Overview The Galois message authentication code (GMAC) allows the authentication of a plaintext, generating the corresponding tag information (also known as message authentication code). It is based on GCM algorithm, as defined in NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation - Galois/Counter Mode (GCM) and GMAC. RM0444 Rev 5 497/1390 MSv42158V2 Figure 94. Message construction in GMAC mode [Len(A)]64 [0]64 Len(A) 16-byte boundaries ICB Authenticated data 0 Last block Authentication tag (T) A typical message construction for GMAC is given in Figure 94. Initialization vector (IV) ## **AES GMAC processing** Zero padding *Figure 95* describes the GMAC mode implementation in the AES peripheral. This mode is selected by writing 011 to the CHMOD[2:0] bitfield of the AES_CR register. Counter Figure 95. GMAC authentication mode The GMAC algorithm corresponds to the GCM algorithm applied on a message only containing a header. As a consequence, all steps and settings are the same as with the GCM, except that the payload phase is omitted. ### Suspend/resume operations in GMAC In GMAC mode, the sequence described for the GCM applies except that only the header phase can be interrupted. # 20.4.12 AES counter with CBC-MAC (CCM) #### Overview The AES counter with cipher block chaining-message authentication code (CCM) algorithm allows encryption and authentication of plaintext, generating the corresponding ciphertext and tag (also known as message authentication code). To ensure confidentiality, the CCM algorithm is based on AES in counter mode. It uses cipher block chaining technique to generate the message authentication code. This is commonly called CBC-MAC. Note: NIST does not approve this CBC-MAC as an authentication mode outside the context of the CCM specification. CCM chaining is specified in NIST *Special Publication 800-38C*, *Recommendation for Block Cipher Modes of Operation - The CCM Mode for Authentication and Confidentiality*. A typical message construction for CCM is given in *Figure 96*. Figure 96. Message construction in CCM mode The structure of the message is: - 16-byte first authentication block (B0), composed of three distinct fields: - Q: a bit string representation of the octet length of P (Len(P)) - Nonce (N): a single-use value (that is, a new nonce must be assigned to each new communication) of Len(N) size. The sum Len(N) + Len(P) must be equal to 15 bytes. - Flags: most significant octet containing four flags for control information, as specified by the standard. It contains two 3-bit strings to encode the values t (MAC length expressed in bytes) and Q (plaintext length such that Len(P) < 2^{8q} bytes). The counter blocks range associated to Q is equal to 2^{8Q-4}, that is, if the maximum value of Q is 8, the counter blocks used in cipher must be on 60 bits. - 16-byte blocks (B) associated to the Associated Data (A). This part of the message is only authenticated, not encrypted. This section has a known length Len(A) that can be a non-multiple of 16 bytes (see Figure 96). The 5 RM0444 Rev 5 499/1390 standard also states that, on MSB bits of the first message block (B1), the associated data length expressed in bytes (a) must be encoded as follows: - If $0 < a < 2^{16} 2^8$, then it is encoded as [a]₁₆, that is, on two bytes. - If 2^{16} 2^8 < a < 2^{32} , then it is encoded as $0xff \parallel 0xfe \parallel [a]_{32}$, that is, on six bytes. - If 2^{32} < a < 2^{64} , then it is encoded as 0xff || 0xff || [a]₆₄, that is, on ten bytes. - 16-byte blocks (B) associated to the plaintext message P, which is both authenticated and encrypted as ciphertext C, with a known length Len(P). This length can be a nonmultiple of 16 bytes (see
Figure 96). - Encrypted MAC (T) of length Len(T) appended to the ciphertext C of overall length Len(C). When a part of the message (A or P) has a length that is a non-multiple of 16-bytes, a special padding scheme is required. Note: CCM chaining mode can also be used with associated data only (that is, no payload). As an example, the C.1 section in NIST Special Publication 800-38C gives the following values (hexadecimal numbers): N: 10111213 141516 (Len(N)= 56 bits or 7 bytes) A: 00010203 04050607 (Len(A)= 64 bits or 8 bytes) P: 20212223 (Len(P)= 32 bits or 4 bytes) T: 6084341B (Len(T)= 32 bits or t = 4) B0: 4F101112 13141516 00000000 00000004 B1: 00080001 02030405 06070000 00000000 B2: 20212223 00000000 00000000 00000000 CTR0: 0710111213 141516 00000000 00000000 CTR1: 0710111213 141516 00000000 00000001 Generation of formatted input data blocks Bx (especially B0 and B1) must be managed by the application. ### **CCM** processing *Figure 97* describes the CCM implementation within the AES peripheral (encryption example). This mode is selected by writing 100 into the CHMOD[2:0] bitfield of the AES_CR register. Figure 97. CCM mode authenticated encryption The data input to the generation-encryption process are a valid nonce, a valid payload string, and a valid associated data string, all properly formatted. The CBC chaining mechanism is applied to the formatted plaintext data to generate a MAC, with a known length. Counter mode encryption that requires a sufficiently long sequence of counter blocks as input, is applied to the payload string and separately to the MAC. The resulting ciphertext C is the output of the generation-encryption process on plaintext P. AES_IVRx registers are used for processing each data block, AES automatically incrementing the CTR counter with a bit length defined by the first block B0. *Table 106* shows how the application must load the B0 data. Note: The AES peripheral in CCM mode supports counters up to 64 bits, as specified by NIST. Table 106. Initialization of AES_IVRx registers in CCM mode | Register | AES_IVR3[31:0] | AES_IVR2[31:0] | AES_IVR1[31:0] | AES_IVR0[31:0] | |------------|----------------|----------------|----------------|----------------| | Input data | B0[31:0] | B0[63:32] | B0[95:64] | B0[127:96] | RM0444 Rev 5 501/1390 Note: In this mode, the settings 01 and 11 of the MODE[1:0] bitfield are forbidden. A CCM message is processed through the following phases, further described in next subsections: - Init phase: AES processes the first block and prepares the first counter block. - **Header phase**: AES processes associated data (A), with tag computation only. - **Payload phase**: IP processes plaintext (P), with tag computation, counter block encryption, and data XOR-ing. It works in a similar way for ciphertext (C). - Final phase: AES generates the message authentication code (MAC). ### **CCM** Init phase In this phase, the first block B0 of the CCM message is written into the AES_IVRx register. The AES_DOUTR register does not contain any output data. The recommended sequence is: - 1. Ensure that the AES peripheral is disabled (the EN bit of the AES CR must be 0). - 2. Select CCM chaining mode, by setting to 100 the CHMOD[2:0] bitfield of the AES_CR register, and optionally, set the DATATYPE[1:0] bitfield. - 3. Indicate the Init phase, by setting to 00 the GCMPH[1:0] bitfield of the AES_CR register. - 4. Set the MODE[1:0] bitfield of the AES_CR register to 00 or 10. Although the bitfield is only used in payload phase, it is recommended to set it in the Init phase and keep it unchanged in all subsequent phases. - 5. Initialize the AES_KEYRx registers with a key, and initialize AES_IVRx registers with B0 data as described in *Table 106*. - 6. Start the calculation of the counter, by setting to 1 the EN bit of the AES_CR register (EN is automatically reset when the calculation finishes). - 7. Wait until the end of computation, indicated by the CCF flag of the AES_SR transiting to 1. Alternatively, use the corresponding interrupt. - 8. Clear the CCF flag in the AES_SR register, by setting to 1 the CCFC bit of the AES_CR register. #### **CCM** header phase This phase coming after the GCM Init phase must be completed before the payload phase. During this phase, the AES_DOUTR register does not contain any output data. The sequence to execute, identical for encryption and decryption, is: - 1. Indicate the header phase, by setting to 01 the GCMPH[1:0] bitfield of the AES_CR register. Do not modify the MODE[1:0] bitfield as set in the Init phase. - Enable the AES peripheral by setting the EN bit of the AES_CR register. - 3. If it is the last block and the AAD size in the block is inferior to 128 bits, pad the remainder of the block with zeros. Then append the data block into AES in one of ways described in Section 20.4.4: AES procedure to perform a cipher operation. No data is read during this phase. - 4. Repeat the step 3 until the last additional authenticated data block is processed. Note: The header phase can be skipped if there is no associated data, that is, Len(A) = 0. The first block of the associated data (B1) must be formatted by software, with the associated data length. ### **CCM** payload phase (encryption or decryption) This phase, identical for encryption and decryption, is executed after the CCM header phase. During this phase, the encrypted/decrypted payload is stored in the AES_DOUTR register. The sequence to execute is: - Indicate the payload phase, by setting to 10 the GCMPH[1:0] bitfield of the AES_CR register. Do not modify the MODE[1:0] bitfield as set in the Init phase. - 2. If the header phase was skipped, enable the AES peripheral by setting the EN bit of the AES_CR register. - 3. If it is the last data block to encrypt and the plaintext size in the block is inferior to 128 bits, pad the remainder of the block with zeros. - 4. Append the data block into AES in one of ways described in Section 20.4.4: AES procedure to perform a cipher operation on page 480, and read the result. - 5. Repeat the previous step till the second-last plaintext block is encrypted or till the last block of ciphertext is decrypted. For the last block of plaintext (encryption only), apply the two previous steps. For the last block, discard the data that is not part of the payload when the last block size is less than 16 bytes. Note: The payload phase can be skipped if there is no payload data, that is, Len(P) = 0 or Len(C) = Len(T). Remove $LSB_{Len(T)}(C)$ encrypted tag information when decrypting ciphertext C. #### **CCM** final phase In this last phase, the AES peripheral generates the GCM authentication tag and stores it in the AES_DOUTR register. The sequence to execute is: - Indicate the final phase, by setting to 11 the GCMPH[1:0] bitfield of the AES_CR register. - 2. Wait until the end-of-computation flag CCF of the AES_SR register is set. - Read four times the AES_DOUTR register: the output corresponds to the CCM authentication tag. - 4. Clear the CCF flag of the AES_SR register by setting the CCFC bit of the AES_CR register. - 5. Disable the AES peripheral, by clearing the EN bit of the AES_CR register. - 6. For authenticated decryption, compare the generated encrypted tag with the encrypted tag padded in the ciphertext. Note: In this final phase, swapping is applied to tag data read from AES_DOUTR register. When transiting from the header phase to the final phase, the AES peripheral must not be disabled, otherwise the result is wrong. Application must mask the authentication tag output with tag length to obtain a valid tag. 477 RM0444 Rev 5 503/1390 # Suspend/resume operations in CCM mode To suspend the processing of a message in header or payload phase, proceed as follows: - 1. If DMA is used, stop the AES DMA transfers to the IN FIFO by clearing the DMAINEN bit of the AES CR register. If DMA is not used, make sure that the current computation is completed, which is indicated by the CCF flag of the AES_SR register set to 1. - In the payload phase, if DMA is not used, read four times the AES DOUTR register to save the last-processed block. If DMA is used, wait until the CCF flag is set in the AES SR register then stop the DMA transfers from the OUT FIFO by clearing the DMAOUTEN bit of the AES CR register. - Clear the CCF flag of the AES SR register, by setting to 1 the CCFC bit of the AES CR register. - 4. Save the AES SUSPxR registers (where x is from 0 to 7) in the memory. - Save the AES IVRx registers as, during the data processing, they changed from their initial values. - 6. Disable the AES peripheral, by clearing the EN bit of the AES CR register. - Save the current AES configuration in the memory, excluding the initialization vector registers AES_IVRx. Key registers do not need to be saved as the original key value is known by the application. - If DMA is used, save the DMA controller status (pointers for IN data transfers, number of remaining bytes, and so on). In the payload phase, pointers for OUT data transfers must also be saved. ### To resume the processing of a message, proceed as follows: - If DMA is used, configure the DMA controller in order to complete the rest of the FIFO IN transfers. In the payload phase, the rest of the FIFO OUT transfers must also be configured in the DMA controller. - 2. Ensure that the AES peripheral is disabled (the EN bit of the AES CR register must be - 3. Write the suspend register values, previously saved in the memory, back into their corresponding AES SUSPxR registers (where x is from 0 to 7). - Write the initialization vector register values, previously saved in the memory, back into their corresponding AES_IVRx registers. - Restore the initial setting values in the AES CR and AES KEYRx registers. - Enable the AES peripheral by setting the EN bit of the AES_CR register. - If DMA is used, enable AES DMA requests by setting to 1 the DMAINEN bit (and DMAOUTEN bit if in payload phase) of the AES CR register. ## 20.4.13 AES
data registers and data swapping #### Data input and output A 128-bit data block is entered into the AES peripheral with four successive 32-bit word writes into the AES_DINR register (bitfield DIN[31:0]), the most significant word (bits [127:96]) first, the least significant word (bits [31:0]) last. A 128-bit data block is retrieved from the AES peripheral with four successive 32-bit word reads from the AES_DOUTR register (bitfield DOUT[31:0]), the most significant word (bits [127:96]) first, the least significant word (bits [31:0]) last. The 32-bit data word for AES_DINR register or from AES_DOUTR register is organized in big endian order, that is: - the most significant byte of a word to write into AES_DINR must be put on the lowest address out of the four adjacent memory locations keeping the word to write, or - the most significant byte of a word read from AES_DOUTR goes to the lowest address out of the four adjacent memory locations receiving the word For using DMA for input data block write into AES, the four words of the input block must be stored in the memory consecutively and in big-endian order, that is, the most significant word on the lowest address. See Section 20.4.16: AES DMA interface. ### **Data swapping** The AES peripheral can be configured to perform a bit-, a byte-, a half-word-, or no swapping on the input data word in the AES_DINR register, before loading it to the AES processing core, and on the data output from the AES processing core, before sending it to the AES_DOUTR register. The choice depends on the type of data. For example, a byte swapping is used for an ASCII text stream. The data swap type is selected through the DATATYPE[1:0] bitfield of the AES_CR register. The selection applies both to the input and the output of the AES core. For different data swap types, *Figure 98* shows the construction of AES processing core input buffer data P127..0, from the input data entered through the AES_DINR register, or the construction of the output data available through the AES_DOUTR register, from the AES processing core output buffer data P127..0. RM0444 Rev 5 505/1390 Figure 98. 128-bit block construction with respect to data swap Note: The data in AES key registers (AES_KEYRx) and initialization registers (AES_IVRx) are not sensitive to the swap mode selection. ### **Data padding** *Figure 98* also gives an example of memory data block padding with zeros such that the zeroed bits after the data swap form a contiguous zone at the MSB end of the AES core input buffer. The example shows the padding of an input data block containing: - 48 message bits, with DATATYPE[1:0] = 01 - 56 message bits, with DATATYPE[1:0] = 10 - 34 message bits, with DATATYPE[1:0] = 11 ## 20.4.14 AES key registers The AES_KEYRx write-only registers store the encryption or decryption key bitfield KEY[127:0] or KEY[255:0]. The data to write to each register is organized in the memory in little-endian order, that is, with most significant byte on the highest address (reads are not allowed for security reason). The key is spread over eight registers as shown in *Table 107*. Table 107. Key endianness in AES_KEYRx registers (128- or 256-bit key length) | AES_KEYR7
[31:0] | AES_KEYR6
[31:0] | AES_KEYR5
[31:0] | AES_KEYR4
[31:0] | AES_KEYR3
[31:0] | AES_KEYR2
[31:0] | AES_KEYR1
[31:0] | AES_KEYR0
[31:0] | |---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------| | | - | - | - | KEY[127:96] | KEY[95:64] | KEY[63:32] | KEY[31:0] | | KEY[255:224] | KEY[223:192] | KEY[191:160] | KEY[159:128] | KEY[127:96] | KEY[95:64] | KEY[63:32] | KEY[31:0] | The key for encryption or decryption may be written into these registers when the AES peripheral is disabled, by clearing the EN bit of the AES_CR register. The key registers are not affected by the data swapping controlled by DATATYPE[1:0] bitfield of the AES_CR register. # 20.4.15 AES initialization vector registers The four AES_IVRx registers keep the initialization vector input bitfield IVI[127:0]. The data to write to or to read from each register is organized in the memory in little-endian order, that is, with most significant byte on the highest address. The registers are also ordered from lowest address (AES_IVR0) to highest address (AES_IVR3). The signification of data in the bitfield depends on the chaining mode selected. When used, the bitfield is updated upon each computation cycle of the AES core. Write operations to the AES_IVRx registers when the AES peripheral is enabled have no effect to the register contents. For modifying the contents of the AES_IVRx registers, the EN bit of the AES_CR register must first be cleared. Reading the AES_IVRx registers returns the latest counter value (useful for managing suspend mode). The AES_IVRx registers are not affected by the data swapping feature controlled by the DATATYPE[1:0] bitfield of the AES_CR register. ## 20.4.16 AES DMA interface The AES peripheral provides an interface to connect to the DMA (direct memory access) controller. The DMA operation is controlled through the AES_CR register. ### Data input using DMA Setting the DMAINEN bit of the AES_CR register enables DMA writing into AES. The AES peripheral then initiates a DMA request during the input phase each time it requires to write a 128-bit block (quadruple word) to the AES_DINR register, as shown in *Figure 99*. Note: According to the algorithm and the mode selected, special padding / ciphertext stealing might be required. For example, in case of AES GCM encryption or AES CCM decryption, a RM0444 Rev 5 507/1390 DMA transfer must not include the last block. For details, refer to Section 20.4.4: AES procedure to perform a cipher operation. Figure 99. DMA transfer of a 128-bit data block during input phase ### Data output using DMA Setting the DMAOUTEN bit of the AES_CR register enables DMA reading from AES. The AES peripheral then initiates a DMA request during the Output phase each time it requires to read a 128-bit block (quadruple word) to the AES_DINR register, as shown in *Figure 100*. Note: According to the message size, extra bytes might need to be discarded by application in the last block. Figure 100. DMA transfer of a 128-bit data block during output phase ## DMA operation in different operating modes DMA operations are usable when Mode 1 (encryption) or Mode 3 (decryption) are selected via the MODE[1:0] bitfield of the register AES_CR. As in Mode 2 (key derivation) the AES_KEYRx registers must be written by software, enabling the DMA transfer through the DMAINEN and DMAOUTEN bits of the AES_CR register have no effect in that mode. DMA single requests are generated by AES until it is disabled. So, after the data output phase at the end of processing of a 128-bit data block, AES switches automatically to a new data input phase for the next data block, if any. When the data transferring between AES and memory is managed by DMA, the CCF flag is not relevant and can be ignored (left set) by software. It must only be cleared when transiting back to data transferring managed by software. See Suspend/resume operations in ECB/CBC modes in Section 20.4.8: AES basic chaining modes (ECB, CBC) as example. ## 20.4.17 AES error management AES configuration can be changed at any moment by clearing the EN bit of the AES_CR register. ## Read error flag (RDERR) Unexpected read attempt of the AES_DOUTR register sets the RDERR flag of the AES_SR register, and returns zero. RDERR is triggered during the computation phase or during the input phase. Note: AES is not disabled upon a RDERR error detection and continues processing. An interrupt is generated if the ERRIE bit of the AES_CR register is set. For more details, refer to Section 20.5: AES interrupts. The RDERR flag is cleared by setting the ERRIE bit of the AES_CR register. ### Write error flag (WDERR) Unexpected write attempt of the AES_DINR register sets the WRERR flag of the AES_SR register, and has no effect on the AES_DINR register. The WRERR is triggered during the computation phase or during the output phase. Note: AES is not disabled after a WRERR error detection and continues processing. An interrupt is generated if the ERRIE bit of the AES_CR register is set. For more details, refer to Section 20.5: AES interrupts. The WRERR flag is cleared by setting the ERRC bit of the AES_CR register. # 20.5 AES interrupts Individual maskable interrupt sources generated by the AES peripheral signal the following events: - computation completed - read error - write error The individual sources are combined into the common interrupt signal aes_it that connects to NVIC (nested vectored interrupt controller). Each can individually be enabled/disabled, by setting/clearing the corresponding enable bit of the AES_CR register, and cleared by setting the corresponding bit of the AES_CR register. The status of each can be read from the AES_SR register. Table 108 gives a summary of the interrupt sources, their event flags and enable bits. RM0444 Rev 5 509/1390 | | Tubic Too. F | LO michapi reque | 313 | | |----------------------|----------------------------|------------------|------------|---------------------------| | Interrupt
acronym | AES interrupt event | Event flag | Enable bit | Interrupt clear
method | | | computation completed flag | CCF | CCFIE | set CCFC ⁽¹⁾ | | AES | read error flag | RDERR | 50015 | 1 EDD 0(1) | | | write error flag | WRERR | ERRIE | set ERRC ⁽¹⁾ | Table 108. AES interrupt requests # 20.6 AES processing latency The tables below summarize the latency to process a 128-bit block for each mode of operation. Table 109. Processing latency for ECB, CBC and CTR | Key size | Mode of operation | Algorithm | Clock
cycles | |----------|--|---------------|-----------------| | | Mode 1: Encryption | ECB, CBC, CTR | 51 | | 128-bit |
Mode 2: Key derivation | - | 59 | | 120-DIL | Mode 3: Decryption | ECB, CBC, CTR | 51 | | | Mode 4: Key derivation then decryption | ECB, CBC | 106 | | | Mode 1: Encryption | ECB, CBC, CTR | 75 | | OEC hit | Mode 2: Key derivation | - | 82 | | 256-bit | Mode 3: Decryption | ECB, CBC, CTR | 75 | | | Mode 4: Key derivation then decryption | ECB, CBC | 145 | Table 110. Processing latency for GCM and CCM (in clock cycles) | Key size | Mode of operation | Algorithm | Init Phase | Header
phase ⁽¹⁾ | Payload
phase ⁽¹⁾ | Tag phase ⁽¹⁾ | |----------|---------------------|-----------|------------|--------------------------------|---------------------------------|--------------------------| | 128-bit | Mode 1: Encryption/ | GCM | 64 | 35 | 51 | 59 | | 120-011 | Mode 3: Decryption | CCM | 63 | 55 | 114 | 58 | | 256-bit | Mode 1: Encryption/ | GCM | 88 | 35 | 75 | 75 | | 230-011 | Mode 3: Decryption | CCM | 87 | 79 | 162 | 82 | ^{1.} Data insertion can include wait states forced by AES on the AHB bus (maximum 3 cycles, typical 1 cycle). ^{1.} Bit of the AES_CR register. # 20.7 AES registers # 20.7.1 AES control register (AES_CR) Address offset: 0x00 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|---------|----------|---------|-------|-------|------|------|------|---------|-----|--------|---------|----------|----------| | Res. | NPBL | B[3:0] | | Res. | KEYSIZE | Res. | СНМОБ[2] | | | | | | | | | | rw | rw | rw | rw | | rw | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | GCMF | PH[1:0] | DMAOUTEN | DMAINEN | ERRIE | CCFIE | ERRC | CCFC | СНМС | DD[1:0] | MOD | E[1:0] | DATATY | /PE[1:0] | EN | | | rw Bits 31:24 Reserved, must be kept at reset value. Bits 23:20 NPBLB[3:0]: Number of padding bytes in last block The bitfield sets the number of padding bytes in last block of payload: 0000: All bytes are valid (no padding) 0001: Padding for one least-significant byte of last block ... 1111: Padding for 15 least-significant bytes of last block Bit 19 Reserved, must be kept at reset value. Bit 18 KEYSIZE: Key size selection This bitfield defines the length of the key used in the AES cryptographic core, in bits: 0: 128 1: 256 Attempts to write the bit are ignored when the EN bit of the AES_CR register is set before the write access and it is not cleared by that write access. - Bit 17 Reserved, must be kept at reset value. - Bit 15 Reserved, must be kept at reset value. #### Bits 14:13 GCMPH[1:0]: GCM or CCM phase selection This bitfield selects the phase of GCM, GMAC or CCM algorithm: 00: Init phase 01: Header phase 10: Payload phase 11: Final phase The bitfield has no effect if other than GCM, GMAC or CCM algorithms are selected (through the ALGOMODE bitfield). 4 RM0444 Rev 5 511/1390 #### Bit 12 **DMAOUTEN**: DMA output enable This bit enables/disables data transferring with DMA, in the output phase: 0: Disable 1: Enable When the bit is set, DMA requests are automatically generated by AES during the output data phase. This feature is only effective when Mode 1 or Mode 3 is selected through the MODE[1:0] bitfield. It is not effective for Mode 2 (key derivation). Usage of DMA with Mode 4 (single decryption) is not recommended. #### Bit 11 **DMAINEN**: DMA input enable This bit enables/disables data transferring with DMA, in the input phase: 0: Disable 1: Enable When the bit is set, DMA requests are automatically generated by AES during the input data phase. This feature is only effective when Mode 1 or Mode 3 is selected through the MODE[1:0] bitfield. It is not effective for Mode 2 (key derivation). Usage of DMA with Mode 4 (single decryption) is not recommended. ### Bit 10 ERRIE: Error interrupt enable This bit enables or disables (masks) the AES interrupt generation when RDERR and/or WRERR is set: 0: Disable (mask) 1: Enable ### Bit 9 CCFIE: CCF interrupt enable This bit enables or disables (masks) the AES interrupt generation when CCF (computation complete flag) is set: 0: Disable (mask) 1: Enable #### Bit 8 ERRC: Error flag clear Upon written to 1, this bit clears the RDERR and WRERR error flags in the AES SR register: 0: No effect 1: Clear RDERR and WRERR flags Reading the flag always returns zero. #### Bit 7 CCFC: Computation complete flag clear Upon written to 1, this bit clears the computation complete flag (CCF) in the AES SR register: 0: No effect 1: Clear CCF Reading the flag always returns zero. ### Bits 16, 6:5 CHMOD[2:0]: Chaining mode selection This bitfield selects the AES chaining mode: 000: Electronic codebook (ECB) 001: Cipher-block chaining (CBC) 010: Counter mode (CTR) 011: Galois counter mode (GCM) and Galois message authentication code (GMAC) 100: Counter with CBC-MAC (CCM) others: Reserved Attempts to write the bitfield are ignored when the EN bit of the AES_CR register is set before the write access and it is not cleared by that write access. #### Bits 4:3 MODE[1:0]: AES operating mode This bitfield selects the AES operating mode: 00: Mode 1: encryption 01: Mode 2: key derivation (or key preparation for ECB/CBC decryption) 10: Mode 3: decryption 11: Mode 4: key derivation then single decryption Attempts to write the bitfield are ignored when the EN bit of the AES_CR register is set before the write access and it is not cleared by that write access. Any attempt to selecting Mode 4 while either ECB or CBC chaining mode is not selected, defaults to effective selection of Mode 3. It is not possible to select a Mode 3 following a Mode 4. #### Bits 2:1 DATATYPE[1:0]: Data type selection This bitfield defines the format of data written in the AES_DINR register or read from the AES_DOUTR register, through selecting the mode of data swapping: 00: None 01: Half-word (16-bit) 10: Byte (8-bit) 11: Bit For more details, refer to Section 20.4.13: AES data registers and data swapping. Attempts to write the bitfield are ignored when the EN bit of the AES_CR register is set before the write access and it is not cleared by that write access. #### Bit 0 EN: AES enable This bit enables/disables the AES peripheral: 0: Disable 1: Enable At any moment, clearing then setting the bit re-initializes the AES peripheral. This bit is automatically cleared by hardware upon the completion of the key preparation (Mode 2) and upon the completion of GCM/GMAC/CCM initial phase. # 20.7.2 AES status register (AES_SR) Address offset: 0x04 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | | | - | | | | | | | | Res. BUSY | WRERR | RDERR | CCF | Bits 31:4 Reserved, must be kept at reset value. #### Bit 3 BUSY: Busy This flag indicates whether AES is idle or busy during GCM payload encryption phase: 0: Idle 1: Busy When the flag indicates "idle", the current GCM encryption processing may be suspended to process a higher-priority message. In other chaining modes, or in GCM phases other than payload encryption, the flag must be ignored for the suspend process. 4 RM0444 Rev 5 513/1390 #### Bit 2 WRERR: Write error This flag indicates the detection of an unexpected write operation to the AES_DINR register (during computation or data output phase): 0: Not detected 1: Detected The flag is set by hardware. It is cleared by software upon setting the ERRC bit of the AES_CR register. Upon the flag setting, an interrupt is generated if enabled through the ERRIE bit of the AES_CR register. The flag setting has no impact on the AES operation. Unexpected write is ignored. #### Bit 1 RDERR: Read error flag This flag indicates the detection of an unexpected read operation from the AES_DOUTR register (during computation or data input phase): 0: Not detected 1: Detected The flag is set by hardware. It is cleared by software upon setting the ERRC bit of the AES_CR register. Upon the flag setting, an interrupt is generated if enabled through the ERRIE bit of the AES_CR register. The flag setting has no impact on the AES operation. Unexpected read returns zero. #### Bit 0 CCF: Computation completed flag This flag indicates whether the computation is completed: 0: Not completed 1: Completed The flag is set by hardware upon the completion of the computation. It is cleared by software, upon setting the CCFC bit of the AES CR register. Upon the flag setting, an interrupt is generated if enabled through the CCFIE bit of the AES_CR register. The flag is significant only when the DMAOUTEN bit is 0. It may stay high when DMA_EN is 1. # 20.7.3 AES data input register (AES_DINR) Address offset: 0x08 Reset value: 0x0000 0000 Only 32-bit access type is supported. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----| | | DIN[31:16] | | | | | | | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | DIN[15:0] | | | | | | | | | | | | | | | | rw ## Bits 31:0 DIN[31:0]: Input data word A four-fold sequential write to this bitfield during the input phase results in writing a complete 128-bit block of input data to the AES peripheral. From the first to the fourth write, the corresponding data weights are [127:96], [95:64], [63:32], and [31:0]. Upon each write, the data from the 32-bit input buffer are handled by the data swap block according to the DATATYPE[1:0] bitfield, then written into the AES core 128-bit input buffer. The data signification of the input data block depends on the AES operating mode: - Mode 1 (encryption): plaintext - Mode 2 (key derivation): the bitfield is not used (AES KEYRx registers used for input) - Mode 3 (decryption) and Mode 4 (key derivation then single decryption): ciphertext The
data swap operation is described in Section 20.4.13: AES data registers and data swapping on page 505. # 20.7.4 AES data output register (AES_DOUTR) Address offset: 0x0C Reset value: 0x0000 0000 Only 32-bit read access type is supported. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|------------|----|----|----|----|----|------|---------|----|----|----|----|----|----|----| | | | | | | | | DOUT | [31:16] | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | DOUT[15:0] | | | | | | | | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | ## Bits 31:0 DOUT[31:0]: Output data word This read-only bitfield fetches a 32-bit output buffer. A four-fold sequential read of this bitfield, upon the computation completion (CCF set), virtually reads a complete 128-bit block of output data from the AES peripheral. Before reaching the output buffer, the data produced by the AES core are handled by the data swap block according to the DATATYPE[1:0] bitfield. Data weights from the first to the fourth read operation are: [127:96], [95:64], [63:32], and [31:0]. The data signification of the output data block depends on the AES operating mode: - Mode 1 (encryption): ciphertext - Mode 2 (key derivation): the bitfield is not used - Mode 3 (decryption) and Mode 4 (key derivation then single decryption): plaintext The data swap operation is described in Section 20.4.13: AES data registers and data swapping on page 505. 5 RM0444 Rev 5 515/1390 ## 20.7.5 AES key register 0 (AES_KEYR0) Address offset: 0x10 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|-----------|----|----|----|----|----|-------|--------|----|----|----|----|----|----|----| | | | | | | | | KEY[3 | 31:16] | | | | | | | | | w | W | W | W | W | W | W | W | W | W | W | W | W | W | W | w | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | KEY[15:0] | | | | | | | | | | | | | | | | w | W | W | W | W | W | W | W | W | W | W | W | W | W | W | w | Bits 31:0 KEY[31:0]: Cryptographic key, bits [31:0] This write-only bitfield contains the bits [31:0] of the AES encryption or decryption key, depending on the operating mode: - In **Mode 1** (encryption), **Mode 2** (key derivation) and **Mode 4** (key derivation then single decryption): the value to write into the bitfield is the encryption key. - In **Mode 3** (decryption): the value to write into the bitfield is the encryption key to be derived before being used for decryption. Note: In mode 4 (key derivation then single decryption) the bitfield always contains the encryption key. The AES_KEYRx registers may be written only when KEYSIZE value is correct and when the AES peripheral is disabled (EN bit of the AES_CR register cleared). Note that, if, the key is directly loaded to AES_KEYRx registers (hence writes to key register is ignored and KEIF is set). Refer to Section 20.4.14: AES key registers on page 507 for more details. # 20.7.6 AES key register 1 (AES_KEYR1) Address offset: 0x14 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|------------|----|----|----|----|----|-------|-------|----|----|----|----|----|----|----| | | | | | | | | KEY[6 | 3:48] | | | | | | | | | w | w | W | W | W | W | W | W | W | W | W | W | W | W | W | w | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | KEY[47:32] | | | | | | | | | | | | | | | | w | w | W | W | W | W | W | W | W | W | W | W | W | W | W | w | Bits 31:0 KEY[63:32]: Cryptographic key, bits [63:32] Refer to the AES_KEYR0 register for description of the KEY[255:0] bitfield. # 20.7.7 AES key register 2 (AES_KEYR2) Address offset: 0x18 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|------------|----|----|----|----|----|-------|--------|----|----|----|----|----|----|----| | | | | | | | | KEY[9 | 95:80] | | | | | | | | | w | W | W | W | W | W | W | W | W | W | W | w | W | W | W | w | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | KEY[79:64] | | | | | | | | | | | | | | | | w | W | W | W | W | W | W | W | W | W | W | W | W | W | W | W | Bits 31:0 **KEY[95:64]**: Cryptographic key, bits [95:64] Refer to the AES_KEYR0 register for description of the KEY[255:0] bitfield. # 20.7.8 AES key register 3 (AES_KEYR3) Address offset: 0x1C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|-------------|----|----|----|----|----|-----|-----------|----|----|----|----|----|----|----| | | | | _ | _ | | | KEY | [127:112] | _ | | | _ | _ | | | | w | W | W | W | W | W | w | w | w | W | w | W | w | w | w | w | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | KEY[111:96] | | | | | | | | | | | | | | | | w | W | W | W | W | W | W | W | w | W | W | W | W | w | W | W | Bits 31:0 **KEY[127:96]**: Cryptographic key, bits [127:96] Refer to the AES_KEYR0 register for description of the KEY[255:0] bitfield. # 20.7.9 AES initialization vector register 0 (AES_IVR0) Address offset: 0x20 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|-------|-------|----|----|----|----|----|----|----| | | | | | | | | IVI[3 | 1:16] | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | IVI[1 | 15:0] | | | | | | | | | rw RM0444 Rev 5 517/1390 Bits 31:0 IVI[31:0]: Initialization vector input, bits [31:0] Refer to Section 20.4.15: AES initialization vector registers on page 507 for description of the IVI[127:0] bitfield. The initialization vector is only used in chaining modes other than ECB. The AES IVRx registers may be written only when the AES peripheral is disabled # 20.7.10 AES initialization vector register 1 (AES_IVR1) Address offset: 0x24 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|-------|-------|----|----|----|----|----|----|----| | | | | | | | | IVI[6 | 3:48] | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | IVI[4 | 7:32] | | | | | | | | | rw Bits 31:0 IVI[63:32]: Initialization vector input, bits [63:32] Refer to the AES_IVR0 register for description of the IVI[128:0] bitfield. # 20.7.11 AES initialization vector register 2 (AES_IVR2) Address offset: 0x28 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|-------|-------|----|----|----|----|----|----|----| | | | | | | | | IVI[9 | 5:80] | | | | | | | • | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | IVI[7 | 9:64] | | | | | | | | | rw Bits 31:0 IVI[95:64]: Initialization vector input, bits [95:64] Refer to the AES_IVR0 register for description of the IVI[128:0] bitfield. ## 20.7.12 AES initialization vector register 3 (AES_IVR3) Address offset: 0x2C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|--------|--------|----|----|----|----|----|----|----| | | | | | | | | IVI[12 | 7:112] | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | IVI[1 | 11:96] | | | | | | | | | rw Bits 31:0 IVI[127:96]: Initialization vector input, bits [127:96] Refer to the AES_IVR0 register for description of the IVI[128:0] bitfield. # 20.7.13 AES key register 4 (AES_KEYR4) Address offset: 0x30 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|--------|---------|----|----|----|----|----|----|----| | | | | | | | | KEY[1 | 59:144] | | | | | | | | | w | w | W | W | W | W | W | W | W | W | W | W | W | W | W | w | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | KEY[14 | 43:128] | | | | | | | | | w | W | W | W | W | W | W | W | W | W | W | W | W | W | W | W | Bits 31:0 **KEY[159:128]**: Cryptographic key, bits [159:128] Refer to the AES_KEYR0 register for description of the KEY[255:0] bitfield. # 20.7.14 AES key register 5 (AES_KEYR5) Address offset: 0x34 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|--------|---------|----|----|----|----|----|----|----| | | | | | | | | KEY[19 | 91:176] | | | | | | | | | w | W | W | W | W | W | W | W | W | W | W | W | W | W | W | w | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | KEY[17 | 75:160] | | | | | | | | | w | W | W | W | W | w | w | W | W | w | W | W | W | W | W | w | Bits 31:0 **KEY[191:160]**: Cryptographic key, bits [191:160] Refer to the AES_KEYR0 register for description of the KEY[255:0] bitfield. # 20.7.15 AES key register 6 (AES_KEYR6) Address offset: 0x38 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|--------|---------|----|----|----|----|----|----|----| | | | | | | | | KEY[22 | 23:208] | | | | | | | | | w | w | W | W | W | W | W | W | W | W | W | W | W | W | W | w | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | KEY[20 | 07:192] | | | | | | | | | w | w | w | w | W | w | w | w | W | w | w | W | w | w | W | w | Bits 31:0 **KEY[223:192]**: Cryptographic key, bits [223:192] Refer to the AES KEYR0 register for description of the KEY[255:0] bitfield. RM0444 Rev 5 519/1390 # 20.7.16 AES key register 7 (AES_KEYR7) Address offset: 0x3C Reset value: 0x0000 0000 | 31 |
30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|--------|---------|----|----|----|----|----|----|----| | | | | | | | | KEY[2 | 55:240] | | | | | | | | | w | W | W | W | W | W | W | W | W | W | W | W | w | W | W | w | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | KEY[23 | 39:224] | | | | | | | | | w | W | W | W | W | W | W | W | W | W | W | W | W | W | W | w | Bits 31:0 **KEY[255:224]**: Cryptographic key, bits [255:224] Refer to the AES KEYR0 register for description of the KEY[255:0] bitfield. Note: The key registers from 4 to 7 are used only when the key length of 256 bits is selected. They have no effect when the key length of 128 bits is selected (only key registers 0 to 3 are used in that case). ## 20.7.17 AES suspend registers (AES SUSPxR) Address offset: 0x040 + x * 0x4, (x = 0 to 7) Reset value: 0x0000 0000 These registers contain the complete internal register states of the AES processor when the AES processing of the current task is suspended to process a higher-priority task. Upon suspend, the software reads and saves the AES_SUSPxR register contents (where x is from 0 to 7) into memory, before using the AES processor for the higher-priority task. Upon completion, the software restores the saved contents back into the corresponding suspend registers, before resuming the original task. Note: These registers are used only when GCM, GMAC, or CCM chaining mode is selected. These registers can be read only when AES is enabled. Reading these registers while AES is disabled returns 0x0000 0000. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|------|---------|----|----|----|----|----|----|----| | | | | | | | | SUSP | [31:16] | | | | | | | , | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | SUSF | [15:0] | | | | | | | | | rw Bits 31:0 SUSP[31:0]: AES suspend Upon suspend operation, this bitfield of the corresponding AES_SUSPxR register takes the value of one of internal AES registers. # 20.7.18 AES register map Table 111. AES register map and reset values | | | | | | | Die | _ | | | | | <u> </u> | | | ıaı | | III | | 30 | | | | | | | | | | | | | | | |--------|-------------|------|--------------|------------|------|------|------|------|------|------|--------|------------|------|------|---------|------|----------|------|------------|------|----------|---------|-------|-------|------|------|------------|----------------|-----------|-----------|---------------|-------------------|-----| | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 1 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 2 | - | 0 | | 0x000 | AES_CR | Res. | 10.639 | NFBLB[3.0] | | Res. | KEYSIZE | Res. | CHMOD[2] | Res. | GCMPH[1:0] | [] | DMAOUTEN | DMAINEN | ERRIE | CCFIE | ERRC | CCFC | CHMODI4:01 | [0:1]
[0:1] | MODELS:01 | MODE[1:0] | DATATYPE11-01 | ייין אין ייייטיטט | EN | | | Reset value | | | | | | | | | 0 | 0 | 0 | 0 | | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x004 | AES_SR | Res. BUSY | WRERR | RDERR | CCF | | | Reset value | 0 | 0 | 0 | 0 | | 0x008 | AES_DINR | | | | | | | | | | | | | | | С |)INI | 31:0 |)] | | | | | | | | | | | | | | | | ОХООО | Reset value | 0 | | 0x00C | AES_DOUTR | | | | | | | | | | | | | | | DO | TUC | [31 | :0] | | | | | | | | | | | | | | | | 0,000 | Reset value | 0 | | 0x010 | AES_KEYR0 | | | KEY[31:0] | 0.010 | Reset value | 0 | | 0x014 | AES_KEYR1 | | | KEY[63:32] | 00014 | Reset value | 0 | | 0,010 | AES_KEYR2 | | | | | | | | | | | | | | | KI | EY[9 | 95:6 | 4] | | | | | | | | | | | | | | | | 0x018 | Reset value | 0 | | 0040 | AES_KEYR3 | | | | • | | | | | | | | | | | KE | Y[1 | 27:9 | 96] | | • | | | | | | | | | | | | | | 0x01C | Reset value | 0 | | 0x020 | AES_IVR0 | | | | | | | | | | | | | | | ı | VI[3 | 31:0 |] | | | | | | | | | | | | | | | | 0x020 | Reset value | 0 | | 0,,024 | AES_IVR1 | | | | | | | | | | | | | | | I۱ | VI[6: | 3:32 | 2] | | | | | | | | | | | | | | | | 0x024 | Reset value | 0 | | 0x028 | AES_IVR2 | | | | | | | | | | | | | | | I۱ | VI[9 | 5:64 | l] | | | | | | | | | | | | | | | | UXU26 | Reset value | 0 | | 0x02C | AES_IVR3 | | | | | | | | | | | | | | | I۷ | /I[12 | 7:9 | 6] | | | | | | | | | | | | | | | | 0X02C | Reset value | 0 | | 0x030 | AES_KEYR4 | | | • | | • | • | | | | | | | | | KE | Y[15 | 59:1 | 28] | • | • | | | | | | | | | | | | | | 0x030 | Reset value | 0 | | 0x034 | AES_KEYR5 | | | | | | | | | | | | | | | KE | Y[19 | 91:1 | 60] | | | | | | | | | | | | | | | | UXU34 | Reset value | 0 | | 0,000 | AES_KEYR6 | | KEY[223:192] | 0x038 | Reset value | 0 | | | | _ | | | _ | | _ | _ | _ | _ | _ | | _ | _ | | | | _ | | | _ | | _ | | _ | _ | _ | _ | _ | _ | | | | RM0444 Rev 5 521/1390 Table 111. AES register map and reset values (continued) | Offset | Register | 31 | 30 | 29 | 28 | 27 | 56 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 41 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 2 | 1 | 0 | |-----------------|-------------|---|------|---------------------------------------| | 0x03C | AES_KEYR7 | | | | | | | | | | | | | | | KE | Y[2 | 55:2 | 24] | | | | | | | | | | | | | | | | 0.0000 | Reset value | 0 | | 0x040 | AES_SUSP0R | | | | | | | | | | | | | | | S | USF | 2[31 | :0] | | | | | | | | | | | | | | | | 0.040 | Reset value | 0 | | 0x044 | AES_SUSP1R | | | | | | | | | | | | | | | S | USF | 2[31 | :0] | | | | | | | | | | | | | | | | 0X044 | Reset value | 0 | | 0x048 | AES_SUSP2R | | | SUSP[31:0] | 0X046 | Reset value | 0 | | 0x04C | AES_SUSP3R | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0X04C | Reset value | 0 | | 0x050 | AES_SUSP4R | | | | | | | | | | | | | | | S | USF | [31 | :0] | | | | | | | | | | | | | | | | 0x050 | Reset value | 0 | | 0054 | AES_SUSP5R | | | | | | | | | | | | | | | S | USF | [31 | :0] | | | | | | | | | • | | | | | | | 0x054 | Reset value | 0 | | 0.050 | AES_SUSP6R | | • | • | | • | | • | | | | | • | | • | S | USF | [31 | :0] | • | | | | • | | | | | • | | | | | | 0x058 | Reset value | 0 | | 0050 | AES_SUSP7R | | • | • | | • | | • | | | | | • | | • | S | USF | [31 | :0] | • | | | | • | | | | | • | | | | | | 0x05C | Reset value | set value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | | | 0x060-
0x3FF | Reserved | Res. Refer to Section 2.2 on page 58 for the register boundary addresses. # 21 Advanced-control timer (TIM1) In this section, "TIMx" should be understood as "TIM1" since there is only one instance of this type of timer for the products to which this reference manual applies. # 21.1 TIM1
introduction The advanced-control timer (TIM1) consists of a 16-bit auto-reload counter driven by a programmable prescaler. It may be used for a variety of purposes, including measuring the pulse lengths of input signals (input capture) or generating output waveforms (output compare, PWM, complementary PWM with dead-time insertion). Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers. The advanced-control (TIM1) and general-purpose (TIMy) timers are completely independent, and do not share any resources. They can be synchronized together as described in *Section 21.3.26: Timer synchronization*. 523/1390 ## 21.2 TIM1 main features TIM1 timer features include: - 16-bit up, down, up/down auto-reload counter. - 16-bit programmable prescaler allowing dividing (also "on the fly") the counter clock frequency either by any factor between 1 and 65536. - Up to 6 independent channels for: - Input Capture (but channels 5 and 6) - Output Compare - PWM generation (Edge and Center-aligned Mode) - One-pulse mode output - Complementary outputs with programmable dead-time - Synchronization circuit to control the timer with external signals and to interconnect several timers together. - Repetition counter to update the timer registers only after a given number of cycles of the counter. - 2 break inputs to put the timer's output signals in a safe user selectable configuration. - Interrupt/DMA generation on the following events: - Update: counter overflow/underflow, counter initialization (by software or internal/external trigger) - Trigger event (counter start, stop, initialization or count by internal/external trigger) - Input capture - Output compare - Supports incremental (quadrature) encoder and Hall-sensor circuitry for positioning purposes - Trigger input for external clock or cycle-by-cycle current management Figure 101. Advanced-control timer block diagram - 1. The internal break event source can be: - A clock failure event generated by CSS. For further information on the CSS, refer to Section 5.2.9: - A PVD output - SRAM parity error signal - Cortex®-M0+ LOCKUP (Hardfault) output. - COMPx output, x=1,2,3 (COMP3 is available on STM32G0B1xx and STM32G0C1xx salestypes only). RM0444 Rev 5 525/1390 # 21.3 TIM1 functional description ## 21.3.1 Time-base unit The main block of the programmable advanced-control timer is a 16-bit counter with its related auto-reload register. The counter can count up, down or both up and down. The counter clock can be divided by a prescaler. The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running. The time-base unit includes: - Counter register (TIMx_CNT) - Prescaler register (TIMx PSC) - Auto-reload register (TIMx ARR) - Repetition counter register (TIMx_RCR) The auto-reload register is preloaded. Writing to or reading from the auto-reload register accesses the preload register. The content of the preload register are transferred into the shadow register permanently or at each update event (UEV), depending on the auto-reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation of the update event is described in detailed for each configuration. The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller description to get more details on counter enabling). Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1 register. #### Prescaler description The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register). It can be changed on the fly as this control register is buffered. The new prescaler ratio is taken into account at the next update event. *Figure 102* and *Figure 103* give some examples of the counter behavior when the prescaler ratio is changed on the fly: Figure 102. Counter timing diagram with prescaler division change from 1 to 2 57 RM0444 Rev 5 #### 21.3.2 Counter modes ### **Upcounting mode** In upcounting mode, the counter counts from 0 to the auto-reload value (content of the TIMx ARR register), then restarts from 0 and generates a counter overflow event. If the repetition counter is used, the update event (UEV) is generated after upcounting is repeated for the number of times programmed in the repetition counter register (TIMx RCR) + 1. Else the update event is generated at each counter overflow. Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate does not change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): - The repetition counter is reloaded with the content of TIMx_RCR register, - The auto-reload shadow register is updated with the preload value (TIMx_ARR), - The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. Figure 104. Counter timing diagram, internal clock divided by 1 RM0444 Rev 5 529/1390 Figure 106. Counter timing diagram, internal clock divided by 4 Figure 108. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) 4 RM0444 Rev 5 ### **Downcounting mode** In downcounting mode, the counter counts from the auto-reload value (content of the TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a counter underflow event. If the repetition counter is used, the update event (UEV) is generated after downcounting is repeated for the number of times programmed in the repetition counter register (TIMx_RCR) + 1. Else the update event is generated at each counter underflow. Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until UDIS bit has been written to 0. However, the counter restarts from the current auto-reload value, whereas the counter of the prescaler restarts from 0 (but the prescale rate doesn't change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx SR register) is set (depending on the URS bit): - The repetition counter is reloaded with the content of TIMx_RCR register. - The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). - The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that the auto-reload is updated before the counter is reloaded, so that the next period is the expected one. The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. Figure 110. Counter timing diagram, internal clock divided by 1 RM0444 Rev 5 Figure 112. Counter timing diagram, internal clock divided by 4 Figure 114. Counter timing diagram, update event when repetition counter is not used ## Center-aligned mode (up/down counting) In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the TIMx_ARR register) – 1, generates a counter overflow event, then counts from the auto-reload value down to 1 and generates a counter underflow event. Then it restarts counting from 0. Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to '00'. The Output compare interrupt flag of channels configured in output is set when: the counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3, CMS = "11"). In this mode, the DIR direction bit in the TIMx_CR1 register cannot be written. It is updated by hardware and gives the current direction of the counter. The update event can be generated at each counter overflow and at each counter underflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. In this case, the counter restarts counting from 0, as well as the counter of the prescaler. The UEV update event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This is to avoid updating the shadow registers
while writing new values in the preload registers. Then no update event occurs until UDIS bit has been written to 0. However, the counter continues counting up and down, based on the current auto-reload value. In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an UEV update event but without setting the UIF flag (thus no interrupt or RM0444 Rev 5 535/1390 DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx SR register) is set (depending on the URS bit): - The repetition counter is reloaded with the content of TIMx_RCR register - The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register) - The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that if the update source is a counter overflow, the autoreload is updated before the counter is reloaded, so that the next period is the expected one (the counter is loaded with the new value). The following figures show some examples of the counter behavior for different clock frequencies. 1. Here, center-aligned mode 1 is used (for more details refer to Section 21.4: TIM1 registers). Figure 116. Counter timing diagram, internal clock divided by 2 57 RM0444 Rev 5 537/1390 Figure 118. Counter timing diagram, internal clock divided by N Figure 120. Counter timing diagram, Update event with ARPE=1 (counter overflow) # 21.3.3 Repetition counter Section 21.3.1: Time-base unit describes how the update event (UEV) is generated with respect to the counter overflows/underflows. It is actually generated only when the repetition counter has reached zero. This can be useful when generating PWM signals. This means that data are transferred from the preload registers to the shadow registers (TIMx_ARR auto-reload register, TIMx_PSC prescaler register, but also TIMx_CCRx capture/compare registers in compare mode) every N+1 counter overflows or underflows, where N is the value in the TIMx_RCR repetition counter register. The repetition counter is decremented: - At each counter overflow in upcounting mode, - At each counter underflow in downcounting mode, - At each counter overflow and at each counter underflow in center-aligned mode. Although this limits the maximum number of repetition to 32768 PWM cycles, it makes it possible to update the duty cycle twice per PWM period. When refreshing compare registers only once per PWM period in center-aligned mode, maximum resolution is 2xT_{ck}, due to the symmetry of the pattern. The repetition counter is an auto-reload type; the repetition rate is maintained as defined by the TIMx_RCR register value (refer to *Figure 121*). When the update event is generated by software (by setting the UG bit in TIMx_EGR register) or by hardware through the slave mode controller, it occurs immediately whatever the value of the repetition counter is and the repetition counter is reloaded with the content of the TIMx_RCR register. 4 RM0444 Rev 5 539/1390 In Center aligned mode, for odd values of RCR, the update event occurs either on the overflow or on the underflow depending on when the RCR register was written and when the counter was launched: if the RCR was written before launching the counter, the UEV occurs on the underflow. If the RCR was written after launching the counter, the UEV occurs on the overflow. For example, for RCR = 3, the UEV is generated each 4th overflow or underflow event depending on when the RCR was written. Figure 121. Update rate examples depending on mode and TIMx_RCR register settings ## 21.3.4 External trigger input The timer features an external trigger input ETR. It can be used as: - external clock (external clock mode 2, see Section 21.3.5) - trigger for the slave mode (see Section 21.3.26) - PWM reset input for cycle-by-cycle current regulation (see Section 21.3.7) *Figure 122* below describes the ETR input conditioning. The input polarity is defined with the ETP bit in TIMxSMCR register. The trigger can be prescaled with the divider programmed by the ETPS[1:0] bitfield and digitally filtered with the ETF[3:0] bitfield. Figure 122. External trigger input block The ETR input comes from multiple sources: input pins (default configuration), comparator outputs and analog watchdogs. The selection is done with the ETRSEL[3:0] bitfield. Figure 123. TIM1 ETR input circuitry ${\bf 1.} \quad {\bf Available \ on \ STM32G0B1xx \ and \ STM32G0C1xx \ salestypes \ only.}$ #### 21.3.5 Clock selection The counter clock can be provided by the following clock sources: - Internal clock (CK_INT) - External clock mode1: external input pin - External clock mode2: external trigger input ETR - Encoder mode #### Internal clock source (CK_INT) If the slave mode controller is disabled (SMS=000), then the CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed only by software (except UG which remains cleared automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal clock CK_INT. *Figure 124* shows the behavior of the control circuit and the upcounter in normal mode, without prescaler. Figure 124. Control circuit in normal mode, internal clock divided by 1 #### External clock source mode 1 This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at each rising or falling edge on a selected input. Figure 125. TI2 external clock connection example 1. Codes ranging from 01000 to 11111 are reserved For example, to configure the upcounter to count in response to a rising edge on the TI2 input, use the following procedure: - 1. Select the proper TI2x source (internal or external) with the TI2SEL[3:0] bits in the TIMx TISEL register. - 2. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = '01' in the TIMx CCMR1 register. - 3. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1 register (if no filter is needed, keep IC2F=0000). - Select rising edge polarity by writing CC2P=0 and CC2NP=0 in the TIMx_CCER register. - 5. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR register. - 6. Select TI2 as the trigger input source by writing TS=00110 in the TIMx_SMCR register. - 7. Enable the counter by writing CEN=1 in the TIMx CR1 register. Note: The capture prescaler is not used for triggering, so the user does not need to configure it. When a rising edge occurs on TI2, the counter counts once and the TIF flag is set. The delay between the rising edge on TI2 and the actual clock of the counter is due to the resynchronization circuit on TI2 input. 5 Figure 126. Control circuit in external clock mode 1 #### External clock source mode 2 This mode is selected by writing ECE=1 in the TIMx_SMCR register. The counter can count at each rising or falling edge on the external trigger input ETR. The Figure 127 gives an overview of the external trigger input block. Figure 127. External trigger input block 1. Refer to Figure 123: TIM1 ETR input circuitry. For example, to configure the upcounter to count each 2 rising edges on ETR, use the following procedure: - 1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx SMCR register. - 2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register - 3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR register - 4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register. - 5. Enable the counter by writing CEN=1 in the TIMx_CR1 register. The counter counts once each 2 ETR rising edges. The delay between the rising edge on ETR and the actual clock of the counter is due to the resynchronization circuit on the ETRP signal. As a consequence, the maximum frequency which can be correctly captured by the counter is at most ¼ of TIMxCLK frequency. When the ETRP signal is faster, the user should apply a division of the external signal by proper ETPS prescaler setting. RM0444 Rev 5 545/1390 ## 21.3.6 Capture/compare channels Each Capture/Compare channel is built around a capture/compare register (including a shadow register), an input stage for capture (with digital filter, multiplexing, and prescaler, except for channels 5 and 6) and an output stage (with comparator and output control). Figure 129 to Figure 132 give an overview of one Capture/Compare channel. The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be used as trigger input by the slave mode controller or as the capture command. It is prescaled before the capture register (ICxPS). TIMx_TISEL[3:0] TI1[0] \ TIMx_CH1 __-To the slave mode controller TI1[1..15] Filte TI1F_Rising 0 TI1FP1 downcounter Edge 01 TI1F_Falling f_{DTS} detecto IC1PS TI2FP1 IC1 Divider /1, /2, /4, /8 10 ICF[3:0] CC1P/CC1NP TIMx_CCMR1 TIMx CCER (from slave mode TI2F_Rising controller) (from channel 2) CC1S[1:0] ICPS[1:0] CC1E TI2F_Falling TIMx_CCER (from channel 2) TIMx_CCMR1 MSv40120V2 Figure 129. Capture/compare channel (example: channel 1 input stage) The output stage generates an intermediate waveform which is then used for reference: OCxRef (active high). The polarity acts at the end of the chain. Figure 130. Capture/compare channel 1 main circuit TIMx_SMCR occs OCREF CLR To the master mode o controller 0 OC1 **ETRF** Output 1 enable '0' x0 circuit OC1REF ocref_clr_int OC1REFC 01 OC1 DT CC1P 11, CNT>CCR1 Output Dead-time Output TIM1_CCER mode CNT=CCR1 selector generator controller OC1N_DT 11 0 10 OCXREF(1)Output OC1N '0' 0x enable OC5REF circuit CC1NE CC1E TIM1_CCER OC1CE OC1M[3:0] DTG[7:0] CC1NE CC1E CC1NP MOE OSSI OSSR TIM1_CCMR1 TIM1_BDTR TIM1_CCER TIM1 CCER TIM1_BDTR OIS1 OIS1N
TIM1_CR2 MS31199V2 Figure 131. Output stage of capture/compare channel (channel 1, idem ch. 2 and 3) 1. OCxREF, where x is the rank of the complementary channel TIMx_SMCR occs OCREF_CLR 0 To the master mode controller **ETRF** OC4REFC ocref_clr_int OC4REF '0' OC4 0 Output CNT > CCR4 Output enable Output mode circuit CNT = CCR4 selector controller CC4E CC4P OC3REF CC4E TIM1_CCER TIM1_CCER TIM1_CCER OSSI TIM1_BDTR OC4CE OC4M[3:0] MOE TIM1_CCMR2 OIS4 TIM1 CR2 MS33100V2 Figure 132. Output stage of capture/compare channel (channel 4) 4 RM0444 Rev 5 Figure 133. Output stage of capture/compare channel (channel 5, idem ch. 6) 1. Not available externally. The capture/compare block is made of one preload register and one shadow register. Write and read always access the preload register. In capture mode, captures are actually done in the shadow register, which is copied into the preload register. In compare mode, the content of the preload register is copied into the shadow register which is compared to the counter. ### 21.3.7 Input capture mode In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the value of the counter after a transition detected by the corresponding ICx signal. When a capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be cleared by software by writing it to '0' or by reading the captured data stored in the TIMx_CCRx register. CCxOF is cleared when written with '0'. The following example shows how to capture the counter value in TIMx_CCR1 when TI1 input rises. To do this, use the following procedure: - 1. Select the proper TI1x source (internal or external) with the TI1SEL[3:0] bits in the TIMx_TISEL register. - Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00, the channel is configured in input and the TIMx_CCR1 register becomes read-only. - 3. Program the appropriate input filter duration in relation with the signal connected to the timer (when the input is one of the TIx (ICxF bits in the TIMx_CCMRx register). Let's imagine that, when toggling, the input signal is not stable during at must 5 internal clock cycles. We must program a filter duration longer than these 5 clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the new level have been - detected (sampled at f_{DTS} frequency). Then write IC1F bits to 0011 in the TIMx CCMR1 register. - 4. Select the edge of the active transition on the TI1 channel by writing CC1P and CC1NP bits to 0 in the TIMx CCER register (rising edge in this case). - 5. Program the input prescaler. In our example, we wish the capture to be performed at each valid transition, so the prescaler is disabled (write IC1PS bits to '00' in the TIMx_CCMR1 register). - 6. Enable capture from the counter into the capture register by setting the CC1E bit in the TIMx_CCER register. - 7. If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the TIMx_DIER register. When an input capture occurs: - The TIMx_CCR1 register gets the value of the counter on the active transition. - CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures occurred whereas the flag was not cleared. - An interrupt is generated depending on the CC1IE bit. - A DMA request is generated depending on the CC1DE bit. In order to handle the overcapture, it is recommended to read the data before the overcapture flag. This is to avoid missing an overcapture which could happen after reading the flag and before reading the data. Note: IC interrupt and/or DMA requests can be generated by software by setting the corresponding CCxG bit in the TIMx EGR register. #### 21.3.8 PWM input mode This mode is a particular case of input capture mode. The procedure is the same except: - Two ICx signals are mapped on the same Tlx input. - These 2 ICx signals are active on edges with opposite polarity. - One of the two TIxFP signals is selected as trigger input and the slave mode controller is configured in reset mode. For example, the user can measure the period (in TIMx_CCR1 register) and the duty cycle (in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending on CK_INT frequency and prescaler value): RM0444 Rev 5 549/1390 - Select the proper TI1x source (internal or external) with the TI1SEL[3:0] bits in the TIMx_TISEL register. - 2. Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1 register (TI1 selected). - 3. Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter clear): write the CC1P and CC1NP bits to '0' (active on rising edge). - 4. Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1 register (TI1 selected). - 5. Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P and CC2NP bits to CC2P/CC2NP='10' (active on falling edge). - 6. Select the valid trigger input: write the TS bits to 00101 in the TIMx_SMCR register (TI1FP1 selected). - 7. Configure the slave mode controller in reset mode: write the SMS bits to 0100 in the TIMx SMCR register. - 8. Enable the captures: write the CC1E and CC2E bits to '1' in the TIMx CCER register. Figure 134. PWM input mode timing ## 21.3.9 Forced output mode In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal (OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by software, independently of any comparison between the output compare register and the counter. To force an output compare signal (OCXREF/OCx) to its active level, user just needs to write 0101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit. For example: CCxP=0 (OCx active high) => OCx is forced to high level. The OCxREF signal can be forced low by writing the OCxM bits to 0100 in the TIMx CCMRx register. Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still performed and allows the flag to be set. Interrupt and DMA requests can be sent accordingly. This is described in the output compare mode section below. ## 21.3.10 Output compare mode This function is used to control an output waveform or indicate when a period of time has elapsed. Channels 1 to 4 can be output, while Channel 5 and 6 are only available inside the device (for instance, for compound waveform generation or for ADC triggering). When a match is found between the capture/compare register and the counter, the output compare function: - Assigns the corresponding output pin to a programmable value defined by the output compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP bit in the TIMx_CCER register). The output pin can keep its level (OCXM=0000), be set active (OCxM=0001), be set inactive (OCxM=0010) or can toggle (OCxM=0011) on match. - Sets a flag in the interrupt status register (CCxIF bit in the TIMx SR register). - Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the TIMx_DIER register). - Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request selection). The TIMx_CCRx registers can be programmed with or without preload registers using the OCxPE bit in the TIMx_CCMRx register. In output compare mode, the update event UEV has no effect on OCxREF and OCx output. The timing resolution is one count of the counter. Output compare mode can also be used to output a single pulse (in One Pulse mode). #### **Procedure** - 1. Select the counter clock (internal, external, prescaler). - Write the desired data in the TIMx ARR and TIMx CCRx registers. - 3. Set the CCxIE bit if an interrupt request is to be generated. - 4. Select the output mode. For example: - Write OCxM = 0011 to toggle OCx output pin when CNT matches CCRx - Write OCxPE = 0 to disable preload register - Write CCxP = 0 to select active high polarity - Write CCxE = 1 to enable the output - 5. Enable the counter by setting the CEN bit in the TIMx_CR1 register. The TIMx_CCRx register can be updated at any time by software to control the output waveform, provided that the preload register is not enabled (OCxPE='0', else TIMx_CCRx shadow register is updated only at the next update event UEV). An example is given in *Figure 135*. RM0444 Rev 5 551/1390 Figure 135. Output compare mode, toggle on OC1 #### 21.3.11 PWM mode Pulse Width Modulation mode allows a signal to be generated with a frequency determined by the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx CCRx register. The PWM mode can be selected independently on each channel (one PWM per OCx output) by writing '0110' (PWM mode 1) or '0111' (PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. The corresponding preload register must be enabled by setting the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register. As the preload registers are transferred to the shadow registers only when an update event occurs, before starting the counter, all registers must be initialized by setting the UG bit in the TIMx EGR register. OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It can be programmed as active high or active low. OCx output is enabled by a combination of the CCxE, CCxNE, MOE, OSSI and OSSR bits (TIMx_CCER and TIMx_BDTR registers). Refer to
the TIMx_CCER register description for more details. In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine whether TIMx_CCRx \leq TIMx_CNT or TIMx_CNT \leq TIMx_CCRx (depending on the direction of the counter). The timer is able to generate PWM in edge-aligned mode or center-aligned mode depending on the CMS bits in the TIMx_CR1 register. ### PWM edge-aligned mode Upcounting configuration Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to the *Upcounting mode on page 528*. In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at '1'. If the compare value is 0 then OCxRef is held at '0'. Figure 136 shows some edge-aligned PWM waveforms in an example where TIMx ARR=8. Figure 136. Edge-aligned PWM waveforms (ARR=8) Downcounting configuration Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to the Downcounting mode on page 532 In PWM mode 1, the reference signal OCxRef is low as long as TIMx_CNT > TIMx_CCRx else it becomes high. If the compare value in TIMx_CCRx is greater than the auto-reload value in TIMx_ARR, then OCxREF is held at '1'. 0% PWM is not possible in this mode. #### PWM center-aligned mode Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from '00' (all the remaining configurations having the same effect on the OCxRef/OCx signals). The compare flag is set when the counter counts up, when it counts down or both when it counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the RM0444 Rev 5 553/1390 TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to the *Center-aligned mode (up/down counting) on page 535*. Figure 137 shows some center-aligned PWM waveforms in an example where: - TIMx ARR=8, - PWM mode is the PWM mode 1, - The flag is set when the counter counts down corresponding to the center-aligned mode 1 selected for CMS=01 in TIMx_CR1 register. Figure 137. Center-aligned PWM waveforms (ARR=8) Hints on using center-aligned mode When starting in center-aligned mode, the current up-down configuration is used. It means that the counter counts up or down depending on the value written in the DIR bit in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the same time by the software. - Writing to the counter while running in center-aligned mode is not recommended as it can lead to unexpected results. In particular: - The direction is not updated if a value greater than the auto-reload value is written in the counter (TIMx_CNT>TIMx_ARR). For example, if the counter was counting up, it continues to count up. - The direction is updated if 0 or the TIMx_ARR value is written in the counter but no Update Event UEV is generated. - The safest way to use center-aligned mode is to generate an update by software (setting the UG bit in the TIMx_EGR register) just before starting the counter and not to write the counter while it is running. ## 21.3.12 Asymmetric PWM mode Asymmetric mode allows two center-aligned PWM signals to be generated with a programmable phase shift. While the frequency is determined by the value of the TIMx_ARR register, the duty cycle and the phase-shift are determined by a pair of TIMx_CCRx register. One register controls the PWM during up-counting, the second during down counting, so that PWM is adjusted every half PWM cycle: - OC1REFC (or OC2REFC) is controlled by TIMx CCR1 and TIMx CCR2 - OC3REFC (or OC4REFC) is controlled by TIMx_CCR3 and TIMx_CCR4 Asymmetric PWM mode can be selected independently on two channel (one OCx output per pair of CCR registers) by writing '1110' (Asymmetric PWM mode 1) or '1111' (Asymmetric PWM mode 2) in the OCxM bits in the TIMx CCMRx register. Note: The OCxM[3:0] bit field is split into two parts for compatibility reasons, the most significant bit is not contiguous with the 3 least significant ones. When a given channel is used as asymmetric PWM channel, its complementary channel can also be used. For instance, if an OC1REFC signal is generated on channel 1 (Asymmetric PWM mode 1), it is possible to output either the OC2REF signal on channel 2, or an OC2REFC signal resulting from asymmetric PWM mode 1. Figure 138 represents an example of signals that can be generated using Asymmetric PWM mode (channels 1 to 4 are configured in Asymmetric PWM mode 1). Together with the deadtime generator, this allows a full-bridge phase-shifted DC to DC converter to be controlled. RM0444 Rev 5 Figure 138. Generation of 2 phase-shifted PWM signals with 50% duty cycle #### 21.3.13 Combined PWM mode Combined PWM mode allows two edge or center-aligned PWM signals to be generated with programmable delay and phase shift between respective pulses. While the frequency is determined by the value of the TIMx_ARR register, the duty cycle and delay are determined by the two TIMx_CCRx registers. The resulting signals, OCxREFC, are made of an OR or AND logical combination of two reference PWMs: - OC1REFC (or OC2REFC) is controlled by TIMx CCR1 and TIMx CCR2 - OC3REFC (or OC4REFC) is controlled by TIMx_CCR3 and TIMx_CCR4 Combined PWM mode can be selected independently on two channels (one OCx output per pair of CCR registers) by writing '1100' (Combined PWM mode 1) or '1101' (Combined PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. When a given channel is used as combined PWM channel, its complementary channel must be configured in the opposite PWM mode (for instance, one in Combined PWM mode 1 and the other in Combined PWM mode 2). Note: The OCxM[3:0] bit field is split into two parts for compatibility reasons, the most significant bit is not contiguous with the 3 least significant ones. *Figure 139* represents an example of signals that can be generated using Asymmetric PWM mode, obtained with the following configuration: - Channel 1 is configured in Combined PWM mode 2, - Channel 2 is configured in PWM mode 1, - Channel 3 is configured in Combined PWM mode 2, - Channel 4 is configured in PWM mode 1. Figure 139. Combined PWM mode on channel 1 and 3 ## 21.3.14 Combined 3-phase PWM mode Combined 3-phase PWM mode allows one to three center-aligned PWM signals to be generated with a single programmable signal ANDed in the middle of the pulses. The OC5REF signal is used to define the resulting combined signal. The 3-bits GC5C[3:1] in the TIMx_CCR5 allow selection on which reference signal the OC5REF is combined. The resulting signals, OCxREFC, are made of an AND logical combination of two reference PWMs: - If GC5C1 is set, OC1REFC is controlled by TIMx CCR1 and TIMx CCR5 - If GC5C2 is set, OC2REFC is controlled by TIMx_CCR2 and TIMx_CCR5 - If GC5C3 is set, OC3REFC is controlled by TIMx_CCR3 and TIMx_CCR5 Combined 3-phase PWM mode can be selected independently on channels 1 to 3 by setting at least one of the 3-bits GC5C[3:1]. Figure 140. 3-phase combined PWM signals with multiple trigger pulses per period The TRGO2 waveform shows how the ADC can be synchronized on given 3-phase PWM signals. Refer to *Section 21.3.27: ADC synchronization* for more details. # 21.3.15 Complementary outputs and dead-time insertion The advanced-control timers (TIM1) can output two complementary signals and manage the switching-off and the switching-on instants of the outputs. This time is generally known as dead-time and it has to be adjusted depending on the devices that are connected to the outputs and their characteristics (intrinsic delays of level-shifters, delays due to power switches...) The polarity of the outputs (main output OCx or complementary OCxN) can be selected independently for each output. This is done by writing to the CCxP and CCxNP bits in the TIMx_CCER register. The complementary signals OCx and OCxN are activated by a combination of several control bits: the CCxE and CCxNE bits in the TIMx_CCER register and the MOE, OISx, OISxN, OSSI and OSSR bits in the TIMx_BDTR and TIMx_CR2 registers. Refer to Table 116: Output control bits for complementary OCx and OCxN channels with break feature on page 604 for more details. In particular, the dead-time is activated when switching to the idle state (MOE falling down to 0). Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit if the break circuit is present. There is one 10-bit dead-time generator for each channel. From a reference waveform OCxREF, it generates 2 outputs OCx and OCxN. If OCx and OCxN are active high: - The OCx output signal is the same as the reference signal except for the rising edge, which is delayed relative to the reference rising edge. - The OCxN output signal is the opposite of the reference signal except for the rising edge, which is delayed relative to the reference falling edge. If the delay is greater than the width of the active output (OCx or OCxN) then the corresponding pulse is not generated. The following figures show the relationships between the output signals of the dead-time generator and the reference signal OCxREF. (we suppose CCxP=0, CCxNP=0, MOE=1, CCxE=1 and CCxNE=1 in these examples) Figure 141. Complementary output with dead-time insertion **577** RM0444 Rev 5 559/1390 Figure 143. Dead-time waveforms with delay greater than the positive pulse The dead-time delay is the same for each of the channels and is programmable with the DTG bits in the TIMx BDTR register. Refer to Section 21.4.20: TIM1 break and dead-time register (TIM1_BDTR) for delay calculation. #### Re-directing OCxREF to OCx or OCxN In output mode (forced, output compare or PWM), OCxREF can be re-directed to the OCx output or to OCxN output by configuring the CCxE and CCxNE bits in the TIMx CCER register. This allows a specific waveform to be sent (such as PWM or static active level) on one output while the
complementary remains at its inactive level. Other alternative possibilities are to have both outputs at inactive level or both outputs active and complementary with dead-time. Note: When only OCxN is enabled (CCxE=0, CCxNE=1), it is not complemented and becomes active as soon as OCxREF is high. For example, if CCxNP=0 then OCxN=OCxRef. On the other hand, when both OCx and OCxN are enabled (CCxE=CCxNE=1) OCx becomes active when OCxREF is high whereas OCxN is complemented and becomes active when OCxREF is low. #### 21.3.16 Using the break function The purpose of the break function is to protect power switches driven by PWM signals generated with the TIM1 timer. The two break inputs are usually connected to fault outputs of power stages and 3-phase inverters. When activated, the break circuitry shuts down the PWM outputs and forces them to a predefined safe state. A number of internal MCU events can also be selected to trigger an output shut-down. The break features two channels. A break channel which gathers both system-level fault (clock failure, parity error,...) and application fault (from input pins and built-in comparator), and can force the outputs to a predefined level (either active or inactive) after a deadtime duration. A break2 channel which only includes application faults and is able to force the outputs to an inactive state. The output enable signal and output levels during break are depending on several control bits: - the MOE bit in TIMx_BDTR register allows the outputs to be enabled/disabled by software and is reset in case of break or break2 event. - the OSSI bit in the TIMx_BDTR register defines whether the timer controls the output in inactive state or releases the control to the GPIO controller (typically to have it in Hi-Z mode) - the OISx and OISxN bits in the TIMx_CR2 register which are setting the output shut-down level, either active or inactive. The OCx and OCxN outputs cannot be set both to active level at a given time, whatever the OISx and OISxN values. Refer to Table 116: Output control bits for complementary OCx and OCxN channels with break feature on page 604 for more details. When exiting from reset, the break circuit is disabled and the MOE bit is low. The break functions can be enabled by setting the BKE and BK2E bits in the TIMx_BDTR register. The break input polarities can be selected by configuring the BKP and BK2P bits in the same register. BKE/BK2E and BKP/BK2P can be modified at the same time. When the BKE/BK2E and BKP/BK2P bits are written, a delay of 1 APB clock cycle is applied before the writing is effective. Consequently, it is necessary to wait 1 APB clock period to correctly read back the bit after the write operation. Because MOE falling edge can be asynchronous, a resynchronization circuit has been inserted between the actual signal (acting on the outputs) and the synchronous control bit (accessed in the TIMx_BDTR register). It results in some delays between the asynchronous and the synchronous signals. In particular, if MOE is set to 1 whereas it was low, a delay must be inserted (dummy instruction) before reading it correctly. This is because the write acts on the asynchronous signal whereas the read reflects the synchronous signal. The break can be generated from multiple sources which can be individually enabled and with programmable edge sensitivity, using the TIMx OR2 and TIMx OR3 registers. The sources for break (BRK) channel are: - An external source connected to one of the BKIN pin (as per selection done in the AFIO controller), with polarity selection and optional digital filtering - An internal source: - the Cortex[®]-M0+ LOCKUP output - the PVD output - the SRAM parity error signal - a Flash memory ECC dual error detection - a clock failure event generated by the CSS detector - the output from a comparator, with polarity selection and optional digital filtering The sources for break2 (BRK2) are: - An external source connected to one of the BKIN pin (as per selection done in the AFIO controller), with polarity selection and optional digital filtering - An internal source coming from a comparator output. Break events can also be generated by software using BG and B2G bits in the TIMx_EGR register. The software break generation using BG and B2G is active whatever the BKE and BK2E enable bits values. RM0444 Rev 5 561/1390 All sources are ORed before entering the timer BRK or BRK2 inputs, as per *Figure 144* below. Figure 144. Break and Break2 circuitry overview 1. Available on STM32G0B1xx and STM32G0C1xx salestypes only. Note: An asynchronous (clockless) operation is only guaranteed when the programmable filter is disabled. If it is enabled, a fail safe clock mode (for example by using the internal PLL and/or the CSS) must be used to guarantee that break events are handled. When one of the breaks occurs (selected level on one of the break inputs): - The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state or even releasing the control to the GPIO controller (selected by the OSSI bit). This feature is enabled even if the MCU oscillator is off. - Each output channel is driven with the level programmed in the OISx bit in the TIMx_CR2 register as soon as MOE=0. If OSSI=0, the timer releases the output control (taken over by the GPIO controller), otherwise the enable output remains high. - When complementary outputs are used: - The outputs are first put in inactive state (depending on the polarity). This is done asynchronously so that it works even if no clock is provided to the timer. - If the timer clock is still present, then the dead-time generator is reactivated in order to drive the outputs with the level programmed in the OISx and OISxN bits after a dead-time. Even in this case, OCx and OCxN cannot be driven to their active level together. Note that because of the resynchronization on MOE, the dead-time duration is slightly longer than usual (around 2 ck tim clock cycles). - If OSSI=0, the timer releases the output control (taken over by the GPIO controller which forces a Hi-Z state), otherwise the enable outputs remain or become high as soon as one of the CCxE or CCxNE bits is high. - The break status flag (SBIF, BIF and B2IF bits in the TIMx_SR register) is set. An interrupt is generated if the BIE bit in the TIMx_DIER register is set. - If the AOE bit in the TIMx_BDTR register is set, the MOE bit is automatically set again at the next update event (UEV). As an example, this can be used to perform a regulation. Otherwise, MOE remains low until the application sets it to '1' again. In this case, it can be used for security and the break input can be connected to an alarm from power drivers, thermal sensors or any security components. Note: The break inputs are active on level. Thus, the MOE cannot be set while the break input is active (neither automatically nor by software). In the meantime, the status flag BIF and B2IF cannot be cleared. In addition to the break input and the output management, a write protection has been implemented inside the break circuit to safeguard the application. It allows the configuration of several parameters to be freezed (dead-time duration, OCx/OCxN polarities and state when disabled, OCxM configurations, break enable and polarity). The application can choose from 3 levels of protection selected by the LOCK bits in the TIMx_BDTR register. Refer to Section 21.4.20: TIM1 break and dead-time register (TIM1_BDTR). The LOCK bits can be written only once after an MCU reset. Figure 145 shows an example of behavior of the outputs in response to a break. RM0444 Rev 5 563/1390 BREAK (MOE →) **OCxREF** OCx (OCxN not implemented, CCxP=0, O(Sx=1) OCx (OCxN not implemented, CCxP=0, O(Sx=0) OCx (OCxN not implemented, CCxP=1, O(Sx=1) OCx (OCxN not implemented, CCxP=1, OISx=0) OCx delay delay delay **OCxN** (CCxE=1, CCxP=0, OISx=0, CCxNE=1, CCxNP=0, OISxN=1) OCx delay delay delay **OCxN** (CCxE=1, CCxP=0, OISx=1, CCxNE=1, CCxNP=1, OISxN=1) OCx delay (CCxE=1, CCxP=0, OISx=0, CCxNE=0, CCxNP=0, OISxN=1) OCx delay **OCxN** (CCxE=1, CCxP=0, OISx=1, CCxNE=0, CCxNP=0, OISxN=0) OCx OCxN (CCxE=1, CCxP=0, CCxNE=0, CCxNP=0, OISx=O|SxN=0 or OISx=OISxN=1) MS31098V1 Figure 145. Various output behavior in response to a break event on BRK (OSSI = 1) The two break inputs have different behaviors on timer outputs: - The BRK input can either disable (inactive state) or force the PWM outputs to a predefined safe state. - BRK2 can only disable (inactive state) the PWM outputs. The BRK has a higher priority than BRK2 input, as described in *Table 112*. BRK2 must only be used with OSSR = OSSI = 1. Note: Table 112. Behavior of timer outputs versus BRK/BRK2 inputs | BRK | BRK2 | Timer outputs
state | Typical use case | | | |----------|--------|---|------------------------------------|---------------------------------|--| | | | | OCxN output
(low side switches) | OCx output (high side switches) | | | Active | X | Inactive then forced output state (after a deadtime) Outputs disabled if OSSI = 0 (control taken over by GPIO logic) | ON after deadtime
insertion | OFF | | | Inactive | Active | Inactive | OFF | OFF | | Figure 146 gives an example of OCx and OCxN output behavior in case of active signals on BRK and BRK2 inputs. In this case, both outputs have active high polarities (CCxP = CCxNP = 0 in TIMx_CCER register). BRK2 BRK OCx Deadtime → Deadtime I/O state Active Inactive Idle MS34106V1 Figure 146. PWM output state following BRK and BRK2 pins assertion (OSSI=1) RM0444 Rev 5 Figure 147. PWM output state following BRK assertion (OSSI=0) ## 21.3.17 Bidirectional break inputs The TIM1 are featuring bidirectional break I/Os, as represented on Figure 148. They allow the following: - A board-level global break signal available for signaling faults to
external MCUs or gate drivers, with a unique pin being both an input and an output status pin - Internal break sources and multiple external open drain comparator outputs ORed together to trigger a unique break event, when multiple internal and external break sources must be merged The break and break2 inputs are configured in bidirectional mode using the BKBID and BK2BID bits in the TIMxBDTR register. The BKBID programming bits can be locked in read-only mode using the LOCK bits in the TIMxBDTR register (in LOCK level 1 or above). The bidirectional mode is available for both the break and break2 inputs, and require the I/O to be configured in open-drain mode with active low polarity (using BKINP, BKP, BK2INP and BK2P bits). Any break request coming either from system (e.g. CSS), from on-chip peripherals or from break inputs forces a low level on the break input to signal the fault event. The bidirectional mode is inhibited if the polarity bits are not correctly set (active high polarity), for safety purposes. The break software events (BG and B2G) also cause the break I/O to be forced to '0' to indicate to the external components that the timer has entered in break state. However, this is valid only if the break is enabled (BK(2)E = 1). When a software break event is generated with BK(2)E = 0, the outputs are put in safe state and the break flag is set, but there is no effect on the break(2) I/O. A safe disarming mechanism prevents the system to be definitively locked-up (a low level on the break input triggers a break which enforces a low level on the same input). When the BKDSRM (BK2DSRM) bit is set to 1, this releases the break output to clear a fault signal and to give the possibility to re-arm the system. At no point the break protection circuitry can be disabled: - The break input path is always active: a break event is active even if the BKDSRM (BK2DSRM) bit is set and the open drain control is released. This prevents the PWM output to be re-started as long as the break condition is present. - The BK(2)DSRM bit cannot disarm the break protection as long as the outputs are enabled (MOE bit is set) (see *Table 113*) | MOE | BKDIR
(BK2DIR) | Br | | |-----|-------------------|----|----------| | 0 | 0 | X | Armed | | 0 | 1 | 0 | Armed | | 0 | 1 | 1 | Disarmed | | 1 | Х | Х | Armed | Table 113. Break protection disarming conditions ### Arming and re-arming break circuitry The break circuitry (in input or bidirectional mode) is armed by default (peripheral reset configuration). The following procedure must be followed to re-arm the protection after a break (break2) event: - The BKDSRM (BK2DSRM) bit must be set to release the output control - The software must wait until the system break condition disappears (if any) and clear the SBIF status flag (or clear it systematically before re-arming) - The software must poll the BKDSRM (BK2DSRM) bit until it is cleared by hardware (when the application break condition disappears) From this point, the break circuitry is armed and active, and the MOE bit can be set to reenable the PWM outputs. Figure 148. Output redirection (BRK2 request not represented) 4 RM0444 Rev 5 567/1390 #### 21.3.18 Clearing the OCxREF signal on an external event The OCxREF signal of a given channel can be cleared when a high level is applied on the ocref clr int input (OCxCE enable bit in the corresponding TIMx CCMRx register set to 1). OCxREF remains low until the next update event (UEV) occurs. This function can only be used in Output compare and PWM modes. It does not work in Forced mode. ocref_clr_int input can be selected between the OCREF_CLR input and ETRF (ETR after the filter) by configuring the OCCS bit in the TIMx_SMCR register. When ETRF is chosen, ETR must be configured as follows: - The External Trigger Prescaler should be kept off: bits ETPS[1:0] of the TIMx SMCR register set to '00'. - 2. The external clock mode 2 must be disabled: bit ECE of the TIMx_SMCR register set to - The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be 3. configured according to the user needs. Figure 149 shows the behavior of the OCxREF signal when the ETRF Input becomes High, for both values of the enable bit OCxCE. In this example, the timer TIMx is programmed in PWM mode. Figure 149. Clearing TIMx OCxREF Note: In case of a PWM with a 100% duty cycle (if CCRx>ARR), then OCxREF is enabled again at the next counter overflow. #### 21.3.19 6-step PWM generation When complementary outputs are used on a channel, preload bits are available on the OCxM, CCxE and CCxNE bits. The preload bits are transferred to the shadow bits at the COM commutation event. Thus one can program in advance the configuration for the next step and change the configuration of all the channels at the same time. COM can be generated by software by setting the COM bit in the TIMx_EGR register or by hardware (on TRGI rising edge). A flag is set when the COM event occurs (COMIF bit in the TIMx_SR register), which can generate an interrupt (if the COMIE bit is set in the TIMx_DIER register) or a DMA request (if the COMDE bit is set in the TIMx DIER register). The Figure 150 describes the behavior of the OCx and OCxN outputs when a COM event occurs, in 3 different examples of programmed configurations. ### 21.3.20 One-pulse mode One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length after a programmable delay. Starting the counter can be controlled through the slave mode controller. Generating the waveform can be done in output compare mode or PWM mode. One-pulse mode is selected by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at the next update event UEV. A pulse can be correctly generated only if the compare value is different from the counter initial value. Before starting (when the timer is waiting for the trigger), the configuration must be: - In upcounting: CNT < CCRx ≤ ARR (in particular, 0 < CCRx) - In downcounting: CNT > CCRx Figure 151. Example of one pulse mode. For example one may want to generate a positive pulse on OC1 with a length of t_{PULSE} and after a delay of t_{DELAY} as soon as a positive edge is detected on the TI2 input pin. Let's use TI2FP2 as trigger 1: - 1. Select the proper TI2x source (internal or external) with the TI2SEL[3:0] bits in the TIMx_TISEL register. - 2. Map TI2FP2 to TI2 by writing CC2S='01' in the TIMx CCMR1 register. - 3. TI2FP2 must detect a rising edge, write CC2P='0' and CC2NP='0' in the TIMx_CCER register. - 4. Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=00110 in the TIMx_SMCR register. - 5. TI2FP2 is used to start the counter by writing SMS to '110' in the TIMx_SMCR register (trigger mode). The OPM waveform is defined by writing the compare registers (taking into account the clock frequency and the counter prescaler). - The t_{DFLAY} is defined by the value written in the TIMx_CCR1 register. - The t_{PULSE} is defined by the difference between the auto-reload value and the compare value (TIMx_ARR - TIMx_CCR1). - Let's say one want to build a waveform with a transition from '0' to '1' when a compare match occurs and a transition from '1' to '0' when the counter reaches the auto-reload value. To do this PWM mode 2 must be enabled by writing OC1M=111 in the TIMx_CCMR1 register. Optionally the preload registers can be enabled by writing OC1PE='1' in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case one has to write the compare value in the TIMx_CCR1 register, the auto-reload value in the TIMx_ARR register, generate an update by setting the UG bit and wait for external trigger event on TI2. CC1P is written to '0' in this example. In our example, the DIR and CMS bits in the TIMx CR1 register should be low. Since only 1 pulse (Single mode) is needed, a 1 must be written in the OPM bit in the TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the Repetitive Mode is selected. Particular case: OCx fast enable: In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the counter. Then the comparison between the counter and the compare value makes the output toggle. But several clock cycles are needed for these operations and it limits the minimum delay $t_{\text{DFI AY}}$ min we can get. If one wants to output a waveform with the minimum delay, the OCxFE bit can be set in the TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus, without taking in account the comparison. Its new level is the same as if a compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode. ## 21.3.21 Retriggerable one pulse mode This mode allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length, but with the following differences with Non-retriggerable one pulse mode described in *Section 21.3.20*: - The pulse starts as soon as the trigger occurs (no programmable delay) - The pulse is extended if a new trigger occurs before the previous one is completed The timer must be in Slave mode, with the bits SMS[3:0] = '1000' (Combined Reset + trigger mode) in the TIMx_SMCR register, and the OCxM[3:0] bits set to '1000' or '1001' for Retrigerrable OPM mode 1 or 2. If the timer is configured in Up-counting mode, the corresponding CCRx must be set to 0 (the ARR register sets the pulse length). If the timer is configured in Down-counting mode, CCRx must be above or equal to ARR. Note: The OCxM[3:0] and SMS[3:0] bit fields are split into two parts for compatibility reasons, the most significant bit are not contiguous with the 3 least significant ones. This mode must not be used with center-aligned PWM modes. It is
mandatory to have CMS[1:0] = 00 in TIMx_CR1. RM0444 Rev 5 571/1390 Figure 152. Retriggerable one pulse mode #### 21.3.22 **Encoder interface mode** To select Encoder Interface mode write SMS='001' in the TIMx_SMCR register if the counter is counting on TI2 edges only, SMS='010' if it is counting on TI1 edges only and SMS='011' if it is counting on both TI1 and TI2 edges. Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx CCER register. When needed, the input filter can be programmed as well. CC1NP and CC2NP must be kept low. The two inputs TI1 and TI2 are used to interface to a quadrature encoder. Refer to Table 114. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2 after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted, TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in TIMx_CR1 register written to '1'). The sequence of transitions of the two inputs is evaluated and generates count pulses as well as the direction signal. Depending on the sequence the counter counts up or down, the DIR bit in the TIMx CR1 register is modified by hardware accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever the counter is counting on TI1 only, TI2 only or both TI1 and TI2. Encoder interface mode acts simply as an external clock with direction selection. This means that the counter just counts continuously between 0 and the auto-reload value in the TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So the TIMx_ARR must be configured before starting. In the same way, the capture, compare, repetition counter, trigger output features continue to work as normal. Encoder mode and External clock mode 2 are not compatible and must not be selected together. Note: The prescaler must be set to zero when encoder mode is enabled > In this mode, the counter is modified automatically following the speed and the direction of the quadrature encoder and its content, therefore, always represents the encoder's position. The count direction correspond to the rotation direction of the connected sensor. The table summarizes the possible combinations, assuming TI1 and TI2 do not switch at the same time. | | Level on | TI1FP1 signal | | Tl2FP2 signal | | |-------------------------|--|---------------|----------|---------------|----------| | Active edge | opposite
signal (TI1FP1
for TI2,
TI2FP2 for
TI1) | Rising | Falling | Rising | Falling | | Counting on TI1 only | High | Down | Up | No Count | No Count | | | Low | Up | Down | No Count | No Count | | Counting on TI2 only | High | No Count | No Count | Up | Down | | | Low | No Count | No Count | Down | Up | | Counting on TI1 and TI2 | High | Down | Up | Up | Down | | | Low | Up | Down | Down | Up | Table 114. Counting direction versus encoder signals A quadrature encoder can be connected directly to the MCU without external interface logic. However, comparators are normally be used to convert the encoder's differential outputs to digital signals. This greatly increases noise immunity. The third encoder output which indicate the mechanical zero position, may be connected to an external interrupt input and trigger a counter reset. The Figure 153 gives an example of counter operation, showing count signal generation and direction control. It also shows how input jitter is compensated where both edges are selected. This might occur if the sensor is positioned near to one of the switching points. For this example we assume that the configuration is the following: - CC1S='01' (TIMx_CCMR1 register, TI1FP1 mapped on TI1). - CC2S='01' (TIMx_CCMR2 register, TI1FP2 mapped on TI2). - CC1P='0' and CC1NP='0' (TIMx_CCER register, TI1FP1 non-inverted, TI1FP1=TI1). - CC2P='0' and CC2NP='0' (TIMx_CCER register, TI1FP2 non-inverted, TI1FP2= TI2). - SMS='011' (TIMx_SMCR register, both inputs are active on both rising and falling edges). - CEN='1' (TIMx_CR1 register, Counter enabled). Figure 153. Example of counter operation in encoder interface mode. RM0444 Rev 5 573/1390 Figure 154 gives an example of counter behavior when TI1FP1 polarity is inverted (same configuration as above except CC1P='1'). Figure 154. Example of encoder interface mode with TI1FP1 polarity inverted. The timer, when configured in Encoder Interface mode provides information on the sensor's current position. Dynamic information can be obtained (speed, acceleration, deceleration) by measuring the period between two encoder events using a second timer configured in capture mode. The output of the encoder which indicates the mechanical zero can be used for this purpose. Depending on the time between two events, the counter can also be read at regular times. This can be done by latching the counter value into a third input capture register if available (then the capture signal must be periodic and can be generated by another timer), when available, it is also possible to read its value through a DMA request. The IUFREMAP bit in the TIMx_CR1 register forces a continuous copy of the update interrupt flag (UIF) into the timer counter register's bit 31 (TIMxCNT[31]). This allows both the counter value and a potential roll-over condition signaled by the UIFCPY flag to be read in an atomic way. It eases the calculation of angular speed by avoiding race conditions caused, for instance, by a processing shared between a background task (counter reading) and an interrupt (update interrupt). There is no latency between the UIF and UIFCPY flag assertions. In 32-bit timer implementations, when the IUFREMAP bit is set, bit 31 of the counter is overwritten by the UIFCPY flag upon read access (the counter's most significant bit is only accessible in write mode). ## 21.3.23 UIF bit remapping The IUFREMAP bit in the TIMx_CR1 register forces a continuous copy of the Update Interrupt Flag UIF into the timer counter register's bit 31 (TIMxCNT[31]). This allows both the counter value and a potential roll-over condition signaled by the UIFCPY flag to be read in an atomic way. In particular cases, it can ease the calculations by avoiding race conditions, caused for instance by a processing shared between a background task (counter reading) and an interrupt (Update Interrupt). There is no latency between the UIF and UIFCPY flags assertion. ## 21.3.24 Timer input XOR function The TI1S bit in the TIMx_CR2 register, allows the input filter of channel 1 to be connected to the output of an XOR gate, combining the three input pins TIMx_CH1, TIMx_CH2 and TIMx_CH3. The XOR output can be used with all the timer input functions such as trigger or input capture. It is convenient to measure the interval between edges on two input signals, as per *Figure 155* below. Figure 155. Measuring time interval between edges on 3 signals ## 21.3.25 Interfacing with Hall sensors This is done using the advanced-control timer (TIM1) to generate PWM signals to drive the motor and another timer TIMx (TIM2, TIM3, TIM4^(a)) referred to as "interfacing timer" in *Figure 156*. The "interfacing timer" captures the 3 timer input pins (CC1, CC2, CC3) connected through a XOR to the TI1 input channel (selected by setting the TI1S bit in the TIMx_CR2 register). The slave mode controller is configured in reset mode; the slave input is TI1F_ED. Thus, each time one of the 3 inputs toggles, the counter restarts counting from 0. This creates a time base triggered by any change on the Hall inputs. On the "interfacing timer", capture/compare channel 1 is configured in capture mode, capture signal is TRC (See *Figure 129: Capture/compare channel (example: channel 1 input stage) on page 546*). The captured value, which corresponds to the time elapsed between 2 changes on the inputs, gives information about motor speed. The "interfacing timer" can be used in output mode to generate a pulse which changes the configuration of the channels of the advanced-control timer (TIM1) (by triggering a COM event). The TIM1 timer is used to generate PWM signals to drive the motor. To do this, the interfacing timer channel must be programmed so that a positive pulse is generated after a programmed delay (in output compare or PWM mode). This pulse is sent to the advanced-control timer (TIM1) through the TRGO output. a. TIM4 is available on STM32G0B1xx and STM32G0C1xx salestypes only. RM0444 Rev 5 575/1390 Example: one wants to change the PWM configuration of the advanced-control timer TIM1 after a programmed delay each time a change occurs on the Hall inputs connected to one of the TIMx timers. - Configure 3 timer inputs ORed to the TI1 input channel by writing the TI1S bit in the TIMx_CR2 register to '1', - Program the time base: write the TIMx_ARR to the max value (the counter must be cleared by the TI1 change. Set the prescaler to get a maximum counter period longer than the time between 2 changes on the sensors, - Program the channel 1 in capture mode (TRC selected): write the CC1S bits in the TIMx_CCMR1 register to '01'. The digital filter can also be programmed if needed, - Program the channel 2 in PWM 2 mode with the desired delay: write the OC2M bits to '111' and the CC2S bits to '00' in the TIMx CCMR1 register, - Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2 register to '101', In the advanced-control timer TIM1, the right ITR input must be selected as trigger input, the timer is programmed to generate PWM signals, the capture/compare control signals are preloaded (CCPC=1 in the TIMx_CR2 register) and the COM event is controlled by the trigger input (CCUS=1 in the TIMx_CR2 register). The PWM control bits (CCxE, OCxM) are written after a COM event for the next step (this can be done in an interrupt subroutine generated by the rising edge of OC2REF). The *Figure 156* describes this example. Figure 156. Example of Hall sensor interface # 21.3.26
Timer synchronization The TIMx timers are linked together internally for timer synchronization or chaining. Refer to *Section 22.3.19: Timer synchronization* for details. They can be synchronized in several modes: Reset mode, Gated mode, and Trigger mode. #### Slave mode: Reset mode The counter and its prescaler can be reinitialized in response to an event on a trigger input. Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated. In the following example, the upcounter is cleared in response to a rising edge on TI1 input: - Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration (in this example, we do not need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so it does not need to be configured. The CC1S bits select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write CC1P=0 and CC1NP='0' in TIMx_CCER register to validate the polarity (and detect rising edges only). - Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select TI1 as the input source by writing TS=00101 in TIMx_SMCR register. - Start the counter by writing CEN=1 in the TIMx_CR1 register. The counter starts counting on the internal clock, then behaves normally until TI1 rising edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register). The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36. The delay between the rising edge on TI1 and the actual reset of the counter is due to the resynchronization circuit on TI1 input. Figure 157. Control circuit in reset mode #### Slave mode: Gated mode The counter can be enabled depending on the level of a selected input. In the following example, the upcounter counts only when TI1 input is low: - Configure the channel 1 to detect low levels on TI1. Configure the input filter duration (in this example, we do not need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so it does not need to be configured. The CC1S bits select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write CC1P=1 and CC1NP='0' in TIMx_CCER register to validate the polarity (and detect low level only). - Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select TI1 as the input source by writing TS=00101 in TIMx_SMCR register. - Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the counter doesn't start if CEN=0, whatever is the trigger input level). The counter starts counting on the internal clock as long as TI1 is low and stops as soon as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts or stops. The delay between the rising edge on TI1 and the actual stop of the counter is due to the resynchronization circuit on TI1 input. Figure 158. Control circuit in Gated mode # Slave mode: Trigger mode The counter can start in response to an event on a selected input. In the following example, the upcounter starts in response to a rising edge on TI2 input: Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration (in this example, we do not need any filter, so we keep IC2F=0000). The capture prescaler is not used for triggering, so it does not need to be configured. The CC2S bits are configured to select the input capture source only, CC2S=01 in TIMx_CCMR1 RM0444 Rev 5 579/1390 register. Write CC2P=1 and CC2NP=0 in TIMx_CCER register to validate the polarity (and detect low level only). • Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI2 as the input source by writing TS=00110 in TIMx_SMCR register. When a rising edge occurs on TI2, the counter starts counting on the internal clock and the TIF flag is set. The delay between the rising edge on TI2 and the actual start of the counter is due to the resynchronization circuit on TI2 input. Figure 159. Control circuit in trigger mode # Slave mode: Combined reset + trigger mode In this case, a rising edge of the selected trigger input (TRGI) reinitializes the counter, generates an update of the registers, and starts the counter. This mode is used for one-pulse mode. ## Slave mode: external clock mode 2 + trigger mode The external clock mode 2 can be used in addition to another slave mode (except external clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock input, and another input can be selected as trigger input (in reset mode, gated mode or trigger mode). It is recommended not to select ETR as TRGI through the TS bits of TIMx_SMCR register. In the following example, the upcounter is incremented at each rising edge of the ETR signal as soon as a rising edge of TI1 occurs: - Configure the external trigger input circuit by programming the TIMx_SMCR register as follows: - ETF = 0000: no filter - ETPS = 00: prescaler disabled - ETP = 0: detection of rising edges on ETR and ECE=1 to enable the external clock mode 2. - 2. Configure the channel 1 as follows, to detect rising edges on TI: - IC1F = 0000: no filter. - The capture prescaler is not used for triggering and does not need to be configured. - CC1S = 01in TIMx_CCMR1 register to select only the input capture source - CC1P = 0 and CC1NP = 0 in TIMx_CCER register to validate the polarity (and detect rising edge only). - 3. Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI1 as the input source by writing TS=00101 in TIMx_SMCR register. A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on ETR rising edges. The delay between the rising edge of the ETR signal and the actual reset of the counter is due to the resynchronization circuit on ETRP input. Figure 160. Control circuit in external clock mode 2 + trigger mode Note: The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer. 4 RM0444 Rev 5 581/1390 # 21.3.27 ADC synchronization The timer can generate an ADC triggering event with various internal signals, such as reset, enable or compare events. It is also possible to generate a pulse issued by internal edge detectors, such as: - Rising and falling edges of OC4ref - Rising edge on OC5ref or falling edge on OC6ref The triggers are issued on the TRGO2 internal line which is redirected to the ADC. There is a total of 16 possible events, which can be selected using the MMS2[3:0] bits in the TIMx_CR2 register. An example of an application for 3-phase motor drives is given in *Figure 140 on page 558*. Note: The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer. Note: The clock of the ADC must be enabled prior to receive events from the master timer, and must not be changed on-the-fly while triggers are received from the timer. ## 21.3.28 DMA burst mode The TIMx timers have the capability to generate multiple DMA requests upon a single event. The main purpose is to be able to re-program part of the timer multiple times without software overhead, but it can also be used to read several registers in a row, at regular intervals. The DMA controller destination is unique and must point to the virtual register TIMx_DMAR. On a given timer event, the timer launches a sequence of DMA requests (burst). Each write into the TIMx_DMAR register is actually redirected to one of the timer registers. The DBL[4:0] bits in the TIMx_DCR register set the DMA burst length. The timer recognizes a burst transfer when a read or a write access is done to the TIMx_DMAR address), i.e. the number of transfers (either in half-words or in bytes). The DBA[4:0] bits in the TIMx_DCR registers define the DMA base address for DMA transfers (when read/write access are done through the TIMx_DMAR address). DBA is defined as an offset starting from the address of the TIMx_CR1 register: # Example: 00000: TIMx_CR1 00001: TIMx_CR2 00010: TIMx_SMCR As an example, the timer DMA burst feature is used to update the contents of the CCRx registers (x = 2, 3, 4) upon an update event, with the DMA transferring half words into the CCRx registers. This is done in the following steps: - 1. Configure the corresponding DMA channel as follows: - DMA channel peripheral address is the DMAR register address - DMA channel memory address is the address of the buffer in the RAM containing the data to be transferred by DMA into CCRx registers. - Number of data to transfer = 3 (See note below). - Circular mode disabled. - 2. Configure the DCR register by configuring the DBA and DBL bit fields as follows: DBL = 3 transfers, DBA = 0xE. - 3. Enable the TIMx update DMA request (set the UDE bit in the DIER register). - 4. Enable TIMx - 5. Enable the DMA channel This example is for the case where every CCRx register to be updated once. If every CCRx register is to be updated twice for example, the number of data to transfer should be 6. Let's take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and data6. The data is transferred to the CCRx registers as follows: on the first update DMA request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is transferred to CCR3 and data6 is transferred to
CCR4. Note: A null value can be written to the reserved registers. # **21.3.29** Debug mode When the microcontroller enters debug mode (Cortex[®]-M0+ core halted), the TIMx counter either continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in DBG module. For safety purposes, when the counter is stopped, the outputs are disabled (as if the MOE bit was reset). The outputs can either be forced to an inactive state (OSSI bit = 1), or have their control taken over by the GPIO controller (OSSI bit = 0), typically to force a Hi-Z. For more details, refer to section Debug support (DBG). 4 # 21.4 TIM1 registers Refer to for a list of abbreviations used in register descriptions. The peripheral registers can be accessed by half-words (16-bit) or words (32-bit). # 21.4.1 TIM1 control register 1 (TIM1_CR1) Address offset: 0x00 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|--------------|------|-----|-------|------|-----|--------|-----|-----|-----|------|-----| | Res. | Res. | Res. | Res. | UIFRE
MAP | Res. | CKD | [1:0] | ARPE | CMS | 6[1:0] | DIR | ОРМ | URS | UDIS | CEN | | | | | | rw | | rw Bits 15:12 Reserved, must be kept at reset value. #### Bit 11 **UIFREMAP**: UIF status bit remapping - 0: No remapping. UIF status bit is not copied to TIMx_CNT register bit 31. - 1: Remapping enabled. UIF status bit is copied to TIMx CNT register bit 31. - Bit 10 Reserved, must be kept at reset value. ## Bits 9:8 CKD[1:0]: Clock division This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and the dead-time and sampling clock (t_{DTS})used by the dead-time generators and the digital filters (ETR, TIx): 00: t_{DTS}=t_{CK_INT} 01: t_{DTS}=2*t_{CK_INT} 10: t_{DTS}=4*t_{CK_INT} 11: Reserved, do not program this value Note: $t_{DTS} = 1/f_{DTS}$, $t_{CK_INT} = 1/f_{CK_INT}$. Bit 7 ARPE: Auto-reload preload enable 0: TIMx_ARR register is not buffered 1: TIMx_ARR register is buffered #### Bits 6:5 CMS[1:0]: Center-aligned mode selection - 00: Edge-aligned mode. The counter counts up or down depending on the direction bit (DIR). - 01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting down. - 10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting up. - 11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set both when the counter is counting up or down. Note: Switch from edge-aligned mode to center-aligned mode as long as the counter is enabled (CEN=1) is not allowed #### Bit 4 DIR: Direction - 0: Counter used as upcounter - 1: Counter used as downcounter Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder mode #### Bit 3 **OPM**: One pulse mode - 0: Counter is not stopped at update event - 1: Counter stops counting at the next update event (clearing the bit CEN) #### Bit 2 URS: Update request source This bit is set and cleared by software to select the UEV event sources. - 0: Any of the following events generate an update interrupt or DMA request if enabled. These events can be: - Counter overflow/underflow - Setting the UG bit - Update generation through the slave mode controller - Only counter overflow/underflow generates an update interrupt or DMA request if enabled. ## Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable UEV event generation. 0: UEV enabled. The Update (UEV) event is generated by one of the following events: - Counter overflow/underflow - Setting the UG bit - Update generation through the slave mode controller Buffered registers are then loaded with their preload values. 1: UEV disabled. The Update event is not generated, shadow registers keep their value (ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is set or if a hardware reset is received from the slave mode controller. # Bit 0 CEN: Counter enable - 0: Counter disabled - 1: Counter enabled Note: External clock, gated mode and encoder mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware. # 21.4.2 TIM1 control register 2 (TIM1_CR2) Address offset: 0x04 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|-------|------|-------|------|-------|------|------|-----|----------|----|------|------|------|------| | Res. | MMS | 2[3:0] | | Res. | OIS6 | Res. | OIS5 | | | | | | | | | | rw | rw | rw | rw | | rw | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | OIS4 | OIS3N | OIS3 | OIS2N | OIS2 | OIS1N | OIS1 | TI1S | | MMS[2:0] | | CCDS | ccus | Res. | CCPC | | | rw | rw | RM0444 Rev 5 585/1390 - Bits 31:24 Reserved, must be kept at reset value. - Bits 23:20 MMS2[3:0]: Master mode selection 2 These bits allow the information to be sent to ADC for synchronization (TRGO2) to be selected. The combination is as follows: - 0000: Reset the UG bit from the TIMx_EGR register is used as trigger output (TRGO2). If the reset is generated by the trigger input (slave mode controller configured in reset mode), the signal on TRGO2 is delayed compared to the actual reset. - 0001: **Enable** the Counter Enable signal CNT_EN is used as trigger output (TRGO2). It is useful to start several timers at the same time or to control a window in which a slave timer is enabled. The Counter Enable signal is generated by a logic AND between the CEN control bit and the trigger input when configured in Gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO2, except if the Master/Slave mode is selected (see the MSM bit description in TIMx_SMCR register). - 0010: **Update** the update event is selected as trigger output (TRGO2). For instance, a master timer can then be used as a prescaler for a slave timer. - 0011: **Compare pulse** the trigger output sends a positive pulse when the CC1IF flag is to be set (even if it was already high), as soon as a capture or compare match occurs (TRGO2). - 0100: Compare OC1REFC signal is used as trigger output (TRGO2) - 0101: Compare OC2REFC signal is used as trigger output (TRGO2) - 0110: Compare OC3REFC signal is used as trigger output (TRGO2) - 0111: Compare OC4REFC signal is used as trigger output (TRGO2) - 1000: Compare OC5REFC signal is used as trigger output (TRGO2) - 1001: Compare OC6REFC signal is used as trigger output (TRGO2) - 1010: Compare Pulse OC4REFC rising or falling edges generate pulses on TRGO2 - 1011: Compare Pulse OC6REFC rising or falling edges generate pulses on TRGO2 - 1100: Compare Pulse OC4REFC or OC6REFC rising edges generate pulses on TRGO2 - 1101: **Compare Pulse** OC4REFC rising or OC6REFC falling edges generate pulses on TRGO2 - 1110: Compare Pulse OC5REFC or OC6REFC rising edges generate pulses on TRGO2 - 1111: **Compare Pulse** OC5REFC rising or OC6REFC falling edges generate pulses on TRGO2 Note: The clock of the slave timer or ADC must be enabled prior to receive events from the master timer, and must not be changed on-the-fly while triggers are received from the master timer. - Bit 19 Reserved, must be kept at reset value. - Bit 18 OIS6: Output Idle state 6 (OC6 output) Refer to OIS1 bit - Bit 17 Reserved, must be kept at reset value. - Bit 16 **OIS5**: Output Idle state 5 (OC5 output) Refer to OIS1 bit - Bit 15 Reserved, must be kept at reset value. - Bit 14 OIS4: Output Idle state 4 (OC4 output) Refer to OIS1 bit Bit 13 **OIS3N**: Output Idle state 3 (OC3N output) Refer to OIS1N bit Bit 12 OIS3: Output Idle state 3 (OC3 output) Refer to OIS1 bit Bit 11 OIS2N: Output Idle state 2 (OC2N output) Refer to OIS1N bit Bit 10 OIS2: Output Idle state 2 (OC2 output) Refer to OIS1 bit Bit 9 OIS1N: Output Idle state 1 (OC1N output) 0: OC1N=0 after a dead-time when MOE=0 1: OC1N=1 after a dead-time when MOE=0 Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). Bit 8 OIS1: Output Idle state 1 (OC1 output) 0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0 1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0 Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). Bit 7 TI1S: TI1 selection 0: The TIMx CH1 pin is connected to TI1 input 1: The TIMx CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination) #### Bits 6:4 MMS[2:0]: Master mode selection These bits allow selected information to be sent in master mode to slave timers for synchronization (TRGO). The combination is as follows: - 000: **Reset** the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the reset is generated by the trigger input (slave mode controller configured in reset mode) then the signal on TRGO is delayed compared to the actual reset. - 001: Enable the Counter Enable signal CNT_EN is used as trigger output (TRGO). It is useful to start several timers at the same time or to control a window in which a slave timer is enable. The Counter Enable signal is generated by a logic AND between CEN control bit and the trigger input when configured in gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description in TIMx_SMCR register). - 010: **Update** The update event is selected as trigger output (TRGO). For instance a master timer can then be used as a
prescaler for a slave timer. - 011: Compare Pulse The trigger output send a positive pulse when the CC1IF flag is to be set (even if it was already high), as soon as a capture or a compare match occurred. (TRGO). - 100: Compare OC1REFC signal is used as trigger output (TRGO) - 101: **Compare** OC2REFC signal is used as trigger output (TRGO) - 110: Compare OC3REFC signal is used as trigger output (TRGO) - 111: **Compare** OC4REFC signal is used as trigger output (TRGO) Note: The clock of the slave timer or ADC must be enabled prior to receive events from the master timer, and must not be changed on-the-fly while triggers are received from the master timer. Bit 3 CCDS: Capture/compare DMA selection 0: CCx DMA request sent when CCx event occurs 1: CCx DMA requests sent when update event occurs RM0444 Rev 5 587/1390 - Bit 2 CCUS: Capture/compare control update selection - 0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting the COMG bit only - 1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting the COMG bit or when an rising edge occurs on TRGI Note: This bit acts only on channels that have a complementary output. - Bit 1 Reserved, must be kept at reset value. - Bit 0 CCPC: Capture/compare preloaded control - 0: CCxE, CCxNE and OCxM bits are not preloaded - 1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated only when a commutation event (COM) occurs (COMG bit set or rising edge detected on TRGI, depending on the CCUS bit). Note: This bit acts only on channels that have a complementary output. # 21.4.3 TIM1 slave mode control register (TIM1_SMCR) Address offset: 0x08 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|--------|------|------|-------|------|------|------|---------|------|------|------|---------|--------| | Res. TS[| 4:3] | Res. | Res. | Res. | SMS[3] | | | | | | | | | | | | rw | rw | | | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | ETP | ECE | ETPS | S[1:0] | | ETF | [3:0] | | MSM | | TS[2:0] | | occs | | SMS[2:0 |] | | rw Bits 31:22 Reserved, must be kept at reset value. Bits 19:17 Reserved, must be kept at reset value. Bit 15 ETP: External trigger polarity This bit selects whether ETR or ETR is used for trigger operations - 0: ETR is non-inverted, active at high level or rising edge. - 1: ETR is inverted, active at low level or falling edge. - Bit 14 ECE: External clock enable This bit enables External clock mode 2. - 0: External clock mode 2 disabled - 1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal. Note: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI connected to ETRF (SMS=111 and TS=00111). It is possible to simultaneously use external clock mode 2 with the following slave modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to ETRF in this case (TS bits must not be 00111). If external clock mode 1 and external clock mode 2 are enabled at the same time, the external clock input is ETRF. ## Bits 13:12 ETPS[1:0]: External trigger prescaler External trigger signal ETRP frequency must be at most 1/4 of f_{CK INT} frequency. A prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks. 00: Prescaler OFF 01: ETRP frequency divided by 2 10: ETRP frequency divided by 4 11: ETRP frequency divided by 8 #### Bits 11:8 ETF[3:0]: External trigger filter This bit-field then defines the frequency used to sample ETRP signal and the length of the digital filter applied to ETRP. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, sampling is done at f_{DTS} 0001: f_{SAMPLING}=f_{CK INT}, N=2 0010: f_{SAMPLING}=f_{CK_INT}, N=4 0011: f_{SAMPLING}=f_{CK_INT}, N=8 0100: f_{SAMPLING}=f_{DTS}/2, N=6 0101: f_{SAMPLING}=f_{DTS}/2, N=8 0110: f_{SAMPLING}=f_{DTS}/4, N=6 0111: f_{SAMPLING}=f_{DTS}/4, N=8 1000: f_{SAMPLING}=f_{DTS}/8, N=6 1001: f_{SAMPLING}=f_{DTS}/8, N=8 1010: f_{SAMPLING}=f_{DTS}/16, N=5 1011: f_{SAMPLING}=f_{DTS}/16, N=6 1100: f_{SAMPLING}=f_{DTS}/16, N=8 1101: $f_{SAMPLING} = f_{DTS}/32$, N=5 1110: f_{SAMPLING}=f_{DTS}/32, N=6 1111: f_{SAMPLING}=f_{DTS}/32, N=8 # Bit 7 MSM: Master/slave mode 0: No action 1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful if we want to synchronize several timers on a single external event. ## Bits 21, 20, 6, 5, 4 **TS[4:0]:** Trigger selection This bit-field selects the trigger input to be used to synchronize the counter. 00000: Internal Trigger 0 (ITR0) 00001: Internal Trigger 1 (ITR1) 00010: Internal Trigger 2 (ITR2) 00011: Internal Trigger 3 (ITR3) 00100: TI1 Edge Detector (TI1F ED) 00101: Filtered Timer Input 1 (TI1FP1) 00110: Filtered Timer Input 2 (TI2FP2) 00111: External Trigger input (ETRF) Others: Reserved See Table 115: TIM1 internal trigger connection on page 590 for more details on ITRx meaning for each Timer. Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition. #### Bit 3 OCCS: OCREF clear selection This bit is used to select the OCREF clear source. 0: OCREF CLR INT is connected to COMP1 or COMP2 output depending on TIM1 OR1.OCREF CLR 1: OCREF CLR INT is connected to ETRF ## Bits 16, 2, 1, 0 SMS[3:0]: Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. 0000: Slave mode disabled - if CEN = '1' then the prescaler is clocked directly by the internal clock. 0001: Encoder mode 1 - Counter counts up/down on TI1FP1 edge depending on TI2FP2 0010: Encoder mode 2 - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level. 0011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input. 0100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers. 0101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are controlled. 0110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled. 0111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter. 1000: Combined reset + trigger mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter, generates an update of the registers and starts the counter. Codes above 1000: Reserved. Note: The gated mode must not be used if TI1F ED is selected as the trigger input (TS=00100). Indeed, TI1F ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Note: The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer. Table 115. TIM1 internal trigger connection | Slave TIM | ITR0 (TS = 00000) | ITR1 (TS = 00001) | ITR2 (TS = 00010) | ITR3 (TS = 00011) | |-----------|-------------------|-------------------|-------------------|-------------------| | TIM1 | TIM15 | TIM2 | TIM3 | TIM17 OC1 | #### 21.4.4 TIM1 DMA/interrupt enable register (TIM1 DIER) Address offset: 0x0C Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-------|-------|-------|-------|-------|-----|-----|-----|-------|-------|-------|-------|-------|-----| | Res. | TDE | COMDE | CC4DE | CC3DE | CC2DE | CC1DE | UDE | BIE | TIE | COMIE | CC4IE | CC3IE | CC2IE | CC1IE | UIE | | | rw - Bit 15 Reserved, must be kept at reset value. - Bit 14 **TDE**: Trigger DMA request enable - 0: Trigger DMA request disabled - 1: Trigger DMA request enabled - Bit 13 **COMDE**: COM DMA request enable - 0: COM DMA request disabled - 1: COM DMA request enabled - Bit 12 CC4DE: Capture/Compare 4 DMA request enable - 0: CC4 DMA request disabled - 1: CC4 DMA request enabled - Bit 11 CC3DE: Capture/Compare 3 DMA request enable - 0: CC3 DMA request disabled - 1: CC3 DMA request enabled - Bit 10 CC2DE: Capture/Compare 2 DMA request enable - 0: CC2 DMA request disabled - 1: CC2 DMA request enabled - Bit 9 CC1DE: Capture/Compare 1 DMA request enable - 0: CC1 DMA request disabled - 1: CC1 DMA request enabled - Bit 8 **UDE**: Update DMA request enable - 0: Update DMA request disabled - 1: Update DMA request enabled - Bit 7 BIE: Break interrupt enable - 0: Break interrupt disabled - 1: Break interrupt enabled - Bit 6 TIE: Trigger interrupt enable - 0: Trigger interrupt disabled - 1: Trigger interrupt enabled - Bit 5 **COMIE**: COM interrupt enable - 0: COM interrupt disabled - 1: COM interrupt enabled - Bit 4 **CC4IE**: Capture/Compare 4 interrupt enable - 0: CC4 interrupt disabled - 1: CC4 interrupt enabled - Bit 3 **CC3IE**: Capture/Compare 3 interrupt enable - 0: CC3 interrupt disabled - 1: CC3 interrupt enabled Bit 2 CC2IE: Capture/Compare 2 interrupt enable 0: CC2 interrupt disabled1: CC2 interrupt enabled Bit 1 **CC1IE**: Capture/Compare 1 interrupt enable 0: CC1 interrupt disabled1: CC1 interrupt enabled Bit 0 **UIE**: Update interrupt enable 0: Update interrupt disabled1: Update interrupt enabled # 21.4.5 TIM1 status register (TIM1_SR) Address offset: 0x10 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 |
16 | |------------|------------|------|------|------|------|------------|------|----------|----------|------------|------------|------------|------------|------------|----------| | Res. CC6IF | CC5IF | | | | | | | | | | | | | | | | rc_w0 | rc_w0 | | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | | | | | 9
CC1OF | | 7
BIF | 6
TIF | 5
COMIF | 4
CC4IF | 3
CC3IF | 2
CC2IF | 1
CC1IF | 0
UIF | Bits 31:18 Reserved, must be kept at reset value. Bit 17 CC6IF: Compare 6 interrupt flag Refer to CC1IF description (Note: Channel 6 can only be configured as output) Bit 16 CC5IF: Compare 5 interrupt flag Refer to CC1IF description (Note: Channel 5 can only be configured as output) Bits 15:14 Reserved, must be kept at reset value. Bit 13 SBIF: System Break interrupt flag This flag is set by hardware as soon as the system break input goes active. It can be cleared by software if the system break input is not active. This flag must be reset to re-start PWM operation. 0: No break event occurred. 1: An active level has been detected on the system break input. An interrupt is generated if BIE=1 in the TIMx_DIER register. Bit 12 **CC4OF**: Capture/Compare 4 overcapture flag Refer to CC1OF description Bit 11 CC3OF: Capture/Compare 3 overcapture flag Refer to CC1OF description Bit 10 CC2OF: Capture/Compare 2 overcapture flag Refer to CC1OF description #### Bit 9 CC10F: Capture/Compare 1 overcapture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to '0'. - 0: No overcapture has been detected. - 1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set #### Bit 8 B2IF: Break 2 interrupt flag This flag is set by hardware as soon as the break 2 input goes active. It can be cleared by software if the break 2 input is not active. - 0: No break event occurred. - 1: An active level has been detected on the break 2 input. An interrupt is generated if BIE=1 in the TIMx_DIER register. #### Bit 7 BIF: Break interrupt flag This flag is set by hardware as soon as the break input goes active. It can be cleared by software if the break input is not active. - 0: No break event occurred. - 1: An active level has been detected on the break input. An interrupt is generated if BIE=1 in the TIMx_DIER register. #### Bit 6 TIF: Trigger interrupt flag This flag is set by hardware on the TRG trigger event (active edge detected on TRGI input when the slave mode controller is enabled in all modes but gated mode. It is set when the counter starts or stops when gated mode is selected. It is cleared by software. - 0: No trigger event occurred. - 1: Trigger interrupt pending. #### Bit 5 **COMIF**: COM interrupt flag This flag is set by hardware on COM event (when Capture/compare Control bits - CCxE, CCxNE, OCxM - have been updated). It is cleared by software. - 0: No COM event occurred. - 1: COM interrupt pending. # Bit 4 CC4IF: Capture/Compare 4 interrupt flag Refer to CC1IF description # Bit 3 CC3IF: Capture/Compare 3 interrupt flag Refer to CC1IF description # Bit 2 CC2IF: Capture/Compare 2 interrupt flag Refer to CC1IF description # Bit 1 CC1IF: Capture/Compare 1 interrupt flag This flag is set by hardware. It is cleared by software (input capture or output compare mode) or by reading the TIMx_CCR1 register (input capture mode only). - 0: No compare match / No input capture occurred - 1: A compare match or an input capture occurred. If channel CC1 is configured as output: this flag is set when he content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the content of TIMx_CCR1 is greater than the content of TIMx_ARR, the CC1IF bit goes high on the counter overflow (in up-counting and up/down-counting modes) or underflow (in down-counting mode). There are 3 possible options for flag setting in center-aligned mode, refer to the CMS bits in the TIMx_CR1 register for the full description. If channel CC1 is configured as input: this bit is set when counter value has been captured in TIMx_CCR1 register (an edge has been detected on IC1, as per the edge sensitivity defined with the CC1P and CC1NP bits setting, in TIMx_CCER). RM0444 Rev 5 593/1390 ## Bit 0 **UIF**: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. - 0: No update occurred. - 1: Update interrupt pending. This bit is set by hardware when the registers are updated: - At overflow or underflow regarding the repetition counter value (update if repetition counter = 0) and if the UDIS=0 in the TIMx CR1 register. - When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and UDIS=0 in the TIMx_CR1 register. - When CNT is reinitialized by a trigger event (refer to Section 21.4.3: TIM1 slave mode control register (TIM1_SMCR)), if URS=0 and UDIS=0 in the TIMx_CR1 register. # 21.4.6 TIM1 event generation register (TIM1_EGR) Address offset: 0x14 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|-----|----|----|------|------|------|------|------|----| | Res. B2G | BG | TG | COMG | CC4G | CC3G | CC2G | CC1G | UG | | | | | | | | | w | w | w | w | w | w | w | w | w | Bits 15:9 Reserved, must be kept at reset value. ## Bit 8 B2G: Break 2 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. - 0: No action - 1: A break 2 event is generated. MOE bit is cleared and B2IF flag is set. Related interrupt can occur if enabled. ## Bit 7 BG: Break generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. - 0: No action - 1: A break event is generated. MOE bit is cleared and BIF flag is set. Related interrupt or DMA transfer can occur if enabled. ## Bit 6 TG: Trigger generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. - 0: No action - 1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if enabled. #### Bit 5 **COMG**: Capture/Compare control update generation This bit can be set by software, it is automatically cleared by hardware - 0: No action - 1: When CCPC bit is set, it allows CCxE, CCxNE and OCxM bits to be updated. Note: This bit acts only on channels having a complementary output. #### Bit 4 CC4G: Capture/Compare 4 generation Refer to CC1G description # Bit 3 **CC3G**: Capture/Compare 3 generation Refer to CC1G description ## Bit 2 CC2G: Capture/Compare 2 generation Refer to CC1G description #### Bit 1 CC1G: Capture/Compare 1 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware 0: No action 1: A capture/compare event is generated on channel 1: ## If channel CC1 is configured as output: CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled. #### If channel CC1 is configured as input: The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high. ## Bit 0 UG: Update generation This bit can be set by software, it is automatically cleared by hardware. No action 1: Reinitialize the counter and generates an update of the registers. The prescaler internal counter is also cleared (the prescaler ratio is not affected). The counter is cleared if the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload value (TIMx ARR) if DIR=1 (downcounting). # 21.4.7 TIM1 capture/compare mode register 1 [alternate] (TIM1 CCMR1) Address offset: 0x18 Reset value: 0x0000 0000 The same register can be used for input capture mode (this section) or for output compare mode (next section). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function for input capture and for output compare modes. It is possible to combine both modes independently (e.g. channel 1 in input capture mode and channel 2 in output compare mode). #### Input capture mode: | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|-------|------|-------|---------|------|---------|------|------|-------|------|-------|--------|------|--------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | IC2F | [3:0] | | IC2PS | SC[1:0] | CC2 | !S[1:0] | | IC1F | [3:0] | | IC1PS | C[1:0] | CC1 | S[1:0] | | rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:12 **IC2F[3:0]**: Input capture 2 filter Refer to IC1F[3:0] description. Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler Refer to IC1PSC[1:0] description. 4 RM0444 Rev 5 595/1390 # Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output 01: CC2 channel is configured as input, IC2 is mapped on TI2 10: CC2 channel is configured as input, IC2 is mapped on TI1 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx SMCR register) Note: CC2S bits are writable only when the channel is OFF (CC2E = '0' in TIMx CCER). ## Bits 7:4 IC1F[3:0]: Input capture 1 filter This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: ``` 0000: No filter, sampling is done at force ``` 0001: f_{SAMPLING}=f_{CK INT}, N=2 0010: f_{SAMPLING}=f_{CK_INT}, N=4 0011:
f_{SAMPLING}=f_{CK_INT}, N=8 0100: f_{SAMPLING}=f_{DTS}/2, N=6 0101: f_{SAMPLING}=f_{DTS}/2, N=8 0110: f_{SAMPLING}=f_{DTS}/4, N=6 0111: f_{SAMPLING}=f_{DTS}/4, N=8 1000: f_{SAMPLING}=f_{DTS}/8, N=6 1001: f_{SAMPLING}=f_{DTS}/8, N=8 1010: f_{SAMPLING}=f_{DTS}/16, N=5 1011: $f_{SAMPLING} = f_{DTS}/16$, N=6 1100: $f_{SAMPLING} = f_{DTS}/16$, N=8 1101: f_{SAMPLING}=f_{DTS}/32, N=5 1110: f_{SAMPLING}=f_{DTS}/32, N=6 1111: f_{SAMPLING}=f_{DTS}/32, N=8 # Bits 3:2 IC1PSC[1:0]: Input capture 1 prescaler This bit-field defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset as soon as CC1E='0' (TIMx CCER register). 00: no prescaler, capture is done each time an edge is detected on the capture input 01: capture is done once every 2 events 10: capture is done once every 4 events 11: capture is done once every 8 events # Bits 1:0 CC1S[1:0]: Capture/Compare 1 Selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: CC1 channel is configured as input, IC1 is mapped on TI2 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = '0' in TIMx CCER). #### 21.4.8 TIM1 capture/compare mode register 1 [alternate] (TIM1 CCMR1) Address offset: 0x18 Reset value: 0x0000 0000 The same register can be used for output compare mode (this section) or for input capture mode (previous section). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function for input capture and for output compare modes. It is possible to combine both modes independently (e.g. channel 1 in input capture mode and channel 2 in output compare mode). ## Output compare mode: | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-----------|------|----------|------|-----------|-----------|------|---------|-----------|------|----------|------|-----------|-----------|------|---------| | Res. OC2M[3] | Res. OC1M[3] | | | | | | | | | rw | | | | | | | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | OC2
CE | (| OC2M[2:0 |)] | OC2
PE | OC2
FE | CC2 | 2S[1:0] | OC1
CE | (| OC1M[2:0 |)] | OC1
PE | OC1
FE | CC1 | S[1:0] | | rw Bits 31:25 Reserved, must be kept at reset value. Bits 23:17 Reserved, must be kept at reset value. Bit 15 **OC2CE:** Output Compare 2 clear enable Refer to OC1CE description. Bits 24, 14:12 **OC2M[3:0]**: Output Compare 2 mode Refer to OC1M[3:0] description. Bit 11 **OC2PE**: Output Compare 2 preload enable Refer to OC1PE description. Bit 10 **OC2FE**: Output Compare 2 fast enable Refer to OC1FE description. Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output 01: CC2 channel is configured as input, IC2 is mapped on TI2 10: CC2 channel is configured as input, IC2 is mapped on TI1 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through the TS bit (TIMx_SMCR register) Note: CC2S bits are writable only when the channel is OFF (CC2E = '0' in TIMx_CCER). Bit 7 OC1CE: Output Compare 1 clear enable 0: OC1Ref is not affected by the ocref_clr_int signal 1: OC1Ref is cleared as soon as a High level is detected on ocref_clr_int signal (OCREF_CLR input or ETRF input) 4 RM0444 Rev 5 597/1390 ## Bits 16, 6:4 OC1M[3:0]: Output Compare 1 mode These bits define the behavior of the output reference signal OC1REF from which OC1 and OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends on CC1P and CC1NP bits. - 0000: Frozen The comparison between the output compare register TIMx_CCR1 and the counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing base). - 0001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter TIMx CNT matches the capture/compare register 1 (TIMx CCR1). - 0010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter TIMx CNT matches the capture/compare register 1 (TIMx CCR1). - 0011: Toggle OC1REF toggles when TIMx CNT=TIMx CCR1. - 0100: Force inactive level OC1REF is forced low. - 0101: Force active level OC1REF is forced high. - 0110: PWM mode 1 In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1 else inactive. In downcounting, channel 1 is inactive (OC1REF='0') as long as TIMx_CNT>TIMx_CCR1 else active (OC1REF='1'). - 0111: PWM mode 2 In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1 else active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1 else inactive. - 1000: Retrigerrable OPM mode 1 In up-counting mode, the channel is active until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1 and the channels becomes active again at the next update. In down-counting mode, the channel is inactive until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1 and the channels becomes inactive again at the next update. - 1001: Retrigerrable OPM mode 2 In up-counting mode, the channel is inactive until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 2 and the channels becomes inactive again at the next update. In down-counting mode, the channel is active until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1 and the channels becomes active again at the next update. - 1010: Reserved, - 1011: Reserved. - 1100: Combined PWM mode 1 OC1REF has the same behavior as in PWM mode 1. OC1REFC is the logical OR between OC1REF and OC2REF. - 1101: Combined PWM mode 2 OC1REF has the same behavior as in PWM mode 2. OC1REFC is the logical AND between OC1REF and OC2REF. - 1110: Asymmetric PWM mode 1 OC1REF has the same behavior as in PWM mode 1. OC1REFC outputs OC1REF when the counter is counting up, OC2REF when it is counting down. - 1111: Asymmetric PWM mode 2 OC1REF has the same behavior as in PWM mode 2. OC1REFC outputs OC1REF when the counter is counting up, OC2REF when it is counting down. - Note: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S='00' (the channel is configured in output). - Note: In PWM mode, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from "frozen" mode to "PWM" mode. - Note: On channels having a complementary output, this bit field is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the OC1M active bits take the new value from the preloaded bits only when a COM event is generated. - Note: The OC1M[3] bit is not contiguous, located in bit 16. ## Bit 3 OC1PE: Output Compare 1 preload enable - 0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value is taken in account immediately. - 1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded in the active register at each update event. Note: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S='00' (the channel is configured in output). The PWM mode can be used without validating the preload register only in one pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed. ## Bit 2 OC1FE: Output Compare 1 fast enable This bit decreases the latency between a trigger event and a transition on the timer output. It must be used in one-pulse mode (OPM bit set in TIMx_CR1 register), to have the output pulse starting as soon as possible after the starting trigger. - 0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles. - 1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is set to the compare level independently from the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if the channel is configured in PWM1 or PWM2 mode. #### Bits 1:0 CC1S[1:0]: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: CC1 channel is configured as input, IC1 is mapped on TI2 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = '0' in TIMx_CCER). # 21.4.9 TIM1 capture/compare mode register 2 [alternate] (TIM1_CCMR2) Address offset: 0x1C Reset value: 0x0000 0000 The same register can be used for input capture mode (this section) or for output compare mode (next section). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function for input capture and for output compare modes. It is possible to combine both modes independently (e.g. channel 1 in input capture mode and channel 2 in output compare mode). #### Input capture mode: | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|-------|------|-------|--------|------|--------|------|------|-------|------|-------|--------|------|--------| | Res. | | | | | | | | | | |
 | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | IC4F | [3:0] | | IC4PS | C[1:0] | CC4 | S[1:0] | | IC3F | [3:0] | | IC3PS | C[1:0] | CC3 | S[1:0] | | rw RM0444 Rev 5 599/1390 Bits 31:16 Reserved, must be kept at reset value. Bits 15:12 IC4F[3:0]: Input capture 4 filter Refer to IC1F[3:0] description. Bits 11:10 IC4PSC[1:0]: Input capture 4 prescaler Refer to IC1PSC[1:0] description. Bits 9:8 CC4S[1:0]: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output 01: CC4 channel is configured as input, IC4 is mapped on TI4 10: CC4 channel is configured as input, IC4 is mapped on TI3 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC4S bits are writable only when the channel is OFF (CC4E = '0' in TIMx CCER). Bits 7:4 IC3F[3:0]: Input capture 3 filter Refer to IC1F[3:0] description. Bits 3:2 IC3PSC[1:0]: Input capture 3 prescaler Refer to IC1PSC[1:0] description. Bits 1:0 CC3S[1:0]: Capture/compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output 01: CC3 channel is configured as input, IC3 is mapped on TI3 10: CC3 channel is configured as input, IC3 is mapped on TI4 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC3S bits are writable only when the channel is OFF (CC3E = '0' in TIMx_CCER). # 21.4.10 TIM1 capture/compare mode register 2 [alternate] (TIM1_CCMR2) Address offset: 0x1C Set. UX IC Reset value: 0x0000 0000 The same register can be used for output compare mode (this section) or for input capture mode (previous section). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function for input capture and for output compare modes. It is possible to combine both modes independently (e.g. channel 1 in input capture mode and channel 2 in output compare mode). # **Output compare mode** | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-----------|------|----------|------|-----------|-----------|------|---------|-----------|------|----------|------|-----------|-----------|------|---------| | Res. OC4M[3] | Res. OC3M[3] | | | | | | | | | rw | | | | | | | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | OC4
CE | (| DC4M[2:0 |)] | OC4
PE | OC4
FE | CC4 | IS[1:0] | OC3
CE | (| OC3M[2:0 |)] | OC3
PE | OC3
FE | CC3 | 3S[1:0] | | rw - Bits 31:25 Reserved, must be kept at reset value. - Bits 23:17 Reserved, must be kept at reset value. - Bit 15 **OC4CE**: Output compare 4 clear enable Refer to OC1CE description. - Bits 24, 14:12 **OC4M[3:0]**: Output compare 4 mode Refer to OC3M[3:0] description. - Bit 11 **OC4PE**: Output compare 4 preload enable Refer to OC1PE description. - Bit 10 **OC4FE**: Output compare 4 fast enable Refer to OC1FE description. - Bits 9:8 CC4S[1:0]: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output 01: CC4 channel is configured as input, IC4 is mapped on TI4 10: CC4 channel is configured as input, IC4 is mapped on TI3 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC4S bits are writable only when the channel is OFF (CC4E = '0' in TIMx CCER). Bit 7 OC3CE: Output compare 3 clear enable Refer to OC1CE description. Bits 16, 6:4 **OC3M[3:0]**: Output compare 3 mode Refer to OC1M[3:0] description. Bit 3 OC3PE: Output compare 3 preload enable Refer to OC1PE description. Bit 2 OC3FE: Output compare 3 fast enable Refer to OC1FE description. Bits 1:0 CC3S[1:0]: Capture/Compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output 01: CC3 channel is configured as input, IC3 is mapped on TI3 10: CC3 channel is configured as input, IC3 is mapped on TI4 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC3S bits are writable only when the channel is OFF (CC3E = '0' in TIMx_CCER). # 21.4.11 TIM1 capture/compare enable register (TIM1_CCER) Address offset: 0x20 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------------|------------|------------|------------|------|-------------|-----------|-----------|------------|------------|-----------|-----------|------------|------------|-----------|-----------| | Res. CC6P | CC6E | Res. | Res. | CC5P | CC5E | | | | | | | | | | | | rw | rw | | | rw | rw | | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
CC4NP | 14
Res. | 13
CC4P | 12
CC4E | | 10
CC3NE | 9
CC3P | 8
CC3E | 7
CC2NP | 6
CC2NE | 5
CC2P | 4
CC2E | 3
CC1NP | 2
CC1NE | 1
CC1P | 0
CC1E | Bits 31:22 Reserved, must be kept at reset value. Bit 21 **CC6P**: Capture/Compare 6 output polarity Refer to CC1P description Bit 20 **CC6E**: Capture/Compare 6 output enable Refer to CC1E description Bits 19:18 Reserved, must be kept at reset value. Bit 17 **CC5P**: Capture/Compare 5 output polarity Refer to CC1P description Bit 16 **CC5E**: Capture/Compare 5 output enable Refer to CC1E description Bit 15 **CC4NP**: Capture/Compare 4 complementary output polarity Refer to CC1NP description Bit 14 Reserved, must be kept at reset value. Bit 13 **CC4P**: Capture/Compare 4 output polarity Refer to CC1P description Bit 12 **CC4E**: Capture/Compare 4 output enable Refer to CC1E description Bit 11 **CC3NP**: Capture/Compare 3 complementary output polarity Refer to CC1NP description Bit 10 **CC3NE**: Capture/Compare 3 complementary output enable Refer to CC1NE description Bit 9 **CC3P**: Capture/Compare 3 output polarity Refer to CC1P description Bit 8 **CC3E**: Capture/Compare 3 output enable Refer to CC1E description Bit 7 **CC2NP**: Capture/Compare 2 complementary output polarity Refer to CC1NP description Bit 6 **CC2NE**: Capture/Compare 2 complementary output enable Refer to CC1NE description Bit 5 CC2P: Capture/Compare 2 output polarity Refer to CC1P description Bit 4 CC2E: Capture/Compare 2 output enable Refer to CC1E description Bit 3 CC1NP: Capture/Compare 1 complementary output polarity ## CC1 channel configured as output: 0: OC1N active high. 1: OC1N active low. #### CC1 channel configured as input: This bit is used in conjunction with CC1P to define the polarity of TI1FP1 and TI2FP1. Refer to CC1P description. Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S="00" (channel configured as output). On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1NP active bit takes the new value from the preloaded bit only when a Commutation event is generated. ## Bit 2 **CC1NE**: Capture/Compare 1 complementary output enable - 0: Off OC1N is not active. OC1N level is then function of MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits. - 1: On OC1N signal is output on the corresponding output pin depending on MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits. On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1NE active bit takes the new value from the preloaded bit only when a Commutation event is generated. ## Bit 1 CC1P: Capture/Compare 1 output polarity - 0: OC1 active high (output mode) / Edge sensitivity selection (input mode, see below) - 1: OC1 active low (output mode) / Edge sensitivity selection (input mode, see below) When CC1 channel is configured as input, both CC1NP/CC1P bits select the active polarity of TI1FP1 and TI2FP1 for trigger or capture operations. - CC1NP=0, CC1P=0: non-inverted/rising edge. The circuit is sensitive to TIxFP1 rising edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger operation in gated mode or encoder mode). - CC1NP=0, CC1P=1: inverted/falling edge. The circuit is sensitive to TIxFP1 falling edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is inverted (trigger operation in gated mode or encoder mode). - CC1NP=1, CC1P=1: non-inverted/both edges/ The circuit is sensitive to both TIxFP1 rising and falling edges (capture or trigger operations in reset, external clock or trigger mode), TIxFP1is not inverted (trigger operation in gated mode). This configuration must not be used in encoder mode. - CC1NP=1, CC1P=0: The configuration is reserved, it must not be used. - Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1P active bit takes the new value from the preloaded bit only when a Commutation event is generated. RM0444 Rev 5 603/1390 Bit 0 CC1E: Capture/Compare 1 output enable 0: Capture mode disabled / OC1 is not active (see below) 1: Capture mode enabled / OC1 signal is output on the corresponding output pin When CC1 channel is configured as output, the OC1 level depends on MOE, OSSI, OSSR, OIS1, OIS1N and CC1NE bits, regardless of the CC1E bits state. Refer to *Table 116* for details. Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is
set in the TIMx_CR2 register then the CC1E active bit takes the new value from the preloaded bit only when a Commutation event is generated. Table 116. Output control bits for complementary OCx and OCxN channels with break feature | | | Control b | its | | Outpo | ut states ⁽¹⁾ | |---------|----------|-----------|----------|-----------|---|---| | MOE bit | OSSI bit | OSSR bit | CCxE bit | CCxNE bit | OCx output state | OCxN output state | | | | × | 0 | 0 | Output disabled (not driven OCx=0, OCxN=0 | by the timer: Hi-Z) | | | | 0 | 0 | 1 | Output disabled (not driven by the timer: Hi-Z) OCx=0 | OCxREF + Polarity
OCxN = OCxREF xor CCxNP | | 1 | | 0 | 1 | 0 | OCxREF + Polarity
OCx=OCxREF xor CCxP | Output Disabled (not driven by the timer: Hi-Z) OCxN=0 | | ' | ^ | Х | 1 | 1 | OCREF + Polarity + dead-
time | Complementary to OCREF (not OCREF) + Polarity + dead-time | | | | 1 | 0 | 1 | Off-State (output enabled with inactive state) OCx=CCxP | OCxREF + Polarity
OCxN = OCxREF x or CCxNP | | | | 1 | 1 | 0 | OCxREF + Polarity
OCx=OCxREF xor CCxP | Off-State (output enabled with inactive state) OCxN=CCxNP | | | 0 | | Х | Х | Output disabled (not driven | by the timer, U. 7) | | | | | 0 | 0 | Output disabled (not driven | by the timer. Hi-Z). | | | | | 0 | 1 | Off-State (output enabled w | | | | | | 1 | 0 | Asynchronously: OCx=CCxl
 BRK2 is triggered). | P, OCxN=CCxNP (if BRK or | | 0 | 1 | X | 1 | 1 | Then (this is valid only if BR present: OCx=OISx and OC assuming that OISx and OISx | , | When both outputs of a channel are not used (control taken over by GPIO), the OISx, OISxN, CCxP and CCxNP bits must be kept cleared. Note: The state of the external I/O pins connected to the complementary OCx and OCxN channels depends on the OCx and OCxN channel state and the GPIO registers. # 21.4.12 TIM1 counter (TIM1_CNT) Address offset: 0x24 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------|------|------|------|------|------|------|--------|------|------|------|------|------|------|------| | UIF
CPY | Res. | ŗ | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | CNT | [15:0] | | | | | | | | | rw Bit 31 UIFCPY: UIF copy This bit is a read-only copy of the UIF bit of the TIMx_ISR register. If the UIFREMAP bit in the TIMxCR1 is reset, bit 31 is reserved and read at 0. Bits 30:16 Reserved, must be kept at reset value. Bits 15:0 CNT[15:0]: Counter value # 21.4.13 TIM1 prescaler (TIM1_PSC) Address offset: 0x28 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|-----|--------|----|----|----|----|----|----|----| | | | | | | | | PSC | [15:0] | | | | | | | | | rw Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency (CK_CNT) is equal to $f_{CK\ PSC}$ / (PSC[15:0] + 1). PSC contains the value to be loaded in the active prescaler register at each update event (including when the counter is cleared through UG bit of TIMx_EGR register or through trigger controller when configured in "reset mode"). # 21.4.14 TIM1 auto-reload register (TIM1_ARR) Address offset: 0x2C Reset value: 0xFFFF | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|----|----|----|----|----|----|----|-----|--------|----|----|----|----|----|----|----| | Ī | | | | | | | | ARR | [15:0] | | | | | | | | | | rw Bits 15:0 ARR[15:0]: Auto-reload value ARR is the value to be loaded in the actual auto-reload register. Refer to the Section 21.3.1: Time-base unit on page 526 for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. RM0444 Rev 5 605/1390 # 21.4.15 TIM1 repetition counter register (TIM1_RCR) Address offset: 0x30 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|-----|--------|----|----|----|----|----|----|----| | | | | | | | | REP | [15:0] | | | | | | | | | rw Bits 15:0 REP[15:0]: Repetition counter value These bits allow the user to set-up the update rate of the compare registers (i.e. periodic transfers from preload to active registers) when preload registers are enable, as well as the update interrupt generation rate, if this interrupt is enable. Each time the REP_CNT related downcounter reaches zero, an update event is generated and it restarts counting from REP value. As REP_CNT is reloaded with REP value only at the repetition update event U_RC, any write to the TIMx_RCR register is not taken in account until the next repetition update event. It means in PWM mode (REP+1) corresponds to: the number of PWM periods in edge-aligned mode the number of half PWM period in center-aligned mode. # 21.4.16 TIM1 capture/compare register 1 (TIM1_CCR1) Address offset: 0x34 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|------|--------|----|----|----|----|----|----|----| | | | | | | | | CCR1 | [15:0] | | | | | | | | | rw Bits 15:0 CCR1[15:0]: Capture/Compare 1 value **If channel CC1 is configured as output**: CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC1 output. **If channel CC1 is configured as input**: CR1 is the counter value transferred by the last input capture 1 event (IC1). The TIMx_CCR1 register is read-only and cannot be programmed. # 21.4.17 TIM1 capture/compare register 2 (TIM1_CCR2) Address offset: 0x38 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|------|---------|----|----|----|----|----|----|----| | | | | | | | | CCR2 | 2[15:0] | | | | | | | | | rw Bits 15:0 CCR2[15:0]: Capture/Compare 2 value **If channel CC2 is configured as output**: CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC2 output. **If channel CC2 is configured as input**: CCR2 is the counter value transferred by the last input capture 2 event (IC2). The TIMx_CCR2 register is read-only and cannot be programmed. # 21.4.18 TIM1 capture/compare register 3 (TIM1_CCR3) Address offset: 0x3C Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|------|---------|----|----|----|----|----|----|----| | | | | | | | | CCR3 | 8[15:0] | | | | | | | | | rw Bits 15:0 CCR3[15:0]: Capture/Compare value **If channel CC3 is configured as output**: CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit OC3PE). Else the preload value is copied in the active capture/compare 3 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx CNT and signalled on OC3 output. **If channel CC3 is configured as input**: CCR3 is the counter value transferred by the last input capture 3 event (IC3). The TIMx_CCR3 register is read-only and cannot be programmed. RM0444 Rev 5 607/1390 # 21.4.19 TIM1 capture/compare register 4 (TIM1_CCR4) Address offset: 0x40 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|------|--------|----|----|----|----|----|----|----| | | | | | | | | CCR4 | [15:0] | | | | | | | | | rw Bits 15:0 CCR4[15:0]: Capture/Compare value **If channel CC4 is configured as output**: CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit OC4PE). Else the preload value is copied in the active capture/compare 4 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx CNT and signalled on OC4 output. **If channel CC4 is configured as input**: CCR4 is the counter value transferred by the last input capture 4 event (IC4). The TIMx_CCR4 register is read-only and cannot be programmed. # 21.4.20 TIM1 break and dead-time register (TIM1_BDTR) Address offset: 0x44 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|--------|-------|-------------|------------|------|--------|----|------|-------|----|--------|-----|-------|----| | Res. | Res. | BK2BID | BKBID | BK2
DSRM | BK
DSRM | BK2P | BK2E | | BK2F | [3:0] | | | BKF | [3:0] | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | MOE | AOE | BKP | BKE | OSSR | OSSI | LOCI | K[1:0] | | | | | 3[7:0] | | | | | rw Note: As the bits BK2BID, BKBID, BK2DSRM, BKDSRM, BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR and DTG[7:0] can be write-locked depending on the LOCK configuration, it can be necessary to configure all of them during the first write access to the TIMx_BDTR register. Bits 31:30 Reserved, must be kept at reset value. Bit 29 **BK2BID**: Break2 bidirectional Refer to BKBID description #### Bit 28 BKBID: Break Bidirectional
0: Break input BRK in input mode 1: Break input BRK in bidirectional mode In the bidirectional mode (BKBID bit set to 1), the break input is configured both in input mode and in open drain output mode. Any active break event asserts a low logic level on the Break input to indicate an internal break event to external devices. Note: This bit cannot be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. ## Bit 27 BK2DSRM: Break2 Disarm Refer to BKDSRM description ## Bit 26 BKDSRM: Break Disarm 0: Break input BRK is armed 1: Break input BRK is disarmed This bit is cleared by hardware when no break source is active. The BKDSRM bit must be set by software to release the bidirectional output control (opendrain output in Hi-Z state) and then be polled it until it is reset by hardware, indicating that the fault condition has disappeared. Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. ## Bit 25 BK2P: Break 2 polarity 0: Break input BRK2 is active low 1: Break input BRK2 is active high Note: This bit cannot be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. ## Bit 24 BK2E: Break 2 enable 0: Break input BRK2 disabled 1: Break input BRK2 enabled Note: The BRK2 must only be used with OSSR = OSSI = 1. Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. RM0444 Rev 5 609/1390 #### Bits 23:20 BK2F[3:0]: Break 2 filter This bit-field defines the frequency used to sample BRK2 input and the length of the digital filter applied to BRK2. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: ``` 0000: No filter, BRK2 acts asynchronously 0001: f_{SAMPLING}=f_{CK INT}, N=2 0010: f_{SAMPLING}=f_{CK_INT}, N=4 0011: f_{SAMPLING}=f_{CK INT}, N=8 0100: f_{SAMPLING}=f_{DTS}/2, N=6 0101: f_{SAMPLING}=f_{DTS}/2, N=8 0110: f_{SAMPLING}=f_{DTS}/4, N=6 0111: f_{SAMPLING} = f_{DTS}/4, N=8 1000: f_{SAMPLING}=f_{DTS}/8, N=6 1001: f_{SAMPLING} = f_{DTS}/8, N=8 1010: f_{SAMPLING}=f_{DTS}/16, N=5 1011: f_{SAMPLING} = f_{DTS}/16, N=6 1100: f_{SAMPLING}=f_{DTS}/16, N=8 1101: f_{SAMPLING}=f_{DTS}/32, N=5 1110: f_{SAMPLING} = f_{DTS}/32, N=6 1111: f_{SAMPLING}=f_{DTS}/32, N=8 ``` Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). ## Bits 19:16 BKF[3:0]: Break filter This bit-field defines the frequency used to sample BRK input and the length of the digital filter applied to BRK. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: ``` 0000: No filter, BRK acts asynchronously 0001: f_{SAMPLING}=f_{CK INT}, N=2 0010: f_{SAMPLING}=f_{CK} INT, N=4 0011: f_{SAMPLING}=f_{CK_INT}, N=8 0100: f_{SAMPLING}=f_{DTS}/2, N=6 0101: f_{SAMPLING}=f_{DTS}/2, N=8 0110: f_{SAMPLING}=f_{DTS}/4, N=6 0111: f_{SAMPLING} = f_{DTS}/4, N=8 1000: f_{SAMPLING}=f_{DTS}/8, N=6 1001: f_{SAMPLING}=f_{DTS}/8, N=8 1010: f_{SAMPLING}=f_{DTS}/16, N=5 1011: f_{SAMPLING}=f_{DTS}/16, N=6 1100: f_{SAMPLING} = f_{DTS}/16, N=8 1101: f_{SAMPLING}=f_{DTS}/32, N=5 1110: f_{SAMPLING}=f_{DTS}/32, N=6 1111: f_{SAMPLING}=f_{DTS}/32, N=8 ``` Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). #### Bit 15 MOE: Main output enable This bit is cleared asynchronously by hardware as soon as one of the break inputs is active (BRK or BRK2). It is set by software or automatically depending on the AOE bit. It is acting only on the channels which are configured in output. - 0: In response to a break 2 event. OC and OCN outputs are disabled In response to a break event or if MOE is written to 0: OC and OCN outputs are disabled or forced to idle state depending on the OSSI bit. - 1: OC and OCN outputs are enabled if their respective enable bits are set (CCxE, CCxNE in TIMx CCER register). See OC/OCN enable description for more details (Section 21.4.11: TIM1 capture/compare enable register (TIM1_CCER)). #### Bit 14 AOE: Automatic output enable - 0: MOE can be set only by software - 1: MOE can be set by software or automatically at the next update event (if none of the break inputs BRK and BRK2 is active) Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). ## Bit 13 BKP: Break polarity - 0: Break input BRK is active low - 1: Break input BRK is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. ## Bit 12 BKE: Break enable This bit enables the complete break protection (including all sources connected to bk_acth and BKIN sources, as per *Figure 144: Break and Break2 circuitry overview*). - 0: Break function disabled - 1: Break function enabled Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. ## Bit 11 OSSR: Off-state selection for Run mode This bit is used when MOE=1 on channels having a complementary output which are configured as outputs. OSSR is not implemented if no complementary output is implemented in the timer. See OC/OCN enable description for more details (Section 21.4.11: TIM1 capture/compare enable register (TIM1_CCER)). - 0: When inactive, OC/OCN outputs are disabled (the timer releases the output control which is taken over by the GPIO logic, which forces a Hi-Z state). - 1: When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 (the output is still controlled by the timer). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMX_BDTR register). RM0444 Rev 5 611/1390 #### Bit 10 OSSI: Off-state selection for Idle mode This bit is used when MOE=0 due to a break event or by a software write, on channels configured as outputs. See OC/OCN enable description for more details (Section 21.4.11: TIM1 capture/compare enable register (TIM1_CCER)). - 0: When inactive, OC/OCN outputs are disabled (the timer releases the output control which is taken over by the GPIO logic and which imposes a Hi-Z state). - 1: When inactive, OC/OCN outputs are first forced with their inactive level then forced to their idle level after the deadtime. The timer maintains its control over the output. Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMX BDTR register). ## Bits 9:8 LOCK[1:0]: Lock configuration These bits offer a write protection against software errors. 00: LOCK OFF - No bit is write protected. - 01: LOCK Level 1 = DTG bits in TIMx_BDTR register, OISx and OISxN bits in TIMx_CR2 register and BK2BID, BKBID, BK2DSRM, BKDSRM, BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR and DTG[7:0] bits in TIMx_BDTR register can no longer be written - 10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CCxP/CCxNP bits in TIMx_CCER register, as long as the related channel is configured in output through the CCxS bits) as well as OSSR and OSSI bits can no longer be written. - 11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in TIMx_CCMRx registers, as long as the related channel is configured in output through the CCxS bits) can no longer be written. Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register has been written, their content is frozen until the next reset. # Bits 7:0 DTG[7:0]: Dead-time generator setup This bit-field defines the duration of the dead-time inserted between the complementary outputs. DT correspond to this duration. ``` DTG[7:5] = 0xx \Rightarrow DT = DTG[7:0] x t_{DTG} with t_{DTG} = t_{DTS}. ``` $DTG[7:5] = 10x => DT = (64 + DTG[5:0]) x t_{DTG} with t_{DTG} = 2 x t_{DTS}$. DTG[7:5] = 110 => DT = $(32 + DTG[4:0]) \times t_{DTG}$ with $t_{DTG} = 8 \times t_{DTS}$. DTG[7:5] = 111 => DT = (32 + DTG[4:0]) $x t_{DTG}$ with t_{DTG} = 16 $x t_{DTS}$. Example if t_{DTS} = 125 ns (8 MHz), dead-time possible values are: 0 to 15875 ns by 125 ns steps, 16 μs to 31750 ns by 250 ns steps, 32 µs to 63 µs by 1 µs steps, 64 µs to 126 µs by 2 µs steps Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). # 21.4.21 TIM1 DMA control register (TIM1_DCR) Address offset: 0x48 Reset value: 0x0000 | • | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|-----|------|------|----|----|----------|----|----|------|------|------|----|----|----------|----|----| | R | es. | Res. | Res. | | | DBL[4:0] | | | Res. | Res. | Res. | | | DBA[4:0] | | | | | | | | rw | rw | rw | rw | rw | | | | rw | rw | rw | rw | rw | Bits 15:13 Reserved, must be kept at reset value. #### Bits 12:8 DBL[4:0]: DMA burst length This 5-bit vector defines the length of DMA transfers (the timer recognizes a burst transfer when a read or a write access is done to the TIMx_DMAR address), i.e. the number of transfers. Transfers can be in half-words or in bytes (see example below). 00000: 1 transfer 00001: 2 transfers 00010: 3 transfers ••• 10001: 18 transfers **Example:** Let us consider the following transfer: DBL = 7 bytes & DBA = TIMx CR1. If DBL = 7 bytes and DBA = TIMx_CR1 represents the address of the byte to be transferred, the address of the transfer should be given by the following equation: (TIMx_CR1 address) + DBA + (DMA index), where DMA index = DBL In this example, 7 bytes are added
to (TIMx_CR1 address) + DBA, which gives us the address from/to which the data is copied. In this case, the transfer is done to 7 registers starting from the following address: (TIMx_CR1 address) + DBA According to the configuration of the DMA Data Size, several cases may occur: - If the DMA Data Size is configured in half-words, 16-bit data is transferred to each of the 7 registers. - If the DMA Data Size is configured in bytes, the data is also transferred to 7 registers: the first register contains the first MSB byte, the second register, the first LSB byte and so on. So with the transfer Timer, one also has to specify the size of data transferred by DMA. Bits 7:5 Reserved, must be kept at reset value. #### Bits 4:0 DBA[4:0]: DMA base address This 5-bits vector defines the base-address for DMA transfers (when read/write access are done through the TIMx_DMAR address). DBA is defined as an offset starting from the address of the TIMx_CR1 register. Example: 00000: TIMx_CR1, 00001: TIMx_CR2, 00010: TIMx_SMCR, ... # 21.4.22 TIM1 DMA address for full transfer (TIM1 DMAR) Address offset: 0x4C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|------|---------|----|----|----|----|----|----|----| | | | | | | | | DMAB | [31:16] | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | DMAE | 3[15:0] | | | | | | | | | rw 4 RM0444 Rev 5 613/1390 ## Bits 31:0 DMAB[31:0]: DMA register for burst accesses A read or write operation to the DMAR register accesses the register located at the address (TIMx_CR1 address) + (DBA + DMA index) \times 4 where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base address configured in TIMx_DCR register, DMA index is automatically controlled by the DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR). # 21.4.23 TIM1 option register 1 (TIM1_OR1) Address offset: 0x50 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------------|--------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. OCREI
[1: | F_CLR
:0] | | | | | | | | | | | | | | | | rw | rw | Bits 31:2 Reserved, must be kept at reset value. ## Bit 1:0 OCREF CLR[1:0]: Ocref clr source selection This bit selects the ocref clr input source. 00: COMP1 output is connected to the OCREF CLR input 01: COMP2 output is connected to the OCREF CLR input 10: COMP3 output is connected to the OCREF_CLR input 11: Reserved Note: COMP3 is available on STM32G0B1xx and STM32G0C1xx salestypes only. # 21.4.24 TIM1 capture/compare mode register 3 (TIM1 CCMR3) Address offset: 0x54 Reset value: 0x0000 0000 The channels 5 and 6 can only be configured in output. ## Output compare mode: | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-----------|------|----------|------|-----------|-------|------|---------|-----------|------|----------|------|-------|-------|------|---------| | Res. OC6M[3] | Res. OC5M[3] | | | | | | | | | rw | | | | | | | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | OC6
CE | (| OC6M[2:0 |)] | OC6
PE | OC6FE | Res. | Res. | OC5
CE | (| OC5M[2:0 |)] | OC5PE | OC5FE | Res. | Res. | | rw | rw | rw | rw | rw | rw | | | rw | rw | rw | rw | rw | rw | | | - Bits 31:25 Reserved, must be kept at reset value. - Bits 23:17 Reserved, must be kept at reset value. - Bit 15 **OC6CE**: Output compare 6 clear enable Refer to OC1CE description. - Bits 24, 14, 13, 12 **OC6M[3:0]**: Output compare 6 mode Refer to OC1M description. - Bit 11 **OC6PE**: Output compare 6 preload enable Refer to OC1PE description. - Bit 10 **OC6FE**: Output compare 6 fast enable Refer to OC1FE description. - Bits 9:8 Reserved, must be kept at reset value. - Bit 7 **OC5CE:** Output compare 5 clear enable Refer to OC1CE description. - Bits 16, 6, 5, 4 **OC5M[3:0]**: Output compare 5 mode Refer to OC1M description. - Bit 3 **OC5PE**: Output compare 5 preload enable Refer to OC1PE description. - Bit 2 **OC5FE**: Output compare 5 fast enable Refer to OC1FE description. Bits 1:0 Reserved, must be kept at reset value. # 21.4.25 TIM1 capture/compare register 5 (TIM1_CCR5) Address offset: 0x58 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 21 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 10 | |-------|-------|-------|------|------|------|------|------|--------|------|------|------|------|------|------|------| | GC5C3 | GC5C2 | GC5C1 | Res. | rw | rw | rw | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | CCR | [15:0] | | | | | | | | | rw RM0444 Rev 5 615/1390 #### Bit 31 GC5C3: Group Channel 5 and Channel 3 Distortion on Channel 3 output: 0: No effect of OC5REF on OC3REFC 1: OC3REFC is the logical AND of OC3REFC and OC5REF This bit can either have immediate effect or be preloaded and taken into account after an update event (if preload feature is selected in TIMxCCMR2). Note: it is also possible to apply this distortion on combined PWM signals. #### Bit 30 GC5C2: Group Channel 5 and Channel 2 Distortion on Channel 2 output: 0: No effect of OC5REF on OC2REFC 1: OC2REFC is the logical AND of OC2REFC and OC5REF This bit can either have immediate effect or be preloaded and taken into account after an update event (if preload feature is selected in TIMxCCMR1). Note: it is also possible to apply this distortion on combined PWM signals. #### Bit 29 GC5C1: Group Channel 5 and Channel 1 Distortion on Channel 1 output: 0: No effect of OC5REF on OC1REFC5 1: OC1REFC is the logical AND of OC1REFC and OC5REF This bit can either have immediate effect or be preloaded and taken into account after an update event (if preload feature is selected in TIMxCCMR1). Note: it is also possible to apply this distortion on combined PWM signals. #### Bits 28:16 Reserved, must be kept at reset value. #### Bits 15:0 CCR5[15:0]: Capture/Compare 5 value CCR5 is the value to be loaded in the actual capture/compare 5 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register (bit OC5PE). Else the preload value is copied in the active capture/compare 5 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx CNT and signaled on OC5 output. # 21.4.26 TIM1 capture/compare register 6 (TIM1_CCR6) Address offset: 0x5C Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|------|--------|----|----|----|----|----|----|----| | | | | | | | | CCR6 | [15:0] | | | | | | | | | rw #### Bits 15:0 CCR6[15:0]: Capture/Compare 6 value CCR6 is the value to be loaded in the actual capture/compare 6 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register (bit OC6PE). Else the preload value is copied in the active capture/compare 6 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC6 output. # 21.4.27 TIM1 alternate function option register 1 (TIM1_AF1) Address offset: 0x60 Reset value: 0x0000 0001 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------|---------|------|-------------|-------------|-------------|-------|------|------|------|------|------|-------------|-------------|-------------|---------| | Res. ETRSI | EL[3:2] | | | | | | | | | | | | | | | | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | ETRSI | EL[1:0] | Res. | BK
CMP3P | BK
CMP2P | BK
CMP1P | BKINP | Res. | Res. | Res. | Res. | Res. | BK
CMP3E | BK
CMP2E | BK
CMP1E | BKINE | | rw | rw | | rw | rw | rw | rw | | | | | | rw | rw | rw | rw | Bits 31:18 Reserved, must be kept at reset value. ## Bits 17:14 ETRSEL[3:0]: ETR source selection These bits select the ETR input source. 0000: ETR legacy mode 0001: COMP1 output 0010: COMP2 output 0011: ADC1 AWD1 0100: ADC1 AWD2 0101: ADC1 AWD3 0110: COMP3 output (available on STM32G0B1xx and STM32G0C1xx salestypes only) Others: Reserved Note: These bits can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx BDTR register). Bit 13 Reserved, must be kept at reset value. ## Bit 12 BKCMP3P: BRK COMP3 input polarity This bit selects the COMP3 input sensitivity. It must be programmed together with the BKP polarity bit. 0: COMP3 input polarity is not inverted (active low if BKP=0, active high if BKP=1) 1: COMP3 input polarity is inverted (active high if BKP=0, active low if BKP=1) Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: This bit is available on STM32G0B1xx and STM32G0C1xx salestypes only), reserved otherwise. ## Bit 11 BKCMP2P: BRK COMP2 input polarity This bit selects the COMP2 input sensitivity. It must be programmed together with the BKP polarity bit. 0: COMP2 input polarity is not inverted (active low if BKP=0, active high if BKP=1) 1: COMP2 input polarity is inverted (active high if BKP=0, active low if BKP=1) Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). 4 RM0444 Rev 5 617/1390 #### Bit 10 BKCMP1P: BRK COMP1 input polarity This bit selects the COMP1 input sensitivity. It must be programmed together with the BKP polarity bit. - 0: COMP1 input polarity is not inverted (active low if BKP=0, active high if BKP=1) - 1: COMP1 input polarity is inverted (active high if BKP=0, active low if BKP=1) Note: This bit can not be modified as long as LOCK level 1 has been
programmed (LOCK bits in TIMx BDTR register). #### Bit 9 BKINP: BRK BKIN input polarity This bit selects the BKIN alternate function input sensitivity. It must be programmed together with the BKP polarity bit. - 0: BKIN input polarity is not inverted (active low if BKP=0, active high if BKP=1) - 1: BKIN input polarity is inverted (active high if BKP=0, active low if BKP=1) Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). #### Bits 8:4 Reserved, must be kept at reset value. #### Bit 3 BKCMP3E: BRK COMP3 enable This bit enables the COMP3 for the timer's BRK input. COMP3 output is 'ORed' with the other BRK sources. - 0: COMP3 input disabled - 1: COMP3 input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: This bit is available on STM32G0B1xx and STM32G0C1xx salestypes only), reserved otherwise. ## Bit 2 BKCMP2E: BRK COMP2 enable This bit enables the COMP2 for the timer's BRK input. COMP2 output is 'ORed' with the other BRK sources. - 0: COMP2 input disabled - 1: COMP2 input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx BDTR register). #### Bit 1 BKCMP1 E: BRK COMP1 enable This bit enables the COMP1 for the timer's BRK input. COMP1 output is 'ORed' with the other BRK sources. - 0: COMP1 input disabled - 1: COMP1 input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx BDTR register). #### Bit 0 **BKINE**: BRK BKIN input enable This bit enables the BKIN alternate function input for the timer's BRK input. BKIN input is 'ORed' with the other BRK sources. - 0: BKIN input disabled - 1: BKIN input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Refer to Figure 123: TIM1 ETR input circuitry and to Figure 144: Break and Break2 circuitry overview. # 21.4.28 TIM1 Alternate function register 2 (TIM1_AF2) Address offset: 0x64 Reset value: 0x0000 0001 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------------------|------------------|------------------|------------|------|------|------|------|------|--------------|--------------|--------------|--------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | BK2
CMP3
P | BK2
CMP2
P | BK2
CMP1
P | BK2
INP | Res. | Res. | Res. | Res. | Res. | BK2
CMP3E | BK2
CMP2E | BK2
CMP1E | BK2INE | | | | | rw | rw | rw | rw | | | | | | rw | rw | rw | rw | Bits 31:13 Reserved, must be kept at reset value. #### Bit 12 BK2CMP3P: BRK2 COMP3 input polarity This bit selects the COMP3 input sensitivity. It must be programmed together with the BK2P polarity bit. - 0: COMP3 input polarity is not inverted (active low if BK2P=0, active high if BK2P=1) - 1: COMP3 input polarity is inverted (active high if BK2P=0, active low if BK2P=1) Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx BDTR register). Note: This bit is available on STM32G0B1xx and STM32G0C1xx salestypes only), reserved otherwise. ## Bit 11 BK2CMP2P: BRK2 COMP2 input polarity This bit selects the COMP2 input sensitivity. It must be programmed together with the BK2P polarity bit. - 0: COMP2 input polarity is not inverted (active low if BK2P=0, active high if BK2P=1) - 1: COMP2 input polarity is inverted (active high if BK2P=0, active low if BK2P=1) Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). #### Bit 10 BK2CMP1P: BRK2 COMP1 input polarity This bit selects the COMP1 input sensitivity. It must be programmed together with the BK2P polarity bit. - 0: COMP1 input polarity is not inverted (active low if BK2P=0, active high if BK2P=1) - 1: COMP1 input polarity is inverted (active high if BK2P=0, active low if BK2P=1) Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). ## Bit 9 BK2INP: BRK2 BKIN2 input polarity This bit selects the BKIN2 alternate function input sensitivity. It must be programmed together with the BK2P polarity bit. - 0: BKIN2 input polarity is not inverted (active low if BK2P=0, active high if BK2P=1) - 1: BKIN2 input polarity is inverted (active high if BK2P=0, active low if BK2P=1) Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Bits 8:4 Reserved, must be kept at reset value. RM0444 Rev 5 619/1390 #### Bit 3 BK2CMP3 E: BRK2 COMP3 enable This bit enables the COMP3 for the timer's BRK2 input. COMP3 output is 'ORed' with the other BRK2 sources. 0: COMP3 input disabled 1: COMP3 input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: This bit is available on STM32G0B1xx and STM32G0C1xx salestypes only), reserved otherwise. #### Bit 2 BK2CMP2E: BRK2 COMP2 enable This bit enables the COMP2 for the timer's BRK2 input. COMP2 output is 'ORed' with the other BRK2 sources. 0: COMP2 input disabled 1: COMP2 input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). #### Bit 1 BK2CMP1 E: BRK2 COMP1 enable This bit enables the COMP1 for the timer's BRK2 input. COMP1 output is 'ORed' with the other BRK2 sources. 0: COMP1 input disabled 1: COMP1 input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). #### Bit 0 BK2INE: BRK2 BKIN input enable This bit enables the BKIN2 alternate function input for the timer's BRK2 input. BKIN2 input is 'ORed' with the other BRK2 sources. 0: BKIN2 input disabled 1: BKIN2 input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Refer to Figure 144: Break and Break2 circuitry overview. # 21.4.29 TIM1 timer input selection register (TIM1_TISEL) Address offset: 0x68 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|----|-------|---------|----|------|------|------|------|----|-------|--------|----| | Res. | Res. | Res. | Res. | | TI4SE | EL[3:0] | | Res. | Res. | Res. | Res. | | TI3SE | L[3:0] | | | | | | | rw | rw | rw | rw | | | | | rw | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | | TI2SE | EL[3:0] | | Res. | Res. | Res. | Res. | | TI1SE | L[3:0] | | | | | | | rw | rw | rw | rw | | | | | rw | rw | rw | rw | Bits 31:28 Reserved, must be kept at reset value. Bits 27:24 TI4SEL[3:0]: selects TI4[0] to TI4[15] input 0000: TIM1_CH4 input Others: Reserved Bits 23:20 Reserved, must be kept at reset value. Bits 19:16 TI3SEL[3:0]: selects TI3[0] to TI3[15] input 0000: TIM1_CH3 input 0001: COMP3 output (available on STM32G0B1xx and STM32G0C1xx salestypes only) Others: Reserved Bits 15:12 Reserved, must be kept at reset value. Bits 11:8 TI2SEL[3:0]: selects TI2[0] to TI2[15] input 0000: TIM1_CH2 input 0001: COMP2 output Others: Reserved Bits 7:4 Reserved, must be kept at reset value. Bits 3:0 TI1SEL[3:0]: selects TI1[0] to TI1[15] input 0000: TIM1_CH1 input 0001: COMP1 output Others: Reserved # 21.4.30 TIM1 register map TIM1 registers are mapped as 16-bit addressable registers as described in the table below: Table 117. TIM1 register map and reset values | Offset | Register
name | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | စ | 8 | 7 | 9 | 2 | 4 | ဗ | 7 | 1 | 0 | |--------|-------------------------------------|------|------|------|------|------|-----------|------|---------|------|------|---------|----------|------|------|-------|---------|-------|------|---------------|----------------|-----------------|-----------------|-----------------|----------|-------|-----------|--------------|-------|-------|-----------------|-------|----------------| | 0x00 | TIM1_CR1 | Res. UIFREMAP | Res. | CK
[1:0 | .D
[0 | ARPE | CN
[1: | /IS
[0: | DIR | OPM | URS | SIGN | CEN | | | Reset value | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x04 | TIM1_CR2 | Res. N | IMS | 2[3: | 0] | Res. | 9810 | Res. | OIS5 | Res. | OIS4 | OIS3N | OIS3 | OIS2N | OIS2 | OIS1N | OIS1 | TI1S | | имs
[2:0] | | CCDS | ccns | Res. | CCPC | | | Reset value | | | | | | | | | 0 | 0 | 0 | 0 | | 0 | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0x08 | TIM1_SMCR | Res. T
[4 | S
:3] | Res. | Res. | Res. | SMS[3] | ETP | ECE | | TP
S
:0] | E | ETF | [3:0] | | MSM | T | S[2: | 0] | SOOO | SM | /IS[2 | ::0] | | | Reset value | | | | | | | | | | | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x0C | TIM1_DIER | Res. TDE | COMDE | CC4DE | CC3DE | CC2DE | CC1DE | UDE | BIE | TIE | COMIE | CC4IE | CC3IE | CC2IE | CC1IE | OIE | | | Reset value | | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x10 | TIM1_SR | Res. CCGIF | CC5IF | Res. | Res. | SBIF | CC40F | CC3OF | CC2OF | CC10F | B2IF | BIF | TIF | COMIF | CC4IF | CC3IF | CC2IF | CC11F | UIF | | | Reset value | | | | | | | | | | | | | | | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x14 | TIM1_EGR | Res. B2G | BG | TG | COMG | CC4G | ട്രോ | CC2G | CC1G | ne | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | TIM1_CCMR1 Output Compare mode | Res. OC2M[3] | Res. OC1M[3] | OC2CE | | C2
[2:0] | | OC2PE | OC2FE | CC
S
[1:0 | ; | OC1CE | | C1N
[2:0] | | OC1PE | OC1FE | | C1
S
:0] | | 0x18 | Reset value |
 | | | | | | 0 | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | TIM1_CCMR1
Input Capture
mode | Res. - | C2F | [3:0 |)] | IC
PS
[1: | SC | CC
S
[1:0 | ; | I | C1F | [3:0 |] | PS | C1
SC
:0] | | C1
S
:0] | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | TIM1_CCMR2 Output Compare mode | Res. OC4M[3] | Res. OC3M[3] | OC4CE | |)C4
[2:0] | | OC4PE | OC4FE | CC
S
[1:0 | ; | OC3CE | | C3N
[2:0] | | OC3PE | OC3FE | | C3
S
:0] | | 0x1C | Reset value | | | | | | | | 0 | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | UXIC | TIM1_CCMR2
Input Capture
mode | Res. ı | C4F | [3:0 |)] | | 24
SC
:0] | CC
S
[1:0 | ; | I | C3F | [3:0 |] | PS | 3
SC
:0] | | C3
S
:0] | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x20 | TIM1_CCER | Res. CC6P | CC6E | Res. | Res. | CC5P | CC5E | CC4NP | Res. | CC4P | CC4E | CC3NP | CC3NE | ССЗР | CC3E | CC2NP | CC2NE | CC2P | CC2E | CC1NP | CC1NE | CC1P | CC1E | | | Reset value | | | | | | | | | | | 0 | 0 | | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 117. TIM1 register map and reset values (continued) | Offset | Register | 31 | 30 | т — | | 27 | | | 24 | | _ | 21 | _ | | 18 | | 1 | 15 | 1 | | 12 | | _ | 6 | | 7 | 9 | 2 | 4 | 3 | 2 | _ | 0 | |----------|--------------------------------------|-------|------|---------------|-------|----------------|--------|------|---------|------|------|-------|------|------|------|------|---------|-------|------|--------------|--------|-------|-------|----------------|------|-------|------|-------------|------|-------|-------|------|-----------| | | name | | က | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | _ | 7 | 7 | 7 | ~ | _ | _ | 7 | _ | • | | • | _ | | • | ••• | `` | | _ | | 0x24 | TIM1_CNT | UIFCP | Res. | | | | | | С | TI | 15:0 | 0] | | | | | | | | | Reset value | 0 | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x28 | TIM1_PSC | Res. | | | | | | Р | SC[| 15:0 | 0] | | | | | | | | - | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x2C | TIM1_ARR | Res. | | | | | | A | .RR[| 15:0 | 0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 0x30 | TIM1_RCR | Res. | | | | | | R | EP[| 15:0 |)] | | | | | | | | - | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x34 | TIM1_CCR1 | Res. | | | | | | C | CR1 | [15: | 0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x38 | TIM1_CCR2 | Res. | | | | | | C | CR2 | [15: | 0] | | | | | | | | - | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x3C | TIM1_CCR3 | Res. | | | | | | C | CR3 | [15: | 0] | | | | | | | | - | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x40 | TIM1_CCR4 | Res. | | | | | | C | CR4 | [15: | 0] | | | | | | | | - | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x44 | TIM1_BDTR | Res. | Res. | BK2BID | BKBID | BK2DSRM | BKDSRM | BK2P | BK2E | Е | 8K2I | =[3:0 | 0] | | BKF | [3:0 |] | MOE | AOE | BKP | BKE | OSSR | OSSI | LC
k
[1: | (| | | | DT[| 7:0] | | | | | = | Reset value | | | 0 | | 0x48 | TIM1_DCR | Res. | DI | 3L[4 | :0] | | Res. | Res. | Res. | | DE | 8A[4 | :0] | | | - | Reset value | 0 | 0 | 0 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0 | | 0x4C | TIM1_DMAR | | | - | | | | | | | | | | | | D | MAE | 3[31 | :0] | | | | | | | | | | | | | | | | - | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x50 | TIM1_OR1 | Res. OCREF_CLR | | | Reset value | 0 | 0 | | 0x54 | TIM1_CCMR3
Output
Compare mode | Res. OC6M[3] | Res. OC5M[3] | OCECE | C | C6
[2:0] | M
] | OC6PE | OC6FE | Res. | Res. | OCSCE | 0 | C5N
2:0] | И | OC5PE | OC5FE | Res. | Res. | | - | Reset value | | | | | | | | 0 | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | | | RM0444 Rev 5 623/1390 Table 117. TIM1 register map and reset values (continued) | Offset | Register name | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 7 | _ | 0 | |--------|---------------|-------|-------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------------------|----------|------|-------------------------|----------|----------|--------|------|------|------|------|------|-------------------------|----------------|----------|--------| | 0x58 | TIM1_CCR5 | GC5C3 | GC5C2 | GC5C1 | Res. | <u> </u> | | <u> </u> | <u>I</u> | | C | CR5 | [15: | :0] | | | | | | | | | Reset value | 0 | 0 | 0 | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x5C | TIM1_CCR6 | Res. | | | | | | С | CR6 | [15: | :0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x60 | TIM1_AF1 | Res. ı | ETR | es
ISEI
:0] | L | Res. | BKCMP3P ⁽¹⁾ | BKCMP2P | BKCMP1P | BKINP | Res. | Res. | Res. | Res. | Res. | BKCMP3E ⁽¹⁾ | BKCMP2E | BKCMP1E | BKINE | | | Reset value | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | | | | | 0 | 0 | 0 | 1 | | 0x64 | TIM1_AF2 | Res. BK2CMP3P ⁽¹⁾ | BK2CMP2P | BK2CMP1P | BK2INP | Res. | Res. | Res. | Res. | Res. | BK2CMP3E ⁽¹⁾ | BK2CMP2E | BK2CMP1E | BK2INE | | | Reset value | 0 | 0 | 0 | 0 | | | | | | 0 | 0 | 0 | 1 | | 0x68 | TIM1_TISEL | Res. | Res. | Res. | Res. | Τŀ | 4SE | EL[3 | :0] | Res. | Res. | Res. | Res. | TI | 3SE | EL[3 | :0] | Res. | Res. | Res. | Res. | TI | 2SE | :L[3 | :0] | Res. | Res. | Res. | Res. | TI | 1SE | L[3: | :0] | | | Reset value | | | | | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | ^{1.} Available on STM32G0B1xx and STM32G0C1xx salestypes only. Refer to Section 2.2 on page 58 for the register boundary addresses. # 22 General-purpose timers (TIM2/TIM3/TIM4) # 22.1 TIM2/TIM3/TIM4 introduction The general-purpose timers consist of a 16-bit/32-bit auto-reload counter driven by a programmable prescaler. They may be used for a variety of purposes, including measuring the pulse lengths of input signals (*input capture*) or generating output waveforms (*output compare and PWM*). Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers. The timers are completely independent, and do not share any resources. They can be synchronized together as described in *Section 22.3.19: Timer synchronization*. # 22.2 TIM2/TIM3/TIM4 main features General-purpose TIMx timer features include: - 16-bit (TIM3, TIM4^(a)) or 32-bit (TIM2) up, down, up/down auto-reload counter. - 16-bit programmable prescaler used to divide (also "on the fly") the counter clock frequency by any factor between 1 and 65535. - Up to 4 independent channels for: - Input capture - Output compare - PWM generation (Edge- and Center-aligned modes) - One-pulse mode output - Synchronization circuit to control the timer with external signals and to interconnect several timers. - Interrupt/DMA generation on the following events: - Update: counter overflow/underflow, counter initialization (by software or internal/external trigger) - Trigger event (counter start, stop, initialization or count by internal/external trigger) - Input capture - Output compare - Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning purposes - Trigger input for external clock or cycle-by-cycle current management a. TIM4 is available on the STM32G0B1xx and STM32G0C1xx devices only. RM0444 Rev 5 625/1390 Figure 161. General-purpose timer block diagram # 22.3 TIM2/TIM3/TIM4 functional description ## 22.3.1 Time-base unit The main block of the programmable timer is a 16-bit/32-bit counter with its related autoreload register. The counter can count up, down or both up and down but also down or both up and down. The counter clock can be divided by a prescaler. The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running. The time-base unit includes: - Counter Register (TIMx_CNT) - Prescaler Register (TIMx PSC) - Auto-Reload Register (TIMx ARR) The auto-reload register is preloaded. Writing to or reading from the auto-reload register accesses the preload register. The content of the preload register are transferred into the shadow register permanently or at each update event (UEV), depending on the auto-reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation of the update event is described in detail for each configuration. The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller description to get more details on counter enabling).
Note that the actual counter enable signal CNT EN is set 1 clock cycle after CEN. # **Prescaler description** The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit/32-bit register (in the TIMx_PSC register). It can be changed on the fly as this control register is buffered. The new prescaler ratio is taken into account at the next update event. *Figure 162* and *Figure 163* give some examples of the counter behavior when the prescaler ratio is changed on the fly: RM0444 Rev 5 627/1390 Figure 162. Counter timing diagram with prescaler division change from 1 to 2 #### 22.3.2 Counter modes # **Upcounting mode** In upcounting mode, the counter counts from 0 to the auto-reload value (content of the TIMx ARR register), then restarts from 0 and generates a counter overflow event. An Update event can be generated at each counter overflow or by setting the UG bit in the TIMx EGR register (by software or by using the slave mode controller). The UEV event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate does not change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx SR register) is set (depending on the URS bit): - The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register) - The auto-reload shadow register is updated with the preload value (TIMx_ARR) The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. Figure 164. Counter timing diagram, internal clock divided by 1 4 RM0444 Rev 5 629/1390 Figure 165. Counter timing diagram, internal clock divided by 2 RM0444 Rev 5 Figure 167. Counter timing diagram, internal clock divided by N 4 Figure 169. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded) #### **Downcounting mode** In downcounting mode, the counter counts from the auto-reload value (content of the TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a counter underflow event. An Update event can be generate at each counter underflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until UDIS bit has been written to 0. However, the counter restarts from the current auto-reload value, whereas the counter of the prescaler restarts from 0 (but the prescale rate doesn't change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): - The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). - The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that the auto-reload is updated before the counter is reloaded, so that the next period is the expected one. The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. Figure 170. Counter timing diagram, internal clock divided by 1 Figure 172. Counter timing diagram, internal clock divided by 4 Figure 174. Counter timing diagram, Update event when repetition counter is not used ## Center-aligned mode (up/down counting) In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the $TIMx_ARR$ register) – 1, generates a counter overflow event, then counts from the auto-reload value down to 1 and generates a counter underflow event. Then it restarts counting from 0. Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to '00'. The Output compare interrupt flag of channels configured in output is set when: the counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3, CMS = "11"). In this mode, the direction bit (DIR from TIMx_CR1 register) cannot be written. It is updated by hardware and gives the current direction of the counter. The update event can be generated at each counter overflow and at each counter underflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. In this case, the counter restarts counting from 0, as well as the counter of the prescaler. The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter continues counting up and down, based on the current auto-reload value. In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or 47/ RM0444 Rev 5 635/1390 DMA request is sent). This is to avoid generating both update and capture interrupt when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx SR register) is set (depending on the URS bit): - The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). - The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that if the update source is a counter overflow, the auto-reload is updated before the counter is reloaded, so that the next period is the expected one (the counter is loaded with the new value). The following figures show some examples of the counter behavior for different clock frequencies. Here, center-aligned mode 1 is used (for more details refer to Section 22.4.1: TIMx control register 1 (TIMx_CR1)(x = 2 to 4) on page 670). Figure 176. Counter timing diagram, internal clock divided by 2 1. Center-aligned mode 2 or 3 is used with an UIF on overflow. 57 RM0444 Rev 5 637/1390 Figure 178. Counter timing diagram, internal clock divided by N Figure 180. Counter timing diagram, Update event with ARPE=1 (counter overflow) ## 22.3.3 Clock selection The counter clock can be provided by the following clock sources: - Internal clock (CK_INT) - External clock mode1: external input pin (Tlx) - External clock mode2: external trigger input (ETR) - Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for example, Timer X can be configured to act as a prescaler for Timer Y. Refer to : Using one timer as prescaler for another timer on page 664 for more details. ## Internal clock source (CK_INT) If the slave mode controller is disabled (SMS=000 in the TIMx_SMCR register), then the CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed only by software (except UG which remains cleared automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal clock CK_INT. *Figure 181* shows the behavior of the control circuit and the upcounter in normal mode, without prescaler. 4 RM0444 Rev 5 639/1390 Figure 181. Control circuit in normal mode, internal clock divided by 1 #### External clock source mode 1 This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at each rising or falling edge on a selected input. Figure 182. Tl2 external clock connection example 1. Codes ranging from 01000 to 11111: ITRy. For example, to configure the upcounter to count in response to a rising edge on the TI2 input, use the following procedure: - 1. Select the proper TI2x source (internal or external) with the TI2SEL[3:0] bits in the TIMx_TISEL register. - 2. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S= '01 in the TIMx_CCMR1 register. - 3. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1 register (if no filter is needed, keep IC2F=0000). Note: The capture prescaler is not used for triggering, so it does not need to be configured. - 4. Select rising edge polarity by writing CC2P=0 and CC2NP=0 and CC2NP=0 in the TIMx_CCER register. - 5. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR register. - 6. Select TI2 as the input source by writing TS=00110 in the TIMx_SMCR register. - 7. Enable the counter by writing CEN=1 in the TIMx_CR1 register. When a rising edge occurs on TI2, the counter counts once and the TIF flag is set. The delay between the rising edge on TI2 and the actual clock of the counter is due to the resynchronization circuit on TI2 input. Figure 183. Control circuit in external clock mode 1 ## External clock source mode 2 This mode is selected by writing ECE=1 in the TIMx_SMCR register. The counter can count at each
rising or falling edge on the external trigger input ETR. Figure 184 gives an overview of the external trigger input block. Figure 184. External trigger input block For example, to configure the upcounter to count each 2 rising edges on ETR, use the following procedure: - Select the proper ETR source (internal or external) with the ETRSEL[3:0] bits in the TIMx_AF1 register. - 2. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx SMCR register. - 3. Set the prescaler by writing ETPS[1:0]=01 in the TIMx SMCR register - 4. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR register - 5. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register. - 6. Enable the counter by writing CEN=1 in the TIMx_CR1 register. The counter counts once each 2 ETR rising edges. The delay between the rising edge on ETR and the actual clock of the counter is due to the resynchronization circuit on the ETRP signal. As a consequence, the maximum frequency which can be correctly captured by the counter is at most ½ of TIMxCLK frequency. When the ETRP signal is faster, the user should apply a division of the external signal by a proper ETPS prescaler setting. Figure 185. Control circuit in external clock mode 2 # 22.3.4 Capture/Compare channels Each Capture/Compare channel is built around a capture/compare register (including a shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and an output stage (with comparator and output control). The following figure gives an overview of one Capture/Compare channel. The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be used as trigger input by the slave mode controller or as the capture command. It is prescaled before the capture register (ICxPS). Figure 186. Capture/Compare channel (example: channel 1 input stage) The output stage generates an intermediate waveform which is then used for reference: OCxRef (active high). The polarity acts at the end of the chain. 577 Figure 187. Capture/Compare channel 1 main circuit Figure 188. Output stage of Capture/Compare channel (channel 1) The capture/compare block is made of one preload register and one shadow register. Write and read always access the preload register. In capture mode, captures are actually done in the shadow register, which is copied into the preload register. In compare mode, the content of the preload register is copied into the shadow register which is compared to the counter. v 5 644/1390 # 22.3.5 Input capture mode In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the value of the counter after a transition detected by the corresponding ICx signal. When a capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be cleared by software by writing it to 0 or by reading the captured data stored in the TIMx_CCRx register. CCxOF is cleared when it is written with 0. The following example shows how to capture the counter value in TIMx_CCR1 when TI1 input rises. To do this, use the following procedure: - Select the proper TI1x source (internal or external) with the TI1SEL[3:0] bits in the TIMx_TISEL register. - 2. Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00, the channel is configured in input and the TIMx_CCR1 register becomes read-only. - 3. Program the appropriate input filter duration in relation with the signal connected to the timer (when the input is one of the TIx (ICxF bits in the TIMx_CCMRx register). Let's imagine that, when toggling, the input signal is not stable during at must 5 internal clock cycles. We must program a filter duration longer than these 5 clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the new level have been detected (sampled at f_{DTS} frequency). Then write IC1F bits to 0011 in the TIMx_CCMR1 register. - Select the edge of the active transition on the TI1 channel by writing the CC1P and CC1NP and CC1NP bits to 000 in the TIMx_CCER register (rising edge in this case). - 5. Program the input prescaler. In our example, we wish the capture to be performed at each valid transition, so the prescaler is disabled (write IC1PS bits to 00 in the TIMx CCMR1 register). - 6. Enable capture from the counter into the capture register by setting the CC1E bit in the TIMx CCER register. - 7. If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the TIMx_DIER register. When an input capture occurs: - The TIMx CCR1 register gets the value of the counter on the active transition. - CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures occurred whereas the flag was not cleared. - An interrupt is generated depending on the CC1IE bit. - A DMA request is generated depending on the CC1DE bit. In order to handle the overcapture, it is recommended to read the data before the overcapture flag. This is to avoid missing an overcapture which could happen after reading the flag and before reading the data. Note: IC interrupt and/or DMA requests can be generated by software by setting the corresponding CCxG bit in the TIMx_EGR register. RM0444 Rev 5 645/1390 # 22.3.6 PWM input mode This mode is a particular case of input capture mode. The procedure is the same except: - Two ICx signals are mapped on the same Tlx input. - These 2 ICx signals are active on edges with opposite polarity. - One of the two TIxFP signals is selected as trigger input and the slave mode controller is configured in reset mode. For example, one can measure the period (in TIMx_CCR1 register) and the duty cycle (in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending on CK_INT frequency and prescaler value): - Select the proper TI1x source (internal or external) with the TI1SEL[3:0] bits in the TIMx_TISEL register. - 2. Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1 register (TI1 selected). - 3. Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter clear): write the CC1P to '0' and the CC1NP bit to '0' (active on rising edge). - 4. Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1 register (TI1 selected). - 5. Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P bit to '1' and the CC2NP bit to '0' (active on falling edge). - 6. Select the valid trigger input: write the TS bits to 00101 in the TIMx_SMCR register (TI1FP1 selected). - 7. Configure the slave mode controller in reset mode: write the SMS bits to 100 in the TIMx_SMCR register. - 8. Enable the captures: write the CC1E and CC2E bits to '1 in the TIMx_CCER register. The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the fact that only TI1FP1 and TI2FP2 are connected to the slave mode controller. # 22.3.7 Forced output mode In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal (OCxREF and then OCx) can be forced to active or inactive level directly by software, independently of any comparison between the output compare register and the counter. To force an output compare signal (ocxref/OCx) to its active level, one just needs to write 101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus ocxref is forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit. e.g.: CCxP=0 (OCx active high) => OCx is forced to high level. ocxref signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx register. Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still performed and allows the flag to be set. Interrupt and DMA requests can be sent accordingly. This is described in the Output Compare Mode section. # 22.3.8 Output compare mode This function is used to control an output waveform or indicating when a period of time has elapsed. When a match is found between the capture/compare register and the counter, the output compare function: - Assigns the corresponding output pin to a programmable value defined by the output compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match. - Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register). - Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the TIMx DIER register). - Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request selection). The TIMx_CCRx registers can be programmed with or without preload registers using the OCxPE bit in the TIMx_CCMRx register. In output compare mode, the update event UEV has no effect on ocxref and OCx output. The timing resolution is one count of the counter. Output compare mode can also be used to output a single pulse (in One-pulse mode). # **Procedure** - 1. Select the counter clock (internal, external, prescaler). - 2. Write the desired data in the TIMx ARR and TIMx CCRx registers. - 3. Set the CCxIE and/or CCxDE bits if an interrupt and/or a DMA request is to be generated. - 4. Select the output mode. For example, one must write OCxM=011, OCxPE=0, CCxP=0 and CCxE=1 to toggle OCx output pin when CNT matches CCRx, CCRx preload is not used, OCx is enabled and
active high. - Enable the counter by setting the CEN bit in the TIMx_CR1 register. 4 RM0444 Rev 5 647/1390 The TIMx_CCRx register can be updated at any time by software to control the output waveform, provided that the preload register is not enabled (OCxPE=0, else TIMx_CCRx shadow register is updated only at the next update event UEV). An example is given in *Figure 190*. Figure 190. Output compare mode, toggle on OC1 ## 22.3.9 PWM mode Pulse width modulation mode permits to generate a signal with a frequency determined by the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register. The PWM mode can be selected independently on each channel (one PWM per OCx output) by writing 110 (PWM mode 1) or '111 (PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. The corresponding preload register must be enabled by setting the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register. As the preload registers are transferred to the shadow registers only when an update event occurs, before starting the counter, all registers must be initialized by setting the UG bit in the TIMx EGR register. OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It can be programmed as active high or active low. OCx output is enabled by the CCxE bit in the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details. In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine whether TIMx_CCRx ≤ TIMx_CNT or TIMx_CNT ≤ TIMx_CCRx (depending on the direction of the counter). However, to comply with the OCREF_CLR functionality (OCREF can be cleared by an external event through the ETR signal until the next PWM period), the OCREF signal is asserted only: - When the result of the comparison or - When the output compare mode (OCxM bits in TIMx_CCMRx register) switches from the "frozen" configuration (no comparison, OCxM='000) to one of the PWM modes (OCxM='110 or '111). This forces the PWM by software while the timer is running. The timer is able to generate PWM in edge-aligned mode or center-aligned mode depending on the CMS bits in the TIMx_CR1 register. ## PWM edge-aligned mode Upcounting configuration Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to *Upcounting mode on page 629*. In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is high as long as TIMx_CNT <TIMx_CCRx else it becomes low. If the compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at '1. If the compare value is 0 then OCxREF is held at '0. *Figure 191* shows some edge-aligned PWM waveforms in an example where TIMx_ARR=8. Figure 191. Edge-aligned PWM waveforms (ARR=8) 4 # **Downcounting configuration** Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to *Downcounting mode on page 632*. In PWM mode 1, the reference signal ocxref is low as long as TIMx_CNT>TIMx_CCRx else it becomes high. If the compare value in TIMx_CCRx is greater than the auto-reload value in TIMx_ARR, then ocxref is held at 100%. PWM is not possible in this mode. # PWM center-aligned mode Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from '00 (all the remaining configurations having the same effect on the ocxref/OCx signals). The compare flag is set when the counter counts up, when it counts down or both when it counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to Center-aligned mode (up/down counting) on page 635. Figure 192 shows some center-aligned PWM waveforms in an example where: - TIMx ARR=8, - PWM mode is the PWM mode 1, - The flag is set when the counter counts down corresponding to the center-aligned mode 1 selected for CMS=01 in TIMx_CR1 register. Figure 192. Center-aligned PWM waveforms (ARR=8) Hints on using center-aligned mode: - When starting in center-aligned mode, the current up-down configuration is used. It means that the counter counts up or down depending on the value written in the DIR bit in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the same time by the software. - Writing to the counter while running in center-aligned mode is not recommended as it can lead to unexpected results. In particular: - The direction is not updated if a value greater than the auto-reload value is written in the counter (TIMx_CNT>TIMx_ARR). For example, if the counter was counting up, it continues to count up. - The direction is updated if 0 or the TIMx_ARR value is written in the counter but no Update Event UEV is generated. - The safest way to use center-aligned mode is to generate an update by software (setting the UG bit in the TIMx_EGR register) just before starting the counter and not to write the counter while it is running. 4 RM0444 Rev 5 651/1390 # 22.3.10 Asymmetric PWM mode Asymmetric mode allows two center-aligned PWM signals to be generated with a programmable phase shift. While the frequency is determined by the value of the TIMx_ARR register, the duty cycle and the phase-shift are determined by a pair of TIMx_CCRx registers. One register controls the PWM during up-counting, the second during down counting, so that PWM is adjusted every half PWM cycle: - OC1REFC (or OC2REFC) is controlled by TIMx CCR1 and TIMx CCR2 - OC3REFC (or OC4REFC) is controlled by TIMx CCR3 and TIMx CCR4 Asymmetric PWM mode can be selected independently on two channels (one OCx output per pair of CCR registers) by writing '1110' (Asymmetric PWM mode 1) or '1111' (Asymmetric PWM mode 2) in the OCxM bits in the TIMx CCMRx register. Note: The OCxM[3:0] bit field is split into two parts for compatibility reasons, the most significant bit is not contiguous with the 3 least significant ones. When a given channel is used as asymmetric PWM channel, its secondary channel can also be used. For instance, if an OC1REFC signal is generated on channel 1 (Asymmetric PWM mode 1), it is possible to output either the OC2REF signal on channel 2, or an OC2REFC signal resulting from asymmetric PWM mode 2. Figure 193 shows an example of signals that can be generated using Asymmetric PWM mode (channels 1 to 4 are configured in Asymmetric PWM mode 1). Figure 193. Generation of 2 phase-shifted PWM signals with 50% duty cycle # 22.3.11 Combined PWM mode Combined PWM mode allows two edge or center-aligned PWM signals to be generated with programmable delay and phase shift between respective pulses. While the frequency is determined by the value of the TIMx_ARR register, the duty cycle and delay are determined by the two TIMx_CCRx registers. The resulting signals, OCxREFC, are made of an OR or AND logical combination of two reference PWMs: - OC1REFC (or OC2REFC) is controlled by TIMx_CCR1 and TIMx_CCR2 - OC3REFC (or OC4REFC) is controlled by TIMx_CCR3 and TIMx_CCR4 Combined PWM mode can be selected independently on two channels (one OCx output per pair of CCR registers) by writing '1100' (Combined PWM mode 1) or '1101' (Combined PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. When a given channel is used as combined PWM channel, its secondary channel must be configured in the opposite PWM mode (for instance, one in Combined PWM mode 1 and the other in Combined PWM mode 2). Note: The OCxM[3:0] bit field is split into two parts for compatibility reasons, the most significant bit is not contiguous with the 3 least significant ones. *Figure 194* shows an example of signals that can be generated using Asymmetric PWM mode, obtained with the following configuration: - Channel 1 is configured in Combined PWM mode 2, - Channel 2 is configured in PWM mode 1, - Channel 3 is configured in Combined PWM mode 2, - Channel 4 is configured in PWM mode 1 Figure 194. Combined PWM mode on channels 1 and 3 # 22.3.12 Clearing the OCxREF signal on an external event The OCxREF signal of a given channel can be cleared when a high level is applied on the ocref_clr_int input (OCxCE enable bit in the corresponding TIMx_CCMRx register set to 1). OCxREF remains low until the next update event (UEV) occurs. This function can only be used in Output compare and PWM modes. It does not work in Forced mode. OCREF_CLR_INPUT can be selected between the OCREF_CLR input and ETRF (ETR after the filter) by configuring the OCCS bit in the TIMx_SMCR register. 4 RM0444 Rev 5 653/1390 The OCxREF signal for a given channel can be reset by applying a high level on the ETRF input (OCxCE enable bit set to 1 in the corresponding TIMx CCMRx register). OCxREF remains low until the next update event (UEV) occurs. This function can be used only in the output compare and PWM modes. It does not work in forced mode. For example, the OCxREF signal can be connected to the output of a comparator to be used for current handling. In this case, ETR must be configured as follows: - The external trigger prescaler should be kept off: bits ETPS[1:0] in the TIMx_SMCR register are cleared to 00. - 2. The external clock mode 2 must be disabled: bit ECE in the TIM1_SMCR register is cleared to 0. - 3. The external trigger polarity (ETP) and the external trigger filter (ETF) can be configured according to the application's needs. Figure 195 shows the behavior of the OCxREF signal when the ETRF input becomes high, for both values of the OCxCE enable bit. In this example, the timer TIMx is programmed in PWM mode. Figure 195. Clearing TIMx OCxREF Note: In case of a PWM with a 100% duty cycle (if CCRx>ARR), OCxREF is enabled again at the next counter overflow. # 22.3.13 One-pulse mode One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length after
a programmable delay. Starting the counter can be controlled through the slave mode controller. Generating the waveform can be done in output compare mode or PWM mode. One-pulse mode is selected by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at the next update event UEV. A pulse can be correctly generated only if the compare value is different from the counter initial value. Before starting (when the timer is waiting for the trigger), the configuration must be: • CNT<CCRx ≤ ARR (in particular, 0<CCRx), Figure 196. Example of one-pulse mode. For example one may want to generate a positive pulse on OC1 with a length of t_{PULSE} and after a delay of t_{DELAY} as soon as a positive edge is detected on the TI2 input pin. Let's use TI2FP2 as trigger 1: - Select the proper TI2x source (internal or external) with the TI2SEL[3:0] bits in the TIMx TISEL register. - Map TI2FP2 on TI2 by writing CC2S=01 in the TIMx_CCMR1 register. - 3. TI2FP2 must detect a rising edge, write CC2P=0 and CC2NP='0' in the TIMx_CCER register. - 4. Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=00110 in the TIMx SMCR register. - 5. TI2FP2 is used to start the counter by writing SMS to '110 in the TIMx_SMCR register (trigger mode). 4 RM0444 Rev 5 655/1390 The OPM waveform is defined by writing the compare registers (taking into account the clock frequency and the counter prescaler). - The t_{DELAY} is defined by the value written in the TIMx_CCR1 register. - The t_{PULSE} is defined by the difference between the auto-reload value and the compare value (TIMx ARR - TIMx CCR1). - Let's say one want to build a waveform with a transition from '0 to '1 when a compare match occurs and a transition from '1 to '0 when the counter reaches the auto-reload value. To do this PWM mode 2 must be enabled by writing OC1M=111 in the TIMx_CCMR1 register. Optionally the preload registers can be enabled by writing OC1PE=1 in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case one has to write the compare value in the TIMx_CCR1 register, the auto-reload value in the TIMx_ARR register, generate an update by setting the UG bit and wait for external trigger event on TI2. CC1P is written to '0 in this example. In our example, the DIR and CMS bits in the TIMx CR1 register should be low. Since only 1 pulse (Single mode) is needed, a 1 must be written in the OPM bit in the TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the Repetitive Mode is selected. #### Particular case: OCx fast enable: In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the counter. Then the comparison between the counter and the compare value makes the output toggle. But several clock cycles are needed for these operations and it limits the minimum delay t_{DELAY} min we can get. If one wants to output a waveform with the minimum delay, the OCxFE bit can be set in the TIMx_CCMRx register. Then OCxRef (and OCx) is forced in response to the stimulus, without taking in account the comparison. Its new level is the same as if a compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode. # 22.3.14 Retriggerable one pulse mode This mode allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length, but with the following differences with Non-retriggerable one pulse mode described in *Section 22.3.13*: - The pulse starts as soon as the trigger occurs (no programmable delay) - The pulse is extended if a new trigger occurs before the previous one is completed The timer must be in Slave mode, with the bits SMS[3:0] = '1000' (Combined Reset + trigger mode) in the TIMx_SMCR register, and the OCxM[3:0] bits set to '1000' or '1001' for Retriggerable OPM mode 1 or 2. If the timer is configured in Up-counting mode, the corresponding CCRx must be set to 0 (the ARR register sets the pulse length). If the timer is configured in Down-counting mode CCRx must be above or equal to ARR. Note: In retriggerable one pulse mode, the CCxIF flag is not significant. The OCxM[3:0] and SMS[3:0] bit fields are split into two parts for compatibility reasons, the most significant bit is not contiguous with the 3 least significant ones. This mode must not be used with center-aligned PWM modes. It is mandatory to have CMS[1:0] = 00 in TIMx_CR1. Figure 197. Retriggerable one-pulse mode. # 22.3.15 Encoder interface mode To select Encoder Interface mode write SMS='001 in the TIMx_SMCR register if the counter is counting on TI2 edges only, SMS=010 if it is counting on TI1 edges only and SMS=011 if it is counting on both TI1 and TI2 edges. Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER register. CC1NP and CC2NP must be kept cleared. When needed, the input filter can be programmed as well. CC1NP and CC2NP must be kept low. The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to *Table 118*. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2 after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted, TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in TIMx_CR1 register written to '1). The sequence of transitions of the two inputs is evaluated and generates count pulses as well as the direction signal. Depending on the sequence the counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever the counter is counting on TI1 only, TI2 only or both TI1 and TI2. Encoder interface mode acts simply as an external clock with direction selection. This means that the counter just counts continuously between 0 and the auto-reload value in the TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So the TIMx_ARR must be configured before starting. In the same way, the capture, compare, prescaler, trigger output features continue to work as normal. In this mode, the counter is modified automatically following the speed and the direction of the-quadrature encoder and its content, therefore, always represents the encoder's position. The count direction correspond to the rotation direction of the connected sensor. The table summarizes the possible combinations, assuming TI1 and TI2 do not switch at the same time. RM0444 Rev 5 657/1390 | A ativa adaa | Level on opposite | TI1FP1 | signal | TI2FP2 | signal | |--------------|--|----------|----------|----------|----------| | Active edge | signal (TI1FP1 for
TI2, TI2FP2 for TI1) | Rising | Falling | Rising | Falling | | Counting on | High | Down | Up | No Count | No Count | | TI1 only | Low | Up | Down | No Count | No Count | | Counting on | High | No Count | No Count | Up | Down | | TI2 only | Low | No Count | No Count | Down | Up | | Counting on | High | Down | Up | Up | Down | | TI1 and TI2 | Low | Up | Down | Down | Up | Table 118. Counting direction versus encoder signals An external incremental encoder can be connected directly to the MCU without external interface logic. However, comparators are normally be used to convert the encoder's differential outputs to digital signals. This greatly increases noise immunity. The third encoder output which indicate the mechanical zero position, may be connected to an external interrupt input and trigger a counter reset. *Figure 198* gives an example of counter operation, showing count signal generation and direction control. It also shows how input jitter is compensated where both edges are selected. This might occur if the sensor is positioned near to one of the switching points. For this example we assume that the configuration is the following: - CC1S= 01 (TIMx_CCMR1 register, TI1FP1 mapped on TI1) - CC2S= 01 (TIMx CCMR2 register, TI2FP2 mapped on TI2) - CC1P and CC1NP = '0' (TIMx_CCER register, TI1FP1 noninverted, TI1FP1=TI1) - CC2P and CC2NP = '0' (TIMx_CCER register, TI2FP2 noninverted, TI2FP2=TI2) - SMS= 011 (TIMx_SMCR register, both inputs are active on both rising and falling edges) - CEN= 1 (TIMx_CR1 register, Counter is enabled) Figure 198. Example of counter operation in encoder interface mode *Figure 199* gives an example of counter behavior when TI1FP1 polarity is inverted (same configuration as above except CC1P=1). Figure 199. Example of encoder interface mode with TI1FP1 polarity inverted The timer, when configured in Encoder Interface mode provides information on the sensor's current position. Dynamic information can be obtained (speed, acceleration, deceleration) by measuring the period between two encoder events using a second timer configured in capture mode. The output of the encoder which indicates the mechanical zero can be used for this purpose. Depending on the time between two events, the counter can also be read at regular times. This can be done by latching the counter value into a third input capture register if available (then the capture signal must be periodic and can be generated by another timer). when available, it is also possible to read its value through a DMA request generated by a Real-Time clock. # 22.3.16 UIF bit remapping The IUFREMAP bit in the TIMx_CR1 register forces a continuous copy of the update interrupt flag (UIF) into bit 31 of the timer counter register's bit 31 (TIMxCNT[31]). This permits to atomically read both the counter value and a potential roll-over condition signaled by the UIFCPY flag. It eases the calculation of angular speed by avoiding race conditions caused, for instance, by a processing shared between a background task (counter reading) and an interrupt (update interrupt). There is no latency between the UIF and
UIFCPY flag assertions. In 32-bit timer implementations, when the IUFREMAP bit is set, bit 31 of the counter is overwritten by the UIFCPY flag upon read access (the counter's most significant bit is only accessible in write mode). # 22.3.17 Timer input XOR function The TI1S bit in the TIM1xx_CR2 register, allows the input filter of channel 1 to be connected to the output of a XOR gate, combining the three input pins TIMx CH1 to TIMx CH3. The XOR output can be used with all the timer input functions such as trigger or input capture. An example of this feature used to interface Hall sensors is given in *Section 21.3.25*: *Interfacing with Hall sensors on page 575*. RM0444 Rev 5 659/1390 #### 22.3.18 Timers and external trigger synchronization The TIMx Timers can be synchronized with an external trigger in several modes: Reset mode, Gated mode and Trigger mode. ## Slave mode: Reset mode The counter and its prescaler can be reinitialized in response to an event on a trigger input. Moreover, if the URS bit from the TIMx CR1 register is low, an update event UEV is generated. Then all the preloaded registers (TIMx ARR, TIMx CCRx) are updated. In the following example, the upcounter is cleared in response to a rising edge on TI1 input: - Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration (in this example, we do not need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so it does not need to be configured. The CC1S bits select the input capture source only, CC1S = 01 in the TIMx CCMR1 register. Write CC1P=0 and CC1NP=0 in TIMx_CCER register to validate the polarity (and detect rising edges only). - Configure the timer in reset mode by writing SMS=100 in TIMx SMCR register. Select TI1 as the input source by writing TS=00101 in TIMx SMCR register. - Start the counter by writing CEN=1 in the TIMx CR1 register. The counter starts counting on the internal clock, then behaves normally until TI1 rising edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the trigger flag is set (TIF bit in the TIMx SR register) and an interrupt request, or a DMA request can be sent if enabled (depending on the TIE and TDE bits in TIMx DIER register). The following figure shows this behavior when the auto-reload register TIMx ARR=0x36. The delay between the rising edge on TI1 and the actual reset of the counter is due to the resynchronization circuit on TI1 input. Figure 200. Control circuit in reset mode ## Slave mode: Gated mode The counter can be enabled depending on the level of a selected input. In the following example, the upcounter counts only when TI1 input is low: - Configure the channel 1 to detect low levels on TI1. Configure the input filter duration (in this example, we do not need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so it does not need to be configured. The CC1S bits select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write CC1P=1 and CC1NP=0 in TIMx_CCER register to validate the polarity (and detect low level only). - 2. Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select TI1 as the input source by writing TS=00101 in TIMx_SMCR register. - 3. Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the counter doesn't start if CEN=0, whatever is the trigger input level). The counter starts counting on the internal clock as long as TI1 is low and stops as soon as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts or stops. The delay between the rising edge on TI1 and the actual stop of the counter is due to the resynchronization circuit on TI1 input. Figure 201. Control circuit in gated mode The configuration "CCxP=CCxNP=1" (detection of both rising and falling edges) does not have any effect in gated mode because gated mode acts on a level and not on an edge. ## Slave mode: Trigger mode The counter can start in response to an event on a selected input. In the following example, the upcounter starts in response to a rising edge on TI2 input: Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration (in this example, we do not need any filter, so we keep IC2F=0000). The capture prescaler is not used for triggering, so it does not need to be configured. CC2S bits are selecting the input capture source only, CC2S=01 in TIMx_CCMR1 register. Write Note: RM0444 Rev 5 661/1390 The configuration "CCxP=CCxNP=1" (detection of both rising and falling edges) does not have any effect in gated mode because gated mode acts on a level and not on an edge. CC2P=1 and CC2NP=0 in TIMx_CCER register to validate the polarity (and detect low level only). 2. Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI2 as the input source by writing TS=00110 in TIMx_SMCR register. When a rising edge occurs on TI2, the counter starts counting on the internal clock and the TIF flag is set. The delay between the rising edge on TI2 and the actual start of the counter is due to the resynchronization circuit on TI2 input. Figure 202. Control circuit in trigger mode # Slave mode: External Clock mode 2 + trigger mode The external clock mode 2 can be used in addition to another slave mode (except external clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock input, and another input can be selected as trigger input when operating in reset mode, gated mode or trigger mode. It is recommended not to select ETR as TRGI through the TS bits of TIMx_SMCR register. In the following example, the upcounter is incremented at each rising edge of the ETR signal as soon as a rising edge of TI1 occurs: - 1. Configure the external trigger input circuit by programming the TIMx_SMCR register as follows: - ETF = 0000: no filter - ETPS=00: prescaler disabled - ETP=0: detection of rising edges on ETR and ECE=1 to enable the external clock mode 2. - 2. Configure the channel 1 as follows, to detect rising edges on TI: - IC1F=0000: no filter. - The capture prescaler is not used for triggering and does not need to be configured. - CC1S=01in TIMx_CCMR1 register to select only the input capture source - CC1P=0 and CC1NP=0 in TIMx_CCER register to validate the polarity (and detect rising edge only). - 3. Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI1 as the input source by writing TS=00101 in TIMx_SMCR register. A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on ETR rising edges. The delay between the rising edge of the ETR signal and the actual reset of the counter is due to the resynchronization circuit on ETRP input. Figure 203. Control circuit in external clock mode 2 + trigger mode # 22.3.19 Timer synchronization The TIMx timers are linked together internally for timer synchronization or chaining. When one Timer is configured in Master Mode, it can reset, start, stop or clock the counter of another Timer configured in Slave Mode. Figure 204: Master/Slave timer example and Figure 205: Master/slave connection example with 1 channel only timers present an overview of the trigger selection and the master mode selection blocks. Figure 204. Master/Slave timer example Figure 205. Master/slave connection example with 1 channel only timers Note: The timers with one channel only (see Figure 205) do not feature a master mode. However, the OC1 output signal can be used to trigger some other timers (including timers described in other sections of this document). Check the "TIMx internal trigger connection" table of any TIMx_SMCR register on the device to identify which timers can be targeted as slave. The OC1 signal pulse width must be programmed to be at least 2 clock cycles of the destination timer, to make sure the slave timer will detect the trigger. For instance, if the destination's timer CK_INT clock is 4 times slower than the source timer, the OC1 pulse width must be 8 clock cycles. # Using one timer as prescaler for another timer For example, TIM3 can be configured to act as a prescaler for TIM2. Refer to *Figure 204*. To do this: - Configure TIM3 in master mode so that it outputs a periodic trigger signal on each update event UEV. If MMS=010 is written in the TIM3_CR2 register, a rising edge is output on TRGO each time an update event is generated. - 2. To connect the TRGO output of TIM3 to TIM2, TIM2 must be configured in slave mode using ITR2 as internal trigger. This is selected through the TS bits in the TIM2_SMCR register (writing TS=00010). - 3. Then the slave mode controller must be put in external clock mode 1 (write SMS=111 in the TIM2_SMCR register). This causes TIM2 to be clocked by the rising edge of the periodic TIM3 trigger signal (which correspond to the TIM3 counter overflow). - 4. Finally both timers must be enabled by setting their respective CEN bits (TIMx_CR1 register). Note: If OCx is selected on TIM3 as the trigger output (MMS=1xx), its rising edge is used to clock the counter of TIM2. ## Using one timer to enable another timer In this example, we control the enable of TIM2 with the output compare 1 of Timer 3. Refer to *Figure 204* for connections. TIM2 counts on the divided internal clock only when OC1REF of TIM3 is high. Both counter clock frequencies are divided by 3 by the prescaler compared to CK_INT ($f_{CK-CNT} = f_{CK-INT}/3$). - Configure TIM3 master mode to send its Output Compare 1 Reference (OC1REF) signal as trigger output (MMS=100 in the TIM3_CR2 register). - 2. Configure the TIM3 OC1REF waveform (TIM3_CCMR1 register). - Configure TIM2 to get the input trigger from TIM3 (TS=00010 in the TIM2 SMCR register). - 4. Configure TIM2 in gated mode (SMS=101 in TIM2 SMCR register). - Enable TIM2 by writing '1 in the CEN bit (TIM2 CR1 register). - Start TIM3 by writing '1 in the CEN bit (TIM3_CR1 register). The counter 2
clock is not synchronized with counter 1, this mode only affects the TIM2 Note: counter enable signal. Figure 206. Gating TIM2 with OC1REF of TIM3 In the example in Figure 206, the TIM2 counter and prescaler are not initialized before being started. So they start counting from their current value. It is possible to start from a given value by resetting both timers before starting TIM3. Then any value can be written in the timer counters. The timers can easily be reset by software using the UG bit in the TIMx EGR registers. In the next example (refer to Figure 207), we synchronize TIM3 and TIM2. TIM3 is the master and starts from 0. TIM2 is the slave and starts from 0xE7. The prescaler ratio is the same for both timers. TIM2 stops when TIM3 is disabled by writing '0 to the CEN bit in the TIM3 CR1 register: - Configure TIM3 master mode to send its Output Compare 1 Reference (OC1REF) signal as trigger output (MMS=100 in the TIM3_CR2 register). - Configure the TIM3 OC1REF waveform (TIM3 CCMR1 register). - Configure TIM2 to get the input trigger from TIM3 (TS=00010 in the TIM2_SMCR register). - 4. Configure TIM2 in gated mode (SMS=101 in TIM2 SMCR register). - 5. Reset TIM3 by writing '1 in UG bit (TIM3 EGR register). - Reset TIM2 by writing '1 in UG bit (TIM2 EGR register). 6. - 7. Initialize TIM2 to 0xE7 by writing '0xE7' in the TIM2 counter (TIM2_CNTL). - 8. Enable TIM2 by writing '1 in the CEN bit (TIM2_CR1 register). - Start TIM3 by writing '1 in the CEN bit (TIM3_CR1 register). - 10. Stop TIM3 by writing '0 in the CEN bit (TIM3_CR1 register). RM0444 Rev 5 665/1390 Figure 207. Gating TIM2 with Enable of TIM3 ## Using one timer to start another timer In this example, we set the enable of Timer 2 with the update event of Timer 3. Refer to *Figure 204* for connections. Timer 2 starts counting from its current value (which can be non-zero) on the divided internal clock as soon as the update event is generated by Timer 1. When Timer 2 receives the trigger signal its CEN bit is automatically set and the counter counts until we write '0 to the CEN bit in the TIM2_CR1 register. Both counter clock frequencies are divided by 3 by the prescaler compared to CK_INT ($f_{CK-CNT} = f_{CK-INT}/3$). - 1. Configure TIM3 master mode to send its Update Event (UEV) as trigger output (MMS=010 in the TIM3_CR2 register). - 2. Configure the TIM3 period (TIM3 ARR registers). - 3. Configure TIM2 to get the input trigger from TIM3 (TS=00010 in the TIM2_SMCR register). - 4. Configure TIM2 in trigger mode (SMS=110 in TIM2 SMCR register). - 5. Start TIM3 by writing '1 in the CEN bit (TIM3_CR1 register). Figure 208. Triggering TIM2 with update of TIM3 As in the previous example, both counters can be initialized before starting counting. *Figure 209* shows the behavior with the same configuration as in *Figure 208* but in trigger mode instead of gated mode (SMS=110 in the TIM2_SMCR register). Figure 209. Triggering TIM2 with Enable of TIM3 # Starting 2 timers synchronously in response to an external trigger In this example, we set the enable of TIM3 when its TI1 input rises, and the enable of TIM2 with the enable of TIM3. Refer to *Figure 204* for connections. To ensure the counters are aligned, TIM3 must be configured in Master/Slave mode (slave with respect to TI1, master with respect to TIM2): - 1. Configure TIM3 master mode to send its Enable as trigger output (MMS=001 in the TIM3_CR2 register). - 2. Configure TIM3 slave mode to get the input trigger from TI1 (TS=00100 in the TIM3 SMCR register). - 3. Configure TIM3 in trigger mode (SMS=110 in the TIM3_SMCR register). - 4. Configure the TIM3 in Master/Slave mode by writing MSM=1 (TIM3 SMCR register). - 5. Configure TIM2 to get the input trigger from TIM3 (TS=00000 in the TIM2_SMCR register). - 6. Configure TIM2 in trigger mode (SMS=110 in the TIM2 SMCR register). When a rising edge occurs on TI1 (TIM3), both counters starts counting synchronously on the internal clock and both TIF flags are set. Note: In this example both timers are initialized before starting (by setting their respective UG bits). Both counters starts from 0, but an offset can easily be inserted between them by writing any of the counter registers (TIMx_CNT). One can see that the master/slave mode insert a delay between CNT_EN and CK_PSC on TIM3. RM0444 Rev 5 667/1390 Figure 210. Triggering TIM3 and TIM2 with TIM3 TI1 input Note: The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer. ## 22.3.20 DMA burst mode The TIMx timers have the capability to generate multiple DMA requests upon a single event. The main purpose is to be able to re-program part of the timer multiple times without software overhead, but it can also be used to read several registers in a row, at regular intervals. The DMA controller destination is unique and must point to the virtual register TIMx_DMAR. On a given timer event, the timer launches a sequence of DMA requests (burst). Each write into the TIMx_DMAR register is actually redirected to one of the timer registers. The DBL[4:0] bits in the TIMx_DCR register set the DMA burst length. The timer recognizes a burst transfer when a read or a write access is done to the TIMx_DMAR address), i.e. the number of transfers (either in half-words or in bytes). The DBA[4:0] bits in the TIMx_DCR registers define the DMA base address for DMA transfers (when read/write access are done through the TIMx_DMAR address). DBA is defined as an offset starting from the address of the TIMx_CR1 register: # Example: 00000: TIMx_CR1 00001: TIMx_CR2 00010: TIMx_SMCR As an example, the timer DMA burst feature is used to update the contents of the CCRx registers (x = 2, 3, 4) upon an update event, with the DMA transferring half words into the CCRx registers. This is done in the following steps: 4 - 1. Configure the corresponding DMA channel as follows: - DMA channel peripheral address is the DMAR register address - DMA channel memory address is the address of the buffer in the RAM containing the data to be transferred by DMA into CCRx registers. - Number of data to transfer = 3 (See note below). - Circular mode disabled. - Configure the DCR register by configuring the DBA and DBL bit fields as follows: DBL = 3 transfers, DBA = 0xE. - 3. Enable the TIMx update DMA request (set the UDE bit in the DIER register). - 4. Enable TIMx - 5. Enable the DMA channel This example is for the case where every CCRx register has to be updated once. If every CCRx register is to be updated twice for example, the number of data to transfer should be 6. Let's take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and data6. The data is transferred to the CCRx registers as follows: on the first update DMA request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is transferred to CCR3 and data6 is transferred to CCR4. Note: A null value can be written to the reserved registers. # **22.3.21 Debug mode** When the microcontroller enters debug mode (Cortex®-M0+ core - halted), the TIMx counter either continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in DBGMCU module. For more details, refer to Section 40.9.2: Debug support for timers, watchdog and I²C. # 22.4 TIM2/TIM3/TIM4 registers Refer to Section 1.2 for a list of abbreviations used in register descriptions. The peripheral registers can be accessed by half-words (16-bit) or words (32-bit). # 22.4.1 TIMx control register 1 (TIMx CR1)(x = 2 to 4) Address offset: 0x00 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|--------------|------|-----|-------|------|-----|--------|-----|-----|-----|------|-----| | Res. | Res. | Res. | Res. | UIFRE
MAP | Res. | CKD | [1:0] | ARPE | CMS | S[1:0] | DIR | ОРМ | URS | UDIS | CEN | | | | | | rw | | rw Bits 15:12 Reserved, must be kept at reset value. #### Bit 11 **UIFREMAP**: UIF status bit remapping - 0: No remapping. UIF status bit is not copied to TIMx CNT register bit 31. - 1: Remapping enabled. UIF status bit is copied to TIMx_CNT register bit 31. - Bit 10 Reserved, must be kept at reset value. #### Bits 9:8 CKD[1:0]: Clock division This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and sampling clock used by the digital filters (ETR, TIx), 00: $t_{DTS} = t_{CK_INT}$ 01: $t_{DTS} = 2 \times t_{CK_INT}$ 10: $t_{DTS} = 4 \times t_{CK_INT}$ 11: Reserved # Bit 7 ARPE: Auto-reload preload enable - 0: TIMx ARR register is not buffered - 1: TIMx_ARR register is buffered #### Bits 6:5 CMS[1:0]: Center-aligned mode selection 00: Edge-aligned mode. The counter counts up or down depending on the direction bit (DIR). 01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting down. 10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting up. 11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set both when the counter is counting up or down. Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as the counter is enabled (CEN=1) # Bit 4 DIR: Direction - 0: Counter used as upcounter - 1: Counter used as downcounter Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder mode. ## Bit 3
OPM: One-pulse mode - 0: Counter is not stopped at update event - 1: Counter stops counting at the next update event (clearing the bit CEN) ## Bit 2 URS: Update request source This bit is set and cleared by software to select the UEV event sources. 0: Any of the following events generate an update interrupt or DMA request if enabled. These events can be: - Counter overflow/underflow - Setting the UG bit - Update generation through the slave mode controller - 1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled. ## Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable UEV event generation. - 0: UEV enabled. The Update (UEV) event is generated by one of the following events: - Counter overflow/underflow - Setting the UG bit - Update generation through the slave mode controller Buffered registers are then loaded with their preload values. 1: UEV disabled. The Update event is not generated, shadow registers keep their value (ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is set or if a hardware reset is received from the slave mode controller. #### Bit 0 CEN: Counter enable - 0: Counter disabled - 1: Counter enabled Note: External clock, gated mode and encoder mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware CEN is cleared automatically in one-pulse mode, when an update event occurs. # 22.4.2 TIMx control register 2 (TIMx_CR2)(x = 2 to 4) Address offset: 0x04 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|------|----|---------|----|------|------|------|------| | Res. TI1S | | MMS[2:0 |] | CCDS | Res. | Res. | Res. | | | | | | | | | | rw | rw | rw | rw | rw | | | | RM0444 Rev 5 671/1390 Bits 15:8 Reserved, must be kept at reset value. Bit 7 TI1S: TI1 selection 0: The TIMx CH1 pin is connected to TI1 input 1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination) See also Section 21.3.25: Interfacing with Hall sensors on page 575 ## Bits 6:4 MMS[2:0]: Master mode selection These bits permit to select the information to be sent in master mode to slave timers for synchronization (TRGO). The combination is as follows: 000: **Reset** - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the reset is generated by the trigger input (slave mode controller configured in reset mode) then the signal on TRGO is delayed compared to the actual reset. 001: **Enable** - the Counter enable signal, CNT_EN, is used as trigger output (TRGO). It is useful to start several timers at the same time or to control a window in which a slave timer is enabled. The Counter Enable signal is generated by a logic AND between CEN control bit and the trigger input when configured in gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description in TIMx_SMCR register). 010: **Update** - The update event is selected as trigger output (TRGO). For instance a master timer can then be used as a prescaler for a slave timer. 011: **Compare Pulse** - The trigger output send a positive pulse when the CC1IF flag is to be set (even if it was already high), as soon as a capture or a compare match occurred. (TRGO) 100: Compare - OC1REFC signal is used as trigger output (TRGO) 101: Compare - OC2REFC signal is used as trigger output (TRGO) 110: Compare - OC3REFC signal is used as trigger output (TRGO) 111: Compare - OC4REFC signal is used as trigger output (TRGO) Note: The clock of the slave timer or ADC must be enabled prior to receive events from the master timer, and must not be changed on-the-fly while triggers are received from the master timer. Bit 3 CCDS: Capture/compare DMA selection 0: CCx DMA request sent when CCx event occurs 1: CCx DMA requests sent when update event occurs Bits 2:0 Reserved, must be kept at reset value. 672/1390 RM0444 Rev 5 # 22.4.3 TIMx slave mode control register (TIMx_SMCR)(x = 2 to 4) Address offset: 0x08 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|--------|------|----------|------|------|------|------|---------|------|------|------|----------|--------| | Res. TS[| 4:3] | Res. | Res. | Res. | SMS[3] | | | | | | | | | | | | rw | rw | | | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | ETP | ECE | ETPS | S[1:0] | | ETF[3:0] | | | MSM | | TS[2:0] | | occs | | SMS[2:0] | | | rw Bits 31:22 Reserved, must be kept at reset value. Bits 19:17 Reserved, must be kept at reset value. Bit 15 ETP: External trigger polarity This bit selects whether ETR or ETR is used for trigger operations 0: ETR is non-inverted, active at high level or rising edge 1: ETR is inverted, active at low level or falling edge ## Bit 14 ECE: External clock enable This bit enables External clock mode 2. 0: External clock mode 2 disabled 1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal. Note: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI connected to ETRF (SMS=111 and TS=00111). It is possible to simultaneously use external clock mode 2 with the following slave modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to ETRF in this case (TS bits must not be 00111). If external clock mode 1 and external clock mode 2 are enabled at the same time, the external clock input is ETRF. ## Bits 13:12 ETPS[1:0]: External trigger prescaler External trigger signal ETRP frequency must be at most 1/4 of CK_INT frequency. A prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks. 00: Prescaler OFF 01: ETRP frequency divided by 2 10: ETRP frequency divided by 4 11: ETRP frequency divided by 8 4 RM0444 Rev 5 673/1390 ## Bits 11:8 ETF[3:0]: External trigger filter This bit-field then defines the frequency used to sample ETRP signal and the length of the digital filter applied to ETRP. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: ``` 0000: No filter, sampling is done at f_{\mbox{\scriptsize DTS}} ``` ``` 0001: fsampling=fck_int, N=2 0010: fsampling=fck_int, N=4 0011: fsampling=fck_int, N=8 0100: fsampling=fdts/2, N=6 0101: fsampling=fdts/2, N=6 0101: fsampling=fdts/2, N=8 0110: fsampling=fdts/4, N=6 0111: fsampling=fdts/4, N=8 1000: fsampling=fdts/4, N=8 1001: fsampling=fdts/8, N=6 1001: fsampling=fdts/8, N=8 1010: fsampling=fdts/16, N=5 1011: fsampling=fdts/16, N=6 1100: fsampling=fdts/16, N=8 1101: fsampling=fdts/32, N=5 1110: fsampling=fdts/32, N=6 1111: fsampling=fdts/32, N=8 ``` ## Bit 7 MSM: Master/Slave mode #### 0: No action 1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful if we want to synchronize several timers on a single external event. # Bits 21, 20, 6, 5, 4 TS[4:0]: Trigger selection This bit-field selects the trigger input to be used to synchronize the counter. 00000: Internal Trigger 0 (ITR0) 00001: Internal Trigger 1 (ITR1) 00010: Internal Trigger 2 (ITR2) 00011: Internal Trigger 3 (ITR3) 00100: TI1 Edge Detector (TI1F ED) 00101: Filtered Timer Input 1 (TI1FP1) 00110: Filtered Timer Input 2 (TI2FP2) 00111: External Trigger input (ETRF) 01000: Internal Trigger 4 (ITR4) 01001: Internal Trigger 5 (ITR5) 01010: Internal Trigger 6 (ITR6) 01011: Internal Trigger 7 (ITR7) 01100: Internal Trigger 8 (ITR8) Others: Reserved See *Table 119: TIMx internal trigger connection on page 676* for more details on ITRx meaning for each Timer. Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition. # Bit 3 OCCS: OCREF clear selection This bit is used to select the OCREF clear source 0: OCREF_CLR_INT is connected to COMP1, COMP2 or COMP3 output depending on TIMx_OR1.OCREF_CLR[1:0] 1: OCREF_CLR_INT is connected to ETRF ## Bits 16, 2, 1, 0 **SMS[3:0]**: Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. 0000: Slave mode disabled - if CEN = '1 then the prescaler is clocked directly by the internal clock. 0001: Encoder mode 1 - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level 0010: Encoder mode 2 - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level 0011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input. 0100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers. 0101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are controlled. 0110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled. 0111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter. 1000: Combined reset + trigger mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter, generates an update of the registers and starts the counter. Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=00100). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Note: The clock of the slave peripherals (timer, ADC, ...) receiving the
TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer. Table 119. TIMx internal trigger connection | Slave TIM | ITR0 | ITR1 | ITR2 | ITR3 | |-----------|------|-------|-------|-----------| | TIM2 | TIM1 | TIM15 | TIM3 | TIM14_OC1 | | TIM3 | TIM1 | TIM2 | TIM15 | TIM14_OC1 | | TIM4 | TIM1 | TIM2 | TIM15 | TIM14_OC1 | # 22.4.4 TIMx DMA/Interrupt enable register (TIMx DIER)(x = 2 to 4) Address offset: 0x0C Reset value: 0x0000 | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|------|-----|------|-------|-------|-------|-------|-----|------|-----|------|-------|-------|-------|-------|-----| | Ī | Res. | TDE | Res. | CC4DE | CC3DE | CC2DE | CC1DE | UDE | Res. | TIE | Res. | CC4IE | CC3IE | CC2IE | CC1IE | UIE | | | | rw | | rw | rw | rw | rw | rw | | rw | | rw | rw | rw | rw | rw | Bit 15 Reserved, must be kept at reset value. Bit 14 **TDE**: Trigger DMA request enable 0: Trigger DMA request disabled. 1: Trigger DMA request enabled. Bit 13 Reserved, must be kept at reset value. Bit 12 CC4DE: Capture/Compare 4 DMA request enable 0: CC4 DMA request disabled. 1: CC4 DMA request enabled. Bit 11 CC3DE: Capture/Compare 3 DMA request enable 0: CC3 DMA request disabled. 1: CC3 DMA request enabled. Bit 10 CC2DE: Capture/Compare 2 DMA request enable 0: CC2 DMA request disabled. 1: CC2 DMA request enabled. Bit 9 CC1DE: Capture/Compare 1 DMA request enable 0: CC1 DMA request disabled. 1: CC1 DMA request enabled. Bit 8 **UDE**: Update DMA request enable 0: Update DMA request disabled. 1: Update DMA request enabled. Bit 7 Reserved, must be kept at reset value. Bit 6 TIE: Trigger interrupt enable 0: Trigger interrupt disabled. 1: Trigger interrupt enabled. Bit 5 Reserved, must be kept at reset value. Bit 4 CC4IE: Capture/Compare 4 interrupt enable 0: CC4 interrupt disabled. 1: CC4 interrupt enabled. Bit 3 CC3IE: Capture/Compare 3 interrupt enable 0: CC3 interrupt disabled. 1: CC3 interrupt enabled. Bit 2 CC2IE: Capture/Compare 2 interrupt enable 0: CC2 interrupt disabled. 1: CC2 interrupt enabled. Bit 1 CC1IE: Capture/Compare 1 interrupt enable 0: CC1 interrupt disabled. 1: CC1 interrupt enabled. Bit 0 UIE: Update interrupt enable 0: Update interrupt disabled. 1: Update interrupt enabled. # 22.4.5 TIMx status register $(TIMx_SR)(x = 2 \text{ to } 4)$ Address offset: 0x10 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|-------|-------|-------|-------|------|------|-------|------|-------|-------|-------|-------|-------| | Res. | Res. | Res. | CC4OF | CC3OF | CC2OF | CC10F | Res. | Res. | TIF | Res. | CC4IF | CC3IF | CC2IF | CC1IF | UIF | | | | | rc_w0 | rc_w0 | rc_w0 | rc_w0 | | | rc_w0 | | rc_w0 | rc_w0 | rc_w0 | rc_w0 | rc_w0 | 4 RM0444 Rev 5 677/1390 - Bits 15:13 Reserved, must be kept at reset value. - Bit 12 **CC40F**: Capture/Compare 4 overcapture flag refer to CC10F description - Bit 11 **CC3OF**: Capture/Compare 3 overcapture flag refer to CC1OF description - Bit 10 **CC20F**: Capture/compare 2 overcapture flag refer to CC10F description - Bit 9 CC10F: Capture/Compare 1 overcapture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to '0'. - 0: No overcapture has been detected. - 1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set - Bits 8:7 Reserved, must be kept at reset value. - Bit 6 TIF: Trigger interrupt flag This flag is set by hardware on the TRG trigger event (active edge detected on TRGI input when the slave mode controller is enabled in all modes but gated mode. It is set when the counter starts or stops when gated mode is selected. It is cleared by software. - 0: No trigger event occurred. - 1: Trigger interrupt pending. - Bit 5 Reserved, must be kept at reset value. - Bit 4 **CC4IF**: Capture/Compare 4 interrupt flag Refer to CC1IF description - Bit 3 **CC3IF**: Capture/Compare 3 interrupt flag Refer to CC1IF description 47/ Bit 2 CC2IF: Capture/Compare 2 interrupt flag Refer to CC1IF description #### Bit 1 CC1IF: Capture/compare 1 interrupt flag This flag is set by hardware. It is cleared by software (input capture or output compare mode) or by reading the TIMx_CCR1 register (input capture mode only). 0: No compare match / No input capture occurred 1: A compare match or an input capture occurred If channel CC1 is configured as output: this flag is set when the content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the content of TIMx_CCR1 is greater than the content of TIMx_ARR, the CC1IF bit goes high on the counter overflow (in up-counting and up/down-counting modes) or underflow (in down-counting mode). There are 3 possible options for flag setting in center-aligned mode, refer to the CMS bits in the TIMx_CR1 register for the full description. If channel CC1 is configured as input: this bit is set when counter value has been captured in TIMx_CCR1 register (an edge has been detected on IC1, as per the edge sensitivity defined with the CC1P and CC1NP bits setting, in TIMx_CCER). ## Bit 0 UIF: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. 0: No update occurred 1: Update interrupt pending. This bit is set by hardware when the registers are updated: At overflow or underflow and if UDIS=0 in the TIMx CR1 register. When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and UDIS=0 in the TIMx_CR1 register. When CNT is reinitialized by a trigger event (refer to the synchro control register description), if URS=0 and UDIS=0 in the TIMx CR1 register. # 22.4.6 TIMx event generation register (TIMx_EGR)(x = 2 to 4) Address offset: 0x14 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|------|----|------|------|------|------|------|----| | Res. TG | Res. | CC4G | CC3G | CC2G | CC1G | UG | | | | | | | | | | | W | | W | W | W | W | W | Bits 15:7 Reserved, must be kept at reset value. # Bit 6 TG: Trigger generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if enabled Bit 5 Reserved, must be kept at reset value. Bit 4 CC4G: Capture/compare 4 generation Refer to CC1G description Bit 3 CC3G: Capture/compare 3 generation Refer to CC1G description RM0444 Rev 5 679/1390 ## Bit 2 CC2G: Capture/compare 2 generation Refer to CC1G description #### Bit 1 CC1G: Capture/compare 1 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: A capture/compare event is generated on channel 1: ## If channel CC1 is configured as output: CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled. #### If channel CC1 is configured as input: The current value of the counter is captured in TIMx CCR1 register. The CC1IF flag is set, the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high. ## Bit 0 UG: Update generation This bit can be set by software, it is automatically cleared by hardware. 1: Re-initialize the counter and generates an update of the registers. Note that the prescaler counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload value (TIMx_ARR) if DIR=1 (downcounting). #### 22.4.7 TIMx capture/compare mode register 1 [alternate] (TIMx CCMR1) (x = 2 to 4) Address offset: 0x18 Reset value: 0x0000 0000 The same register can be used for input capture mode (this section) or for output compare mode (next section). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. ## Input capture mode: | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|-------|------|-------|---------|------|--------|------|------|-------|------|-------|--------|------|--------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | IC2F | [3:0] | | IC2PS | SC[1:0] | CC2S | S[1:0] | | IC1F | [3:0] | | IC1PS | C[1:0] | CC1 | S[1:0] | | rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:12 IC2F[3:0]: Input capture 2 filter Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler RM0444 Rev 5 680/1390 ## Bits 9:8 CC2S[1:0]: Capture/compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output. 01: CC2 channel is configured as input, IC2 is mapped on TI2. 10: CC2 channel is configured as input, IC2 is mapped on TI1. 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx SMCR register) Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx CCER). #### Bits 7:4 IC1F[3:0]: Input capture 1 filter This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: ``` 0000: No filter, sampling is done at f_{DTS} ``` 0001: f_{SAMPLING}=f_{CK INT}, N=2 0010: f_{SAMPLING}=f_{CK} INT, N=4 0011: f_{SAMPLING}=f_{CK} INT, N=8 0100: f_{SAMPLING}=f_{DTS}/2, N=6 0101: f_{SAMPLING}=f_{DTS}/2, N=8 0110: f_{SAMPLING}=f_{DTS}/4, N=6 0111: f_{SAMPLING}=f_{DTS}/4, N=8 1000:
f_{SAMPLING}=f_{DTS}/8, N=6 1001: $f_{SAMPLING} = f_{DTS}/8$, N=8 1010: f_{SAMPLING}=f_{DTS}/16, N=5 1011: f_{SAMPLING}=f_{DTS}/16, N=6 1100: f_{SAMPLING}=f_{DTS}/16, N=8 1101: f_{SAMPLING}=f_{DTS}/32, N=5 1110: f_{SAMPLING}=f_{DTS}/32, N=6 # 1111: f_{SAMPLING}=f_{DTS}/32, N=8 Bits 3:2 IC1PSC[1:0]: Input capture 1 prescaler This bit-field defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset as soon as CC1E=0 (TIMx_CCER register). 00: no prescaler, capture is done each time an edge is detected on the capture input 01: capture is done once every 2 events 10: capture is done once every 4 events 11: capture is done once every 8 events ## Bits 1:0 CC1S[1:0]: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: CC1 channel is configured as input, IC1 is mapped on TI2 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER). RM0444 Rev 5 681/1390 # 22.4.8 TIMx capture/compare mode register 1 [alternate] (TIMx_CCMR1) (x = 2 to 4) Address offset: 0x18 Reset value: 0x0000 0000 The same register can be used for output compare mode (this section) or for input capture mode (previous section). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. ## Output compare mode: | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------|------|----------|------|-------|-------|------|-------------|-------|------|----------|------|-------|-------|------|-------------| | Res. OC2M
[3] | Res. OC1M
[3] | | | | | | | | | rw | | | | | | | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | OC2CE | (| OC2M[2:0 |)] | OC2PE | OC2FE | CC2S | S[1:0] | OC1CE | (| OC1M[2:0 |)] | OC1PE | OC1FE | CC1S | S[1:0] | | rw Bits 31:25 Reserved, must be kept at reset value. Bits 23:17 Reserved, must be kept at reset value. Bit 15 OC2CE: Output compare 2 clear enable Bits 24, 14:12 **OC2M[3:0]**: Output compare 2 mode refer to OC1M description on bits 6:4 Bit 11 OC2PE: Output compare 2 preload enable Bit 10 OC2FE: Output compare 2 fast enable Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output 01: CC2 channel is configured as input, IC2 is mapped on TI2 10: CC2 channel is configured as input, IC2 is mapped on TI1 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through the TS bit (TIMx_SMCR register) Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER). Bit 7 OC1CE: Output compare 1 clear enable 0: OC1Ref is not affected by the ETRF input 1: OC1Ref is cleared as soon as a High level is detected on ETRF input #### Bits 16, 6:4 OC1M[3:0]: Output compare 1 mode These bits define the behavior of the output reference signal OC1REF from which OC1 and OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends on CC1P and CC1NP bits. 0000: Frozen - The comparison between the output compare register TIMx_CCR1 and the counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing base). 0001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 0010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 0011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1. 0100: Force inactive level - OC1REF is forced low. 0101: Force active level - OC1REF is forced high. 0110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1 else inactive. In downcounting, channel 1 is inactive (OC1REF='0) as long as TIMx_CNT>TIMx_CCR1 else active (OC1REF=1). 0111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1 else active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1 else inactive. 1000: Retriggerable OPM mode 1 - In up-counting mode, the channel is active until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1 and the channels becomes inactive again at the next update. In down-counting mode, the channel is inactive until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1 and the channels becomes inactive again at the next update. 1001: Retriggerable OPM mode 2 - In up-counting mode, the channel is inactive until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 2 and the channels becomes inactive again at the next update. In down-counting mode, the channel is active until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1 and the channels becomes active again at the next update. 1010: Reserved, 1011: Reserved. 1100: Combined PWM mode 1 - OC1REF has the same behavior as in PWM mode 1. OC1REFC is the logical OR between OC1REF and OC2REF. 1101: Combined PWM mode 2 - OC1REF has the same behavior as in PWM mode 2. OC1REFC is the logical AND between OC1REF and OC2REF. 1110: Asymmetric PWM mode 1 - OC1REF has the same behavior as in PWM mode 1. OC1REFC outputs OC1REF when the counter is counting up, OC2REF when it is counting down. 1111: Asymmetric PWM mode 2 - OC1REF has the same behavior as in PWM mode 2. OC1REFC outputs OC1REF when the counter is counting up, OC2REF when it is counting down. Note: In PWM mode, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from "frozen" mode to "PWM" mode. Note: The OC1M[3] bit is not contiguous, located in bit 16. RM0444 Rev 5 683/1390 #### Bit 3 **OC1PE**: Output compare 1 preload enable - 0: Preload register on TIMx CCR1 disabled. TIMx CCR1 can be written at anytime, the new value is taken in account immediately. - 1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded in the active register at each update event. Note: The PWM mode can be used without validating the preload register only in one-pulse mode (OPM bit set in TIMx CR1 register). Else the behavior is not guaranteed. #### Bit 2 OC1FE: Output compare 1 fast enable This bit decreases the latency between a trigger event and a transition on the timer output. It must be used in one-pulse mode (OPM bit set in TIMx_CR1 register), to have the output pulse starting as soon as possible after the starting trigger. 0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles. 1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is set to the compare level independently from the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if the channel is configured in PWM1 or PWM2 mode. ## Bits 1:0 CC1S[1:0]: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output. 01: CC1 channel is configured as input, IC1 is mapped on TI1. 10: CC1 channel is configured as input, IC1 is mapped on TI2. 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx CCER). #### 22.4.9 TIMx capture/compare mode register 2 [alternate] (TIMx CCMR2) (x = 2 to 4) Address offset: 0x1C Reset value: 0x0000 0000 The same register can be used for input capture mode (this section) or for output compare mode (next section). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. ## Input capture mode: | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|-------|------|-------|--------|------|--------|------|------|-------|------|-------|--------|------|--------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | IC4F | [3:0] | | IC4PS | C[1:0] | CC4S | S[1:0] | | IC3F | [3:0] | | IC3PS | C[1:0] | CC3 | S[1:0] | | rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:12 IC4F[3:0]: Input capture 4 filter Bits 11:10 IC4PSC[1:0]: Input capture 4 prescaler Bits 9:8 CC4S[1:0]: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output 01: CC4 channel is configured as input, IC4 is mapped on TI4 10: CC4 channel is configured as input, IC4 is mapped on TI3 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx SMCR register) Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER). Bits 7:4 IC3F[3:0]: Input capture 3 filter Bits 3:2 IC3PSC[1:0]: Input capture 3 prescaler Bits 1:0 CC3S[1:0]: Capture/Compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output 01: CC3
channel is configured as input, IC3 is mapped on TI3 10: CC3 channel is configured as input, IC3 is mapped on TI4 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx CCER). # 22.4.10 TIMx capture/compare mode register 2 [alternate] (TIMx_CCMR2) (x = 2 to 4) Address offset: 0x1C Reset value: 0x0000 0000 The same register can be used for output compare mode (this section) or for input capture mode (previous section). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. #### Output compare mode: | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------|------|----------|------|-------|-------|------|-------------|-------|------|----------|------|-------|-------|------|-------------| | Res. OC4M
[3] | Res. OC3M
[3] | | | | | | | | | rw | | | | | | | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | OC4CE | (| OC4M[2:0 |)] | OC4PE | OC4FE | CC4S | S[1:0] | OC3CE | (| OC3M[2:0 |] | OC3PE | OC3FE | CC3 | 3[1:0] | | rw Bits 31:25 Reserved, must be kept at reset value. Bits 23:17 Reserved, must be kept at reset value. Bit 15 OC4CE: Output compare 4 clear enable Bits 24, 14:12 **OC4M[3:0]**: Output compare 4 mode Refer to OC1M description (bits 6:4 in TIMx_CCMR1 register) Bit 11 OC4PE: Output compare 4 preload enable Bit 10 OC4FE: Output compare 4 fast enable RM0444 Rev 5 685/1390 Bits 9:8 CC4S[1:0]: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output 01: CC4 channel is configured as input, IC4 is mapped on TI4 10: CC4 channel is configured as input, IC4 is mapped on TI3 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx SMCR register) Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER). Bit 7 OC3CE: Output compare 3 clear enable Bits 16, 6:4 OC3M[3:0]: Output compare 3 mode Refer to OC1M description (bits 6:4 in TIMx CCMR1 register) Bit 3 OC3PE: Output compare 3 preload enable Bit 2 OC3FE: Output compare 3 fast enable Bits 1:0 CC3S[1:0]: Capture/Compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output 01: CC3 channel is configured as input, IC3 is mapped on TI3 10: CC3 channel is configured as input, IC3 is mapped on TI4 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx SMCR register) Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER). # 22.4.11 TIMx capture/compare enable register (TIMx_CCER)(x = 2 to 4) Address offset: 0x20 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-------|------|------|------|-------|------|------|------|-------|------|------|------|-------|------|------|------| | CC4NP | Res. | CC4P | CC4E | CC3NP | Res. | CC3P | CC3E | CC2NP | Res. | CC2P | CC2E | CC1NP | Res. | CC1P | CC1E | | rw | | rw | rw | Bit 15 CC4NP: Capture/Compare 4 output Polarity. Refer to CC1NP description Bit 14 Reserved, must be kept at reset value. Bit 13 CC4P: Capture/Compare 4 output Polarity. Refer to CC1P description Bit 12 CC4E: Capture/Compare 4 output enable. refer to CC1E description Bit 11 CC3NP: Capture/Compare 3 output Polarity. Refer to CC1NP description Bit 10 Reserved, must be kept at reset value. Bit 9 CC3P: Capture/Compare 3 output Polarity. Refer to CC1P description Bit 8 CC3E: Capture/Compare 3 output enable. Refer to CC1E description Bit 7 **CC2NP**: Capture/Compare 2 output Polarity. Refer to CC1NP description Bit 6 Reserved, must be kept at reset value. Bit 5 **CC2P**: Capture/Compare 2 output Polarity. refer to CC1P description Bit 4 CC2E: Capture/Compare 2 output enable. Refer to CC1E description Bit 3 CC1NP: Capture/Compare 1 output Polarity. CC1 channel configured as output: CC1NP must be kept cleared in this case. **CC1 channel configured as input**: This bit is used in conjunction with CC1P to define TI1FP1/TI2FP1 polarity. refer to CC1P description. Bit 2 Reserved, must be kept at reset value. Bit 1 CC1P: Capture/Compare 1 output Polarity. 0: OC1 active high (output mode) / Edge sensitivity selection (input mode, see below) 1: OC1 active low (output mode) / Edge sensitivity selection (input mode, see below) **When CC1 channel is configured as input**, both CC1NP/CC1P bits select the active polarity of TI1FP1 and TI2FP1 for trigger or capture operations. CC1NP=0, CC1P=0: non-inverted/rising edge. The circuit is sensitive to TIxFP1 rising edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger operation in gated mode or encoder mode). CC1NP=0, CC1P=1: inverted/falling edge. The circuit is sensitive to TIxFP1 falling edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is inverted (trigger operation in gated mode or encoder mode). CC1NP=1, CC1P=1: non-inverted/both edges. The circuit is sensitive to both TIxFP1 rising and falling edges (capture or trigger operations in reset, external clock or trigger mode), TIxFP1is not inverted (trigger operation in gated mode). This configuration must not be used in encoder mode. CC1NP=1, CC1P=0: This configuration is reserved, it must not be used. Bit 0 CC1E: Capture/Compare 1 output enable. 0: Capture mode disabled / OC1 is not active 1: Capture mode enabled / OC1 signal is output on the corresponding output pin Table 120. Output control bit for standard OCx channels | CCxE bit | OCx output state | |----------|--| | 0 | Output disabled (not driven by the timer: Hi-Z) | | 1 | Output enabled (tim_ocx = tim_ocxref + Polarity) | Note: The state of the external IO pins connected to the standard OCx channels depends on the OCx channel state and the GPIO and AFIO registers. #### 22.4.12 TIMx counter [alternate] (TIMx_CNT)(x = 2 to 4) Bit 31 of this register has two possible definitions depending on the value of UIFREMAP in TIMx CR1 register: - This section is for UIFREMAP = 0 - Next section is for UIFREMAP = 1 RM0444 Rev 5 687/1390 Address offset: 0x24 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|-------|--------|----|----|----|----|----|----|----| | | | | | | | | CNT[3 | 31:16] | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | CNT[| 15:0] | | | | | | | | | rw Bits 31:16 CNT[31:16]: Most significant part counter value (TIM2) Bits 15:0 CNT[15:0]: Least significant part of counter value # 22.4.13 TIMx counter [alternate] $(TIMx_CNT)(x = 2 \text{ to } 4)$ Bit 31 of this register has two possible definitions depending on the value of UIFREMAP in TIMx_CR1 register: - Previous section is for UIFREMAP = 0 - This section is for UIFREMAP = 1 Address offset: 0x24 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |--------|----|----|----|----|----|----|------|-----------|----|----|----|----|----|----|----| | UIFCPY | | | | | | | C | ONT[30:16 | 6] | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | CNT[| 15:0] | | | | | | | | | rw Bit 31 UIFCPY: UIF Copy This bit is a read-only copy of the UIF bit of the TIMx_ISR register Bits 30:16 CNT[30:16]: Most significant part counter value (TIM2) Bits 15:0 CNT[15:0]: Least significant part of counter value # 22.4.14 TIMx prescaler $(TIMx_PSC)(x = 2 \text{ to } 4)$ Address offset: 0x28 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|-----|--------|----|----|----|----|----|----|----| | | | | | | | | PSC | [15:0] | | | | | | | | | rw #### Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency CK_CNT is equal to $f_{CK\ PSC}$ / (PSC[15:0] + 1). PSC contains the value to be loaded in the active prescaler register at each update event (including when the counter is cleared through UG bit of TIMx_EGR register or through trigger controller when configured in "reset mode"). ## 22.4.15 TIMx auto-reload register (TIMx_ARR)(x = 2 to 4) Address offset: 0x2C Reset value: 0xFFFF FFFF | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|------|--------|----|----|----|----|----|----|----| | | | | | | | | ARR[| 31:16] | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | ARR | [15:0] | | | | | | | | | rw Bits 31:16 ARR[31:16]: High auto-reload value (TIM2) #### Bits 15:0 ARR[15:0]: Low Auto-reload value ARR is the value to be loaded in the actual auto-reload register. Refer to the Section 22.3.1: Time-base unit on page 627 for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. # 22.4.16 TIMx capture/compare register 1 (TIMx_CCR1)(x = 2 to 4) Address offset: 0x34 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|-----|----------|----|----|----|----|----|----|----| | | | | | | | | CCR | 1[31:16] | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | CCR | 1[15:0] | | | | | | | | | rw RM0444 Rev 5 689/1390 Bits 31:16 CCR1[31:16]: High Capture/Compare 1 value (TIM2) #### Bits 15:0
CCR1[15:0]: Low Capture/Compare 1 value #### If channel CC1 is configured as output: CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC1 output. #### If channel CC1is configured as input: CCR1 is the counter value transferred by the last input capture 1 event (IC1). The TIMx_CCR1 register is read-only and cannot be programmed. ## 22.4.17 TIMx capture/compare register 2 (TIMx_CCR2)(x = 2 to 4) Address offset: 0x38 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|------|---------|----|----|----|----|----|----|----| | | | | | | | | CCR2 | [31:16] | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | CCR2 | [15:0] | | | | | | | | | rw Bits 31:16 CCR2[31:16]: High Capture/Compare 2 value (TIM2) #### Bits 15:0 CCR2[15:0]: Low Capture/Compare 2 value #### If channel CC2 is configured as output: CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC2 output. #### If channel CC2 is configured as input: CCR2 is the counter value transferred by the last input capture 2 event (IC2). The TIMx_CCR2 register is read-only and cannot be programmed. #### 22.4.18 TIMx capture/compare register 3 (TIMx CCR3)(x = 2 to 4) Address offset: 0x3C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|-----|----------|----|----|----|----|----|----|----| | | | | | | | | CCR | 3[31:16] | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | CCF | R3[15:0] | | | | | | | | | rw Bits 31:16 CCR3[31:16]: High Capture/Compare 3 value (TIM2) #### Bits 15:0 CCR3[15:0]: Low Capture/Compare value #### If channel CC3 is configured as output: CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit OC3PE). Else the preload value is copied in the active capture/compare 3 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx CNT and signalled on OC3 output. #### If channel CC3is configured as input: CCR3 is the counter value transferred by the last input capture 3 event (IC3). The TIMx_CCR3 register is read-only and cannot be programmed. ## 22.4.19 TIMx capture/compare register 4 (TIMx_CCR4)(x = 2 to 4) Address offset: 0x40 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|------|---------|----|----|----|----|----|----|----| | | _ | | | | | | CCR4 | [31:16] | | _ | | | | _ | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | _ | | | | | | CCR4 | [15:0] | | _ | | | | _ | | | rw Bits 31:16 CCR4[31:16]: High Capture/Compare 4 value (TIM2) #### Bits 15:0 CCR4[15:0]: Low Capture/Compare value if CC4 channel is configured as output (CC4S bits): CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit OC4PE). Else the preload value is copied in the active capture/compare 4 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC4 output. if CC4 channel is configured as input (CC4S bits in TIMx_CCMR4 register): CCR4 is the counter value transferred by the last input capture 4 event (IC4). The TIMx_CCR4 register is read-only and cannot be programmed. RM0444 Rev 5 691/1390 #### 22.4.20 TIMx DMA control register (TIMx_DCR)(x = 2 to 4) Address offset: 0x48 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|----|----|----------|----|----|------|------|------|----|----|----------|----|----| | Res. | Res. | Res. | | | DBL[4:0] | | | Res. | Res. | Res. | | | DBA[4:0] | | | | | | | rw | rw | rw | rw | rw | | | | rw | rw | rw | rw | rw | Bits 15:13 Reserved, must be kept at reset value. #### Bits 12:8 DBL[4:0]: DMA burst length This 5-bit vector defines the number of DMA transfers (the timer recognizes a burst transfer when a read or a write access is done to the TIMx_DMAR address). 00000: 1 transfer, 00001: 2 transfers, 00010: 3 transfers, ... 10001: 18 transfers. Bits 7:5 Reserved, must be kept at reset value. #### Bits 4:0 DBA[4:0]: DMA base address This 5-bit vector defines the base-address for DMA transfers (when read/write access are done through the TIMx_DMAR address). DBA is defined as an offset starting from the address of the TIMx_CR1 register. Example: 00000: TIMx_CR1 00001: TIMx_CR2 00010: TIMx_SMCR ... **Example**: Let us consider the following transfer: DBL = 7 transfers & DBA = TIMx_CR1. In this case the transfer is done to/from 7 registers starting from the TIMx_CR1 address. ## 22.4.21 TIMx DMA address for full transfer $(TIMx_DMAR)(x = 2 \text{ to } 4)$ Address offset: 0x4C Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|------|---------|----|----|----|----|----|----|----| | | | | | | | | DMAE | 3[15:0] | | | | | | | | | rw Bits 15:0 **DMAB[15:0]**: DMA register for burst accesses A read or write operation to the DMAR register accesses the register located at the address (TIMx_CR1 address) + (DBA + DMA index) \times 4 where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base address configured in TIMx_DCR register, DMA index is automatically controlled by the DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR). #### 22.4.22 TIM2 option register 1 (TIM2_OR1) Address offset: 0x50 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------------|------|------------|-----------|-----------|------|------|------|------|------|------|------------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | 12
Res. | Res. | 10
Res. | 9
Res. | 8
Res. | Res. | Res. | Res. | Res. | Res. | Res. | 1
OCREI | | Bits 31:2 Reserved, must be kept at reset value. Bits 1:0 OCREF_CLR[1:0]: Ocref clr source selection This bit selects the ocref_clr input source. 00: COMP1 output is connected to the OCREF_CLR input 01: COMP2 output is connected to the OCREF_CLR input 10: COMP3⁽¹⁾ output is connected to the OCREF_CLR input 11: Reserved 1. COMP3 is available on STM32G0B1xx and STM32G0C1xx salestypes only. # 22.4.23 TIM3 option register 1 (TIM3_OR1) Address offset: 0x50 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | F_CLR
:0] | | | | | | | | | | | | | | | | rw | rw | Bits 31:2 Reserved, must be kept at reset value. Bits 1:0 OCREF_CLR[1:0]: Ocref clr source selection This bit selects the ocref_clr input source. Bits 1:0 OCREF_CLR[1:0] 00: COMP1 output is connected to the OCREF_CLR input 01: COMP2 output is connected to the OCREF_CLR input 10: COMP3⁽¹⁾ output is connected to the OCREF_CLR input 11: Reserved 1. COMP3 is available on STM32G0B1xx and STM32G0C1xx salestypes only. RM0444 Rev 5 693/1390 # 22.4.24 TIM4 option register 1 (TIM4_OR1) Address offset: 0x50 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|--------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. OCREI | F_CLR
:0] | | | | | | | | | | | | | | | | rw | rw | Bits 31:2 Reserved, must be kept at reset value. Bits 1:0 OCREF_CLR[1:0]: Ocref_clr source selection This bit selects the ocref_clr input source. Bits 1:0 OCREF_CLR[1:0] 00: COMP1 output is connected to the OCREF_CLR input 01: COMP2 output is connected to the OCREF_CLR input 10: COMP3⁽¹⁾ output is connected to the OCREF_CLR input 11: Reserved 1. COMP3 is available on STM32G0B1xx and STM32G0C1xx salestypes only. # 22.4.25 TIM2 alternate function option register 1 (TIM2_AF1) Address offset: 0x60 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|---------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------|-----------|-----------|-----------| | Res. ETRSI | EL[3:2] | | | | | | | | | | | | | | | | rw | rw | | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 14
EL[1:0] | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | Res. |
2
Res. | 1
Res. | 0
Res. | Bits 31:18 Reserved, must be kept at reset value. Bits 17:14 ETRSEL[3:0]: ETR source selection These bits select the ETR input source. 0000: ETR legacy mode 0001: COMP1 0010: COMP2 0011: LSE 0100: MCO⁽¹⁾ 0101: MCO2⁽¹⁾ 0110: COMP3⁽¹⁾ Others: Reserved Bits 13:0 Reserved, must be kept at reset value. 1. Available on STM32G0B1xx and STM32G0C1xx salestypes only. # 22.4.26 TIM3 alternate function option register 1 (TIM3_AF1) Address offset: 0x60 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|---------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------|-----------|-----------|-----------| | Res. ETRSI | EL[3:2] | | | | | | | | | | | | | | | | rw | rw | | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 14
EL[1:0] | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | Res. | 2
Res. | 1
Res. | 0
Res. | Bits 31:18 Reserved, must be kept at reset value. Bits 17:14 ETRSEL[3:0]: ETR source selection These bits select the ETR input source. 0000: ETR legacy mode 0001: COMP1 output 0010: COMP2 output 0110: COMP3 output⁽¹⁾ Others: Reserved Bits 13:0 Reserved, must be kept at reset value. 1. Available on STM32G0B1xx and STM32G0C1xx salestypes only. ## 22.4.27 TIM4 alternate function option register 1 (TIM4_AF1) Address offset: 0x60 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|---------|------|------|------|------|------|------|------|------|------|------|------|------|-------|---------| | Res. ETRSI | EL[3:2] | | | | | | | | | | | | | | | | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | ETRS | EL[1:0] | Res. | rw | rw | | | | | | | | | | | | | | | Bits 31:18 Reserved, must be kept at reset value. Bits 17:14 ETRSEL[3:0]: ETR source selection These bits select the ETR input source. 0000: ETR legacy mode 0001: COMP1 output 0010: COMP2 output 0110: COMP3 output⁽¹⁾ Others: Reserved Bits 13:0 Reserved, must be kept at reset value. 1. Available on STM32G0B1xx and STM32G0C1xx salestypes only. RM0444 Rev 5 695/1390 #### 22.4.28 TIM2 timer input selection register (TIM2_TISEL) Address offset: 0x68 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|-------|--------|------|------|------|------|------|----|-------|--------|----| | Res. | TI3SE | L[3:0] | | | | | | | | | | | | | | | rw | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | | TI2SE | L[3:0] | | Res. | Res. | Res. | Res. | | TI1SE | L[3:0] | | | | | | | rw | rw | rw | rw | | | | | rw | rw | rw | rw | Bits 31:20 Reserved, must be kept at reset value. Bits 19:16 TI3SEL[3:0]: TI3[0] to TI3[15] input selection These bits select the TI3[0] to TI3[15] input source. 0000: TIM2_CH3 input 0001: COMP3 output Others: Reserved Note: Available on STM32G0B1xx and STM32G0C1xx salestypes only, otherwise reserved. Bits 15:12 Reserved, must be kept at reset value. Bits 11:8 TI2SEL[3:0]: TI2[0] to TI2[15] input selection These bits select the TI2[0] to TI2[15] input source. 0000: TIM2_CH2 input 0001: COMP2 output Others: Reserved Bits 7:4 Reserved, must be kept at reset value. Bits 3:0 TI1SEL[3:0]: TI1[0] to TI1[15] input selection These bits select the TI1[0] to TI1[15] input source. 0000: TIM2_CH1 input 0001: COMP1 output Others: Reserved # 22.4.29 TIM3 timer input selection register (TIM3_TISEL) Address offset: 0x68 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|-------|--------|------|------|------|------|------|----|-------|--------|----| | Res. | TI3SE | L[3:0] | | | | | | | | | | | | | | | rw | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | | TI2SE | L[3:0] | | Res. | Res. | Res. | Res. | | TI1SE | L[3:0] | | | | | | | rw | rw | rw | rw | | | | | rw | rw | rw | rw | Bits 31:20 Reserved, must be kept at reset value. Bits 19:16 TI3SEL[3:0]: TI3[0] to TI3[15] input selection These bits select the TI3[0] to TI3[15] input source. 0000: TIM3_CH3 input 0001: COMP3 output Others: Reserved Note: Available on STM32G0B1xx and STM32G0C1xx salestypes only, otherwise reserved. Bits 15:12 Reserved, must be kept at reset value. Bits 11:8 TI2SEL[3:0]: TI2[0] to TI2[15] input selection These bits select the TI2[0] to TI2[15] input source. 0000: TIM3_CH2 input 0001: COMP2 output Others: Reserved Bits 7:4 Reserved, must be kept at reset value. Bits 3:0 TI1SEL[3:0]: TI1[0] to TI1[15] input selection These bits select the TI1[0] to TI1[15] input source. 0000: TIM3_CH1 input 0001: COMP1 output Others: Reserved # 22.4.30 TIM4 timer input selection register (TIM4_TISEL) Address offset: 0x68 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|-------|---------|------|------|------|------|------|----|-------------|--------|----| | Res. | TI3SEL[3:0] | | | | | | | | | | | | | | | | rw | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | | TI2SE | EL[3:0] | | Res. | Res. | Res. | Res. | | TI1SE | L[3:0] | | | | | | | rw | rw | rw | rw | | | | | rw | rw | rw | rw | Bits 31:20 Reserved, must be kept at reset value. Bits 19:16 TI3SEL[3:0]: TI3[0] to TI3[15] input selection These bits select the TI3[0] to TI3[15] input source. 0000: TIM4_CH3 input 0001: COMP3 output Others: Reserved Note: Available on STM32G0B1xx and STM32G0C1xx salestypes only, otherwise reserved. Bits 15:12 Reserved, must be kept at reset value. RM0444 Rev 5 697/1390 Bits 11:8 TI2SEL[3:0]: TI2[0] to TI2[15] input selection These bits select the TI2[0] to TI2[15] input source. 0000: TIM4_CH2 input 0001: COMP2 output Others: Reserved Bits 7:4 Reserved, must be kept at reset value. Bits 3:0 TI1SEL[3:0]: TI1[0] to TI1[15] input selection These bits select the TI1[0] to TI1[15] input source. 0000: TIM4_CH1 input 0001: COMP1 output Others: Reserved # 22.4.31 TIMx register map TIMx registers are mapped as described in the table below: Table 121. TIM2/TIM3/TIM4 register map and reset values | TIMx_CR1 TIMx_CR2 TIMx_CR2 TIMx_CR3 TIMx_CR4 TIMx_CR4 TIMx_CR4 TIMx_CR5 | | ı | | | | | | | | | | | | | | , | | 1111 | | | | | | | | | | | | | | | | | |--|--------|---------------|------|------|------|------|------|------------|------|---------|------|------|------|------|------|------|------|---------|-------|------|------|-------|---------|-------|-------|------|-------|------|-------|-------|-------|-------|-----------|------------| | Reset value | Offset | _ | 31 | 30 | 29 | 28 | 27 | 2 6 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 4 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 7 | 1 | 0 | | TIMX_CR2 Reset value Res | 0x00 | TIMx_CR1 | Res. UIFREMA | Res. | | | ARPE | | | DIR | MAO | URS | SIGN | CEN | | Reset value | | Reset value | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TIMX_DIER | 0x04 | TIMx_CR2 | Res. TI1S | MN | /IS[2 | 2:0] | CCDS | Res. | Res. | Res. | | Reset value | | Reset value | 0 | 0 | 0 | 0 | 0 | | | | | TIMX_DIER | 0x08 | TIMx_SMCR | Res. | | Res. | Res. | Res. | SMS[3] | ETP | ECE | | | | ETF | [3:0 |] | MSM | Т | S[2: | 0] | Res. | SN | /IS[2 | ::0] | | Reset value | | Reset value | | | | | | | | | | | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | Reset value | 0x0C | TIMx_DIER | Res. TDE
| Res. | CC4DE | CC3DE | CC2DE | CC1DE | UDE | Res. | ΞE | Res. | CC4IE | CC3IE | CC2IE | CC1IE | UIE | | Reset value | | Reset value | | | | | | | | | | | | | | | | | | 0 | | | | | | 0 | | 0 | | 0 | | | | 0 | | Reset value | 0x10 | TIMx_SR | Res. CC40F | CC30F | CC20F | CC10F | Res. | Res. | TIF | Res. | CC41F | CC3IF | CC2IF | CC11F | UIF | | Reset value | | Reset value | 0 | | | | | | 0 | | Reset value | 0x14 | TIMx_EGR | Res. TG | Res. | CC4G | CC3G | CC2G | CC1G | ne | | Reset value | | Reset value | 0 | | 0 | | | 0 | 0 | | TIMx_CCMR1 Input Capture mode Reset value | | Output | Res. OC2M[3] | Res. OC1M[3] | OC2CE | | | | OC2PE | OC2FE | | | OC1CE | | | | OC1PE | OC1FE | | | | TIMx_CCMR2 Input Capture mode Reset value Input Capture mode I | 040 | Reset value | | | | | | | | 0 | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ox1C TIMx_CCMR2
Output
Compare mode Section of the compare com | UX16 | Input Capture | Res. I | C2F | [3:0 |)] | PS | SC | | | ı | C1F | [3:0 |] | PS | SC | | | | Reset value 0 <td></td> <td>Reset value</td> <td></td> <td>0</td> | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Natc TiMx_CCMR2 Input Capture mode 8 | | Output | Res. DC4M[3] | Res. C3M[3] | O24CE | | | | OC4PE | OC4FE | | | OC3CE | | | | OC3PE | OC3FE | | | | TIMx_CCMR2 Input Capture mode m | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | | Reset value | 0x1C | Input Capture | Res. I | C4F | [3:0 |)] | PS | SC | | | ı | C3F | [3:0 |] | PS | SC | CC
[1: | :3S
:0] | | \ | | | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | | \ | 0x20 | TIMx_CCER | Res. CC4NP | Res. | CC4P | CC4E | CC3NP | Res. | CC3P | CC3E | CC2NP | Res. | CC2P | CC2E | CC1NP | Res. | CC1P | CC1E | | | - | Reset value | | | | | | | | | | | | | | | | | | | 0 | | | | 0 | 0 | | | | 0 | | П | 0 | 0 | RM0444 Rev 5 699/1390 Table 121. TIM2/TIM3/TIM4 register map and reset values (continued) | | Tabi | | _ | _ | | | | | | | | 9 | | | | י קי | u 1 1 1 | <u> </u> | _ | _ | · u | | _ | , | ,,,, | | - | | 1 | | 1 | | _ | |--------|---------------|-------------------|------|------|------|------|-------|------------|------|--------------|------|------|------|-------|------|------|---------|----------|------|------|------|------|------|------|------|--------------|------|------|------|------|------|------|----------------| | Offset | Register name | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | œ | 7 | 9 | 2 | 4 | က | 7 | - | 0 | | 0x24 | TIMx_CNT | CNT[31] or UIFCPY | | | (TIN | М2 с | only | , res | | T[30
ed o | | | thei | r tim | ers) | ı | | | | | | | | C | CNT | [15: | 0] | | | | | | | | | Reset value | 0 | | 0x28 | TIMx_PSC | Res. | | | | | | F | sc | [15: | 0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x2C | TIMx_ARR | | | (T | IM2 | 2 on | ly, r | AF
eser | | 31:1
d on | | oth | er t | imeı | rs) | | | | | | | | | Α | RR | [15: | 0] | | | | | | | | | Reset value | 1 | | 0x30 | | • | | | | | | • | 19 | 1 | | | | F | Rese | erve | d | | | | | | | | | | | | | | | | | | 0x34 | TIMx_CCR1 | | | (Τ | TIM2 | 2 on | ly, r | CC
eser | | [31:
d on | | oth | er t | imeı | rs) | | | | | | | | | С | CR1 | I[15 | :0] | | | | | | | | | Reset value | 0 | | 0x38 | TIMx_CCR2 | | | (Τ | IM2 | 2 on | ly, r | CC
eser | | [31:
d on | | oth | er t | imeı | rs) | | | | | | | | | С | CR2 | 2[15 | :0] | | | | | | | | | Reset value | 0 | | 0x3C | TIMx_CCR3 | | | (T | TIM2 | 2 on | ly, r | CC
eser | | [31:
d on | - | oth | er t | imeı | rs) | | | | | | | | | С | CR | 3[15 | :0] | | | | | | | | | Reset value | 0 | | 0x40 | TIMx_CCR4 | | | (T | TIM2 | 2 on | ly, r | CC
eser | | [31:
d on | | oth | er t | imeı | rs) | | | | | | | | | С | CR4 | I [15 | :0] | | | | | | | | | Reset value | 0 | | 0x44 | | | Т | | Т | | | | | | | | | F | Rese | erve | d | | | ı | | | | | | Т | Т | Т | | | | | | | 0x48 | TIMx_DCR | Res. | | 3L[4 | | | Res. | Res. | Res. | | DE | 3A[4 | l:0] | | | | Reset value | 0 | 0 | 0 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0 | | 0x4C | TIMx_DMAR | Res. | | | | | | DI | MAE | 3[15 | :0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x50 | TIM2_OR1 | Res. 9 10 | בי
בי
בי | | | Reset value | 0 | 0 | Table 121. TIM2/TIM3/TIM4 register map and reset values (continued) | Offset | Register
name | 31 | 30 | 53 | 28 | 27 | 56 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 2 | 1 | 0 | |--------|------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------------| | 0x50 | TIM3_OR1 | Res. | OCINET _CEN | | | Reset value | 0 | 0 | | 0x50 | TIM4_OR1 | Res. | OCNET_CEN | | | Reset value | 0 | 0 | | 0x60 | TIM2_AF1 | Res. E | | SEI
:0] | _ | Res. | | Reset value | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | | 0x60 | TIM3_AF1 | Res. E | | SEI
:0] | | Res. | | Reset value | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | | 0x60 | TIM4_AF1 | Res. E | | SEI
:0] | | Res. | | Reset value | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | | 0x68 | TIM2_TISEL | Res. TI | 3SE | L[3 | :0] | Res. | Res. | Res. | Res. | TI | I2SE | EL[3 | :0] | Res. | Res. | Res. | Res. | TI | 11SE | EL[3: | :0] | | | Reset value | | | | | | | | | | | | | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | | 0x68 | TIM3_TISEL | Res. TI | 3SE | L[3 | :0] | Res. | Res. | Res. | Res. | TI | I2SE | EL[3 | :0] | Res. | Res. | Res. | Res. | T | 11SE | EL[3: | :0] | | | Reset value | | | | | | | | | | | | | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | | 0x68 | TIM4_TISEL | Res. TI | 3SE | L[3 | :0] | Res. | Res. | Res. | Res. | TI | 1281 | EL[3 | :0] | Res. | Res. | Res. | Res. | TI | 115 | EL[3: | :0] | | | Reset value | | | | | | | | | | | | | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | Refer to Section 2.2 on page 58 for the register boundary addresses. RM0444 Rev 5 701/1390 # 23 Basic timers (TIM6/TIM7) #### 23.1 TIM6/TIM7 introduction The basic timers TIM6 and TIM7 consist of a 16-bit auto-reload counter driven by a programmable prescaler. They may be used as generic timers for time base generation but they are also specifically used to drive the digital-to-analog converter (DAC). In fact, the timers are internally connected to the DAC and are able to drive it through their trigger outputs. The timers are completely independent, and do not share any resources. #### 23.2 TIM6/TIM7 main features Basic timer (TIM6/TIM7) features include: - 16-bit auto-reload upcounter - 16-bit programmable prescaler used to divide (also "on the fly") the counter clock frequency by any factor between 1 and 65535 - Synchronization circuit to trigger the DAC - Interrupt/DMA generation on the update event: counter overflow Figure 211. Basic timer block diagram # 23.3 TIM6/TIM7 functional description #### 23.3.1 Time-base unit The main block of the programmable timer is a 16-bit upcounter with its related auto-reload register. The counter clock can be divided by a prescaler. The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running. The time-base unit includes: - Counter Register (TIMx_CNT) - Prescaler Register (TIMx PSC) - Auto-Reload Register (TIMx_ARR) The auto-reload register is preloaded. The preload register is accessed each time an attempt is made to write or read the auto-reload register. The contents of the preload register are transferred into the shadow register permanently or at each update event UEV, depending on the auto-reload preload enable bit (ARPE) in the TIMx_CR1 register. The update event is sent when the counter reaches the overflow value and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation of the update event is described in detail for each configuration. The counter is clocked by the
prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in the TIMx CR1 register is set. Note that the actual counter enable signal CNT EN is set 1 clock cycle after CEN. #### **Prescaler description** The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register). It can be changed on the fly as the TIMx_PSC control register is buffered. The new prescaler ratio is taken into account at the next update event. *Figure 212* and *Figure 213* give some examples of the counter behavior when the prescaler ratio is changed on the fly. RM0444 Rev 5 703/1390 Figure 212. Counter timing diagram with prescaler division change from 1 to 2 #### 23.3.2 Counting mode The counter counts from 0 to the auto-reload value (contents of the TIMx_ARR register), then restarts from 0 and generates a counter overflow event. An update event can be generate at each counter overflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller). The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This avoids updating the shadow registers while writing new values into the preload registers. In this way, no update event occurs until the UDIS bit has been written to 0, however, the counter and the prescaler counter both restart from 0 (but the prescale rate does not change). In addition, if the URS (update request selection) bit in the TIMx_CR1 register is set, setting the UG bit generates an update event UEV, but the UIF flag is not set (so no interrupt or DMA request is sent). When an update event occurs, all the registers are updated and the update flag (UIF bit in the TIMx_SR register) is set (depending on the URS bit): - The buffer of the prescaler is reloaded with the preload value (contents of the TIMx PSC register) - The auto-reload shadow register is updated with the preload value (TIMx_ARR) The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR = 0x36. Figure 214. Counter timing diagram, internal clock divided by 1 Figure 215. Counter timing diagram, internal clock divided by 2 Figure 217. Counter timing diagram, internal clock divided by N 4 RM0444 Rev 5 707/1390 Figure 219. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) # 23.3.3 UIF bit remapping The IUFREMAP bit in the TIMx_CR1 register forces a continuous copy of the Update Interrupt Flag UIF into the timer counter register's bit 31 (TIMxCNT[31]). This allows to atomically read both the counter value and a potential roll-over condition signaled by the UIFCPY flag. In particular cases, it can ease the calculations by avoiding race conditions caused for instance by a processing shared between a background task (counter reading) and an interrupt (Update Interrupt). There is no latency between the assertions of the UIF and UIFCPY flags. #### 23.3.4 Clock source The counter clock is provided by the Internal clock (CK_INT) source. The CEN (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed only by software (except for UG that remains cleared automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal clock CK_INT. *Figure 220* shows the behavior of the control circuit and the upcounter in normal mode, without prescaler. Figure 220. Control circuit in normal mode, internal clock divided by 1 #### 23.3.5 Debug mode When the microcontroller enters the debug mode (Cortex®-M0+ core - halted), the TIMx counter either continues to work normally or stops, depending on the DBG_TIMx_STOP configuration bit in the DBG module. For more details, refer to Section 40.9.2: Debug support for timers, watchdog and I²C. # 23.4 TIM6/TIM7 registers Refer to Section 1.2 on page 53 for a list of abbreviations used in register descriptions. The peripheral registers can be accessed by half-words (16-bit) or words (32-bit). # 23.4.1 TIMx control register 1 (TIMx_CR1)(x = 6 to 7) Address offset: 0x00 Reset value: 0x0000 Bits 15:12 Reserved, must be kept at reset value. Bit 11 UIFREMAP: UIF status bit remapping 0: No remapping. UIF status bit is not copied to TIMx_CNT register bit 31. 1: Remapping enabled. UIF status bit is copied to TIMx_CNT register bit 31. Bits 10:8 Reserved, must be kept at reset value. 4 RM0444 Rev 5 709/1390 - Bit 7 ARPE: Auto-reload preload enable - 0: TIMx_ARR register is not buffered. - 1: TIMx_ARR register is buffered. - Bits 6:4 Reserved, must be kept at reset value. - Bit 3 OPM: One-pulse mode - 0: Counter is not stopped at update event - 1: Counter stops counting at the next update event (clearing the CEN bit). - Bit 2 URS: Update request source This bit is set and cleared by software to select the UEV event sources. 0: Any of the following events generates an update interrupt or DMA request if enabled. These events can be: - Counter overflow/underflow - Setting the UG bit - Update generation through the slave mode controller - 1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled. - Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable UEV event generation. - 0: UEV enabled. The Update (UEV) event is generated by one of the following events: - Counter overflow/underflow - Setting the UG bit - Update generation through the slave mode controller Buffered registers are then loaded with their preload values. 1: UEV disabled. The Update event is not generated, shadow registers keep their value (ARR, PSC). However the counter and the prescaler are reinitialized if the UG bit is set or if a hardware reset is received from the slave mode controller. - Bit 0 CEN: Counter enable - 0: Counter disabled - 1: Counter enabled Note: Gated mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware. CEN is cleared automatically in one-pulse mode, when an update event occurs. ## 23.4.2 TIMx control register 2 (TIMx_CR2)(x = 6 to 7) Address offset: 0x04 Reset value: 0x0000 | 1 | 5 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|-----|------|------|------|------|------|------|------|------|----|----------|----|------|------|------|------| | Re | es. | Res. | MMS[2:0] |] | Res. | Res. | Res. | Res. | | | | | | | | | | | | rw | rw | rw | | | | | Bits 15:7 Reserved, must be kept at reset value. #### Bits 6:4 MMS[2:0]: Master mode selection These bits are used to select the information to be sent in master mode to slave timers for synchronization (TRGO). The combination is as follows: 000: **Reset** - the UG bit from the TIMx_EGR register is used as a trigger output (TRGO). If reset is generated by the trigger input (slave mode controller configured in reset mode) then the signal on TRGO is delayed compared to the actual reset. 001: **Enable** - the Counter enable signal, CNT_EN, is used as a trigger output (TRGO). It is useful to start several timers at the same time or to control a window in which a slave timer is enabled. The Counter Enable signal is generated by a logic OR between CEN control bit and the trigger input when configured in gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description in the TIMx_SMCR register). 010: **Update** - The update event is selected as a trigger output (TRGO). For instance a master timer can then be used as a prescaler for a slave timer. Note: The clock of the slave timer or ADC must be enabled prior to receive events from the master timer, and must not be changed on-the-fly while triggers are received from the master timer. Bits 3:0 Reserved, must be kept at reset value. # 23.4.3 TIMx DMA/Interrupt enable register (TIMx_DIER)(x = 6 to 7) Address offset: 0x0C Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|-----|------|------|------|------|------|------|------|-----| | Res. UDE | Res. UIE | | | | | | | | | rw | | | | | | | | rw | Bits 15:9 Reserved, must be kept at reset value. Bit 8 **UDE**: Update DMA request enable 0: Update DMA request disabled. 1: Update DMA request enabled. Bits 7:1 Reserved, must be kept at reset value. Bit 0 **UIE**: Update interrupt enable 0: Update interrupt disabled. 1: Update interrupt enabled. 47/ RM0444 Rev 5 711/1390 ## 23.4.4 TIMx status register $(TIMx_SR)(x = 6 \text{ to } 7)$ Address offset: 0x10 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | Res. UIF | | | | | | | | | | | | | | | | | rc_w0 | Bits 15:1 Reserved, must be kept at reset value. Bit 0 UIF: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. - 0: No update occurred. - 1: Update interrupt pending. This bit is set by hardware when the registers are updated: - At overflow or underflow regarding the repetition counter value and if UDIS = 0 in the TIMx_CR1 register. - When CNT is reinitialized by software using the UG bit in the TIMx_EGR register, if URS = 0 and UDIS = 0 in the TIMx_CR1 register. # 23.4.5 TIMx event generation register (TIMx_EGR)(x = 6 to 7) Address offset: 0x14 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----| | Res. UG | | | | | | | | | | | | | | | | | w | Bits 15:1 Reserved, must be kept at reset value. Bit 0 **UG**: Update generation This bit can be set by software, it is automatically cleared by hardware. - 0: No action. - 1:
Re-initializes the timer counter and generates an update of the registers. Note that the prescaler counter is cleared too (but the prescaler ratio is not affected). #### 23.4.6 TIMx counter (TIMx CNT)(x = 6 to 7) Address offset: 0x24 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------|------|------|------|------|------|------|--------|------|------|------|------|------|------|------| | UIF
CPY | Res. | r | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | CNT | [15:0] | | | | | | | | | rw #### Bit 31 UIFCPY: UIF Copy This bit is a read-only copy of the UIF bit of the TIMx_ISR register. If the UIFREMAP bit in TIMx_CR1 is reset, bit 31 is reserved and read as 0. Bits 30:16 Reserved, must be kept at reset value. Bits 15:0 CNT[15:0]: Counter value # 23.4.7 TIMx prescaler $(TIMx_PSC)(x = 6 \text{ to } 7)$ Address offset: 0x28 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|-----|--------|----|----|----|----|----|----|----| | | | | | | | | PSC | [15:0] | | | | | | | | | rw #### Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency CK_CNT is equal to f_{CK} PSC / (PSC[15:0] + 1). PSC contains the value to be loaded into the active prescaler register at each update event. (including when the counter is cleared through UG bit of TIMx_EGR register or through trigger controller when configured in "reset mode"). # 23.4.8 TIMx auto-reload register (TIMx_ARR)(x = 6 to 7) Address offset: 0x2C Reset value: 0xFFFF | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|-----|--------|----|----|----|----|----|----|----| | | | | | | | | ARR | [15:0] | | | | | | | | | rw #### Bits 15:0 ARR[15:0]: Prescaler value ARR is the value to be loaded into the actual auto-reload register. Refer to Section 23.3.1: Time-base unit on page 703 for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. # 23.4.9 TIMx register map TIMx registers are mapped as 16-bit addressable registers as described in the table below: Table 122. TIMx register map and reset values | | | | | | | | | | _ | _ | | ŭ | _ | | IIG | • | | | ,30 | | _ | _ | | | _ | _ | _ | | _ | | | | _ | |---------------|------------------|----------------|---------|------|------|----------|-------|------|-------------|--------|------|------|------|------| | Offset | Register
name | 31 | 30 | 53 | 28 | 27 | 26 | 22 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | ∞ | 7 | 9 | 2 | 4 | က | 7 | 7 | 0 | | 0x00 | TIMx_CR1 | Res. UIFREMA | Res. | Res. | Res. | ARPE | Res. | Res. | Res. | OPM | URS | NDIS | CEN | | | Reset value | 0 | | | | 0 | | | | 0 | 0 | 0 | 0 | | 0x04 | TIMx_CR2 | Res. ı | имя
[2:0 | 3
] | Res. | Res. | Res. | Res. | | | Reset value | 0 | 0 | 0 | | | | | | 0x08 | | | | | | | | | | | | | | Re | esei | ved | | | | | | | | | | | | | | | | | | | 0x0C | TIMx_DIER | Res. UDE | Res. UIE | | | Reset value | 0 | | | | | | | | 0 | | 0x10 | TIMx_SR | Res. UIF | | | Reset value | 0 | | 0x14 | TIMx_EGR | Res. ne | | | Reset value | 0 | | 0x18-
0x20 | | | _ | _ | _ | | _ | _ | | | _ | _ | | Re | eser | ved | | _ | | | | | | | | | | | | | | | | | 0x24 | TIMx_CNT | UIFCPY or Res. | | | | | | | C | NT | [15:0 | 0] | | | | | | | | | Reset value | 0 | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x28 | TIMx_PSC | Res. | | | | | | P | SC | [15:0 | 0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x2C | TIMx_ARR | Res. | | | | | | Α | .RR | [15: | 0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Refer to Section 2.2 on page 58 for the register boundary addresses. # 24 General-purpose timers (TIM14) ### 24.1 TIM14 introduction The TIM14 general-purpose timer consists of a 16-bit auto-reload counter driven by a programmable prescaler. It may be used for a variety of purposes, including measuring the pulse lengths of input signals (input capture) or generating output waveforms (output compare, PWM). Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers. The TIM14 timer is completely independent, and does not share any resources. # 24.2 TIM14 main features #### 24.2.1 TIM14 main features The features of general-purpose timer TIM14 include: - 16-bit auto-reload upcounter - 16-bit programmable prescaler used to divide the counter clock frequency by any factor between 1 and 65536 (can be changed "on the fly") - independent channel for: - Input capture - Output compare - PWM generation (edge-aligned mode) - One-pulse mode output - Interrupt generation on the following events: - Update: counter overflow, counter initialization (by software) - Input capture - Output compare Figure 221. General-purpose timer block diagram (TIM14) This signal can be used as trigger for some slave timers, see Section 24.3.11: Using timer output as trigger for other timers (TIM14). # 24.3 TIM14 functional description #### 24.3.1 Time-base unit The main block of the timer is a 16-bit up-counter with its related auto-reload register. The counter clock can be divided by a prescaler. The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running. The time-base unit includes: - Counter register (TIMx_CNT) - Prescaler register (TIMx PSC) - Auto-reload register (TIMx ARR) The auto-reload register is preloaded. Writing to or reading from the auto-reload register accesses the preload register. The content of the preload register are transferred into the shadow register permanently or at each update event (UEV), depending on the auto-reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter reaches the overflow and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation of the update event is described in details for each configuration. The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in TIMx CR1 register is set. Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1 register. #### **Prescaler description** The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register). It can be changed on the fly as this control register is buffered. The new prescaler ratio is taken into account at the next update event. *Figure 222* and *Figure 223* give some examples of the counter behavior when the prescaler ratio is changed on the fly. RM0444 Rev 5 717/1390 Figure 222. Counter timing diagram with prescaler division change from 1 to 2 #### 24.3.2 Counter modes #### **Upcounting mode** In upcounting mode, the counter counts from 0 to the auto-reload value (content of the TIMx ARR register), then restarts from 0 and generates a counter overflow event. Setting the UG bit in the TIMx_EGR register (by software) also generates an update event. The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate does not change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx SR register) is set (depending on the URS bit): - The auto-reload shadow register is updated with the preload value (TIMx ARR), - The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). The following figures show some examples of the counter behavior for different clock frequencies when TIMx ARR=0x36. Figure 224. Counter timing diagram, internal clock divided by 1 4 RM0444 Rev 5 719/1390 Figure 225. Counter timing diagram, internal clock divided by 2 Figure 227. Counter timing diagram, internal clock divided by N 577 RM0444 Rev 5 Figure 229. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) ### 24.3.3 Clock selection The counter clock can be provided by the following clock sources: Internal clock (CK_INT) ### Internal clock source (CK_INT) The internal clock source is the default clock source for TIM14. *Figure 230* shows the behavior of the control circuit and the upcounter in normal mode, without prescaler. Figure 230. Control circuit in normal mode, internal clock divided by 1 ### 24.3.4 Capture/compare channels Each Capture/Compare channel is built around a capture/compare register (including a shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and an output
stage (with comparator and output control). Figure 231 to Figure 233 give an overview of one capture/compare channel. The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be used as the capture command. It is prescaled before the capture register (ICxPS). Figure 231. Capture/compare channel (example: channel 1 input stage) The output stage generates an intermediate waveform which is then used for reference: OCxRef (active high). The polarity acts at the end of the chain. 4 RM0444 Rev 5 723/1390 Figure 232. Capture/compare channel 1 main circuit Figure 233. Output stage of capture/compare channel (channel 1) 1. Available on TIM12 only. The capture/compare block is made of one preload register and one shadow register. Write and read always access the preload register. In capture mode, captures are actually done in the shadow register, which is copied into the preload register. In compare mode, the content of the preload register is copied into the shadow register which is compared to the counter. ### 24.3.5 Input capture mode In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the value of the counter after a transition detected by the corresponding ICx signal. When a capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be cleared by software by writing it to '0' or by reading the captured data stored in the TIMx_CCRx register. CCxOF is cleared when it is written with 0. The following example shows how to capture the counter value in TIMx_CCR1 when TI1 input rises. To do this, use the following procedure: - 1. Select the proper TI1[x] source (internal or external) with the TI1SEL[3:0] bits in the TIMx TISEL register. - 2. Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S bits to '01' in the TIMx_CCMR1 register. As soon as CC1S becomes different from '00', the channel is configured in input mode and the TIMx_CCR1 register becomes readonly. - 3. Program the appropriate input filter duration in relation with the signal connected to the timer (by programming the ICxF bits in the TIMx_CCMRx register if the input is one of the TIx inputs). Let's imagine that, when toggling, the input signal is not stable during at must 5 internal clock cycles. We must program a filter duration longer than these 5 clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the new level have been detected (sampled at f_{DTS} frequency). Then write IC1F bits to '0011' in the TIMx_CCMR1 register. - 4. Select the edge of the active transition on the TI1 channel by programming CC1P and CC1NP bits to '00' in the TIMx_CCER register (rising edge in this case). - 5. Program the input prescaler. In our example, we wish the capture to be performed at each valid transition, so the prescaler is disabled (write IC1PS bits to '00' in the TIMx CCMR1 register). - 6. Enable capture from the counter into the capture register by setting the CC1E bit in the TIMx_CCER register. - 7. If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx DIER register. When an input capture occurs: - The TIMx_CCR1 register gets the value of the counter on the active transition. - CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures occurred whereas the flag was not cleared. - An interrupt is generated depending on the CC1IE bit. In order to handle the overcapture, it is recommended to read the data before the overcapture flag. This is to avoid missing an overcapture which could happen after reading the flag and before reading the data. Note: IC interrupt requests can be generated by software by setting the corresponding CCxG bit in the TIMx_EGR register. ### 24.3.6 Forced output mode In output mode (CCxS bits = '00' in the TIMx_CCMRx register), each output compare signal (OCxREF and then OCx) can be forced to active or inactive level directly by software, independently of any comparison between the output compare register and the counter. To force an output compare signal (OCXREF/OCx) to its active level, one just needs to write '0101' in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit. For example: CCxP='0' (OCx active high) => OCx is forced to high level. RM0444 Rev 5 725/1390 The OCxREF signal can be forced low by writing the OCxM bits to '0100' in the TIMx CCMRx register. Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still performed and allows the flag to be set. Interrupt requests can be sent accordingly. This is described in the output compare mode section below. ### 24.3.7 Output compare mode This function is used to control an output waveform or indicating when a period of time has elapsed. When a match is found between the capture/compare register and the counter, the output compare function: - Assigns the corresponding output pin to a programmable value defined by the output compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP bit in the TIMx_CCER register). The output pin can keep its level (OCxM='0000'), be set active (OCxM='0001'), be set inactive (OCxM='0010') or can toggle (OCxM='0011') on match. - 2. Sets a flag in the interrupt status register (CCxIF bit in the TIMx SR register). - 3. Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the TIMx_DIER register). The TIMx_CCRx registers can be programmed with or without preload registers using the OCxPE bit in the TIMx_CCMRx register. In output compare mode, the update event UEV has no effect on OCxREF and OCx output. The timing resolution is one count of the counter. Output compare mode can also be used to output a single pulse (in One-pulse mode). #### Procedure: - 1. Select the counter clock (internal, external, prescaler). - Write the desired data in the TIMx_ARR and TIMx_CCRx registers. - 3. Set the CCxIE bit if an interrupt request is to be generated. - 4. Select the output mode. For example: - Write OCxM = '0011' to toggle OCx output pin when CNT matches CCRx - Write OCxPE = '0' to disable preload register - Write CCxP = '0' to select active high polarity - Write CCxE = '1' to enable the output - Enable the counter by setting the CEN bit in the TIMx_CR1 register. The TIMx_CCRx register can be updated at any time by software to control the output waveform, provided that the preload register is not enabled (OCxPE='0', else TIMx_CCRx shadow register is updated only at the next update event UEV). An example is given in *Figure 234*. Figure 234. Output compare mode, toggle on OC1. ### 24.3.8 PWM mode Pulse Width Modulation mode allows to generate a signal with a frequency determined by the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register. The PWM mode can be selected independently on each channel (one PWM per OCx output) by writing '0110' (PWM mode 1) or '0111' (PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. The corresponding preload register must be enabled by setting the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register. As the preload registers are transferred to the shadow registers only when an update event occurs, before starting the counter, all registers must be initialized by setting the UG bit in the TIMx_EGR register. The OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It can be programmed as active high or active low. The OCx output is enabled by the CCxE bit in the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details. In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine whether TIMx_CNT \leq TIMx_CCRx. The timer is able to generate PWM in edge-aligned mode only since the counter is upcounting. In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at '1'. If the compare value is 0 then OCxRef is held at '0'. *Figure 235* shows some edgealigned PWM waveforms in an example where TIMx_ARR=8. RM0444 Rev 5 727/1390 Figure 235. Edge-aligned PWM waveforms (ARR=8) ### 24.3.9 One-pulse mode One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length after a programmable delay. Starting the counter can be controlled using the CEN bit. Generating the waveform can be done in output compare mode or PWM mode. One-pulse mode is selected by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at the next update event UEV. A pulse can be correctly generated only if the compare value is different from the counter initial value. Before starting (when the timer is waiting for the trigger), the configuration must be as follows: CNT < CCRx = ARR (in particular, 0 < CCRx) ### 24.3.10 UIF bit remapping The IUFREMAP bit in the TIMx_CR1 register forces a continuous copy of the Update Interrupt Flag UIF into bit 31 of the timer counter register (TIMxCNT[31]). This allows to atomically read both the counter value and a potential roll-over condition signaled by the UIFCPY flag. In particular cases, it can ease the calculations by avoiding race conditions caused for instance by a processing shared between a background task
(counter reading) and an interrupt (Update Interrupt). There is no latency between the assertions of the UIF and UIFCPY flags. ### 24.3.11 Using timer output as trigger for other timers (TIM14) The timers with one channel only do not feature a master mode. However, the OC1 output signal can be used to trigger some other timers (including timers described in other sections of this document). Check the "TIMx internal trigger connection" table of any TIMx_SMCR register on the device to identify which timers can be targeted as slave. The OC1 signal pulse width must be programmed to be at least 2 clock cycles of the destination timer, to make sure the slave timer will detect the trigger. For instance, if the destination's timer CK_INT clock is 4 times slower than the source timer, the OC1 pulse width must be 8 clock cycles. # **24.3.12** Debug mode When the microcontroller enters debug mode (Cortex $^{\$}$ -M0+ core halted), the TIMx counter either continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in DBG module. For more details, refer to Section 40.9.2: Debug support for timers, watchdog and I^2 C. RM0444 Rev 5 729/1390 # 24.4 TIM14 registers The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits). # 24.4.1 TIM14 control register 1 (TIM14_CR1) Address offset: 0x00 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|--------------|------|-----|-------|------|------|------|------|-----|-----|------|-----| | Res. | Res. | Res. | Res. | UIFRE
MAP | Res. | CKE | [1:0] | ARPE | Res. | Res. | Res. | ОРМ | URS | UDIS | CEN | | | | | | rw | | rw | rw | rw | | | | rw | rw | rw | rw | Bits 15:12 Reserved, must be kept at reset value. - Bit 11 **UIFREMAP**: UIF status bit remapping - 0: No remapping. UIF status bit is not copied to TIMx_CNT register bit 31. - 1: Remapping enabled. UIF status bit is copied to TIMx CNT register bit 31. - Bit 10 Reserved, must be kept at reset value. - Bits 9:8 CKD[1:0]: Clock division This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and sampling clock used by the digital filters (TIx), 00: $t_{DTS} = t_{CK_INT}$ 01: $t_{DTS} = 2 \times t_{CK_INT}$ 10: $t_{DTS} = 4 \times t_{CK_INT}$ 11: Reserved Bit 7 ARPE: Auto-reload preload enable 0: TIMx ARR register is not buffered 1: TIMx_ARR register is buffered - Bits 6:4 Reserved, must be kept at reset value. - Bit 3 **OPM**: One-pulse mode - 0: Counter is not stopped on the update event - 1: Counter stops counting on the next update event (clearing the CEN bit). Ty/ #### Bit 2 URS: Update request source This bit is set and cleared by software to select the update interrupt (UEV) sources. 0: Any of the following events generate an UEV if enabled: - Counter overflow - Setting the UG bit - 1: Only counter overflow generates an UEV if enabled. #### Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable update interrupt (UEV) event generation. - 0: UEV enabled. An UEV is generated by one of the following events: - Counter overflow - Setting the UG bit. Buffered registers are then loaded with their preload values. 1: UEV disabled. No UEV is generated, shadow registers keep their value (ARR, PSC, CCRx). The counter and the prescaler are reinitialized if the UG bit is set. #### Bit 0 CEN: Counter enable - 0: Counter disabled - 1: Counter enabled Note: External clock and gated mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware. ### 24.4.2 TIM14 Interrupt enable register (TIM14_DIER) Address offset: 0x0C Reset value: 0x0000 | 15 | 14 | 13 | 12 | . 11 | 10 | 9 | . 8 | 7 | 6 | 5 | . 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-----| | Res. CC1IE | UIE | | | | | | | | | | | | | | | | rw | rw | Bits 15:2 Reserved, must be kept at reset value. Bit 1 CC1IE: Capture/Compare 1 interrupt enable 0: CC1 interrupt disabled1: CC1 interrupt enabled Bit 0 **UIE**: Update interrupt enable 0: Update interrupt disabled 1: Update interrupt enabled ### 24.4.3 TIM14 status register (TIM14_SR) Address offset: 0x10 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|-------|------|------|------|------|------|------|------|-------|-------| | Res. | Res. | Res. | Res. | Res. | Res. | CC10F | Res. CC1IF | UIF | | | | | | | | rc_w0 | | | | | | | | rc_w0 | rc_w0 | 4 RM0444 Rev 5 731/1390 Bits 15:10 Reserved, must be kept at reset value. #### Bit 9 CC10F: Capture/Compare 1 overcapture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to '0'. - 0: No overcapture has been detected. - 1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set - Bits 8:2 Reserved, must be kept at reset value. #### Bit 1 **CC1IF**: Capture/compare 1 interrupt flag This flag is set by hardware. It is cleared by software (input capture or output compare mode) or by reading the TIMx_CCR1 register (input capture mode only). - 0: No compare match / No input capture occurred - 1: A compare match or an input capture occurred. If channel CC1 is configured as output: this flag is set when he content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the content of TIMx_CCR1 is greater than the content of TIMx_ARR, the CC1IF bit goes high on the counter overflow (in up-counting and up/down-counting modes) or underflow (in down-counting mode). There are 3 possible options for flag setting in center-aligned mode, refer to the CMS bits in the TIMx_CR1 register for the full description. If channel CC1 is configured as input: this bit is set when counter value has been captured in TIMx_CCR1 register (an edge has been detected on IC1, as per the edge sensitivity defined with the CC1P and CC1NP bits setting, in TIMx_CCER). #### Bit 0 UIF: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. - 0: No update occurred. - 1: Update interrupt pending. This bit is set by hardware when the registers are updated: - At overflow and if UDIS='0' in the TIMx_CR1 register. - When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS='0' and UDIS='0' in the TIMx_CR1 register. ### 24.4.4 TIM14 event generation register (TIM14_EGR) Address offset: 0x14 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----| | Res. CC1G | UG | | | | | | | | | | | | | | | | W | w | #### Bits 15:2 Reserved, must be kept at reset value. ### Bit 1 **CC1G**: Capture/compare 1 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: A capture/compare event is generated on channel 1: #### If channel CC1 is configured as output: CC1IF flag is set, Corresponding interrupt or is sent if enabled. #### If channel CC1 is configured as input: The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high. #### Bit 0 UG: Update generation This bit can be set by software, it is automatically cleared by hardware. 0: No action 1: Re-initialize the counter and generates an update of the registers. Note that the prescaler counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared. ### 24.4.5 TIM14 capture/compare mode register 1 [alternate] (TIM14_CCMR1) Address offset: 0x18 Reset value: 0x0000 0000 The same register can be used for input capture mode (this section) or for output compare mode (next section). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. #### Input capture mode: | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|-------|------|-------|---------|------|--------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | IC1F | [3:0] | | IC1PS | SC[1:0] | CC1 | S[1:0] | | | | | | | | | | rw Bits 31:8 Reserved, must be kept at reset value. RM0444 Rev 5 733/1390 #### Bits 7:4 IC1F[3:0]: Input capture 1 filter This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: ``` 0000: No filter, sampling is done at fDTS ``` ``` 0001: f_{SAMPLING}=f_{CK INT}, N=2 0010: f_{SAMPLING}=f_{CK INT}, N=4 0011: f_{SAMPLING}=f_{CK} INT, N=8 0100: f_{SAMPLING}=f_{DTS}/2, N=6 0101: f_{SAMPLING}=f_{DTS}/2, N=8 0110: f_{SAMPLING} = f_{DTS}/4, N=6 ``` 0111: f_{SAMPLING}=f_{DTS}/4, N=8 1000: f_{SAMPLING}=f_{DTS}/8, N=6 1001: $f_{SAMPLING} = f_{DTS}/8$, N=8 1010: f_{SAMPLING}=f_{DTS}/16, N=5 1011: f_{SAMPLING}=f_{DTS}/16, N=6 1100: f_{SAMPLING}=f_{DTS}/16, N=8 1101: $f_{SAMPLING} = f_{DTS}/32$, N=5 1110: f_{SAMPLING}=f_{DTS}/32, N=6 1111: f_{SAMPLING}=f_{DTS}/32, N=8 #### Bits 3:2 IC1PSC[1:0]: Input capture 1 prescaler This bit-field defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset as soon as CC1E='0' (TIMx_CCER register). 00: no prescaler, capture is done each time an edge is detected on the capture input 01: capture is done once every 2 events 10: capture
is done once every 4 events 11: capture is done once every 8 events #### Bits 1:0 CC1S[1:0]: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: Reserved 11: Reserved Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER). #### 24.4.6 TIM14 capture/compare mode register 1 [alternate] (TIM14 CCMR1) Address offset: 0x18 Reset value: 0x0000 0000 The same register can be used for output compare mode (this section) or for input capture mode (previous section). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. #### Output compare mode: | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|----------|------|-------|-------|------|-------------| | Res. OC1M
[3] | | | | | | | | | | | | | | | | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. (| OC1M[2:0 |)] | OC1PE | OC1FE | CC1 | S[1:0] | | | | | | | | | | | rw Bits 31:17 Reserved, must be kept at reset value. Bits 15:7 Reserved, must be kept at reset value. Bits 16, 6:4 OC1M[3:0]: Output compare 1 mode (refer to bit 16 for OC1M[3]) These bits define the behavior of the output reference signal OC1REF from which OC1 is derived. OC1REF is active high whereas OC1 active level depends on CC1P bit. 0000: Frozen. The comparison between the output compare register TIMx_CCR1 and the counter TIMx_CNT has no effect on the outputs. 0001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 0010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 0011: Toggle - OC1REF toggles when TIMx_CNT = TIMx_CCR1. 0100: Force inactive level - OC1REF is forced low. 0101: Force active level - OC1REF is forced high. 0110: PWM mode 1 - Channel 1 is active as long as TIMx_CNT < TIMx_CCR1 else inactive. 0111: PWM mode 2 - Channel 1 is inactive as long as TIMx_CNT < TIMx_CCR1 else active Others: Reserved Note: In PWM mode 1 or 2, the OCREF level changes when the result of the comparison changes or when the output compare mode switches from frozen to PWM mode. Note: The OC1M[3] bit is not contiguous, located in bit 16. 4 RM0444 Rev 5 735/1390 #### Bit 3 OC1PE: Output compare 1 preload enable - 0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value is taken in account immediately. - 1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded in the active register at each update event. Note: The PWM mode can be used without validating the preload register only in one pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed. #### Bit 2 OC1FE: Output compare 1 fast enable This bit decreases the latency between a trigger event and a transition on the timer output. It must be used in one-pulse mode (OPM bit set in TIMx_CR1 register), to have the output pulse starting as soon as possible after the starting trigger. - 0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles. - 1: An active edge on the trigger input acts like a compare match on CC1 output. OC is then set to the compare level independently of the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OC1FE acts only if the channel is configured in PWM1 or PWM2 mode. #### Bits 1:0 CC1S[1:0]: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output. 01: CC1 channel is configured as input, IC1 is mapped on TI1. 10: Reserved. 11: Reserved. Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER). # 24.4.7 TIM14 capture/compare enable register (TIM14_CCER) Address offset: 0x20 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|------| | Res. CC1NP | Res. | CC1P | CC1E | | | | | | | | | | | | | | rw | | rw | rw | Bits 15:4 Reserved, must be kept at reset value. Bit 3 CC1NP: Capture/Compare 1 complementary output Polarity. CC1 channel configured as output: CC1NP must be kept cleared. CC1 channel configured as input: CC1NP bit is used in conjunction with CC1P to define TI1FP1 polarity (refer to CC1P description). Bit 2 Reserved, must be kept at reset value. Bit 1 CC1P: Capture/Compare 1 output Polarity. 0: OC1 active high (output mode) / Edge sensitivity selection (input mode, see below) 1: OC1 active low (output mode) / Edge sensitivity selection (input mode, see below) When CC1 channel is configured as input, both CC1NP/CC1P bits select the active polarity of TI1FP1 and TI2FP1 for trigger or capture operations. CC1NP=0, CC1P=0: non-inverted/rising edge. The circuit is sensitive to TIxFP1 rising edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger operation in gated mode or encoder mode). CC1NP=0, CC1P=1: inverted/falling edge. The circuit is sensitive to TIxFP1 falling edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is inverted (trigger operation in gated mode or encoder mode). CC1NP=1, CC1P=1: non-inverted/both edges/ The circuit is sensitive to both TIxFP1 rising and falling edges (capture or trigger operations in reset, external clock or trigger mode), TIxFP1is not inverted (trigger operation in gated mode). This configuration must not be used in encoder mode. CC1NP=1, CC1P=0:This configuration is reserved, it must not be used. Bit 0 CC1E: Capture/Compare 1 output enable. 0: Capture mode disabled / OC1 is not active 1: Capture mode enabled / OC1 signal is output on the corresponding output pin Table 123. Output control bit for standard OCx channels | CCxE bit | OCx output state | |----------|--| | 0 | Output disabled (not driven by the timer: Hi-Z) | | 1 | Output enabled (tim_ocx = tim_ocxref + Polarity) | Note: The state of the external I/O pins connected to the standard OCx channels depends on the OCx channel state and the GPIO registers. ### 24.4.8 TIM14 counter (TIM14 CNT) Address offset: 0x24 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------|------|------|------|------|------|------|--------|------|------|------|------|------|------|------| | UIF
CPY | Res. | rw | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | CNT | [15:0] | | | | | | | | | rw Bit 31 UIFCPY: UIF Copy This bit is a read-only copy of the UIF bit in the TIMx_ISR register. Bits 30:16 Reserved, must be kept at reset value. Bits 15:0 CNT[15:0]: Counter value RM0444 Rev 5 737/1390 ## 24.4.9 TIM14 prescaler (TIM14_PSC) Address offset: 0x28 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|-----|--------|----|----|----|----|----|----|----| | | | | | | | | PSC | [15:0] | | | | | | | | | rw Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency CK_CNT is equal to $f_{CK\ PSC}$ / (PSC[15:0] + 1). PSC contains the value to be loaded in the active prescaler register at each update event. (including when the counter is cleared through UG bit of TIMx_EGR register or through trigger controller when configured in "reset mode"). # 24.4.10 TIM14 auto-reload register (TIM14_ARR) Address offset: 0x2C Reset value: 0xFFFF | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|----|----|----|----|----|----|----|-----|--------|----|----|----|----|----|----|----| | | | | | | | | | ARR | [15:0] | | | | | | | | | ĺ | rw Bits 15:0 ARR[15:0]: Auto-reload value ARR is the value to be loaded in the actual auto-reload register. Refer to *Section 24.3.1: Time-base unit on page 717* for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. # 24.4.11 TIM14 capture/compare register 1 (TIM14_CCR1) Address offset: 0x34 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|------|--------|----|----|----|----|----|----|----| | | | | | | | | CCR1 | [15:0] | | | | | | | | | rw ### Bits 15:0 CCR1[15:0]: Capture/Compare 1 value #### If channel CC1 is configured as output: CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC1 output. #### If channel CC1is configured as input: CCR1 is the counter value transferred by the last input capture 1 event (IC1). ## 24.4.12 TIM14 timer input selection register (TIM14_TISEL) Address offset: 0x68 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|------|------|------|------|---|-------|--------|---| | Res. | TI1SE | L[3:0] | | | | | | | | | | | | | | | | n | W | | Bits 15:4
Reserved, must be kept at reset value. Bits 3:0 TI1SEL[3:0]: selects TI1[0] to TI1[15] input 0000: TIM14_CH1 input 0001: RTC CLK 0010: HSE/32 0011: MCO 0100: MCO2⁽¹⁾ Others: Reserved ### 24.4.13 TIM14 register map TIMx registers are mapped as 16-bit addressable registers as described in the tables below: Table 124. TIM14 register map and reset values | Offset | Register
name | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 2 | 1 | 0 | |-----------------|------------------|---------|------|----------|-----------|------|------|------|------|------|------|-------|-----| | 0x00 | TIMx_CR1 | Res. UIFREMA | Res. | Cł
[1 | KD
:0] | ARPE | Res. | Res. | Res. | MHO | URS | UDIS | CEN | | | Reset value | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 | 0 | | 0x04 to
0x08 | Reserved | | | | | | | | | | | | | | | | | Res | · . | | | | | | | | | | | | | | | | 0x0C | TIMx_DIER | Res. CC1IE | UIE | | | Reset value | 0 | 0 | RM0444 Rev 5 739/1390 ^{1.} Available on STM32G0B1xx and STM32G0C1xx salestypes only. Table 124. TIM14 register map and reset values (continued) | Offset | Register name | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | က | 2 | 1 | 0 | |-----------------|-------------------------------------|--------|---|------|------|------|------|------|------|------|------|------|------|------|------|------|---------|------|------|------|------|------|------|-------|------|-------------------------------|------|-------------|--------|-------|-------|-----------|-----------| | 0x10 | TIMx_SR | Res. CC10F | Res. CC1IF | UIF | | | Reset value | 0 | | | | | | | | 0 | 0 | | 0x14 | TIMx_EGR | Res. CC1G | NG | | | Reset value | 0 | 0 | | | TIMx_CCMR1 Output compare mode | Res. OC1M[3] | Res. (| OC1
[2:0 | М
] | OC1PE | OC1FE | CC
[1: | | | 0v10 | Reset value | | | | | | | | | | | | | | | | 0 | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x18 | TIMx_CCMR1
Input capture
mode | Res. IC1F[3:0] IC1 PSC [1:0] [1:0] | | | | | | | 1S
[0] | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x1C | Reserved | | | | | | | | | | | | | | | | | Res | ò. | | | | | | | | | | | | | | | | 0x20 | TIMx_CCER | Res. CC1NP | Res. | CC1P | CC1E | | | Reset value | 0 | | 0 | 0 | | 0x24 | TIMx_CNT | UIFCPY | ADDITION ADDIT | Reset value | 0 | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x28 | TIMx_PSC | Res. | | | | | | F | PSC | [15 | :0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x2C | TIMx_ARR | Res. | | | | | | Å | ARR | (15 | :0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x30 | Reserved | | | | | | | | | | | | | | | | | Res | ò. | | | | | | | | | | | | | | | | 0x34 | TIMx_CCR1 | Res. | | | | | | С | CR | 1[15 | 5:0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x38 to
0x64 | Reserved | | 1 | | 1 | 1 | 1 | 1 | 1 | ı | | ı | | 1 | 1 | | | Res | ò. | | | | Ţ | 1 | Ţ | | ı | Ţ | 1 | 1 | | | | | 0x68 | TIM14_TISEL | Res. Т | I1SF | EL[3: | 0] | | UXOS | Reset value | 0 | 0 | 0 | 0 | Refer to Section 2.2 on page 58 for the register boundary addresses. # 25 General-purpose timers (TIM15/TIM16/TIM17) ### 25.1 TIM15/TIM16/TIM17 introduction The TIM15/TIM16/TIM17 timers consist of a 16-bit auto-reload counter driven by a programmable prescaler. They may be used for a variety of purposes, including measuring the pulse lengths of input signals (input capture) or generating output waveforms (output compare, PWM, complementary PWM with dead-time insertion). Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers. The TIM15/TIM16/TIM17 timers are completely independent, and do not share any resources. TIM15 can be synchronized as described in *Section 25.4.22: Timer synchronization (TIM15)*. ### 25.2 TIM15 main features TIM15 includes the following features: - 16-bit auto-reload upcounter - 16-bit programmable prescaler used to divide (also "on the fly") the counter clock frequency by any factor between 1 and 65535 - Up to 2 independent channels for: - Input capture - Output compare - PWM generation (edge mode) - One-pulse mode output - Complementary outputs with programmable dead-time (for channel 1 only) - Synchronization circuit to control the timer with external signals and to interconnect several timers together - Repetition counter to update the timer registers only after a given number of cycles of the counter - Break input to put the timer's output signals in the reset state or a known state - Interrupt/DMA generation on the following events: - Update: counter overflow, counter initialization (by software or internal/external trigger) - Trigger event (counter start, stop, initialization or count by internal/external trigger) - Input capture - Output compare - Break input (interrupt request) RM0444 Rev 5 741/1390 ## 25.3 TIM16/TIM17 main features The TIM16/TIM17 timers include the following features: - 16-bit auto-reload upcounter - 16-bit programmable prescaler used to divide (also "on the fly") the counter clock frequency by any factor between 1 and 65535 - One channel for: - Input capture - Output compare - PWM generation (edge-aligned mode) - One-pulse mode output - Complementary outputs with programmable dead-time - Repetition counter to update the timer registers only after a given number of cycles of the counter - Break input to put the timer's output signals in the reset state or a known state - Interrupt/DMA generation on the following events: - Update: counter overflow - Input capture - Output compare - Break input Figure 236. TIM15 block diagram - The internal break event source can be: - A clock failure event generated by CSS. For further information on the CSS, refer to Section 5.2.9: Clock security system (CSS) - A PVD output - SRAM parity error signal - Cortex®-M0+ LOCKUP (Hardfault) output RM0444 Rev 5 743/1390 Figure 237. TIM16/TIM17 block diagram - 1. This signal can be used as trigger for some slave timer, see Section 25.4.23: Using timer output as trigger for other timers (TIM16/TIM17). - 2. The internal break event source can be: A clock failure event generated by CSS. For further information on the CSS, refer to Section 5.2.9: Clock security system - A PVD output - SRAM parity error signal Cortex®-M0+ LOCKUP (Hardfault) output COMP output # 25.4 TIM15/TIM16/TIM17 functional description #### 25.4.1 Time-base unit The main block of the programmable advanced-control timer is a 16-bit upcounter with its related auto-reload register. The counter clock can be divided by a prescaler. The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running. The time-base unit includes: - Counter register (TIMx_CNT) - Prescaler register (TIMx PSC) - Auto-reload register (TIMx ARR) - Repetition counter register (TIMx RCR) The auto-reload register is preloaded. Writing to or reading from the auto-reload register accesses the preload register. The content of the preload register are transferred into the shadow register permanently or at each update event (UEV), depending on the auto-reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter reaches the overflow and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation of the update event is described in detailed for each configuration. The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller description to get more details on counter enabling). Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1 register. #### **Prescaler
description** The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register). It can be changed on the fly as this control register is buffered. The new prescaler ratio is taken into account at the next update event. *Figure 238* and *Figure 239* give some examples of the counter behavior when the prescaler ratio is changed on the fly: RM0444 Rev 5 745/1390 Figure 238. Counter timing diagram with prescaler division change from 1 to 2 #### 25.4.2 Counter modes ### **Upcounting mode** In upcounting mode, the counter counts from 0 to the auto-reload value (content of the TIMx ARR register), then restarts from 0 and generates a counter overflow event. If the repetition counter is used, the update event (UEV) is generated after upcounting is repeated for the number of times programmed in the repetition counter register (TIMx RCR). Else the update event is generated at each counter overflow. Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate does not change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): - The repetition counter is reloaded with the content of TIMx RCR register, - The auto-reload shadow register is updated with the preload value (TIMx_ARR), - The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. RM0444 Rev 5 747/1390 Figure 240. Counter timing diagram, internal clock divided by 1 Figure 242. Counter timing diagram, internal clock divided by 4 Figure 244. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) **A**7/ ### 25.4.3 Repetition counter Section 25.4.1: Time-base unit describes how the update event (UEV) is generated with respect to the counter overflows. It is actually generated only when the repetition counter has reached zero. This can be useful when generating PWM signals. This means that data are transferred from the preload registers to the shadow registers (TIMx_ARR auto-reload register, TIMx_PSC prescaler register, but also TIMx_CCRx capture/compare registers in compare mode) every N counter overflows, where N is the value in the TIMx_RCR repetition counter register. The repetition counter is decremented at each counter overflow. The repetition counter is an auto-reload type; the repetition rate is maintained as defined by the TIMx_RCR register value (refer to *Figure 246*). When the update event is generated by software (by setting the UG bit in TIMx_EGR register) or by hardware through the slave mode controller, it occurs immediately whatever the value of the repetition counter is and the repetition counter is reloaded with the content of the TIMx_RCR register. RM0444 Rev 5 751/1390 Figure 246. Update rate examples depending on mode and TIMx_RCR register settings ### 25.4.4 Clock selection The counter clock can be provided by the following clock sources: - Internal clock (CK_INT) - External clock mode1: external input pin - Internal trigger inputs (ITRx) (only for TIM15): using one timer as the prescaler for another timer, for example, TIM1 can be configured to act as a prescaler for TIM15. Refer to Using one timer as prescaler for another timer on page 664 for more details. #### Internal clock source (CK_INT) If the slave mode controller is disabled (SMS=000), then the CEN (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed only by software (except UG which remains cleared automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal clock CK_INT. *Figure 247* shows the behavior of the control circuit and the upcounter in normal mode, without prescaler. Figure 247. Control circuit in normal mode, internal clock divided by 1 #### External clock source mode 1 This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at each rising or falling edge on a selected input. Figure 248. TI2 external clock connection example For example, to configure the upcounter to count in response to a rising edge on the TI2 input, use the following procedure: 577 - 1. Select the proper TI2[x] source (internal or external) with the TI2SEL[3:0] bits in the TIMx TISEL register. - 2. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = '01' in the TIMx CCMR1 register. - 3. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1 register (if no filter is needed, keep IC2F=0000). - 4. Select rising edge polarity by writing CC2P=0 in the TIMx CCER register. - 5. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR register. - 6. Select TI2 as the trigger input source by writing TS=00110 in the TIMx SMCR register. - 7. Enable the counter by writing CEN=1 in the TIMx_CR1 register. Note: The capture prescaler is not used for triggering, so it does not need to be configured. When a rising edge occurs on TI2, the counter counts once and the TIF flag is set. The delay between the rising edge on TI2 and the actual clock of the counter is due to the resynchronization circuit on TI2 input. Figure 249. Control circuit in external clock mode 1 ### 25.4.5 Capture/compare channels Each Capture/Compare channel is built around a capture/compare register (including a shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and an output stage (with comparator and output control). Figure 250 to Figure 253 give an overview of one Capture/Compare channel. The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be used as trigger input by the slave mode controller or as the capture command. It is prescaled before the capture register (ICxPS). Figure 250. Capture/compare channel (example: channel 1 input stage) The output stage generates an intermediate waveform which is then used for reference: OCxRef (active high). The polarity acts at the end of the chain. Figure 251. Capture/compare channel 1 main circuit RM0444 Rev 5 755/1390 Figure 252. Output stage of capture/compare channel (channel 1) Figure 253. Output stage of capture/compare channel (channel 2 for TIM15) The capture/compare block is made of one preload register and one shadow register. Write and read always access the preload register. In capture mode, captures are actually done in the shadow register, which is copied into the preload register. In compare mode, the content of the preload register is copied into the shadow register which is compared to the counter. ### 25.4.6 Input capture mode In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the value of the counter after a transition detected by the corresponding ICx signal. When a capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be cleared by software by writing it to '0' or by reading the captured data stored in the TIMx_CCRx register. CCxOF is cleared when it is written with 0. The following example shows how to capture the counter value in TIMx_CCR1 when TI1 input rises. To do this, use the following procedure: - 1. Select the proper TI1x source (internal or external) with the TI1SEL[3:0] bits in the TIMx TISEL register. - 2. Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00, the channel is configured in input and the TIMx_CCR1 register becomes read-only. - 3. Program the appropriate input filter duration in relation with the signal connected to the timer (when the input is one of the TIx (ICxF bits in the TIMx_CCMRx register). Let's imagine that, when toggling, the input signal is not stable during at least 5 internal clock cycles. We must program a filter duration longer than these 5 clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the new level have been detected (sampled at f_{DTS} frequency). Then write IC1F bits to 0011 in the TIMx_CCMR1 register. - 4. Select the edge of the active transition on the TI1 channel by writing CC1P bit to 0 in the TIMx CCER register (rising edge in this case). - 5. Program the input prescaler. In our example, we wish the capture to be performed at each valid transition, so the prescaler is disabled (write IC1PS bits to '00' in the TIMx_CCMR1 register). - 6. Enable capture from the counter into the capture register by setting the CC1E bit in the TIMx_CCER register. - 7. If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the TIMx_DIER register. When an input capture occurs: - The TIMx CCR1 register gets
the value of the counter on the active transition. - CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures occurred whereas the flag was not cleared. - An interrupt is generated depending on the CC1IE bit. - A DMA request is generated depending on the CC1DE bit. In order to handle the overcapture, it is recommended to read the data before the overcapture flag. This is to avoid missing an overcapture which could happen after reading the flag and before reading the data. Note: IC interrupt and/or DMA requests can be generated by software by setting the corresponding CCxG bit in the TIMx_EGR register. ## 25.4.7 PWM input mode (only for TIM15) This mode is a particular case of input capture mode. The procedure is the same except: - Two ICx signals are mapped on the same Tlx input. - These 2 ICx signals are active on edges with opposite polarity. - One of the two TIxFP signals is selected as trigger input and the slave mode controller is configured in reset mode. RM0444 Rev 5 757/1390 For example, one can measure the period (in TIMx CCR1 register) and the duty cycle (in TIMx CCR2 register) of the PWM applied on TI1 using the following procedure (depending on CK INT frequency and prescaler value): - Select the proper TI1[x] source (internal or external) with the TI1SEL[3:0] bits in the TIMx TISEL register. - 2. Select the active input for TIMx CCR1: write the CC1S bits to 01 in the TIMx CCMR1 register (TI1 selected). - Select the active polarity for TI1FP1 (used both for capture in TIMx CCR1 and counter clear): write the CC1P and CC1NP bits to '0' (active on rising edge). - Select the active input for TIMx CCR2: write the CC2S bits to 10 in the TIMx CCMR1 4. register (TI1 selected). - 5. Select the active polarity for TI1FP2 (used for capture in TIMx CCR2): write the CC2P and CC2NP bits to '10' (active on falling edge). - Select the valid trigger input: write the TS bits to 00101 in the TIMx SMCR register (TI1FP1 selected). - 7. Configure the slave mode controller in reset mode: write the SMS bits to 100 in the TIMx SMCR register. - Enable the captures: write the CC1E and CC2E bits to '1' in the TIMx CCER register. 8. Figure 254. PWM input mode timing The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the fact that only TI1FP1 and TI2FP2 are connected to the slave mode controller. #### 25.4.8 Forced output mode In output mode (CCxS bits = 00 in the TIMx CCMRx register), each output compare signal (OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by software, independently of any comparison between the output compare register and the counter. To force an output compare signal (OCXREF/OCx) to its active level, one just needs to write 101 in the OCxM bits in the corresponding TIMx CCMRx register. Thus OCXREF is forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit. For example: CCxP=0 (OCx active high) => OCx is forced to high level. The OCxREF signal can be forced low by writing the OCxM bits to 100 in the TIMx CCMRx register. Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still performed and allows the flag to be set. Interrupt and DMA requests can be sent accordingly. This is described in the output compare mode section below. ## 25.4.9 Output compare mode This function is used to control an output waveform or indicating when a period of time has elapsed. When a match is found between the capture/compare register and the counter, the output compare function: - Assigns the corresponding output pin to a programmable value defined by the output compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match. - Sets a flag in the interrupt status register (CCxIF bit in the TIMx SR register). - Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the TIMx_DIER register). - Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request selection). The TIMx_CCRx registers can be programmed with or without preload registers using the OCxPE bit in the TIMx_CCMRx register. In output compare mode, the update event UEV has no effect on OCxREF and OCx output. The timing resolution is one count of the counter. Output compare mode can also be used to output a single pulse (in One-pulse mode). #### **Procedure** - 1. Select the counter clock (internal, external, prescaler). - 2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers. - 3. Set the CCxIE bit if an interrupt request is to be generated. - 4. Select the output mode. For example: - Write OCxM = 011 to toggle OCx output pin when CNT matches CCRx - Write OCxPE = 0 to disable preload register - Write CCxP = 0 to select active high polarity - Write CCxE = 1 to enable the output - 5. Enable the counter by setting the CEN bit in the TIMx_CR1 register. The TIMx_CCRx register can be updated at any time by software to control the output waveform, provided that the preload register is not enabled (OCxPE='0', else TIMx_CCRx shadow register is updated only at the next update event UEV). An example is given in *Figure 255*. RM0444 Rev 5 759/1390 Figure 255. Output compare mode, toggle on OC1 ## 25.4.10 PWM mode Pulse Width Modulation mode allows a signal to be generated with a frequency determined by the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register. The PWM mode can be selected independently on each channel (one PWM per OCx output) by writing '110' (PWM mode 1) or '111' (PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. The corresponding preload register must be enabled by setting the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register. As the preload registers are transferred to the shadow registers only when an update event occurs, before starting the counter, all registers must be initialized by setting the UG bit in the TIMx EGR register. OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It can be programmed as active high or active low. OCx output is enabled by a combination of the CCxE, CCxNE, MOE, OSSI and OSSR bits (TIMx_CCER and TIMx_BDTR registers). Refer to the TIMx_CCER register description for more details. In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine whether TIMx_CCRx \leq TIMx_CNT or TIMx_CNT \leq TIMx_CCRx (depending on the direction of the counter). The TIM15/TIM16/TIM17 are capable of upcounting only. Refer to *Upcounting mode on page 747*. In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at '1'. If the compare value is 0 then OCxRef is held at '0'. *Figure 256* shows some edge-aligned PWM waveforms in an example where TIMx ARR=8. Figure 256. Edge-aligned PWM waveforms (ARR=8) ## 25.4.11 Combined PWM mode (TIM15 only) Combined PWM mode allows two edge or center-aligned PWM signals to be generated with programmable delay and phase shift between respective pulses. While the frequency is determined by the value of the TIMx_ARR register, the duty cycle and delay are determined by the two TIMx_CCRx registers. The resulting signals, OCxREFC, are made of an OR or AND logical combination of two reference PWMs: OC1REFC (or OC2REFC) is controlled by the TIMx CCR1 and TIMx CCR2 registers Combined PWM mode can be selected independently on two channels (one OCx output per pair of CCR registers) by writing '1100' (Combined PWM mode 1) or '1101' (Combined PWM mode 2) in the OCxM bits in the TIMx CCMRx register. When a given channel is used as a combined PWM channel, its complementary channel must be configured in the opposite PWM mode (for instance, one in Combined PWM mode 1 and the other in Combined PWM mode 2). Note: The OCxM[3:0] bit field is split into two parts for compatibility reasons, the most significant bit is not contiguous with the 3 least significant ones. *Figure 257* represents an example of signals that can be generated using Asymmetric PWM mode, obtained with the following configuration: - Channel 1 is configured in Combined PWM mode 2, - Channel 2 is configured in PWM mode 1, RM0444 Rev 5 761/1390 Figure 257. Combined PWM mode on channel 1 and 2 ## 25.4.12 Complementary outputs and dead-time insertion The TIM15/TIM16/TIM17 general-purpose timers can output one complementary signal and manage the switching-off and switching-on of the outputs. This time is generally known as dead-time and it has to be adjusted depending on the devices that are connected to the outputs and their characteristics (intrinsic delays of level-shifters, delays due to power switches...) The polarity of the outputs (main output OCx or complementary OCxN) can be selected independently for each output. This is done by writing to the CCxP and CCxNP bits in the TIMx_CCER register. The complementary signals OCx and OCxN are activated by a combination of several control bits: the CCxE and CCxNE bits in the TIMx_CCER register and the MOE, OISx, OISxN, OSSI and OSSR bits in the TIMx_BDTR and TIMx_CR2 registers. Refer to Table 129: Output control bits for complementary OCx and OCxN channels with break feature (TIM16/17) on page 817 for more details. In particular, the dead-time is activated when switching to the idle state (MOE falling down to 0). Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit if the break circuit is present. There is one 10-bit dead-time
generator for each channel. From a reference waveform OCxREF, it generates 2 outputs OCx and OCxN. If OCx and OCxN are active high: - The OCx output signal is the same as the reference signal except for the rising edge, which is delayed relative to the reference rising edge. - The OCxN output signal is the opposite of the reference signal except for the rising edge, which is delayed relative to the reference falling edge. If the delay is greater than the width of the active output (OCx or OCxN) then the corresponding pulse is not generated. The following figures show the relationships between the output signals of the dead-time generator and the reference signal OCxREF. (we suppose CCxP=0, CCxNP=0, MOE=1, CCxE=1 and CCxNE=1 in these examples) Figure 258. Complementary output with dead-time insertion. 4 RM0444 Rev 5 763/1390 Figure 260. Dead-time waveforms with delay greater than the positive pulse. The dead-time delay is the same for each of the channels and is programmable with the DTG bits in the TIMx_BDTR register. Refer to Section 25.6.14: TIMx break and dead-time register (TIMx_BDTR)(x = 16 to 17) on page 820 for delay calculation. ## Re-directing OCxREF to OCx or OCxN In output mode (forced, output compare or PWM), OCxREF can be re-directed to the OCx output or to OCxN output by configuring the CCxE and CCxNE bits in the TIMx_CCER register. This allows a specific waveform to be sent (such as PWM or static active level) on one output while the complementary remains at its inactive level. Other alternative possibilities are to have both outputs at inactive level or both outputs active and complementary with dead-time. Note: When only OCxN is enabled (CCxE=0, CCxNE=1), it is not complemented and becomes active as soon as OCxREF is high. For example, if CCxNP=0 then OCxN=OCxRef. On the other hand, when both OCx and OCxN are enabled (CCxE=CCxNE=1) OCx becomes active when OCxREF is high whereas OCxN is complemented and becomes active when OCxREF is low. ## 25.4.13 Using the break function The purpose of the break function is to protect power switches driven by PWM signals generated with the TIM15/TIM16/TIM17 timers. The break input is usually connected to fault outputs of power stages and 3-phase inverters. When activated, the break circuitry shuts down the PWM outputs and forces them to a predefined safe state. The break channel gathers both system-level fault (clock failure, parity error,...) and application fault (from input pins and built-in comparator), and can force the outputs to a predefined level (either active or inactive) after a deadtime duration. **A**7/ The output enable signal and output levels during break are depending on several control bits: - the MOE bit in TIMx_BDTR register allows to enable /disable the outputs by software and is reset in case of break or break2 event. - the OSSI bit in the TIMx_BDTR register defines whether the timer controls the output in inactive state or releases the control to the GPIO controller (typically to have it in Hi-Z mode) - the OISx and OISxN bits in the TIMx_CR2 register which are setting the output shut-down level, either active or inactive. The OCx and OCxN outputs cannot be set both to active level at a given time, whatever the OISx and OISxN values. Refer to Table 127: Output control bits for complementary OCx and OCxN channels with break feature (TIM15) on page 795 for more details. When exiting from reset, the break circuit is disabled and the MOE bit is low. The break function is enabled by setting the BKE bit in the TIMx_BDTR register. The break input polarity can be selected by configuring the BKP bit in the same register. BKE and BKP can be modified at the same time. When the BKE and BKP bits are written, a delay of 1 APB clock cycle is applied before the writing is effective. Consequently, it is necessary to wait 1 APB clock period to correctly read back the bit after the write operation. Because MOE falling edge can be asynchronous, a resynchronization circuit has been inserted between the actual signal (acting on the outputs) and the synchronous control bit (accessed in the TIMx_BDTR register). It results in some delays between the asynchronous and the synchronous signals. In particular, if MOE is set to 1 whereas it was low, a delay must be inserted (dummy instruction) before reading it correctly. This is because the write acts on the asynchronous signal whereas the read reflects the synchronous signal. A programmable filter (BKF[3:0] bits in the TIMx_BDTR register allows to filter out spurious events. The break can be generated from multiple sources which can be individually enabled and with programmable edge sensitivity, using the TIMx_AF1 register. The sources for break (BRK) channel are: - An external source connected to one of the BKIN pin (as per selection done in the AFIO controller), with polarity selection and optional digital filtering - An internal source: - the output from a comparator, with polarity selection and optional digital filtering - A system break: - the Cortex®-M0+ LOCKUP output - the PVD output - the SRAM parity error signal - a Flash ECC error - a clock failure event generated by the CSS detector RM0444 Rev 5 765/1390 Figure 261. Break circuitry overview 1. Available on STM32G0B1xx and STM32G0C1xx salestypes only. #### Caution: An asynchronous (clockless) operation is only guaranteed when the programmable filter is disabled. If it is enabled, a fail safe clock mode (example, using the internal PLL and/or the CSS) must be used to guarantee that break events are handled. When a break occurs (selected level on the break input): - The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state or even releasing the control to the AFIO controller (selected by the OSSI bit). This feature functions even if the MCU oscillator is off. - Each output channel is driven with the level programmed in the OISx bit in the TIMx_CR2 register as soon as MOE=0. If OSSI=0, the timer releases the output control (taken over by the AFIO controller) else the enable output remains high. - When complementary outputs are used: - The outputs are first put in reset state inactive state (depending on the polarity). This is done asynchronously so that it works even if no clock is provided to the timer - If the timer clock is still present, then the dead-time generator is reactivated in order to drive the outputs with the level programmed in the OISx and OISxN bits after a dead-time. Even in this case, OCx and OCxN cannot be driven to their - active level together. Note that because of the resynchronization on MOE, the dead-time duration is a bit longer than usual (around 2 ck_tim clock cycles). - If OSSI=0 then the timer releases the enable outputs (taken over by the AFIO controller which forces a Hi-Z state) else the enable outputs remain or become high as soon as one of the CCxE or CCxNE bits is high. - The break status flag (BIF bit in the TIMx_SR register) is set. An interrupt can be generated if the BIE bit in the TIMx_DIER register is set. - If the AOE bit in the TIMx_BDTR register is set, the MOE bit is automatically set again at the next update event UEV. This can be used to perform a regulation, for instance. Else, MOE remains low until it is written with 1 again. In this case, it can be used for security and the break input can be connected to an alarm from power drivers, thermal sensors or any security components. Note: The break inputs is acting on level. Thus, the MOE cannot be set while the break input is active (neither automatically nor by software). In the meantime, the status flag BIF cannot be cleared. The break can be generated by the BRK input which has a programmable polarity and an enable bit BKE in the TIMX BDTR Register. In addition to the break input and the output management, a write protection has been implemented inside the break circuit to safeguard the application. It allows the configuration of several parameters to be freezed (dead-time duration, OCx/OCxN polarities and state when disabled, OCxM configurations, break enable and polarity). The protection can be selected among 3 levels with the LOCK bits in the TIMx_BDTR register. Refer to Section 25.6.14: TIMx break and dead-time register (TIMx_BDTR)(x = 16 to 17) on page 820. The LOCK bits can be written only once after an MCU reset. The Figure 262 shows an example of behavior of the outputs in response to a break. RM0444 Rev 5 767/1390 Figure 262. Output behavior in response to a break ## 25.4.14 Bidirectional break inputs The TIM15/TIM16/TIM17 are featuring bidirectional break I/Os, as represented on *Figure 263*. They allow the following: - A board-level global break signal available for signaling faults to external MCUs or gate drivers, with a unique pin being both an input and an output status pin - Internal break sources and multiple external open drain comparator outputs ORed together to trigger a unique break event, when multiple internal and external break sources must be merged The break input is configured in bidirectional mode using the BKBID bit in the TIMxBDTR register. The BKBID programming bit can be locked in read-only mode using the LOCK bits in the TIMxBDTR register (in LOCK level 1 or above). The bidirectional mode requires the I/O to be configured in open-drain mode with active low polarity (using BKINP and BKP bits). Any break request coming either from system (e.g. CSS), from on-chip peripherals or from break inputs forces a low level on the break input to signal the fault event. The bidirectional mode is inhibited if the polarity bits are not correctly set (active high polarity), for safety purposes. The break software event (BG) also causes the break I/O to be forced to '0' to indicate to the external components that the timer has entered in break state. However, this is valid only if the break is enabled (BKE = 1). When a software break event is generated with BKE = 0, the outputs are put in safe state and the break
flag is set, but there is no effect on the break I/O. A safe disarming mechanism prevents the system to be definitively locked-up (a low level on the break input triggers a break which enforces a low level on the same input). When the BKDSRM bit is set to 1, this releases the break output to clear a fault signal and to give the possibility to re-arm the system. At no point the break protection circuitry can be disabled: - The break input path is always active: a break event is active even if the BKDSRM bit is set and the open drain control is released. This prevents the PWM output to be restarted as long as the break condition is present. - The BKDSRM bit cannot disarm the break protection as long as the outputs are enabled (MOE bit is set) (see *Table 125*) | MOE | BKDIR | BKDSRM | Break protection state | |-----|-------|--------|------------------------| | 0 | 0 | X | Armed | | 0 | 1 | 0 | Armed | | 0 | 1 | 1 | Disarmed | | 1 | Х | Х | Armed | Table 125. Break protection disarming conditions ## Arming and re-arming break circuitry The break circuitry (in input or bidirectional mode) is armed by default (peripheral reset configuration). RM0444 Rev 5 769/1390 The following procedure must be followed to re-arm the protection after a break event: - The BKDSRM bit must be set to release the output control - The software must wait until the system break condition disappears (if any) and clear the SBIF status flag (or clear it systematically before re-arming) - The software must poll the BKDSRM bit until it is cleared by hardware (when the application break condition disappears) From this point, the break circuitry is armed and active, and the MOE bit can be set to reenable the PWM outputs. ## 25.4.15 One-pulse mode One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length after a programmable delay. Starting the counter can be controlled through the slave mode controller. Generating the waveform can be done in output compare mode or PWM mode. One-pulse mode is selected by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at the next update event UEV. A pulse can be correctly generated only if the compare value is different from the counter initial value. Before starting (when the timer is waiting for the trigger), the configuration must be: • CNT < CCRx ≤ ARR (in particular, 0 < CCRx) RM0444 Rev 5 771/1390 Figure 264. Example of one pulse mode For example one may want to generate a positive pulse on OC1 with a length of t_{PULSE} and after a delay of t_{DELAY} as soon as a positive edge is detected on the TI2 input pin. Let's use TI2FP2 as trigger 1: - 1. Select the proper TI2[x] source (internal or external) with the TI2SEL[3:0] bits in the TIMx_TISEL register. - 2. Map TI2FP2 to TI2 by writing CC2S='01' in the TIMx_CCMR1 register. - TI2FP2 must detect a rising edge, write CC2P='0' and CC2NP='0' in the TIMx_CCER register. - 4. Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS='00110' in the TIMx SMCR register. - 5. TI2FP2 is used to start the counter by writing SMS to '110' in the TIMx_SMCR register (trigger mode). The OPM waveform is defined by writing the compare registers (taking into account the clock frequency and the counter prescaler). - The t_{DFLAY} is defined by the value written in the TIMx_CCR1 register. - The t_{PULSE} is defined by the difference between the auto-reload value and the compare value (TIMx_ARR TIMx_CCR1). - Let's say one want to build a waveform with a transition from '0' to '1' when a compare match occurs and a transition from '1' to '0' when the counter reaches the auto-reload value. To do this PWM mode 2 must be enabled by writing OC1M=111 in the TIMx_CCMR1 register. Optionally the preload registers can be enabled by writing OC1PE='1' in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case one has to write the compare value in the TIMx_CCR1 register, the auto-reload value in the TIMx_ARR register, generate an update by setting the UG bit and wait for external trigger event on TI2. CC1P is written to '0' in this example. Since only 1 pulse is needed, a 1 must be written in the OPM bit in the TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over from the auto-reload value back to 0). Particular case: OCx fast enable In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the counter. Then the comparison between the counter and the compare value makes the output toggle. But several clock cycles are needed for these operations and it limits the minimum delay $t_{\rm DEL\,AY}$ min we can get. If one wants to output a waveform with the minimum delay, the OCxFE bit can be set in the TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus, without taking in account the comparison. Its new level is the same as if a compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode. ## 25.4.16 Retriggerable one pulse mode (TIM15 only) This mode allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length, but with the following differences with Non-retriggerable one pulse mode described in *Section 25.4.15*: - The pulse starts as soon as the trigger occurs (no programmable delay) - The pulse is extended if a new trigger occurs before the previous one is completed The timer must be in Slave mode, with the bits SMS[3:0] = '1000' (Combined Reset + trigger mode) in the TIMx_SMCR register, and the OCxM[3:0] bits set to '1000' or '1001' for Retrigerrable OPM mode 1 or 2. If the timer is configured in Up-counting mode, the corresponding CCRx must be set to 0 (the ARR register sets the pulse length). If the timer is configured in Down-counting mode, CCRx must be above or equal to ARR. Note: The OCxM[3:0] and SMS[3:0] bit fields are split into two parts for compatibility reasons, the most significant bit are not contiguous with the 3 least significant ones. This mode must not be used with center-aligned PWM modes. It is mandatory to have CMS[1:0] = 00 in TIMx_CR1. Figure 265. Retriggerable one pulse mode ## 25.4.17 UIF bit remapping The IUFREMAP bit in the TIMx_CR1 register forces a continuous copy of the Update Interrupt Flag UIF into bit 31 of the timer counter register (TIMxCNT[31]). This allows both RM0444 Rev 5 773/1390 the counter value and a potential roll-over condition signaled by the UIFCPY flag, to be atomically read. In particular cases, it can ease the calculations by avoiding race conditions caused for instance by a processing shared between a background task (counter reading) and an interrupt (Update Interrupt). There is no latency between the assertions of the UIF and UIFCPY flags. #### 25.4.18 **Timer input XOR function (TIM15 only)** The TI1S bit in the TIMx_CR2 register, allows the input filter of channel 1 to be connected to the output of a XOR gate, combining the two input pins TIMx_CH1 and TIMx_CH2. The XOR output can be used with all the timer input functions such as trigger or input capture. It is useful for measuring the interval between the edges on two input signals, as shown in *Figure 266*. TI1 XOR TI2 MS31400V1 Figure 266. Measuring time interval between edges on 2 signals ## 25.4.19 External trigger synchronization (TIM15 only) The TIM timers are linked together internally for timer synchronization or chaining. The TIM15 timer can be synchronized with an external trigger in several modes: Reset mode, Gated mode and Trigger mode. ### Slave mode: Reset mode The counter and its prescaler can be reinitialized in response to an event on a trigger input. Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated. In the following example, the upcounter is cleared in response to a rising edge on TI1 input: - 1. Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration (in this example, we do not need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so it does not need to be configured. The CC1S bits select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write CC1P='0' and CC1NP='0' in the TIMx_CCER register to validate the polarity (and detect rising edges only). - 2. Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select TI1 as the input source by writing TS=00101 in TIMx_SMCR register. - 3. Start the counter by writing CEN=1 in the TIMx CR1 register. The counter starts counting on the internal clock, then behaves normally until TI1 rising edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register). The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36. The delay between the rising edge on TI1 and the actual reset of the counter is due to the resynchronization circuit on TI1 input. Figure 267. Control circuit in reset mode #### Slave mode: Gated mode The counter can be enabled depending on the level of a selected input. In the following example, the upcounter counts only when TI1 input is low: - Configure the channel 1 to detect low levels on TI1. Configure the input filter duration (in this example, we do not need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so it does not need to be configured. The CC1S bits select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write CC1P=1 and CC1NP = '0' in the TIMx_CCER register to validate the polarity (and detect low level only). - 2. Configure the timer in gated
mode by writing SMS=101 in TIMx_SMCR register. Select TI1 as the input source by writing TS=00101 in TIMx_SMCR register. - 3. Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the counter doesn't start if CEN=0, whatever is the trigger input level). The counter starts counting on the internal clock as long as TI1 is low and stops as soon as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts or stops. The delay between the rising edge on TI1 and the actual stop of the counter is due to the resynchronization circuit on TI1 input. Figure 268. Control circuit in gated mode ## Slave mode: Trigger mode The counter can start in response to an event on a selected input. In the following example, the upcounter starts in response to a rising edge on TI2 input: - 1. Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration (in this example, we do not need any filter, so we keep IC2F=0000). The capture prescaler is not used for triggering, so it does not need to be configured. The CC2S bits are configured to select the input capture source only, CC2S=01 in TIMx_CCMR1 register. Write CC2P='1' and CC2NP='0' in the TIMx_CCER register to validate the polarity (and detect low level only). - 2. Configure the timer in trigger mode by writing SMS=110 in the TIMx_SMCR register. Select TI2 as the input source by writing TS=00110 in the TIMx_SMCR register. When a rising edge occurs on TI2, the counter starts counting on the internal clock and the TIF flag is set. The delay between the rising edge on TI2 and the actual start of the counter is due to the resynchronization circuit on TI2 input. Figure 269. Control circuit in trigger mode ## 25.4.20 Slave mode – combined reset + trigger mode In this case, a rising edge of the selected trigger input (TRGI) reinitializes the counter, generates an update of the registers, and starts the counter. This mode is used for one-pulse mode. ## 25.4.21 DMA burst mode The TIMx timers have the capability to generate multiple DMA requests on a single event. The main purpose is to be able to re-program several timer registers multiple times without software overhead, but it can also be used to read several registers in a row, at regular intervals. The DMA controller destination is unique and must point to the virtual register TIMx_DMAR. On a given timer event, the timer launches a sequence of DMA requests (burst). Each write into the TIMx_DMAR register is actually redirected to one of the timer registers. The DBL[4:0] bits in the TIMx_DCR register set the DMA burst length. The timer recognizes a burst transfer when a read or a write access is done to the TIMx_DMAR address), i.e. the number of transfers (either in half-words or in bytes). The DBA[4:0] bits in the TIMx_DCR registers define the DMA base address for DMA transfers (when read/write access are done through the TIMx_DMAR address). DBA is defined as an offset starting from the address of the TIMx_CR1 register. #### Example: 00000: TIMx_CR1, 00001: TIMx_CR2, 00010: TIMx_SMCR, For example, the timer DMA burst feature could be used to update the contents of the CCRx registers (x = 2, 3, 4) on an update event, with the DMA transferring half words into the CCRx registers. This is done in the following steps: - Configure the corresponding DMA channel as follows: - DMA channel peripheral address is the DMAR register address - DMA channel memory address is the address of the buffer in the RAM containing the data to be transferred by DMA into the CCRx registers. - Number of data to transfer = 3 (See note below). - Circular mode disabled. - 2. Configure the DCR register by configuring the DBA and DBL bit fields as follows: DBL = 3 transfers, DBA = 0xE. - 3. Enable the TIMx update DMA request (set the UDE bit in the DIER register). - 4. Enable TIMx - 5. Enable the DMA channel This example is for the case where every CCRx register is to be updated once. If every CCRx register is to be updated twice for example, the number of data to transfer should be 6. Let's take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and data6. The data is transferred to the CCRx registers as follows: on the first update DMA request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is transferred to CCR3 and data6 is transferred to CCR4. Note: A null value can be written to the reserved registers. RM0444 Rev 5 779/1390 ## 25.4.22 Timer synchronization (TIM15) The TIMx timers are linked together internally for timer synchronization or chaining. Refer to Section 22.3.19: Timer synchronization for details. Note: The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer. ## 25.4.23 Using timer output as trigger for other timers (TIM16/TIM17) The timers with one channel only do not feature a master mode. However, the OC1 output signal can be used to trigger some other timers (including timers described in other sections of this document). Check the "TIMx internal trigger connection" table of any TIMx_SMCR register on the device to identify which timers can be targeted as slave. The OC1 signal pulse width must be programmed to be at least 2 clock cycles of the destination timer, to make sure the slave timer will detect the trigger. For instance, if the destination's timer CK_INT clock is 4 times slower than the source timer, the OC1 pulse width must be 8 clock cycles. ## **25.4.24** Debug mode When the microcontroller enters debug mode (Cortex[®]-M0+ core halted), the TIMx counter either continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in DBG module. For more details, refer to Section 40.9.2: Debug support for timers, watchdog and I^2C . For safety purposes, when the counter is stopped (DBG_TIMx_STOP = 1), the outputs are disabled (as if the MOE bit was reset). The outputs can either be forced to an inactive state (OSSI bit = 1), or have their control taken over by the GPIO controller (OSSI bit = 0) to force them to Hi-Z. ## 25.5 TIM15 registers Refer to Section 1.2 for a list of abbreviations used in register descriptions. The peripheral registers can be accessed by half-words (16-bit) or words (32-bit). ## 25.5.1 TIM15 control register 1 (TIM15_CR1) Address offset: 0x00 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|--------------|------|-----|-------|------|------|------|------|-----|-----|------|-----| | Res. | Res. | Res. | Res. | UIFRE
MAP | Res. | CKD | [1:0] | ARPE | Res. | Res. | Res. | ОРМ | URS | UDIS | CEN | | | | | | rw | | rw | rw | rw | | | | rw | rw | rw | rw | Bits 15:12 Reserved, must be kept at reset value. Bit 11 UIFREMAP: UIF status bit remapping 0: No remapping. UIF status bit is not copied to TIMx CNT register bit 31. 1: Remapping enabled. UIF status bit is copied to TIMx_CNT register bit 31. Bit 10 Reserved, must be kept at reset value. Bits 9:8 CKD[1:0]: Clock division This bitfield indicates the division ratio between the timer clock (CK_INT) frequency and the dead-time and sampling clock (t_{DTS}) used by the dead-time generators and the digital filters (Tlx) 00: $t_{DTS} = t_{CK_INT}$ 01: $t_{DTS} = 2 * t_{CK_INT}$ 10: $t_{DTS} = 4 * t_{CK_INT}$ 11: Reserved, do not program this value Bit 7 ARPE: Auto-reload preload enable 0: TIMx_ARR register is not buffered 1: TIMx_ARR register is buffered Bits 6:4 Reserved, must be kept at reset value. Bit 3 OPM: One-pulse mode 0: Counter is not stopped at update event 1: Counter stops counting at the next update event (clearing the bit CEN) 4 RM0444 Rev 5 781/1390 #### Bit 2 URS: Update request source This bit is set and cleared by software to select the UEV event sources. 0: Any of the following events generate an update interrupt if enabled. These events can be: - Counter overflow/underflow - Setting the UG bit - Update generation through the slave mode controller - 1: Only counter overflow/underflow generates an update interrupt if enabled #### Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable UEV event generation. - 0: UEV enabled. The Update (UEV) event is generated by one of the following events: - Counter overflow/underflow - Setting the UG bit - Update generation through the slave mode controller Buffered registers are then loaded with their preload values. 1: UEV disabled. The Update event is not generated, shadow registers keep their value (ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is set or if a hardware reset is received from the slave mode controller. #### Bit 0 CEN: Counter enable - 0: Counter disabled - 1: Counter enabled Note: External clock and gated mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware. ## 25.5.2 TIM15 control register 2 (TIM15 CR2) Address offset: 0x04 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 1 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-----|------|------|------|------|------|-------|------|------|----|---------|----|------|------|------|------| | Res | Res. | Res. | Res. | Res. | OIS2 | OIS1N | OIS1 | TI1S | | MMS[2:0 |] | CCDS | ccus | Res. | CCPC | | | | | | | rw | rw | Bits 15:11 Reserved, must be kept at reset value. Bit 10 OIS2: Output idle state 2 (OC2 output) 0: OC2=0 when MOE=0 1: OC2=1 when MOE=0 Note: This bit cannot be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in the TIM15_BDTR register). Bit 9 OIS1N: Output Idle state 1 (OC1N output) 0: OC1N=0 after a dead-time when MOE=0 1: OC1N=1 after a dead-time when
MOE=0 Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIM15_BDTR register). Bit 8 OIS1: Output Idle state 1 (OC1 output) 0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0 1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0 Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIM15_BDTR register). - Bit 7 TI1S: TI1 selection - 0: The TIMx CH1 pin is connected to TI1 input - 1: The TIMx_CH1, CH2 pins are connected to the TI1 input (XOR combination) - Bits 6:4 MMS[2:0]: Master mode selection These bits allow to select the information to be sent in master mode to slave timers for synchronization (TRGO). The combination is as follows: - 000: **Reset** the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the reset is generated by the trigger input (slave mode controller configured in reset mode) then the signal on TRGO is delayed compared to the actual reset. - 001: Enable the Counter Enable signal CNT_EN is used as trigger output (TRGO). It is useful to start several timers at the same time or to control a window in which a slave timer is enable. The Counter Enable signal is generated by a logic AND between CEN control bit and the trigger input when configured in gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description in TIMx_SMCR register). - 010: **Update** The update event is selected as trigger output (TRGO). For instance a master timer can then be used as a prescaler for a slave timer. - 011: **Compare Pulse** The trigger output send a positive pulse when the CC1IF flag is to be set (even if it was already high), as soon as a capture or a compare match occurred. (TRGO). - 100: Compare OC1REFC signal is used as trigger output (TRGO). - 101: Compare OC2REFC signal is used as trigger output (TRGO). - Bit 3 CCDS: Capture/compare DMA selection - 0: CCx DMA request sent when CCx event occurs - 1: CCx DMA requests sent when update event occurs - Bit 2 CCUS: Capture/compare control update selection - 0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting the COMG bit only. - 1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting the COMG bit or when an rising edge occurs on TRGI. Note: This bit acts only on channels that have a complementary output. - Bit 1 Reserved, must be kept at reset value. - Bit 0 CCPC: Capture/compare preloaded control - 0: CCxE, CCxNE and OCxM bits are not preloaded - 1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated only when a commutation event (COM) occurs (COMG bit set or rising edge detected on TRGI, depending on the CCUS bit). Note: This bit acts only on channels that have a complementary output. RM0444 Rev 5 783/1390 ## 25.5.3 TIM15 slave mode control register (TIM15_SMCR) Address offset: 0x08 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|----------|------|--------------|------|------|------|---------------|--------| | Res. TS[| 4:3] | Res. | Res. | Res. | SMS[3] | | | | | | | | | | | | rw | rw | | | | rw | | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
MSM | 6 | 5
TS[2:0] | 4 | Res. | 2 | 1
SMS[2:0] | 0 | Bits 31:22 Reserved, must be kept at reset value. Bits 19:17 Reserved, must be kept at reset value. Bits 15:8 Reserved, must be kept at reset value. Bit 7 MSM: Master/slave mode 0: No action 1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful if we want to synchronize several timers on a single external event. #### Bits 21, 20, 6, 5, 4 **TS[4:0]:** Trigger selection This bit field selects the trigger input to be used to synchronize the counter. 00000: Internal Trigger 0 (ITR0) 00001: Internal Trigger 1 (ITR1) 00010: Internal Trigger 2 (ITR2) 00011: Internal Trigger 3 (ITR3) 00100: TI1 Edge Detector (TI1F_ED) 00101: Filtered Timer Input 1 (TI1FP1) 00110: Filtered Timer Input 2 (TI2FP2) Other: Reserved See *Table 126: TIMx Internal trigger connection on page 785* for more details on ITRx meaning for each Timer. Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition. Bit 3 Reserved, must be kept at reset value. #### Bits 16, 2, 1, 0 SMS[3:0]: Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. 0000: Slave mode disabled - if CEN = '1' then the prescaler is clocked directly by the internal clock. 0001: Reserved 0010: Reserved 0011: Reserved 0100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers. 0101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are controlled. 0110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled. 0111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter. 1000: Combined reset + trigger mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter, generates an update of the registers and starts the counter. Other codes: reserved. Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS='00100'). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Note: The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer. Table 126. TIMx Internal trigger connection | Slave TIM | ITR0 (TS = 00000) | ITR1 (TS = 00001) | ITR2 (TS = 00010) | ITR3 (TS = 00011) | |-----------|-------------------|-------------------|-------------------|-------------------| | TIM15 | TIM2 | TIM3 | TIM16_OC1 | TIM17_OC1 | ## 25.5.4 TIM15 DMA/interrupt enable register (TIM15_DIER) Address offset: 0x0C Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----------|------|------|-------|-------|-----|-----|-----|-------|------|------|-------|-------|-----| | Res. | TDE | COMD
E | Res. | Res. | CC2DE | CC1DE | UDE | BIE | TIE | COMIE | Res. | Res. | CC2IE | CC1IE | UIE | | | rw | rw | | | rw | rw | rw | rw | rw | rw | | | rw | rw | rw | Bit 15 Reserved, must be kept at reset value. Bit 14 TDE: Trigger DMA request enable 0: Trigger DMA request disabled1: Trigger DMA request enabled Bit 13 **COMDE**: COM DMA request enable 0: COM DMA request disabled1: COM DMA request enabled ____ RM0444 Rev 5 785/1390 Bits 12:11 Reserved, must be kept at reset value. Bit 10 CC2DE: Capture/Compare 2 DMA request enable 0: CC2 DMA request disabled 1: CC2 DMA request enabled Bit 9 CC1DE: Capture/Compare 1 DMA request enable 0: CC1 DMA request disabled 1: CC1 DMA request enabled Bit 8 **UDE**: Update DMA request enable 0: Update DMA request disabled 1: Update DMA request enabled Bit 7 BIE: Break interrupt enable 0: Break interrupt disabled 1: Break interrupt enabled Bit 6 TIE: Trigger interrupt enable 0: Trigger interrupt disabled 1: Trigger interrupt enabled Bit 5 COMIE: COM interrupt enable 0: COM interrupt disabled 1: COM interrupt enabled Bits 4:3 Reserved, must be kept at reset value. Bit 2 **CC2IE**: Capture/Compare 2 interrupt enable 0: CC2 interrupt disabled 1: CC2 interrupt enabled Bit 1 CC1IE: Capture/Compare 1 interrupt enable 0: CC1 interrupt disabled 1: CC1 interrupt enabled Bit 0 **UIE**: Update interrupt enable 0: Update interrupt disabled 1: Update interrupt enabled ## 25.5.5 TIM15 status register (TIM15_SR) Address offset: 0x10 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|-------|-------|------|-------|-------|-------|------|------|-------|-------|-------| | Res. | Res. | Res. | Res. | Res. | CC2OF | CC10F | Res. | BIF | TIF | COMIF | Res. | Res. | CC2IF | CC1IF | UIF | | | | | | | rc_w0 | rc_w0 | | rc_w0 | rc_w0 | rc_w0 | | | rc_w0 | rc_w0 | rc_w0 | Bits 15:11 Reserved, must be kept at reset value. Bit 10 CC2OF: Capture/Compare 2 overcapture flag Refer to CC1OF description Bit 9 CC10F: Capture/Compare 1 overcapture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to '0'. - 0: No overcapture has been detected - 1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set - Bit 8 Reserved, must be kept at reset value. - Bit 7 BIF: Break interrupt flag This flag is set by hardware as soon as the break input goes active. It can be cleared by software if the break input is not active. - 0: No break event occurred - 1: An active level has been detected on the break input - Bit 6 TIF: Trigger interrupt flag This flag is set by hardware on the TRG trigger event (active edge detected on TRGI input when the slave mode controller is enabled in all modes but gated mode, both edges in case gated mode is selected). It is set when the
counter starts or stops when gated mode is selected. It is cleared by software. - 0: No trigger event occurred - 1: Trigger interrupt pending - Bit 5 COMIF: COM interrupt flag This flag is set by hardware on a COM event (once the capture/compare control bits –CCxE, CCxNE, OCxM– have been updated). It is cleared by software. - 0: No COM event occurred - 1: COM interrupt pending - Bits 4:3 Reserved, must be kept at reset value. RM0444 Rev 5 787/1390 # Bit 2 **CC2IF**: Capture/Compare 2 interrupt flag refer to CC1IF description Bit 1 CC1IF: Capture/Compare 1 interrupt flag This flag is set by hardware. It is cleared by software (input capture or output compare mode) or by reading the TIMx_CCR1 register (input capture mode only). - 0: No compare match / No input capture occurred - 1: A compare match or an input capture occurred If channel CC1 is configured as output: this flag is set when the content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the content of TIMx_CCR1 is greater than the content of TIMx_ARR, the CC1IF bit goes high on the counter overflow (in up-counting and up/down-counting modes) or underflow (in down-counting mode). There are 3 possible options for flag setting in center-aligned mode, refer to the CMS bits in the TIMx_CR1 register for the full description. **If channel CC1 is configured as input**: this bit is set when counter value has been captured in TIMx_CCR1 register (an edge has been detected on IC1, as per the edge sensitivity defined with the CC1P and CC1NP bits setting, in TIMx_CCER). #### Bit 0 **UIF**: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. - 0: No update occurred. - 1: Update interrupt pending. This bit is set by hardware when the registers are updated: - At overflow regarding the repetition counter value (update if repetition counter = 0) and if the UDIS=0 in the TIMx_CR1 register. - When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and UDIS=0 in the TIMx_CR1 register. - When CNT is reinitialized by a trigger event (refer to Section 25.5.3: TIM15 slave mode control register (TIM15_SMCR)), if URS=0 and UDIS=0 in the TIMx_CR1 register. ## 25.5.6 TIM15 event generation register (TIM15_EGR) Address offset: 0x14 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|----|----|------|------|------|------|------|----| | Res. BG | TG | COMG | Res. | Res. | CC2G | CC1G | UG | | | | | | | | | | w | W | rw | | | w | w | w | Bits 15:8 Reserved, must be kept at reset value. #### Bit 7 BG: Break generation This bit is set by software in order to generate an event, it is automatically cleared by hardware - 0: No action - 1: A break event is generated. MOE bit is cleared and BIF flag is set. Related interrupt or DMA transfer can occur if enabled. #### Bit 6 TG: Trigger generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. - 0: No action - 1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if enabled Bit 5 COMG: Capture/Compare control update generation This bit can be set by software, it is automatically cleared by hardware. 0: No action 1: When the CCPC bit is set, it is possible to update the CCxE, CCxNE and OCxM bits Note: This bit acts only on channels that have a complementary output. Bits 4:3 Reserved, must be kept at reset value. Bit 2 CC2G: Capture/Compare 2 generation Refer to CC1G description Bit 1 CC1G: Capture/Compare 1 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware 0: No action 1: A capture/compare event is generated on channel 1: #### If channel CC1 is configured as output: CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled. #### If channel CC1 is configured as input: The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high. Bit 0 UG: Update generation This bit can be set by software, it is automatically cleared by hardware. 0: No action 1: Reinitialize the counter and generates an update of the registers. Note that the prescaler counter is cleared too (anyway the prescaler ratio is not affected). # 25.5.7 TIM15 capture/compare mode register 1 [alternate] (TIM15_CCMR1) Address offset: 0x18 Reset value: 0x0000 0000 The same register can be used for input capture mode (this section) or for output compare mode (next section). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. ### Input capture mode: | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|-----------|------|------|-------|--------|------|--------|------|------|-------|------|-------|--------|------|--------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | IC2F[3:0] | | | IC2PS | C[1:0] | CC2 | S[1:0] | | IC1F | [3:0] | | IC1PS | C[1:0] | CC1 | S[1:0] | | rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:12 IC2F[3:0]: Input capture 2 filter Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler RM0444 Rev 5 789/1390 #### Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output 01: CC2 channel is configured as input, IC2 is mapped on TI2 10: CC2 channel is configured as input, IC2 is mapped on TI1 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx SMCR register) Note: CC2S bits are writable only when the channel is OFF (CC2E = '0' in TIMx CCER). #### Bits 7:4 IC1F[3:0]: Input capture 1 filter This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, sampling is done at fDTS 0001: f_{SAMPLING}=f_{CK INT}, N=2 0010: f_{SAMPLING}=f_{CK} INT, N=4 0011: f_{SAMPLING}=f_{CK} INT, N=8 0100: f_{SAMPLING}=f_{DTS}/2, N=6 0101: $f_{SAMPLING} = f_{DTS}/2$, N=8 0110: $f_{SAMPLING} = f_{DTS}/4$, N=6 0111: f_{SAMPLING}=f_{DTS}/4, N=8 1000: f_{SAMPLING}=f_{DTS}/8, N=6 1001: f_{SAMPLING}=f_{DTS}/8, N=8 1010: f_{SAMPLING}=f_{DTS}/16, N=5 1011: f_{SAMPLING}=f_{DTS}/16, N=6 1100: f_{SAMPLING}=f_{DTS}/16, N=8 1101: f_{SAMPLING}=f_{DTS}/32, N=5 1110: f_{SAMPLING}=f_{DTS}/32, N=6 1111: f_{SAMPLING}=f_{DTS}/32, N=8 ## Bits 3:2 IC1PSC[1:0]: Input capture 1 prescaler This bit-field defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset as soon as CC1E='0' (TIMx_CCER register). 00: no prescaler, capture is done each time an edge is detected on the capture input 01: capture is done once every 2 events 10: capture is done once every 4 events 11: capture is done once every 8 events #### Bits 1:0 CC1S[1:0]: Capture/Compare 1 Selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: CC1 channel is configured as input, IC1 is mapped on TI2 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = '0' in TIMx_CCER). #### 25.5.8 TIM15 capture/compare mode register 1 [alternate] (TIM15 CCMR1) Address offset: 0x18 Reset value: 0x0000 0000 The same register can be used for output compare mode (this section) or for input capture mode (previous section). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. ## Output compare mode: | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|-----------|------|-----------|-----------|------|--------|-------------|------|----------|------|-----------|-----------|------|--------|-------------| | Res. OC2M
[3] | Res. OC1M
[3] | | | | | | | | | rw | | | | | | | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | OC2M[2:0] | | OC2
PE | OC2
FE | CC2 | S[1:0] | Res. | (| OC1M[2:0 |)] | OC1
PE | OC1
FE | CC1 | S[1:0] | | | | rw | rw Bits 31:25 Reserved, must be kept at reset value. Bits 23:17 Reserved, must be kept at reset value. Bit 15 Reserved, must be kept at reset value. Bits 24, 14:12 OC2M[3:0]: Output Compare 2 mode Bit 11 OC2PE: Output Compare 2 preload enable Bit 10 OC2FE: Output Compare 2 fast enable Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output. 01: CC2 channel is configured as input, IC2 is mapped on TI2. 10: CC2 channel is configured as input, IC2 is mapped on TI1. 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through the TS bit (TIMx_SMCR register) Note: CC2S bits are writable only when the channel is OFF (CC2E = '0' in TIMx_CCER). Bit 7 Reserved, must be kept at reset value. RM0444 Rev 5 791/1390 #### Bits 16, 6:4 OC1M[3:0]: Output Compare 1 mode These bits define the behavior of the output reference signal OC1REF from which OC1 and OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends on CC1P and CC1NP bits. - 0000: Frozen
The comparison between the output compare register TIMx_CCR1 and the counter TIMx CNT has no effect on the outputs. - 0001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter TIMx CNT matches the capture/compare register 1 (TIMx CCR1). - 0010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter TIMx CNT matches the capture/compare register 1 (TIMx CCR1). - 0011: Toggle OC1REF toggles when TIMx CNT=TIMx CCR1. - 0100: Force inactive level OC1REF is forced low. - 0101: Force active level OC1REF is forced high. - 0110: PWM mode 1 Channel 1 is active as long as TIMx_CNT<TIMx_CCR1 else inactive. - 0111: PWM mode 2 Channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1 else active. - 1000: Retrigerrable OPM mode 1 In up-counting mode, the channel is active until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1 and the channels becomes active again at the next update. In down-counting mode, the channel is inactive until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1 and the channels becomes inactive again at the next update. - 1001: Retrigerrable OPM mode 2 In up-counting mode, the channel is inactive until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 2 and the channels becomes inactive again at the next update. In downcounting mode, the channel is active until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1 and the channels becomes active again at the next update. - 1010: Reserved - 1011: Reserved - 1100: Combined PWM mode 1 OC1REF has the same behavior as in PWM mode 1. OC1REFC is the logical OR between OC1REF and OC2REF. - 1101: Combined PWM mode 2 OC1REF has the same behavior as in PWM mode 2. OC1REFC is the logical AND between OC1REF and OC2REF. - 1110: Reserved. - 1111: Reserved. Note: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S='00' (the channel is configured in output). In PWM mode, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from "frozen" mode to "PWM" On channels that have a complementary output, this bit field is preloaded. If the CCPC bit is set in the TIMx CR2 register then the OC1M active bits take the new value from the preloaded bits only when a COM event is generated. The OC1M[3] bit is not contiguous, located in bit 16. ## Bit 3 OC1PE: Output Compare 1 preload enable - 0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value is taken in account immediately. - 1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded in the active register at each update event. Note: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S='00' (the channel is configured in output). The PWM mode can be used without validating the preload register only in one pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed. ## Bit 2 OC1FE: Output Compare 1 fast enable This bit decreases the latency between a trigger event and a transition on the timer output. It must be used in one-pulse mode (OPM bit set in TIMx_CR1 register), to have the output pulse starting as soon as possible after the starting trigger. - 0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles. - 1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is set to the compare level independently of the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if the channel is configured in PWM1 or PWM2 mode. ## Bits 1:0 CC1S[1:0]: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output. 01: CC1 channel is configured as input, IC1 is mapped on TI1. 10: CC1 channel is configured as input, IC1 is mapped on TI2. 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = '0' in TIMx_CCER). # 25.5.9 TIM15 capture/compare enable register (TIM15_CCER) Address offset: 0x20 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|-------|------|------|------|-------|-------|------|------| | Res. CC2NP | Res. | CC2P | CC2E | CC1NP | CC1NE | CC1P | CC1E | | | | | | | | | | rw | | rw | rw | rw | rw | rw | rw | Bits 15:8 Reserved, must be kept at reset value. Bit 7 **CC2NP**: Capture/Compare 2 complementary output polarity Refer to CC1NP description Bit 6 Reserved, must be kept at reset value. Bit 5 CC2P: Capture/Compare 2 output polarity Refer to CC1P description Bit 4 CC2E: Capture/Compare 2 output enable Refer to CC1E description RM0444 Rev 5 793/1390 Bit 3 CC1NP: Capture/Compare 1 complementary output polarity CC1 channel configured as output: 0: OC1N active high 1: OC1N active low CC1 channel configured as input: This bit is used in conjunction with CC1P to define the polarity of TI1FP1 and TI2FP1. Refer to CC1P description. Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S="00" (the channel is configured in output). On channels that have a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1NP active bit takes the new value from the preloaded bit only when a Commutation event is generated. ## Bit 2 **CC1NE**: Capture/Compare 1 complementary output enable - 0: Off OC1N is not active. OC1N level is then function of MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits. - 1: On OC1N signal is output on the corresponding output pin depending on MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits. - Bit 1 CC1P: Capture/Compare 1 output polarity - 0: OC1 active high (output mode) / Edge sensitivity selection (input mode, see below) - 1: OC1 active low (output mode) / Edge sensitivity selection (input mode, see below) When CC1 channel is configured as input, both CC1NP/CC1P bits select the active polarity of TI1FP1 and TI2FP1 for trigger or capture operations. - CC1NP=0, CC1P=0: non-inverted/rising edge. The circuit is sensitive to TIxFP1 rising edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger operation in gated mode or encoder mode). - CC1NP=0, CC1P=1: inverted/falling edge. The circuit is sensitive to TIxFP1 falling edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is inverted (trigger operation in gated mode or encoder mode). - CC1NP=1, CC1P=1: non-inverted/both edges/ The circuit is sensitive to both TIxFP1 rising and falling edges (capture or trigger operations in reset, external clock or trigger mode), TIxFP1is not inverted (trigger operation in gated mode). This configuration must not be used in encoder mode. - CC1NP=1, CC1P=0: this configuration is reserved, it must not be used. - Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). On channels that have a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1P active bit takes the new value from the preloaded bit only when a Commutation event is generated. ## Bit 0 CC1E: Capture/Compare 1 output enable - 0: Capture mode disabled / OC1 is not active (see below) - 1: Capture mode enabled / OC1 signal is output on the corresponding output pin When CC1 channel is configured as output, the OC1 level depends on MOE, OSSI, OSSR, OIS1, OIS1N and CC1NE bits, regardless of the CC1E bits state. Refer to *Table 127* for details. Table 127. Output control bits for complementary OCx and OCxN channels with break feature (TIM15) | | | Control b | its | | Outp | ut states ⁽¹⁾ | |---------|----------|-----------|----------|-----------|---|--| | MOE bit | OSSI bit | OSSR bit | CCxE bit | CCxNE bit | OCx output state | OCxN output state | | | | Х | 0 | 0 | Output Disabled (not driven OCx=0 OCxN=0, OCxN_EN=0 | by the timer: Hi-Z) | | | | 0 | 0 | 1 | Output Disabled (not driven
by the timer: Hi-Z)
OCx=0 | OCxREF + Polarity OCxN=OCxREF XOR CCxNP | | 1 | X | 0 | 1 | 0 | OCxREF + Polarity OCx=OCxREF XOR CCxP | Output Disabled (not driven by the timer: Hi-Z) OCxN=0 | | | | Х | 1 | 1 | OCREF + Polarity + dead-
time | Complementary to OCREF (not OCREF) + Polarity + dead-time | | | | 1 | 0 | 1 | Off-State (output enabled with inactive state) OCx=CCxP | OCxREF + Polarity OCxN=OCxREF XOR CCxNP | | | | 1 | 1 | 0 | OCxREF + Polarity OCx=OCxREF xor CCxP, OCx_EN=1 | Off-State (output enabled with inactive state) OCxN=CCxNP, OCxN_EN=1 | | | 0 | | X | X | Output disabled (not driven | hy the timer: Hi-7) | | | | | 0 | 0 | Output disabled (flot differi | by the tiller. Hil-2) | | 0 | | Х | 0 | 1 | Off-State (output enabled wi | , | | | 1 | , | 1 | 0 | Asynchronously: OCx=CCxl | • | | 0 | | | 1 | 1 | | OCx=OISx and OCxN=OISxN
that OISx and OISxN do not
xN both in active state | When both outputs of a channel are not used (control taken over by GPIO controller), the OISx, OISxN, CCxP and CCxNP bits must be kept cleared. Note: The state of the external I/O pins connected to the complementary OCx and OCxN
channels depends on the OCx and OCxN channel state and AFIO registers. # 25.5.10 TIM15 counter (TIM15_CNT) Address offset: 0x24 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------|------|------|------|------|------|------|--------|------|------|------|------|------|------|------| | UIF
CPY | Res. | r | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | CNT | [15:0] | | | | | | | | | rw Bit 31 UIFCPY: UIF Copy This bit is a read-only copy of the UIF bit in the TIMx_ISR register. Bits 30:16 Reserved, must be kept at reset value. Bits 15:0 CNT[15:0]: Counter value # 25.5.11 TIM15 prescaler (TIM15_PSC) Address offset: 0x28 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|-----|--------|----|----|----|----|----|----|----| | | | | | | | | PSC | [15:0] | | | | | | | | | rw Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency (CK_CNT) is equal to $f_{CK\ PSC}$ / (PSC[15:0] + 1). PSC contains the value to be loaded in the active prescaler register at each update event (including when the counter is cleared through UG bit of TIMx_EGR register or through trigger controller when configured in "reset mode"). # 25.5.12 TIM15 auto-reload register (TIM15_ARR) Address offset: 0x2C Reset value: 0xFFFF | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|-----|--------|----|----|----|----|----|----|----| | | | | | | | | ARR | [15:0] | | | | | | | | | rw Bits 15:0 ARR[15:0]: Auto-reload value ARR is the value to be loaded in the actual auto-reload register. Refer to the Section 25.4.1: Time-base unit on page 745 for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. # 25.5.13 TIM15 repetition counter register (TIM15_RCR) Address offset: 0x30 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|----|----|----|-----|-------|----|----|----| | Res. | | | REP | [7:0] | | | | | | | | | | | | | rw Bits 15:8 Reserved, must be kept at reset value. ## Bits 7:0 REP[7:0]: Repetition counter value These bits allow the user to set-up the update rate of the compare registers (i.e. periodic transfers from preload to active registers) when preload registers are enable, as well as the update interrupt generation rate, if this interrupt is enable. Each time the REP_CNT related downcounter reaches zero, an update event is generated and it restarts counting from REP value. As REP_CNT is reloaded with REP value only at the repetition update event U_RC, any write to the TIMx_RCR register is not taken in account until the next repetition update event. It means in PWM mode (REP+1) corresponds to the number of PWM periods in edgealigned mode. # 25.5.14 TIM15 capture/compare register 1 (TIM15 CCR1) Address offset: 0x34 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|------|--------|----|----|----|----|----|----|----| | | | | | | | | CCR1 | [15:0] | | | | | | | • | | rw Bits 15:0 CCR1[15:0]: Capture/Compare 1 value ## If channel CC1 is configured as output: CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC1 output. ## If channel CC1 is configured as input: CCR1 is the counter value transferred by the last input capture 1 event (IC1). RM0444 Rev 5 797/1390 # 25.5.15 TIM15 capture/compare register 2 (TIM15_CCR2) Address offset: 0x38 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|------|---------|----|----|----|----|----|----|----| | | | | | | | | CCR2 | 2[15:0] | | | | | | | | | rw Bits 15:0 CCR2[15:0]: Capture/Compare 2 value ### If channel CC2 is configured as output: CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx CNT and signalled on OC2 output. ## If channel CC2 is configured as input: CCR2 is the counter value transferred by the last input capture 2 event (IC2). # 25.5.16 TIM15 break and dead-time register (TIM15_BDTR) Address offset: 0x44 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|-------|------|------------|------|-------------------|------|------|------|------|--------|-----|-------|----| | Res. | Res. | Res. | BKBID | Res. | BK
DSRM | Res. | Res. | Res. | Res. | Res. | Res. | | BKF | [3:0] | | | | | | rw | | rw | | | | | | | rw | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | MOE | AOE | BKP | BKE | OSSR | OSSI | LOCI | < [1:0] | | | | DTG | G[7:0] | | | | | rw Note: As the BKBID, BKDSRM, BKF[3:0], AOE, BKP, BKE, OSSI, OSSR and DTG[7:0] bits may be write-locked depending on the LOCK configuration, it may be necessary to configure all of them during the first write access to the TIMX BDTR register. Bits 31:29 Reserved, must be kept at reset value. Bit 28 BKBID: Break Bidirectional - 0: Break input BRK in input mode - 1: Break input BRK in bidirectional mode In the bidirectional mode (BKBID bit set to 1), the break input is configured both in input mode and in open drain output mode. Any active break event asserts a low logic level on the Break input to indicate an internal break event to external devices. Note: This bit cannot be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. - Bit 27 Reserved, must be kept at reset value. - Bit 26 BKDSRM: Break Disarm - 0: Break input BRK is armed - 1: Break input BRK is disarmed This bit is cleared by hardware when no break source is active. The BKDSRM bit must be set by software to release the bidirectional output control (opendrain output in Hi-Z state) and then be polled it until it is reset by hardware, indicating that the fault condition has disappeared. Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. Bits 25:20 Reserved, must be kept at reset value. ## Bits 19:16 BKF[3:0]: Break filter This bit-field defines the frequency used to sample the BRK input signal and the length of the digital filter applied to BRK. The digital filter is made of an event counter in which N events are needed to validate a transition on the output: ``` 0000: No filter, BRK acts asynchronously ``` ``` 0001: f_{SAMPLING}=f_{CK INT}, N=2 ``` 0010: f_{SAMPLING}=f_{CK} INT, N=4 0011: f_{SAMPLING}=f_{CK} INT, N=8 0100: f_{SAMPLING}=f_{DTS}/2, N=6 0101: $f_{SAMPLING} = f_{DTS}/2$, N=8 0110: f_{SAMPLING}=f_{DTS}/4, N=6 0111: $f_{SAMPLING} = f_{DTS}/4$, N=8 1000: $f_{SAMPLING} = f_{DTS}/8$, N=6 1001: f_{SAMPLING}=f_{DTS}/8, N=8 1010: f_{SAMPLING}=f_{DTS}/16, N=5 1011: f_{SAMPLING}=f_{DTS}/16, N=6 1100: f_{SAMPLING}=f_{DTS}/16, N=8 1101: f_{SAMPLING}=f_{DTS}/32, N=5 1110: f_{SAMPLING}=f_{DTS}/32, N=6 1111: f_{SAMPLING}=f_{DTS}/32, N=8 Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx BDTR register). # Bit 15 MOE: Main output enable This bit is cleared asynchronously by hardware as soon as the break input is active. It is set by software or automatically depending on the AOE bit. It is acting only on the channels which are configured in output. - 0: OC and OCN outputs are disabled or forced to idle state depending on the OSSI bit. - 1: OC and OCN outputs are enabled if their respective enable bits are set (CCxE, CCxNE in TIMx CCER register) See OC/OCN enable description for more details (Section 25.5.9: TIM15 capture/compare enable register (TIM15_CCER) on page 793). ## Bit 14 AOE: Automatic output enable - 0: MOE can be set only by software - 1: MOE can be set by software or automatically at the next update event (if the break input is not be active) Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). RM0444 Rev 5 799/1390 ### Bit 13 BKP: Break polarity - 0: Break input BRK is active low - 1: Break input BRK is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. ### Bit 12 BKE: Break enable - 0: Break inputs (BRK and CCS clock failure event) disabled - 1; Break inputs (BRK and CCS clock failure event) enabled This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. ### Bit 11 OSSR: Off-state selection for Run mode This bit is used when MOE=1 on channels that have a complementary output which are configured as outputs. OSSR is not implemented if no complementary output is implemented in the timer. See OC/OCN enable description for more details (Section 25.5.9: TIM15 capture/compare enable register (TIM15 CCER) on page 793). - 0: When inactive, OC/OCN outputs are disabled (the timer releases the output control which is taken over by the AFIO logic, which
forces a Hi-Z state) - 1: When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 (the output is still controlled by the timer). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMX BDTR register). ## Bit 10 OSSI: Off-state selection for Idle mode This bit is used when MOE=0 on channels configured as outputs. See OC/OCN enable description for more details (Section 25.5.9: TIM15 capture/compare enable register (TIM15_CCER) on page 793). - 0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0) - 1: When inactive, OC/OCN outputs are forced first with their idle level as soon as CCxE=1 or CCxNE=1. OC/OCN enable output signal=1) Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register). ## Bits 9:8 LOCK[1:0]: Lock configuration These bits offer a write protection against software errors. - 00: LOCK OFF No bit is write protected - 01: LOCK Level 1 = DTG bits in TIMx_BDTR register, OISx and OISxN bits in TIMx_CR2 register and BKE/BKP/AOE bits in TIMx_BDTR register can no longer be written - 10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CCxP/CCxNP bits in TIMx_CCER register, as long as the related channel is configured in output through the CCxS bits) as well as OSSR and OSSI bits can no longer be written. - 11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in TIMx_CCMRx registers, as long as the related channel is configured in output through the CCxS bits) can no longer be written. Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register has been written, their content is frozen until the next reset. ## Bits 7:0 DTG[7:0]: Dead-time generator setup This bit-field defines the duration of the dead-time inserted between the complementary outputs. DT correspond to this duration. $\mathsf{DTG}[7:5] = \mathsf{0xx} \Longrightarrow \mathsf{DT} = \mathsf{DTG}[7:0] \ \mathsf{x} \ \mathsf{t_{dtg}} \ \mathsf{with} \ \mathsf{t_{dtg}} = \mathsf{t_{DTS}}$ DTG[7:5] = $10x \Rightarrow DT = (64+DTG[5:0])$ x t_{dtg} with $t_{dtg} = 2$ x t_{DTS} DTG[7:5] = 110 => DT = (32+DTG[4:0]) x t_{dtg} with t_{dtg} = 8 x t_{DTS} DTG[7:5] = 111 => DT = $(32+DTG[4:0]) \times t_{dtg}$ with t_{dtg} = 16 x t_{DTS} Example if t_{DTS} = 125 ns (8 MHz), dead-time possible values are: 0 to 15875 ns by 125 ns steps, 16 µs to 31750 ns by 250 ns steps, 32 µs to 63 µs by 1 µs steps, 64 µs to 126 µs by 2 µs steps Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). # 25.5.17 TIM15 DMA control register (TIM15_DCR) Address offset: 0x48 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 1 | 6 | 5 | 4 | 3 | 2 | 1 | Ü | |------|------|------|----|----|----------|----|----|------|------|------|----|----|----------|----|----| | Res. | Res. | Res. | | _ | DBL[4:0] | _ | | Res. | Res. | Res. | | _ | DBA[4:0] | _ | | | | | | rw | rw | rw | rw | rw | | | | rw | rw | rw | rw | rw | Bits 15:13 Reserved, must be kept at reset value. ## Bits 12:8 DBL[4:0]: DMA burst length This 5-bit field defines the length of DMA transfers (the timer recognizes a burst transfer when a read or a write access is done to the TIMX DMAR address). 00000: 1 transfer, 00001: 2 transfers, 00010: 3 transfers, ... 10001: 18 transfers. ## Bits 7:5 Reserved, must be kept at reset value. ### Bits 4:0 DBA[4:0]: DMA base address This 5-bit field defines the base-address for DMA transfers (when read/write access are done through the TIMx_DMAR address). DBA is defined as an offset starting from the address of the TIMx_CR1 register. Example: 00000: TIMx_CR1, 00001: TIMx_CR2, 00010: TIMx_SMCR, ... # 25.5.18 TIM15 DMA address for full transfer (TIM15_DMAR) Address offset: 0x4C Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|------|---------|----|----|----|----|----|----|----| | | | | | | | | DMAE | 3[15:0] | | | | | | | | | rw RM0444 Rev 5 801/1390 ## Bits 15:0 DMAB[15:0]: DMA register for burst accesses A read or write operation to the DMAR register accesses the register located at the address (TIMx CR1 address) + (DBA + DMA index) x 4 where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base address configured in TIMx_DCR register, DMA index is automatically controlled by the DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR). # 25.5.19 TIM15 alternate register 1 (TIM15_AF1) Address offset: 0x60 Reset value: 0x0000 0001 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|-------------|-------------|-------------|-------|------|------|------|------|------|-------------|-------------|-------------|-------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | BKCM
P3P | BKCM
P2P | BKCM
P1P | BKINP | Res. | Res. | Res. | Res. | Res. | BKCM
P3E | BKCM
P2E | BKCM
P1E | BKINE | | | | | rw | rw | rw | rw | | | | | | rw | rw | rw | rw | Bits 31:13 Reserved, must be kept at reset value. ## Bit 12 BKCMP3P: BRK COMP3 input polarity This bit selects the COMP3 input sensitivity. It must be programmed together with the BKP polarity bit. 0: COMP3 input is active low 1: COMP3 input is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). ## Bit 11 BKCMP2P: BRK COMP2 input polarity This bit selects the COMP2 input sensitivity. It must be programmed together with the BKP polarity bit. 0: COMP2 input is active low 1: COMP2 input is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). ### Bit 10 **BKCMP1P**: BRK COMP1 input polarity This bit selects the COMP1 input sensitivity. It must be programmed together with the BKP polarity bit. 0: COMP1 input is active low 1: COMP1 input is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). ## Bit 9 BKINP: BRK BKIN input polarity This bit selects the BKIN alternate function input sensitivity. It must be programmed together with the BKP polarity bit. 0: BKIN input is active low 1: BKIN input is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx BDTR register). Bits 8:4 Reserved, must be kept at reset value. ### Bit 3 BKCMP3E: BRK COMP3 enable This bit enables the COMP3 for the timer's BRK input. COMP3 output is 'ORed' with the other BRK sources. 0: COMP3 input disabled 1: COMP3 input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). ### Bit 2 BKCMP2E: BRK COMP2 enable This bit enables the COMP2 for the timer's BRK input. COMP2 output is 'ORed' with the other BRK sources. 0: COMP2 input disabled 1: COMP2 input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). ## Bit 1 BKCMP1 E: BRK COMP1 enable This bit enables the COMP1 for the timer's BRK input. COMP1 output is 'ORed' with the other BRK sources. 0: COMP1 input disabled 1: COMP1 input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). ### Bit 0 BKINE: BRK BKIN input enable This bit enables the BKIN alternate function input for the timer's BRK input. BKIN input is 'ORed' with the other BRK sources. 0: BKIN input disabled 1: BKIN input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). # 25.5.20 TIM15 input selection register (TIM15_TISEL) Address offset: 0x68 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|-------|--------|------|------|------|------|------|------|-------|--------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | | TI2SE | L[3:0] | | Res. | Res. | Res. | Res. | | TI1SE | L[3:0] | | | | | | | rw | rw | rw | rw | | | | | rw | rw | rw | rw | Bits 31:12 Reserved, must be kept at reset value. Bits 11:8 TI2SEL[3:0]: selects TI2[0] to TI2[15] input 0000: TIM15_CH2 input 0001: TIM2_IC2 0010: TIM3_IC2 Others: Reserved Bits 7:4 Reserved, must be kept at reset value. RM0444 Rev 5 803/1390 Bits 3:0 TI1SEL[3:0]: selects TI1[0] to TI1[15] input 0000: TIM15_CH1 input 0001: TIM2_IC1 0010: TIM3_IC1 Others: Reserved # 25.5.21 TIM15 register map TIM15 registers are mapped as 16-bit addressable registers as described in the table below: Table 128. TIM15 register map and reset values | | | | 1 | | | | | | | | | | | | | · | | | | | | | | | | | | | | | | | $\overline{}$ | |--------|--------------------------------------|------|------|------|------|------|------|------|---------|------|------|----------|----------|------|------|------|---------|------|------|--------------|------|-----------------|-------|-----------|------|------|------|---------------|------|-----------------|-------|-----------|---------------| | Offset | Register
name | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 2 | 1 | 0 | | 0x00 | TIM15_CR1 | Res. UIFREMA | Res. | Ch
[1: | | ARPE | Res. | Res. | Res. | OPM | URS | UDIS | CEN | | | Reset value | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 | 0 | | 0x04 | TIM15_CR2 | Res. OIS2 | OIS1N | OIS1 | TI1S | MN | /IS[2 | 2:0] | CCDS | ccus | Res. | CCPC | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 0x08 |
TIM15_SMCR | Res. T
[4: | S
:3] | Res. | Res. | Res. | SMS[3] | Res. MSM | Т | S[2: | 0] | Res. | SN | 1S[2 | ::0] | | | Reset value | | | | | | | | | | | 0 | 0 | | | | 0 | | | | | | | | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | 0x0C | TIM15_DIER | Res. TDE | COMDE | Res. | Res. | CC2DE | CC1DE | UDE | BIE | TIE | COMIE | Res. | Res. | CC2IE | CC1IE | UIE | | | Reset value | | | | | | | | | | | | | | | | | | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | | 0x10 | TIM15_SR | Res. CC20F | CC10F | Res. | BIF | ΤF | COMIF | Res. | Res. | CC2IF | CC1IF | UIF | | | Reset value | 0 | 0 | | 0 | 0 | 0 | | | 0 | 0 | 0 | | 0x14 | TIM15_EGR | Res. BG | TG | COMG | Res. | Res. | CC2G | CC1G | nG | | | Reset value | 0 | 0 | 0 | | | 0 | 0 | 0 | | | TIM15_CCMR1 Output Compare mode | Res. OC2M[3] | Res. OC1M[3] | Res. | | C2l
[2:0] | | OC2PE | OC2FE | CC
[1: | | Res. | |)C1I
[2:0] | | OC1PE | OC1FE | CC
[1: | | | 0x18 | Reset value | | | | | | | | 0 | | | | | | | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0.00 | TIM15_CCMR1
Input Capture
mode | Res. I | C2F | [3:0 |] | IC
PS
[1: | SC | CC
[1: | | ı | C1F | [3:0 |)] | IC
PS
[1: | SC | CC
[1: | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 128. TIM15 register map and reset values (continued) | | | | | | | | | | | <u> </u> | | | _ | <u> </u> |--------|------------------|----------------|------|------|-------|------|--------|------|------|----------|------|------|------|----------|------|------|------|------|------|------|----------------|----------------|---------|----------|-----------|-------|------|------|------|----------------|----------------|---------|-------| | Offset | Register
name | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | က | 2 | 1 | 0 | | 0x20 | TIM15_CCER | Res. CC2NP | Res. | CC2P | CC2E | CC1NP | CC1NE | CC1P | CC1E | | | Reset value | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | 0x24 | TIM15_CNT | UIFCPY or Res. | | | | | | | (| CNT | [15: | 0] | | | | | | | | | Reset value | 0 | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x28 | TIM15_PSC | Res. | | | | | | F | PSC | [15: | 0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x2C | TIM15_ARR | Res. | | | | | | A | ARR | [15: | 0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 0x30 | TIM15_RCR | Res. | | ı | REP | [7:0 |] | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x34 | TIM15_CCR1 | Res. | | | | | | С | CR1 | 1[15 | :0] | ı | ı | ı | | ı | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x38 | TIM15_CCR2 | Res. | | | | | | С | CR2 | 2[15 | :0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x44 | TIM15_BDTR | Res. | Res. | Res. | BKBID | Res. | BKDSRM | Res. | Res. | Res. | Res. | Res. | | E | 3KF | [3:0 |] | MOE | AOE | BKP | BKE | OSSR | ISSO | LO
[1 | CK
:0] | | | [| OTG | [7:0 |] | | | | | Reset value | | | | 0 | | 0 | | | | | | | 0 | | 0x48 | TIM15_DCR | Res. | DI | BL[4 | 1:0] | | Res. | Res. | Res. | | DE | 3A[4 | :0] | | | | Reset value | 0 | 0 | 0 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0 | | 0x4C | TIM15_DMAR | Res. | | | | | | D | MAE | 3[15 | :0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x60 | TIM15_AF1 | Res. BKCMP3P | BKCMP2P | BKCMP1P | BKINP | Res. | Res. | Res. | Res. | Res. | BKCMP3E | BKCMP2E | BKCMP1E | BKINE | | | Reset value | 0 | 0 | 0 | 0 | | | | | | 0 | 0 | 0 | 1 | | 0x68 | TIM15_TISEL | Res. | | EL[3 | | Res. | Res. | Res. | Res. | TI | | EL[3 | | | | Reset value | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | RM0444 Rev 5 805/1390 Refer to Section 2.2 on page 58 for the register boundary addresses. # 25.6 TIM16/TIM17 registers Refer to Section 1.2 for a list of abbreviations used in register descriptions. The peripheral registers can be accessed by half-words (16-bit) or words (32-bit). # 25.6.1 TIMx control register 1 (TIMx_CR1)(x = 16 to 17) Address offset: 0x00 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|--------------|------|-----|-------|------|------|------|------|-----|-----|------|-----| | Res. | Res. | Res. | Res. | UIFRE
MAP | Res. | CKD | [1:0] | ARPE | Res. | Res. | Res. | ОРМ | URS | UDIS | CEN | | | | | | rw | | rw | rw | rw | | | | rw | rw | rw | rw | Bits 15:12 Reserved, must be kept at reset value. ## Bit 11 UIFREMAP: UIF status bit remapping - 0: No remapping. UIF status bit is not copied to TIMx CNT register bit 31. - 1: Remapping enabled. UIF status bit is copied to TIMx_CNT register bit 31. - Bit 10 Reserved, must be kept at reset value. ## Bits 9:8 CKD[1:0]: Clock division This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and the dead-time and sampling clock (t_{DTS})used by the dead-time generators and the digital filters (Tlx), 00: $t_{DTS} = t_{CK_INT}$ 01: $t_{DTS} = 2 * t_{CK_INT}$ 10: $t_{DTS} = 4 * t_{CK_INT}$ 11: Reserved, do not program this value ### Bit 7 ARPE: Auto-reload preload enable - 0: TIMx_ARR register is not buffered - 1: TIMx_ARR register is buffered - Bits 6:4 Reserved, must be kept at reset value. ## Bit 3 **OPM**: One pulse mode - 0: Counter is not stopped at update event - 1: Counter stops counting at the next update event (clearing the bit CEN) ### Bit 2 URS: Update request source This bit is set and cleared by software to select the UEV event sources. - 0: Any of the following events generate an update interrupt or DMA request if enabled. These events can be: - Counter overflow/underflow - Setting the UG bit - Update generation through the slave mode controller - Only counter overflow/underflow generates an update interrupt or DMA request if enabled. ## Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable UEV event generation. - 0: UEV enabled. The Update (UEV) event is generated by one of the following events: - Counter overflow/underflow - Setting the UG bit - Update generation through the slave mode controller Buffered registers are then loaded with their preload values. 1: UEV disabled. The Update event is not generated, shadow registers keep their value (ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is set or if a hardware reset is received from the slave mode controller. Bit 0 CEN: Counter enable - 0: Counter disabled - 1: Counter enabled Note: External clock and gated mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware. # 25.6.2 TIMx control register 2 (TIMx_CR2)(x = 16 to 17) Address offset: 0x04 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|-------|------|------|------|------|------|------|------|------|------| | Res. | Res. | Res. | Res. | Res. | Res. | OIS1N | OIS1 | Res. | Res. | Res. | Res. | CCDS | CCUS | Res. | CCPC | | | | | | | | rw | rw | | | | | rw | rw | | rw | Bits 15:10 Reserved, must be kept at reset value. Bit 9 OIS1N: Output Idle state 1 (OC1N output) 0: OC1N=0 after a dead-time when MOE=0 1: OC1N=1 after a dead-time when MOE=0 Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). Bit 8 OIS1: Output Idle state 1 (OC1 output) 0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0 1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0 Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). - Bits 7:4 Reserved, must be kept at reset value. - Bit 3 CCDS: Capture/compare DMA selection - 0: CCx DMA request sent when CCx event occurs - 1: CCx DMA requests sent when update event occurs - Bit 2 CCUS: Capture/compare control update selection - 0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting the COMG bit only. - 1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting the COMG bit or when an rising edge occurs on TRGI. Note: This bit acts only on channels that have a complementary output. Bit 1 Reserved, must be kept at reset value. Bit 0 CCPC: Capture/compare preloaded control 0: CCxE, CCxNE and OCxM bits are not preloaded 1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated only when COM bit is set. Note: This bit acts only on channels that have a complementary output. # 25.6.3 TIMx DMA/interrupt enable register (TIMx_DIER)(x = 16 to 17) Address offset: 0x0C Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|-------|-----|-----|------|-------|------|------|------|-------|-----| | Res. | Res. | Res. | Res. | Res. | Res. | CC1DE | UDE | BIE | Res. | COMIE | Res. | Res. | Res. | CC1IE | UIE | | | | | | | | rw | rw | rw | | rw | | | | rw | rw | Bits 15:10 Reserved, must be kept at reset value. Bit 9 CC1DE:
Capture/Compare 1 DMA request enable 0: CC1 DMA request disabled1: CC1 DMA request enabled Bit 8 **UDE**: Update DMA request enable 0: Update DMA request disabled 1: Update DMA request enabled Bit 7 BIE: Break interrupt enable 0: Break interrupt disabled 1: Break interrupt enabled Bit 6 Reserved, must be kept at reset value. Bit 5 **COMIE**: COM interrupt enable 0: COM interrupt disabled 1: COM interrupt enabled Bits 4:2 Reserved, must be kept at reset value. Bit 1 CC1IE: Capture/Compare 1 interrupt enable 0: CC1 interrupt disabled 1: CC1 interrupt enabled Bit 0 **UIE**: Update interrupt enable 0: Update interrupt disabled 1: Update interrupt enabled #### 25.6.4 TIMx status register $(TIMx_SR)(x = 16 \text{ to } 17)$ Address offset: 0x10 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|-------|------|-------|------|-------|------|------|------|-------|-------| | Res. | Res. | Res. | Res. | Res. | Res. | CC10F | Res. | BIF | Res. | COMIF | Res. | Res. | Res. | CC1IF | UIF | | | | | | | | rc_w0 | | rc_w0 | | rc_w0 | | | | rc_w0 | rc_w0 | Bits 15:10 Reserved, must be kept at reset value. ## Bit 9 **CC10F**: Capture/Compare 1 overcapture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to '0'. - 0: No overcapture has been detected - 1: The counter value has been captured in TIMx CCR1 register while CC1IF flag was already set - Bit 8 Reserved, must be kept at reset value. ## Bit 7 BIF: Break interrupt flag This flag is set by hardware as soon as the break input goes active. It can be cleared by software if the break input is not active. - 0: No break event occurred - 1: An active level has been detected on the break input - Bit 6 Reserved, must be kept at reset value. ## Bit 5 COMIF: COM interrupt flag This flag is set by hardware on a COM event (once the capture/compare control bits -CCxE, CCxNE, OCxM- have been updated). It is cleared by software. - 0: No COM event occurred - 1: COM interrupt pending # Bits 4:2 Reserved, must be kept at reset value. ## Bit 1 CC1IF: Capture/Compare 1 interrupt flag This flag is set by hardware. It is cleared by software (input capture or output compare mode) or by reading the TIMx_CCR1 register (input capture mode only). - 0: No compare match / No input capture occurred - 1: A compare match or an input capture occurred If channel CC1 is configured as output: this flag is set when the content of the counter TIMx CNT matches the content of the TIMx CCR1 register. When the content of TIMx CCR1 is greater than the content of TIMx ARR, the CC1IF bit goes high on the counter overflow (in up-counting and up/down-counting modes) or underflow (in downcounting mode). There are 3 possible options for flag setting in center-aligned mode, refer to the CMS bits in the TIMx CR1 register for the full description. If channel CC1 is configured as input: this bit is set when counter value has been captured in TIMx_CCR1 register (an edge has been detected on IC1, as per the edge sensitivity defined with the CC1P and CC1NP bits setting, in TIMx_CCER). ### Bit 0 **UIF**: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. - 0: No update occurred. - 1: Update interrupt pending. This bit is set by hardware when the registers are updated: - At overflow regarding the repetition counter value (update if repetition counter = 0) and if the UDIS=0 in the TIMx CR1 register. - When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and UDIS=0 in the TIMx_CR1 register. ## 25.6.5 TIMx event generation register (TIMx EGR)(x = 16 to 17) Address offset: 0x14 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|----|------|------|------|------|------|------|----| | Res. BG | Res. | COMG | Res. | Res. | Res. | CC1G | UG | | | | | | | | | | w | | w | | | | w | w | ## Bits 15:8 Reserved, must be kept at reset value. ## Bit 7 BG: Break generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. - 0: No action. - 1: A break event is generated. MOE bit is cleared and BIF flag is set. Related interrupt or DMA transfer can occur if enabled. - Bit 6 Reserved, must be kept at reset value. ## Bit 5 COMG: Capture/Compare control update generation This bit can be set by software, it is automatically cleared by hardware. - 0: No action - 1: When the CCPC bit is set, it is possible to update the CCxE, CCxNE and OCxM bits Note: This bit acts only on channels that have a complementary output. ## Bits 4:2 Reserved, must be kept at reset value. ## Bit 1 CC1G: Capture/Compare 1 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. - 0: No action. - 1: A capture/compare event is generated on channel 1: ## If channel CC1 is configured as output: CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled. ## If channel CC1 is configured as input: The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high. ## Bit 0 UG: Update generation This bit can be set by software, it is automatically cleared by hardware. - 0: No action. - 1: Reinitialize the counter and generates an update of the registers. Note that the prescaler counter is cleared too (anyway the prescaler ratio is not affected). # 25.6.6 TIMx capture/compare mode register 1 [alternate] (TIMx_CCMR1) (x = 16 to 17) Address offset: 0x18 Reset value: 0x0000 0000 The same register can be used for input capture mode (this section) or for output compare mode (next section). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. ## Input capture mode: | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|-------|------|-------|--------|------|--------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | IC1F | [3:0] | | IC1PS | C[1:0] | CC1S | S[1:0] | | | | | | | | | | rw Bits 31:8 Reserved, must be kept at reset value. ### Bits 7:4 IC1F[3:0]: Input capture 1 filter This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: ``` 0000: No filter, sampling is done at fDTS ``` ``` 0001: f_{SAMPLING}=f_{CK INT}, N=2 0010: f_{SAMPLING}=f_{CK_INT}, N=4 0011: f_{SAMPLING}=f_{CK INT}, N=8 0100: f_{SAMPLING} = f_{DTS}/2, N= 0101: f_{SAMPLING}=f_{DTS}/2, N=8 0110: f_{SAMPLING}=f_{DTS}/4, N=6 0111: f_{SAMPLING}=f_{DTS}/4, N=8 1000: f_{SAMPLING}=f_{DTS}/8, N=6 1001: f_{SAMPLING}=f_{DTS}/8, N=8 1010: f_{SAMPLING}=f_{DTS}/16, N=5 ``` 1011: $f_{SAMPLING} = f_{DTS}/16$, N=6 1100: f_{SAMPLING}=f_{DTS}/16, N=8 1101: f_{SAMPLING}=f_{DTS}/32, N=5 1110: f_{SAMPLING}=f_{DTS}/32, N=6 1111: f_{SAMPLING}=f_{DTS}/32, N=8 ## Bits 3:2 IC1PSC[1:0]: Input capture 1 prescaler This bit-field defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset as soon as CC1E='0' (TIMx_CCER register). 00: no prescaler, capture is done each time an edge is detected on the capture input. 01: capture is done once every 2 events 10: capture is done once every 4 events 11: capture is done once every 8 events ### Bits 1:0 CC1S[1:0]: Capture/Compare 1 Selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 Others: Reserved Note: CC1S bits are writable only when the channel is OFF (CC1E = '0' in TIMx_CCER). ### 25.6.7 TIMx capture/compare mode register 1 [alternate] (TIMx_CCMR1) (x = 16 to 17) Address offset: 0x18 Reset value: 0x0000 0000 The same register can be used for output compare mode (this section) or for input capture mode (previous section). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. ## Output compare mode: | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|----------|------|-------|-------|------|-------------| | Res. OC1M
[3] | | | | | | | | | | | | | | | | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. (| OC1M[2:0 |)] | OC1PE | OC1FE | CC1S | S[1:0] | | | | | | | | | | | rw Bits 31:17 Reserved, must be kept at reset value. Bits 15:7 Reserved, must be kept at reset value. ## Bits 16, 6:4 OC1M[3:0]: Output Compare 1 mode These bits define the behavior of the output reference signal OC1REF from which OC1 and OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends on CC1P and CC1NP bits. 0000: Frozen - The comparison between the output compare register TIMx CCR1 and the counter TIMx CNT has no effect on the outputs. 0001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 0010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter TIMx CNT matches the capture/compare register 1 (TIMx CCR1). 0011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1. 0100: Force inactive level - OC1REF is forced low. 0101: Force active level - OC1REF is forced high. 0110: PWM
mode 1 - Channel 1 is active as long as TIMx CNT<TIMx CCR1 else inactive. 0111: PWM mode 2 - Channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1 else active. All other values: Reserved Note: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx BDTR register) and CC1S='00' (the channel is configured in output). In PWM mode 1 or 2, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from "frozen" mode to "PWM" mode. The OC1M[3] bit is not contiguous, located in bit 16. ## Bit 3 OC1PE: Output Compare 1 preload enable - 0: Preload register on TIMx CCR1 disabled. TIMx CCR1 can be written at anytime, the new value is taken in account immediately. - 1: Preload register on TIMx CCR1 enabled. Read/Write operations access the preload register. TIMx CCR1 preload value is loaded in the active register at each update event. Note: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S='00' (the channel is configured in output). The PWM mode can be used without validating the preload register only in one pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed. ## Bit 2 OC1FE: Output Compare 1 fast enable This bit decreases the latency between a trigger event and a transition on the timer output. It must be used in one-pulse mode (OPM bit set in TIMx_CR1 register), to have the output pulse starting as soon as possible after the starting trigger. - 0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles. - 1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is set to the compare level independently of the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OC1FE acts only if the channel is configured in PWM1 or PWM2 mode. ## Bits 1:0 CC1S[1:0]: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 Others: Reserved Note: CC1S bits are writable only when the channel is OFF (CC1E = '0' in TIMx_CCER). # 25.6.8 TIMx capture/compare enable register (TIMx_CCER)(x = 16 to 17) Address offset: 0x20 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|------|------| | Res. CC1NP | CC1NE | CC1P | CC1E | | | | | | | | | | | | | | rw | rw | rw | rw | Bits 15:4 Reserved, must be kept at reset value. Bit 3 CC1NP: Capture/Compare 1 complementary output polarity CC1 channel configured as output: 0: OC1N active high 1: OC1N active low CC1 channel configured as input: This bit is used in conjunction with CC1P to define the polarity of TI1FP1 and TI2FP1. Refer to the description of CC1P. Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S="00" (the channel is configured in output). On channels that have a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1NP active bit takes the new value from the preloaded bit only when a commutation event is generated. RM0444 Rev 5 815/1390 - Bit 2 **CC1NE**: Capture/Compare 1 complementary output enable - 0: Off OC1N is not active. OC1N level is then function of MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits. - 1: On OC1N signal is output on the corresponding output pin depending on MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits. - Bit 1 CC1P: Capture/Compare 1 output polarity - 0: OC1 active high (output mode) / Edge sensitivity selection (input mode, see below) - 1: OC1 active low (output mode) / Edge sensitivity selection (input mode, see below) When CC1 channel is configured as input, both CC1NP/CC1P bits select the active polarity of TI1FP1 and TI2FP1 for trigger or capture operations. - CC1NP=0, CC1P=0: non-inverted/rising edge. The circuit is sensitive to TIxFP1 rising edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger operation in gated mode or encoder mode). - CC1NP=0, CC1P=1: inverted/falling edge. The circuit is sensitive to TIxFP1 falling edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is inverted (trigger operation in gated mode or encoder mode). - CC1NP=1, CC1P=1: non-inverted/both edges/ The circuit is sensitive to both TIxFP1 rising and falling edges (capture or trigger operations in reset, external clock or trigger mode), TIxFP1is not inverted (trigger operation in gated mode). This configuration must not be used in encoder mode. - CC1NP=1, CC1P=0: this configuration is reserved, it must not be used. - Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). On channels that have a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1P active bit takes the new value from the preloaded bit only when a Commutation event is generated. - Bit 0 CC1E: Capture/Compare 1 output enable - 0: Capture mode disabled / OC1 is not active (see below) - 1: Capture mode enabled / OC1 signal is output on the corresponding output pin When CC1 channel is configured as output, the OC1 level depends on MOE, OSSI, OSSR, OIS1, OIS1N and CC1NE bits, regardless of the CC1E bits state. Refer to *Table 129* for details. Table 129. Output control bits for complementary OCx and OCxN channels with break feature (TIM16/17) | | | Control b | its | • | Outpo | ut states ⁽¹⁾ | |---------|----------|-----------|----------|-----------|---|--| | MOE bit | OSSI bit | OSSR bit | CCxE bit | CCxNE bit | OCx output state | OCxN output state | | | | Х | 0 | 0 | Output Disabled (not driven OCx=0 OCxN=0, OCxN_EN=0 | by the timer: Hi-Z) | | | | 0 | 0 | 1 | Output Disabled (not driven
by the timer: Hi-Z)
OCx=0 | OCxREF + Polarity OCxN=OCxREF XOR CCxNP | | 1 | X | 0 | 1 | 0 | OCxREF + Polarity OCx=OCxREF XOR CCxP | Output Disabled (not driven by the timer: Hi-Z) OCxN=0 | | | | Х | 1 | 1 | OCREF + Polarity + dead-
time | Complementary to OCREF (not OCREF) + Polarity + dead-time | | | | 1 | 0 | 1 | Off-State (output enabled with inactive state) OCx=CCxP | OCxREF + Polarity OCxN=OCxREF XOR CCxNP | | | | 1 | 1 | 0 | OCxREF + Polarity OCx=OCxREF XOR CCxP, OCx_EN=1 | Off-State (output enabled with inactive state) OCxN=CCxNP, OCxN_EN=1 | | | 0 | | Х | Х | Output disabled (not driven | hy the timer: Hi-7) | | | | | 0 | 0 | Output disabled (flot differi | by the tiller. Fil-2). | | 0 | | X | 0 | 1 | Off-State (output enabled wi | , | | | 1 | • | 1 | 0 | Asynchronously: OCx=CCxl | P, OCxN=CCxNP OCx=OISx and OCxN=OISxN | | | 1 | | | | | that OISx and OISxN do not | When both outputs of a channel are not used (control taken over by GPIO controller), the OISx, OISxN, CCxP and CCxNP bits must be kept cleared. Note: The state of the external I/O pins connected to the complementary OCx and OCxN channels depends on the OCx and OCxN channel state and AFIO registers. # 25.6.9 TIMx counter $(TIMx_CNT)(x = 16 \text{ to } 17)$ Address offset: 0x24 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------|------|------|------|------|------|------|--------|------|------|------|------|------|------|------| | UIF
CPY | Res. | r | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | CNT | [15:0] | | | | | | | | | rw RM0444 Rev 5 817/1390 ## Bit 31 UIFCPY: UIF Copy This bit is a read-only copy of the UIF bit of the TIMx_ISR register. If the UIFREMAP bit in TIMx_CR1 is reset, bit 31 is reserved and read as 0. Bits 30:16 Reserved, must be kept at reset value. Bits 15:0 CNT[15:0]: Counter value # 25.6.10 TIMx prescaler $(TIMx_PSC)(x = 16 \text{ to } 17)$ Address offset: 0x28 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|-----|--------|----|----|----|----|----|----|----| | | | | | | | | PSC | [15:0] | | | | | | | | | rw ## Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency (CK_CNT) is equal to f_{CK_PSC} / (PSC[15:0] + 1). PSC contains the value to be loaded in the active prescaler register at each update event (including when the counter is cleared through UG bit of TIMx_EGR register or through trigger controller when configured in "reset mode"). # 25.6.11 TIMx auto-reload register (TIMx ARR)(x = 16 to 17) Address offset: 0x2C Reset value: 0xFFFF | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 0 | , | О | 5 | 4 | 3 | 2 | ı | 0 | |------|----|----|----|----|----|----|----|-----|--------|----|----|----|----|----|----|----| | | | | | | | | | ARR | [15:0] | | | | | | | | | - - | | 1 | 1 | | | 1 | 1 | · · | | | | | 1 | | | | | | rw | L | | | | | | | | | | | | | | | | | ## Bits 15:0 ARR[15:0]: Auto-reload value ARR is the value to be loaded in the actual auto-reload register. Refer to the Section 25.4.1: Time-base unit on page 745 for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. # 25.6.12 TIMx repetition counter register (TIMx_RCR)(x = 16 to 17) Address offset: 0x30 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|----|----|----|-----|-------|----|----|----| | Res. | | | REP | [7:0] | | | | | | | | | | | | | rw Bits 15:8
Reserved, must be kept at reset value. ## Bits 7:0 REP[7:0]: Repetition counter value These bits allow the user to set-up the update rate of the compare registers (i.e. periodic transfers from preload to active registers) when preload registers are enable, as well as the update interrupt generation rate, if this interrupt is enable. Each time the REP_CNT related downcounter reaches zero, an update event is generated and it restarts counting from REP value. As REP_CNT is reloaded with REP value only at the repetition update event U_RC, any write to the TIMx_RCR register is not taken in account until the next repetition update event. It means in PWM mode (REP+1) corresponds to the number of PWM periods in edgealigned mode. # 25.6.13 TIMx capture/compare register 1 (TIMx CCR1)(x = 16 to 17) Address offset: 0x34 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|------|--------|----|----|----|----|----|----|----| | | | | | | | | CCR1 | [15:0] | | | | | | | • | | rw Bits 15:0 CCR1[15:0]: Capture/Compare 1 value ## If channel CC1 is configured as output: CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC1 output. ## If channel CC1 is configured as input: CCR1 is the counter value transferred by the last input capture 1 event (IC1). RM0444 Rev 5 819/1390 # 25.6.14 TIMx break and dead-time register (TIMx_BDTR)(x = 16 to 17) Address offset: 0x44 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|-------|------|------------|------|-------------------|------|------|------|------|-------|-----|-------|----| | Res. | Res. | Res. | BKBID | Res. | BK
DSRM | Res. | Res. | Res. | Res. | Res. | Res. | | BKF | [3:0] | | | | | | rw | | rw | | | | | | | rw | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | MOE | AOE | BKP | BKE | OSSR | OSSI | LOC | < [1:0] | | | | DTG | [7:0] | | | | | rw Note: As the BKBID, BKDSRM, BKF[3:0], AOE, BKP, BKE, OSSI, OSSR and DTG[7:0] bits may be write-locked depending on the LOCK configuration, it may be necessary to configure all of them during the first write access to the TIMx_BDTR register. Bits 31:29 Reserved, must be kept at reset value. Bit 28 BKBID: Break Bidirectional 0: Break input BRK in input mode 1: Break input BRK in bidirectional mode In the bidirectional mode (BKBID bit set to 1), the break input is configured both in input mode and in open drain output mode. Any active break event asserts a low logic level on the Break input to indicate an internal break event to external devices. Note: This bit cannot be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. Bit 27 Reserved, must be kept at reset value. Bit 26 BKDSRM: Break Disarm 0: Break input BRK is armed 1: Break input BRK is disarmed This bit is cleared by hardware when no break source is active. The BKDSRM bit must be set by software to release the bidirectional output control (open-drain output in Hi-Z state) and then be polled it until it is reset by hardware, indicating that the fault condition has disappeared. Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. Bits 25:20 Reserved, must be kept at reset value. ### Bits 19:16 BKF[3:0]: Break filter This bit-field defines the frequency used to sample BRK input and the length of the digital filter applied to BRK. The digital filter is made of an event counter in which N events are needed to validate a transition on the output: ``` 0000: No filter, BRK acts asynchronously ``` ``` 0001: f_{SAMPLING}=f_{CK_INT}, N=2 0010: f_{SAMPLING}=f_{CK_INT}, N=4 0011: f_{SAMPLING}=f_{CK_INT}, N=8 0100: f_{SAMPLING}=f_{DTS}/2, N=6 0101: f_{SAMPLING}=f_{DTS}/2, N=8 0110: f_{SAMPLING}=f_{DTS}/4, N=6 0111: f_{SAMPLING}=f_{DTS}/4, N=8 1000: f_{SAMPLING}=f_{DTS}/8, N=6 1001: f_{SAMPLING}=f_{DTS}/8, N=8 1010: f_{SAMPLING}=f_{DTS}/16, N=5 1011: f_{SAMPLING}=f_{DTS}/16, N=6 1100: f_{SAMPLING}=f_{DTS}/16, N=6 ``` 1101: f_{SAMPLING}=f_{DTS}/32, N=5 1110: f_{SAMPLING}=f_{DTS}/32, N=6 1111: f_{SAMPLING}=f_{DTS}/32, N=8 This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx BDTR register). ## Bit 15 MOE: Main output enable This bit is cleared asynchronously by hardware as soon as the break input is active. It is set by software or automatically depending on the AOE bit. It is acting only on the channels which are configured in output. 0: OC and OCN outputs are disabled or forced to idle state depending on the OSSI bit. 1: OC and OCN outputs are enabled if their respective enable bits are set (CCxE, CCxNE in TIMx CCER register) See OC/OCN enable description for more details (Section 25.6.8: TIMx capture/compare enable register ($TIMx_CCER$)(x = 16 to 17) on page 815). ### Bit 14 AOE: Automatic output enable - 0: MOE can be set only by software - 1: MOE can be set by software or automatically at the next update event (if the break input is not be active) Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). ## Bit 13 BKP: Break polarity - 0: Break input BRK is active low - 1: Break input BRK is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. ### Bit 12 BKE: Break enable - 0: Break inputs (BRK and CCS clock failure event) disabled - 1; Break inputs (BRK and CCS clock failure event) enabled Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. 4 RM0444 Rev 5 821/1390 ### Bit 11 OSSR: Off-state selection for Run mode This bit is used when MOE=1 on channels that have a complementary output which are configured as outputs. OSSR is not implemented if no complementary output is implemented in the timer. See OC/OCN enable description for more details (Section 25.6.8: TIMx capture/compare enable register (TIMx_CCER)(x = 16 to 17) on page 815). 0: When inactive, OC/OCN outputs are disabled (the timer releases the output control which is taken over by the AFIO logic, which forces a Hi-Z state) 1: When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 (the output is still controlled by the timer). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register). ## Bit 10 OSSI: Off-state selection for Idle mode This bit is used when MOE=0 on channels configured as outputs. See OC/OCN enable description for more details (Section 25.6.8: TIMx capture/compare enable register ($TIMx_CCER$)(x = 16 to 17) on page 815). 0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0) 1: When inactive, OC/OCN outputs are forced first with their idle level as soon as CCxE=1 or CCxNE=1. OC/OCN enable output signal=1) Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register). ## Bits 9:8 LOCK[1:0]: Lock configuration These bits offer a write protection against software errors. 00: LOCK OFF - No bit is write protected 01: LOCK Level 1 = DTG bits in TIMx_BDTR register, OISx and OISxN bits in TIMx_CR2 register and BKE/BKP/AOE bits in TIMx_BDTR register can no longer be written. 10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CCxP/CCxNP bits in TIMx_CCER register, as long as the related channel is configured in output through the CCxS bits) as well as OSSR and OSSI bits can no longer be written. 11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in TIMx_CCMRx registers, as long as the related channel is configured in output through the CCxS bits) can no longer be written. Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register has been written, their content is frozen until the next reset. ## Bits 7:0 DTG[7:0]: Dead-time generator setup This bit-field defines the duration of the dead-time inserted between the complementary outputs. DT correspond to this duration. ``` DTG[7:5] = 0xx \Rightarrow DT = DTG[7:0] x t_{dtg} with t_{dtg} = t_{DTS} ``` $DTG[7:5] = 10x \Rightarrow DT = (64 + DTG[5:0]) \times t_{dtg}$ with $t_{dtg} = 2 \times t_{DTS}$ DTG[7:5] = 110 => DT = $(32 + DTG[4:0]) \times t_{dtg}$ with $t_{dtg} = 8 \times t_{DTS}$ DTG[7:5] = 111 => DT = $(32 + DTG[4:0]) \times t_{dtg}$ with $t_{dtg} = 16 \times t_{DTS}$ Example if t_{DTS} = 125 ns (8 MHz), dead-time possible values are: 0 to 15875 ns by 125 ns steps, 16 µs to 31750 ns by 250 ns steps, 32 µs to 63 µs by 1 µs steps, 64 µs to 126 µs by 2 µs steps Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). # 25.6.15 TIMx DMA control register (TIMx_DCR)(x = 16 to 17) Address offset: 0x48 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|----|----|----------|----|----|------|------|------|----|----|----------|----|----| | Res. | Res. | Res. | | | DBL[4:0] | | | Res. | Res. | Res. | | | DBA[4:0] | | | | | | | rw | rw | rw | rw | rw | | | | rw | rw | rw | rw | rw | Bits 15:13 Reserved, must be kept at reset value. ## Bits 12:8 DBL[4:0]: DMA burst length This 5-bit field defines the length of DMA transfers (the
timer recognizes a burst transfer when a read or a write access is done to the TIMx_DMAR address), i.e. the number of transfers. Transfers can be in half-words or in bytes (see example below). 00000: 1 transfer, 00001: 2 transfers, 00010: 3 transfers, 10001: 18 transfers. Bits 7:5 Reserved, must be kept at reset value. ## Bits 4:0 DBA[4:0]: DMA base address This 5-bit field defines the base-address for DMA transfers (when read/write access are done through the TIMx_DMAR address). DBA is defined as an offset starting from the address of the TIMx_CR1 register. Example: 00000: TIMx_CR1, 00001: TIMx_CR2, 00010: TIMx_SMCR, --- **Example:** Let us consider the following transfer: DBL = 7 transfers and DBA = TIMx_CR1. In this case the transfer is done to/from 7 registers starting from the TIMx_CR1 address. # 25.6.16 TIMx DMA address for full transfer (TIMx_DMAR)(x = 16 to 17) Address offset: 0x4C Reset value: 0x0000 | 13 | 14 | 13 | 12 | 11 | 10 | 9 | 0 | , | U | 5 | 4 | 3 | | | U | |----|----|----|----|----|----|----|------|---------|----|----|----|----|----|----|----| | | | | | | | | DMAE | 3[15:0] | | | | | | | | | rw ### Bits 15:0 DMAB[15:0]: DMA register for burst accesses A read or write operation to the DMAR register accesses the register located at the address (TIMx_CR1 address) + (DBA + DMA index) x 4 where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base address configured in TIMx_DCR register, DMA index is automatically controlled by the DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR). RM0444 Rev 5 823/1390 # 25.6.17 TIM16 alternate function register 1 (TIM16_AF1) Address offset: 0x60 Reset value: 0x0000 0001 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|-------------|-------------|-------------|-------|------|------|------|------|------|-------------|-------------|-------------|-------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | BKCM
P3P | BKCM
P2P | BKCM
P1P | BKINP | Res. | Res. | Res. | Res. | Res. | BKCM
P3E | BKCM
P2E | BKCM
P1E | BKINE | | | | | rw | rw | rw | rw | | | | | | rw | rw | rw | rw | Bits 31:13 Reserved, must be kept at reset value. ## Bit 12 BKCMP3P: BRK COMP3 input polarity This bit selects the COMP3 input sensitivity. It must be programmed together with the BKP polarity bit. - 0: COMP3 input is active low - 1: COMP3 input is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: This bit is available on STM32G0B1xx and STM32G0C1xx salestypes only, reserved otherwise. ## Bit 11 BKCMP2P: BRK COMP2 input polarity This bit selects the COMP2 input sensitivity. It must be programmed together with the BKP polarity bit. - 0: COMP2 input is active low - 1: COMP2 input is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). ## Bit 10 BKCMP1P: BRK COMP1 input polarity This bit selects the COMP1 input sensitivity. It must be programmed together with the BKP polarity bit. - 0: COMP1 input is active low - 1: COMP1 input is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). ## Bit 9 BKINP: BRK BKIN input polarity This bit selects the BKIN alternate function input sensitivity. It must be programmed together with the BKP polarity bit. - 0: BKIN input is active low - 1: BKIN input is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Bits 8:4 Reserved, must be kept at reset value. ### Bit 3 BKCMP3E: BRK COMP3 enable This bit enables the COMP3 for the timer's BRK input. COMP3 output is 'ORed' with the other BRK sources. 0: COMP3 input disabled 1: COMP3 input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: This bit is available on STM32G0B1xx and STM32G0C1xx salestypes only, reserved otherwise. ## Bit 2 BKCMP2E: BRK COMP2 enable This bit enables the COMP2 for the timer's BRK input. COMP2 output is 'ORed' with the other BRK sources. 0: COMP2 input disabled 1: COMP2 input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). ## Bit 1 BKCMP1 E: BRK COMP1 enable This bit enables the COMP1 for the timer's BRK input. COMP1 output is 'ORed' with the other BRK sources. 0: COMP1 input disabled 1: COMP1 input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). ### Bit 0 BKINE: BRK BKIN input enable This bit enables the BKIN alternate function input for the timer's BRK input. BKIN input is 'ORed' with the other BRK sources. 0: BKIN input disabled 1: BKIN input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx BDTR register). # 25.6.18 TIM16 input selection register (TIM16_TISEL) Address offset: 0x68 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|-------|--------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | TI1SE | L[3:0] | | | | | | | | | | | | | | | rw | rw | rw | rw | Bits 31:4 Reserved, must be kept at reset value. RM0444 Rev 5 825/1390 Bits 3:0 TI1SEL[3:0]: selects TI1[0] to TI1[15] input 0000: TIM16_CH1 input 0001: LSI 0010: LSE 0011: RTC wakeup 0100: MCO2⁽¹⁾ Others: Reserved 1. Available on STM32G0B1xx and STM32G0C1xx salestypes only, reserved otherwise. # 25.6.19 TIM17 alternate function register 1 (TIM17_AF1) Address offset: 0x60 Reset value: 0x0000 0001 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|-------------|-------------|-------------|-------|------|------|------|------|------|-------------|-------------|-------------|-------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | BKCM
P3P | BKCM
P2P | BKCM
P1P | BKINP | Res. | Res. | Res. | Res. | Res. | BKCM
P3E | BKCM
P2E | BKCM
P1E | BKINE | | | | | rw | rw | rw | rw | | | | | | rw | rw | rw | rw | Bits 31:13 Reserved, must be kept at reset value. ## Bit 12 BKCMP3P: BRK COMP3 input polarity This bit selects the COMP3 input sensitivity. It must be programmed together with the BKP polarity bit. - 0: COMP3 input is active low - 1: COMP3 input is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: This bit is available on STM32G0B1xx and STM32G0C1xx salestypes only, reserved otherwise. ## Bit 11 BKCMP2P: BRK COMP2 input polarity This bit selects the COMP2 input sensitivity. It must be programmed together with the BKP polarity bit. - 0: COMP2 input is active low - 1: COMP2 input is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). ## Bit 10 BKCMP1P: BRK COMP1 input polarity This bit selects the COMP1 input sensitivity. It must be programmed together with the BKP polarity bit. - 0: COMP1 input is active low - 1: COMP1 input is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx BDTR register). ### Bit 9 BKINP: BRK BKIN input polarity This bit selects the BKIN alternate function input sensitivity. It must be programmed together with the BKP polarity bit. 0: BKIN input is active low 1: BKIN input is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). ### Bits 8:4 Reserved, must be kept at reset value. ### Bit 3 BKCMP3E: BRK COMP3 enable This bit enables the COMP3 for the timer's BRK input. COMP3 output is 'ORed' with the other BRK sources. 0: COMP3 input disabled 1: COMP3 input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: This bit is available on STM32G0B1xx and STM32G0C1xx salestypes only, reserved otherwise. ### Bit 2 BKCMP2E: BRK COMP2 enable This bit enables the COMP2 for the timer's BRK input. COMP2 output is 'ORed' with the other BRK sources. 0: COMP2 input disabled 1: COMP2 input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). ### Bit 1 BKCMP1 E: BRK COMP1 enable This bit enables the COMP1 for the timer's BRK input. COMP1 output is 'ORed' with the other BRK sources. 0: COMP1 input disabled 1: COMP1 input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx BDTR register). ## Bit 0 BKINE: BRK BKIN input enable This bit enables the BKIN alternate function input for the timer's BRK input. BKIN input is 'ORed' with the other BRK sources. 0: BKIN input disabled 1: BKIN input enabled Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). # 25.6.20 TIM17 input selection register (TIM17_TISEL) Address offset: 0x68 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------|------------|--------------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. |
8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | 3 | 2
TI1SE | 1
:L[3:0] | 0 | RM0444 Rev 5 827/1390 Bits 31:4 Reserved, must be kept at reset value. Bits 3:0 TI1SEL[3:0]: selects TI1[0] to TI1[15] input 0000: TIM17_CH1 input 0001: HSI48/256⁽¹⁾ 0010: HSE/32 0011: MCO 0100: MCO2⁽¹⁾ Others: Reserved $1. \quad \text{Available on STM32G0B1} \textbf{xx} \text{ and STM32G0C1} \textbf{xx} \text{ salestypes only, reserved otherwise}.$ ## 25.6.21 TIM16/TIM17 register map TIM16/TIM17 registers are mapped as 16-bit addressable registers as described in the table below: Table 130. TIM16/TIM17 register map and reset values | Offset | Register
name | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 2 | 9 | 2 | 4 | 3 | 7 | 1 | 0 | |--------|-------------------------------------|----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------|------|------|------|------|---------|------|-----------|------|------|------|--------------|------|-------|-----------------|----------------|------| | 0x00 | TIMx_CR1 | Res. UIFREMA | Res. | Ck
[1: | | ARPE | Res. | Res. | Res. | OPM | URS | UDIS | CEN | | | Reset value | 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 | 0 | | 0x04 | TIMx_CR2 | Res. OIS1N | OIS1 | Res. | Res. | Res. | Res. | CCDS | ccus | Res. | CCPC | | | Reset value | 0 | 0 | | | | | 0 | 0 | | 0 | | 0x0C | TIMx_DIER | Res. CC1DE | UDE | BIE | Res. | COMIE | Res. | Res. | Res. | CC1IE | UIE | | | Reset value | 0 | 0 | 0 | | 0 | | | | 0 | 0 | | 0x10 | TIMx_SR | Res. CC10F | Res. | BIF | Res. | COMIF | Res. | Res. | Res. | CC11F | UIF | | | Reset value | 0 | | 0 | | 0 | | | | 0 | 0 | | 0x14 | TIMx_EGR | Res. BG | Res. | COMG | Res. | Res. | Res. | CC1G | NG | | | Reset value | 0 | | 0 | | | | 0 | 0 | | | TIMx_CCMR1 Output Compare mode | Res. OC1M[3] | Res. | | C1I
[2:0] | | OC1PE | OC1FE | C(
S
[1: | 3 | | 0x18 | Reset value | | | | | | | | | | | | | | | | 0 | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | UXIO | TIMx_CCMR1
Input Capture
mode | Res. ı | C1F | [3:0 |)] | | C1
SC
:0] | C(
5
[1: | 3 | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x20 | TIMx_CCER | Res. CC1NP | CC1NE | CC1P | CC1E | | | Reset value | 0 | 0 | 0 | 0 | | 0x24 | TIMx_CNT | UIFCPY or Res. | | | | | | | С | :NT[| 15:0 | 0] | | | | | | | | | Reset value | 0 | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x28 | TIMx_PSC | Res. | | | | | | Р | SC[| 15:0 | 0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x2C | TIMx_ARR | Res. | ı — | ı — | | | | Α | RR[| 15:0 | 0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | RM0444 Rev 5 829/1390 Table 130. TIM16/TIM17 register map and reset values (continued) | | | DIE | | - | | | | | | | 9. | | | | . P | | <u> </u> | | _ | - | _ | | , – – | | | | ~, | | | | | | | |--------|---------------|------|------|------|-------|------|--------|------|------|------|------|------|------|------|------|------|----------|------|------|------|----------------|----------------|----------------|-------|----------------|------|------|------|------|----------------|----------------|----------------|-------| | Offset | Register name | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 2 | 9 | 2 | 4 | က | 2 | - | 0 | | 0x30 | TIMx_RCR | Res. | | ı | REP | P[7:0 |] | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x34 | TIMx_CCR1 | Res. | | | | | | C | CR1 | [15 | :0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x44 | TIMx_BDTR | Res. | Res. | Res. | BKBID | Res. | BKDSRM | Res. | Res. | Res. | Res. | Res. | Res. | E | BKF | [3:0 |)] | MOE | AOE | BKP | BKE | OSSR | ISSO | ŀ | OC
(
:0] | | | I | OTG | G[7:0 |] | | | | | Reset value | | | | 0 | | 0 | | | | | | | 0 | | 0x48 | TIMx_DCR | Res. | DE | 3L[4 | :0] | | Res. | Res. | Res. | | DE | 3A[4 | :0] | | | | Reset value | 0 | 0 | 0 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0 | | 0x4C | TIMx_DMAR | Res. | | | | DMAB[15:0] | | | | | | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x60 | TIM16_AF1 | Res. BKCMP3P | BKCMP2P | BKCMP1P | BKINP | Res. | Res. | Res. | Res. | Res. | BKCMP3E | BKCMP2E | BKCMP1E | BKINE | | | Reset value | 0 | 0 | 0 | 0 | | | | | | 0 | 0 | 0 | 1 | | 0x60 | TIM17_AF1 | Res. ВКСМР3Р | BKCMP2P | BKCMP1P | BKINP | Res. | Res. | Res. | Res. | Res. | BKCMP3E | BKCMP2E | BKCMP1E | BKINE | | | Reset value | 0 | 0 | 0 | 0 | | | | | | 0 | 0 | 0 | 1 | | 0x68 | TIM16_TISEL | Res. TI | 1SE | EL[3 | :0] | | | Reset value | 0 | 0 | 0 | 0 | | 0x68 | TIM17_TISEL | Res. TI | 1SE | L[3 | :0] | | | Reset value | 0 | 0 | 0 | 0 | Refer to Section 2.2 on page 58 for the register boundary addresses. # 26 Low-power timer (LPTIM) ### 26.1 Introduction The LPTIM is a 16-bit timer that benefits from the ultimate developments in power consumption reduction. Thanks to its diversity of clock sources, the LPTIM is able to keep running in all power modes except for Standby mode. Given its capability to run even with no internal clock source, the LPTIM can be used as a "Pulse Counter" which can be useful in some applications. Also, the LPTIM capability to wake up the system from low-power modes, makes it suitable to realize "Timeout functions" with extremely low power consumption. The LPTIM introduces a flexible clock scheme that provides the needed functionalities and performance, while minimizing the power consumption. ## 26.2 LPTIM main features - 16 bit upcounter - 3-bit prescaler with 8 possible dividing factors (1,2,4,8,16,32,64,128) - Selectable clock - Internal clock sources: PCLK or any of the embedded oscillators (see RCC section) - External clock source over LPTIM input (working with no embedded oscillator running, used by Pulse Counter application) - 16 bit ARR autoreload register - 16 bit compare register - Continuous/One-shot mode - Selectable software/hardware input trigger - · Programmable Digital Glitch filter - Configurable output: Pulse, PWM - Configurable I/O polarity - Encoder mode ## 26.3 LPTIM implementation *Table 131* describes LPTIM implementation on STM32G0x1 devices: the full set of features is implemented in LPTIM1. LPTIM2 supports a smaller set of features, but is otherwise identical to LPTIM1. Table 131. STM32G0x1 LPTIM features | LPTIM modes/features ⁽¹⁾ | LPTIM1 | LPTIM2 | |-------------------------------------|--------|--------| | Encoder mode | Х | - | ^{1.} X = supported. ## 26.4 LPTIM functional description ## 26.4.1 LPTIM block diagram Figure 270. Low-power timer block diagram (LPTIM1 and LPTIM2⁽¹⁾) - 1. LPTIM2 has only the input channel 1, no input channel 2 - 2. lptim_out is the internal LPTIM output signal that can be connected to internal peripherals. ## 26.4.2 LPTIM pins and internal signals The following tables provide the list of LPTIM pins and internal signals, respectively. Table 132. LPTIM input/output pins | Names | Signal type | Description | |-----------|----------------|--| | LPTIM_IN1 | Digital input | LPTIM Input 1 from GPIO pin on mux input 0 | | LPTIM_IN2 | Digital input | LPTIM Input 2 from GPIO pin on mux input 0 | | LPTIM_ETR | Digital input | LPTIM external trigger GPIO pin | | LPTIM_OUT | Digital output | LPTIM Output GPIO pin | Table 133. LPTIM internal signals | Names | Signal type | Description | |-----------------|----------------|--| | lptim_pclk | Digital input | LPTIM APB clock domain | | lptim_ker_ck | Digital input | LPTIM kernel clock | | lptim_in1_mux1 | Digital input | Internal LPTIM input 1 connected to mux input 1 | | lptim_in1_mux2 | Digital input | Internal LPTIM input 1 connected to mux input 2 | | lptim_in1_mux3 | Digital input | Internal LPTIM input 1 connected to mux input 3 | | lptim_in2_mux1 | Digital input | Internal LPTIM input 2 ⁽¹⁾ connected to mux input 1 | | lptim_in2_mux2 | Digital input | Internal LPTIM input 2 ⁽¹⁾ connected to mux input 2 | | lptim_in2_mux3 | Digital input | Internal LPTIM input 2 ⁽¹⁾ connected to mux input 3 | | lptim_ext_trigx | Digital input | LPTIM external trigger input x | | lptim_out | Digital output | LPTIM counter output | | lptim_it | Digital output | LPTIM global interrupt | | lptim_wakeup | Digital output | LPTIM wakeup event | ^{1.} Only applies to LPTIM1 ## 26.4.3 LPTIM input and trigger mapping The LPTIM external trigger and input connections are detailed hereafter: Table 134. LPTIM1 external trigger connection | TRIGSEL | External trigger | |-----------------|---| | lptim_ext_trig0 | GPIO pin as LPTIM1_ETR alternate function | | lptim_ext_trig1 | RTC ALARM A | | lptim_ext_trig2 | RTC ALARM B | | lptim_ext_trig3 | TAMP1 input detection | | lptim_ext_trig4 | TAMP2 input detection | |
lptim_ext_trig5 | COMP3_OUT | Table 134. LPTIM1 external trigger connection (continued) | TRIGSEL | External trigger | |-----------------|------------------| | lptim_ext_trig6 | COMP1_OUT | | lptim_ext_trig7 | COMP2_OUT | ## Table 135. LPTIM2 external trigger connection | TRIGSEL | External trigger | |-----------------|---| | lptim_ext_trig0 | GPIO pin as LPTIM2_ETR alternate function | | lptim_ext_trig1 | RTC ALARM A | | lptim_ext_trig2 | RTC ALARM B | | lptim_ext_trig3 | TAMP1 input detection | | lptim_ext_trig4 | TAMP2 input detection | | lptim_ext_trig5 | TAMP_TRG3 | | lptim_ext_trig6 | COMP1_OUT | | lptim_ext_trig7 | COMP2_OUT | ## Table 136. LPTIM1 input 1 connection | lptim_in1_mux | LPTIM1 input 1 connected to | |----------------|---| | lptim_in1_mux0 | GPIO pin as LPTIM1_IN1 alternate function | | lptim_in1_mux1 | COMP1_OUT | | lptim_in1_mux2 | Not connected | | lptim_in1_mux3 | Not connected | ## Table 137. LPTIM1 input 2 connection | lptim_in2_mux | LPTIM1 input 2 connected to | |-----------------|---| | lptim_int2_mux0 | GPIO pin as LPTIM1_IN2 alternate function | | lptim_in2_mux1 | COMP2_OUT | | lptim_in2_mux2 | Not connected | | lptim_in2_mux3 | Not connected | ## Table 138. LPTIM2 input 1 connection | | - | |----------------|---| | lptim_in1_mux | LPTIM2 input 1 connected to | | lptim_in1_mux0 | GPIO pin as LPTIM2_IN1 alternate function | | lptim_in1_mux1 | COMP1_OUT | | lptim_in1_mux2 | COMP2_OUT | | lptim_in1_mux3 | COMP1_OUT OR COMP2_OUT | #### 26.4.4 LPTIM reset and clocks The LPTIM can be clocked using several clock sources. It can be clocked using an internal clock signal which can be PCLK (APB clock) or any other embedded oscillator selectable through the RCC (see RCC section for more details). Also, the LPTIM can be clocked using an external clock signal injected on its external Input1. When clocked with an external clock source, the LPTIM may run in one of these two possible configurations: - The first configuration is when the LPTIM is clocked by an external signal but in the same time an internal clock signal is provided to the LPTIM either from PCLK or any other embedded oscillator (see RCC section). - The second configuration is when the LPTIM is solely clocked by an external clock source through its external Input1. This configuration is the one used to realize Timeout function or Pulse counter function when all the embedded oscillators are turned off after entering a low-power mode. Programming the CKSEL and COUNTMODE bits allows controlling whether the LPTIM will use an external clock source or an internal one. When configured to use an external clock source, the CKPOL bits are used to select the external clock signal active edge. If both edges are configured to be active ones, an internal clock signal should also be provided (first configuration). In this case, the internal clock signal frequency should be at least four times higher than the external clock signal frequency. ### 26.4.5 Glitch filter The LPTIM inputs, either external (mapped to GPIOs) or internal (mapped on the chip-level to other embedded peripherals), are protected with digital filters that prevent any glitches and noise perturbations to propagate inside the LPTIM. This is in order to prevent spurious counts or triggers. Before activating the digital filters, an internal clock source should first be provided to the LPTIM. This is necessary to guarantee the proper operation of the filters. The digital filters are divided into two groups: - The first group of digital filters protects the LPTIM external inputs. The digital filters sensitivity is controlled by the CKFLT bits - The second group of digital filters protects the LPTIM internal trigger inputs. The digital filters sensitivity is controlled by the TRGFLT bits. Note: The digital filters sensitivity is controlled by groups. It is not possible to configure each digital filter sensitivity separately inside the same group. The filter sensitivity acts on the number of consecutive equal samples that should be detected on one of the LPTIM inputs to consider a signal level change as a valid transition. *Figure 271* shows an example of glitch filter behavior in case of a 2 consecutive samples programmed. RM0444 Rev 5 Figure 271. Glitch filter timing diagram Note: In case no internal clock signal is provided, the digital filter must be deactivated by setting the CKFLT and TRGFLT bits to '0'. In that case, an external analog filter may be used to protect the LPTIM external inputs against glitches. #### **Prescaler** 26.4.6 The LPTIM 16-bit counter is preceded by a configurable power-of-2 prescaler. The prescaler division ratio is controlled by the PRESC[2:0] 3-bit field. The table below lists all the possible division ratios: | programming | dividing factor | |-------------|-----------------| | 000 | /1 | | 001 | /2 | | 010 | /4 | | 011 | /8 | | 100 | /16 | | 101 | /32 | | 110 | /64 | | 111 | /128 | Table 139. Prescaler division ratios #### 26.4.7 **Trigger multiplexer** The LPTIM counter may be started either by software or after the detection of an active edge on one of the 8 trigger inputs. TRIGEN[1:0] is used to determine the LPTIM trigger source: - When TRIGEN[1:0] equals '00', The LPTIM counter is started as soon as one of the CNTSTRT or the SNGSTRT bits is set by software. The three remaining possible values for the TRIGEN[1:0] are used to configure the active edge used by the trigger inputs. The LPTIM counter starts as soon as an active edge is detected. - When TRIGEN[1:0] is different than '00', TRIGSEL[2:0] is used to select which of the 8 trigger inputs is used to start the counter. The external triggers are considered asynchronous signals for the LPTIM. So after a trigger detection, a two-counter-clock period latency is needed before the timer starts running due to the synchronization. If a new trigger event occurs when the timer is already started it will be ignored (unless timeout function is enabled). Note: The timer must be enabled before setting the SNGSTRT/CNTSTRT bits. Any write on these bits when the timer is disabled will be discarded by hardware. ## 26.4.8 Operating mode The LPTIM features two operating modes: - The Continuous mode: the timer is free running, the timer is started from a trigger event and never stops until the timer is disabled - One-shot mode: the timer is started from a trigger event and stops when reaching the ARR value. #### One-shot mode To enable the one-shot counting, the SNGSTRT bit must be set. A new trigger event will re-start the timer. Any trigger event occurring after the counter starts and before the counter reaches ARR will be discarded. In case an external trigger is selected, each external trigger event arriving after the SNGSTRT bit is set, and after the counter register has stopped (contains zero value), will start the counter for a new one-shot counting cycle as shown in *Figure 272*. Figure 272. LPTIM output waveform, single counting mode configuration #### - Set-once mode activated: It should be noted that when the WAVE bit-field in the LPTIM_CFGR register is set, the Setonce mode is activated. In this case, the counter is only started once following the first trigger, and any subsequent trigger event is discarded as shown in *Figure 273*. 4 RM0444 Rev 5 837/1390 LPTIM_ARR Compare Discarded trigger PWM External trigger event Figure 273. LPTIM output waveform, Single counting mode configuration and Set-once mode activated (WAVE bit is set) In case of software start (TRIGEN[1:0] = '00'), the SNGSTRT setting will start the counter for one-shot counting. #### Continous mode To enable the continuous counting, the CNTSTRT bit must be set. In case an external trigger is selected, an external trigger event arriving after CNTSTRT is set will start the counter for continuous counting. Any subsequent external trigger event will be discarded as shown in *Figure 274*. In case of software start (TRIGEN[1:0] = '00'), setting CNTSTRT will start the counter for continuous counting. Figure 274. LPTIM output waveform, Continuous counting mode configuration SNGSTRT and CNTSTRT bits can only be set when the timer is enabled (The ENABLE bit is set to '1'). It is possible to change "on the fly" from One-shot mode to Continuous mode. If the Continuous mode was previously selected, setting SNGSTRT will switch the LPTIM to the One-shot mode. The counter (if active) will stop as soon as it reaches ARR. If the One-shot mode was previously selected, setting CNTSTRT will switch the LPTIM to the Continuous mode. The counter (if active) will restart as soon as it reaches ARR. #### 26.4.9 Timeout function The detection of an active edge on one selected trigger input can be used to reset the LPTIM counter. This feature is controlled through the TIMOUT bit. The first trigger event will start the timer, any successive trigger event will reset the counter and the timer will restart. A low-power timeout function can be realized. The timeout value corresponds to the compare value; if no trigger occurs within the expected time frame, the MCU is waked-up by the compare match event. ### 26.4.10 Waveform generation Two 16-bit registers, the LPTIM_ARR (autoreload register) and LPTIM_CMP (compare register), are used to generate several different waveforms on LPTIM output The timer can generate the following waveforms: - The PWM mode: the LPTIM output is set as soon as the counter value in LPTIM_CNT exceeds the compare value in LPTIM_CMP. The LPTIM output is reset as soon as a match occurs between the LPTIM ARR and the LPTIM CNT registers. - The One-pulse mode: the output waveform is similar to the one of the PWM mode for the first pulse, then the output is permanently reset - The Set-once mode: the output waveform is similar to the One-pulse mode except that the output is kept to the last
signal level (depends on the output configured polarity). The above described modes require that the LPTIM_ARR register value be strictly greater than the LPTIM_CMP register value. The LPTIM output waveform can be configured through the WAVE bit as follow: - Resetting the WAVE bit to '0' forces the LPTIM to generate either a PWM waveform or a One pulse waveform depending on which bit is set: CNTSTRT or SNGSTRT. - Setting the WAVE bit to '1' forces the LPTIM to generate a Set-once mode waveform. The WAVPOL bit controls the LPTIM output polarity. The change takes effect immediately, so the output default value will change immediately after the polarity is re-configured, even before the timer is enabled. Signals with frequencies up to the LPTIM clock frequency divided by 2 can be generated. *Figure 275* below shows the three possible waveforms that can be generated on the LPTIM output. Also, it shows the effect of the polarity change using the WAVPOL bit. RM0444 Rev 5 839/1390 Figure 275. Waveform generation ## 26.4.11 Register update The LPTIM_ARR register and LPTIM_CMP register are updated immediately after the APB bus write operation, or at the end of the current period if the timer is already started. The PRELOAD bit controls how the LPTIM_ARR and the LPTIM_CMP registers are updated: - When the PRELOAD bit is reset to '0', the LPTIM_ARR and the LPTIM_CMP registers are immediately updated after any write access. - When the PRELOAD bit is set to '1', the LPTIM_ARR and the LPTIM_CMP registers are updated at the end of the current period, if the timer has been already started. The LPTIM APB interface and the LPTIM kernel logic use different clocks, so there is some latency between the APB write and the moment when these values are available to the counter comparator. Within this latency period, any additional write into these registers must be avoided. The ARROK flag and the CMPOK flag in the LPTIM_ISR register indicate when the write operation is completed to respectively the LPTIM_ARR register and the LPTIM_CMP register. After a write to the LPTIM_ARR register or the LPTIM_CMP register, a new write operation to the same register can only be performed when the previous write operation is completed. Any successive write before respectively the ARROK flag or the CMPOK flag be set, will lead to unpredictable results. #### 26.4.12 Counter mode The LPTIM counter can be used to count external events on the LPTIM Input1 or it can be used to count internal clock cycles. The CKSEL and COUNTMODE bits control which source will be used for updating the counter. In case the LPTIM is configured to count external events on Input1, the counter can be updated following a rising edge, falling edge or both edges depending on the value written to the CKPOL[1:0] bits. The count modes below can be selected, depending on CKSEL and COUNTMODE values: - CKSEL = 0: the LPTIM is clocked by an internal clock source - COUNTMODE = 0 The LPTIM is configured to be clocked by an internal clock source and the LPTIM counter is configured to be updated following each internal clock pulse. COUNTMODE = 1 The LPTIM external Input1 is sampled with the internal clock provided to the LPTIM. Consequently, in order not to miss any event, the frequency of the changes on the external Input1 signal should never exceed the frequency of the internal clock provided to the LPTIM. Also, the internal clock provided to the LPTIM must not be prescaled (PRESC[2:0] = 000). CKSEL = 1: the LPTIM is clocked by an external clock source COUNTMODE value is don't care. In this configuration, the LPTIM has no need for an internal clock source (except if the glitch filters are enabled). The signal injected on the LPTIM external Input1 is used as system clock for the LPTIM. This configuration is suitable for operation modes where no embedded oscillator is enabled. For this configuration, the LPTIM counter can be updated either on rising edges or falling edges of the input1 clock signal but not on both rising and falling edges. Since the signal injected on the LPTIM external Input1 is also used to clock the LPTIM kernel logic, there is some initial latency (after the LPTIM is enabled) before the counter is incremented. More precisely, the first five active edges on the LPTIM external Input1 (after LPTIM is enable) are lost. #### 26.4.13 Timer enable The ENABLE bit located in the LPTIM_CR register is used to enable/disable the LPTIM kernel logic. After setting the ENABLE bit, a delay of two counter clock is needed before the LPTIM is actually enabled. The LPTIM_CFGR and LPTIM_IER registers must be modified only when the LPTIM is disabled. #### 26.4.14 Timer counter reset In order to reset the content of LPTIM_CNT register to zero, two reset mechanisms are implemented: - The synchronous reset mechanism: the synchronous reset is controlled by the COUNTRST bit in the LPTIM_CR register. After setting the COUNTRST bit-field to '1', the reset signal is propagated in the LPTIM kernel clock domain. So it is important to note that a few clock pulses of the LPTIM kernel logic will elapse before the reset is taken into account. This will make the LPTIM counter count few extra pluses between the time when the reset is trigger and it become effective. Since the COUNTRST bit is located in the APB clock domain and the LPTIM counter is located in the LPTIM kernel clock domain, a delay of 3 clock cycles of the kernel clock is needed to synchronize the reset signal issued by the APB clock domain when writing '1' to the COUNTRST bit. - The asynchronous reset mechanism: the asynchronous reset is controlled by the RSTARE bit located in the LPTIM_CR register. When this bit is set to '1', any read access to the LPTIM_CNT register will reset its content to zero. Asynchronous reset should be triggered within a timeframe in which no LPTIM core clock is provided. For example when LPTIM Input1 is used as external clock source, the asynchronous reset should be applied only when there is enough insurance that no toggle will occur on the LPTIM Input1. It should be noted that to read reliably the content of the LPTIM_CNT register two successive read accesses must be performed and compared. A read access can be considered reliable when the value of the two read accesses is equal. Unfortunately when asynchronous reset is enabled there is no possibility to read twice the LPTIM_CNT register. Warning: There is no mechanism inside the LPTIM that prevents the two reset mechanisms from being used simultaneously. So developer should make sure that these two mechanisms are used exclusively. #### 26.4.15 Encoder mode This mode allows handling signals from quadrature encoders used to detect angular position of rotary elements. Encoder interface mode acts simply as an external clock with direction selection. This means that the counter just counts continuously between 0 and the auto-reload value programmed into the LPTIM_ARR register (0 up to ARR or ARR down to 0 depending on the direction). Therefore LPTIM_ARR must be configured before starting. From the two external input signals, Input1 and Input2, a clock signal is generated to clock the LPTIM counter. The phase between those two signals determines the counting direction. The Encoder mode is only available when the LPTIM is clocked by an internal clock source. The signals frequency on both Input1 and Input2 inputs must not exceed the LPTIM internal clock frequency divided by 4. This is mandatory in order to guarantee a proper operation of the LPTIM. Direction change is signalized by the two Down and Up flags in the LPTIM_ISR register. Also, an interrupt can be generated for both direction change events if enabled through the DOWNIE bit. To activate the Encoder mode the ENC bit has to be set to '1'. The LPTIM must first be configured in Continuous mode. When Encoder mode is active, the LPTIM counter is modified automatically following the speed and the direction of the incremental encoder. Therefore, its content always represents the encoder's position. The count direction, signaled by the Up and Down flags, correspond to the rotation direction of the encoder rotor. According to the edge sensitivity configured using the CKPOL[1:0] bits, different counting scenarios are possible. The following table summarizes the possible combinations, assuming that Input1 and Input2 do not switch at the same time. Level on opposite Input1 signal Input2 signal signal (Input1 for Active edge Input2, Input2 for Rising **Falling** Rising Falling Input1) Down No count Up High No count Rising Edge Low Up No count Down No count High No count Up No count Down Falling Edge Low No count Down No count Uр High Down Up Up Down **Both Edges** Low Uр Down Down Uр Table 140. Encoder counting scenarios The following figure shows a counting sequence for Encoder mode where both-edge sensitivity is configured. ### Caution: In this mode the LPTIM must be clocked by an internal clock source, so the CKSEL bit must be maintained to its reset value which is equal to '0'. Also, the prescaler division ratio must be equal to its reset value which is 1 (PRESC[2:0] bits must be '000'). RM0444 Rev 5 843/1390 Figure 276. Encoder mode counting sequence ## 26.4.16 **Debug mode** When the microcontroller enters debug mode (core halted), the LPTIM counter either continues to work normally or stops, depending on the DBG_LPTIM_STOP configuration bit in the DBG module. ## 26.5 LPTIM low-power modes Mode Description No effect. LPTIM interrupts cause the device to exit Sleep mode. Sleep Low-power run No effect. No effect. LPTIM interrupts cause the device to exit the Low-power sleep Low-power sleep mode. No effect when LPTIM is clocked by LSE or LSI. LPTIM interrupts cause Stop 0 / Stop 1 the device to exit Stop 0 and Stop 1. Standby The LPTIM peripheral is powered down and must be reinitialized after exiting Standby or Shutdown mode. Shutdown Table 141. Effect of low-power modes on the LPTIM ## 26.6 LPTIM interrupts The
following events generate an interrupt/wake-up event, if they are enabled through the LPTIM_IER register: - Compare match - Auto-reload match (whatever the direction if encoder mode) - External trigger event - · Autoreload register write completed - · Compare register write completed - Direction change (encoder mode), programmable (up / down / both). Note: If any bit in the LPTIM_IER register (Interrupt Enable Register) is set after that its corresponding flag in the LPTIM_ISR register (Status Register) is set, the interrupt is not asserted. Table 142. Interrupt events | Interrupt event | Description | |--------------------------------|---| | Compare match | Interrupt flag is raised when the content of the Counter register (LPTIM_CNT) matches the content of the compare register (LPTIM_CMP). | | Auto-reload match | Interrupt flag is raised when the content of the Counter register (LPTIM_CNT) matches the content of the Auto-reload register (LPTIM_ARR). | | External trigger event | Interrupt flag is raised when an external trigger event is detected | | Auto-reload register update OK | Interrupt flag is raised when the write operation to the LPTIM_ARR register is complete. | | Compare register update OK | Interrupt flag is raised when the write operation to the LPTIM_CMP register is complete. | | Direction change | Used in Encoder mode. Two interrupt flags are embedded to signal direction change: – UP flag signals up-counting direction change – DOWN flag signals down-counting direction change. | ## 26.7 LPTIM registers The peripheral registers can only be accessed by words (32-bit). ## 26.7.1 LPTIM interrupt and status register (LPTIM_ISR) Address offset: 0x000 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|-----------|-----------|-------------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. DOWN | UP | ARR
OK | CMP
OK | EXT
TRIG | ARRM | СМРМ | | | | | | | | | | | | | | | | | | Bits 31:7 Reserved, must be kept at reset value. #### Bit 6 DOWN: Counter direction change up to down In Encoder mode, DOWN bit is set by hardware to inform application that the counter direction has changed from up to down. DOWN flag can be cleared by writing 1 to the DOWNCF bit in the LPTIM_ICR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to Section 26.3: LPTIM implementation. #### Bit 5 UP: Counter direction change down to up In Encoder mode, UP bit is set by hardware to inform application that the counter direction has changed from down to up. UP flag can be cleared by writing 1 to the UPCF bit in the LPTIM_ICR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to Section 26.3: LPTIM implementation. #### Bit 4 ARROK: Autoreload register update OK ARROK is set by hardware to inform application that the APB bus write operation to the LPTIM_ARR register has been successfully completed. ARROK flag can be cleared by writing 1 to the ARROKCF bit in the LPTIM_ICR register. ### Bit 3 **CMPOK**: Compare register update OK CMPOK is set by hardware to inform application that the APB bus write operation to the LPTIM_CMP register has been successfully completed. #### Bit 2 **EXTTRIG**: External trigger edge event EXTTRIG is set by hardware to inform application that a valid edge on the selected external trigger input has occurred. If the trigger is ignored because the timer has already started, then this flag is not set. EXTTRIG flag can be cleared by writing 1 to the EXTTRIGCF bit in the LPTIM_ICR register. #### Bit 1 ARRM: Autoreload match ARRM is set by hardware to inform application that LPTIM_CNT register's value reached the LPTIM_ARR register's value. ARRM flag can be cleared by writing 1 to the ARRMCF bit in the LPTIM_ICR register. #### Bit 0 CMPM: Compare match The CMPM bit is set by hardware to inform application that LPTIM_CNT register value reached the LPTIM_CMP register's value. ## 26.7.2 LPTIM interrupt clear register (LPTIM_ICR) Address offset: 0x004 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------------|------|-------------|-------------|---------------|------------|------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. DOWN
CF | UPCF | ARRO
KCF | CMPO
KCF | EXTTR
IGCF | ARRM
CF | CMPM
CF | | | | | | | | | | | w | w | w | w | w | w | w | Bits 31:7 Reserved, must be kept at reset value. Bit 6 DOWNCF: Direction change to down clear flag Writing 1 to this bit clear the DOWN flag in the LPTIM_ISR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to Section 26.3: LPTIM implementation. Bit 5 UPCF: Direction change to UP clear flag Writing 1 to this bit clear the UP flag in the LPTIM_ISR register. Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to Section 26.3: LPTIM implementation. Bit 4 ARROKCF: Autoreload register update OK clear flag Writing 1 to this bit clears the ARROK flag in the LPTIM ISR register Bit 3 CMPOKCF: Compare register update OK clear flag Writing 1 to this bit clears the CMPOK flag in the LPTIM_ISR register Bit 2 **EXTTRIGCF**: External trigger valid edge clear flag Writing 1 to this bit clears the EXTTRIG flag in the LPTIM_ISR register Bit 1 ARRMCF: Autoreload match clear flag Writing 1 to this bit clears the ARRM flag in the LPTIM_ISR register Bit 0 CMPMCF: Compare match clear flag Writing 1 to this bit clears the CMPM flag in the LPTIM_ISR register ## 26.7.3 LPTIM interrupt enable register (LPTIM_IER) Address offset: 0x008 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------------|------|-------------|-------------|---------------|------------|------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. DOWNI
E | UPIE | ARRO
KIE | CMPO
KIE | EXT
TRIGIE | ARRM
IE | CMPM
IE | | | | | | | | | | | rw 4 RM0444 Rev 5 847/1390 Bits 31:7 Reserved, must be kept at reset value. Bit 6 **DOWNIE**: Direction change to down Interrupt Enable 0: DOWN interrupt disabled1: DOWN interrupt enabled Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to Section 26.3: LPTIM implementation. Bit 5 UPIE: Direction change to UP Interrupt Enable 0: UP interrupt disabled1: UP interrupt enabled Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to Section 26.3: LPTIM implementation. Bit 4 ARROKIE: Autoreload register update OK Interrupt Enable 0: ARROK interrupt disabled1: ARROK interrupt enabled Bit 3 CMPOKIE: Compare register update OK Interrupt Enable 0: CMPOK interrupt disabled1: CMPOK interrupt enabled Bit 2 **EXTTRIGIE**: External trigger valid edge Interrupt Enable 0: EXTTRIG interrupt disabled1: EXTTRIG interrupt enabled Bit 1 ARRMIE: Autoreload match Interrupt Enable 0: ARRM interrupt disabled1: ARRM interrupt enabled Bit 0 CMPMIE: Compare match Interrupt Enable 0: CMPM interrupt disabled1: CMPM interrupt enabled Caution: The LPTIM_IER register must only be modified when the LPTIM is disabled (ENABLE bit reset to '0') ## 26.7.4 LPTIM configuration register (LPTIM_CFGR) Address offset: 0x00C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|----------|------|------|------|---------|------|------|---------------|----------|--------|------|---------|-------|---------|-------| | Res. ENC | COUNT
MODE | PRELOAD | WAVPOL | WAVE | TIMOUT | TRIGE | EN[1:0] | Res. | | | | | | | | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | TR | RIGSEL[2 | :0] | Res. | Р | RESC[2: | 0] | Res. | TRGI | FLT[1:0] | Res. | CKF | LT[1:0] | CKPC |)L[1:0] | CKSEL | | rw | rw | rw | | rw | rw | rw | | rw | rw | | rw | rw | rw | rw | rw | Bits 31:30 Reserved, must be kept at reset value. Bit 29 Reserved, must be kept at reset value. Bits 28:25 Reserved, must be kept at reset value. #### Bit 24 ENC: Encoder mode enable The ENC bit controls the Encoder mode - 0: Encoder mode disabled - 1: Encoder mode enabled Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to Section 26.3: LPTIM implementation. #### Bit 23 COUNTMODE: counter mode enabled The COUNTMODE bit selects which clock source is used by the LPTIM to clock the counter: - 0: the counter is incremented following each internal clock pulse - 1: the counter is incremented following each valid clock pulse on the LPTIM external Input1 #### Bit 22 PRELOAD: Registers update mode The PRELOAD bit controls the LPTIM ARR and the LPTIM CMP registers update modality - 0: Registers are updated after each APB bus write access - 1: Registers are updated at the end of the current LPTIM period #### Bit 21 WAVPOL: Waveform shape polarity The WAVEPOL bit controls the output polarity - The LPTIM output reflects the compare results between LPTIM_CNT and LPTIM_CMP registers - The LPTIM output reflects the inverse of the compare results between LPTIM_CNT and LPTIM_CMP registers #### Bit 20 WAVE: Waveform shape The WAVE bit controls the output shape - 0: Deactivate Set-once mode, PWM or One Pulse waveform depending on how the timer was started, CNTSTRT for PWM or SNGSTRT
for One Pulse waveform. - 1: Activate the Set-once mode #### Bit 19 TIMOUT: Timeout enable The TIMOUT bit controls the Timeout feature - 0: A trigger event arriving when the timer is already started will be ignored - 1: A trigger event arriving when the timer is already started will reset and restart the counter #### Bits 18:17 TRIGEN[1:0]: Trigger enable and polarity The TRIGEN bits controls whether the LPTIM counter is started by an external trigger or not. If the external trigger option is selected, three configurations are possible for the trigger active edge: - 00: software trigger (counting start is initiated by software) - 01: rising edge is the active edge - 10: falling edge is the active edge - 11: both edges are active edges - Bit 16 Reserved, must be kept at reset value. RM0444 Rev 5 849/1390 #### Bits 15:13 TRIGSEL[2:0]: Trigger selector The TRIGSEL bits select the trigger source that will serve as a trigger event for the LPTIM among the below 8 available sources: ``` 000: Iptim_ext_trig0 001: Iptim_ext_trig1 010: Iptim_ext_trig2 011: Iptim_ext_trig3 100: Iptim_ext_trig4 101: Iptim_ext_trig5 110: Iptim_ext_trig6 111: Iptim_ext_trig7 ``` See Section 26.4.3: LPTIM input and trigger mapping for details. Bit 12 Reserved, must be kept at reset value. #### Bits 11:9 PRESC[2:0]: Clock prescaler The PRESC bits configure the prescaler division factor. It can be one among the following division factors: 000: /1 001: /2 010: /4 011: /8 100: /16 101: /32 110: /64 111: /128 Bit 8 Reserved, must be kept at reset value. #### Bits 7:6 TRGFLT[1:0]: Configurable digital filter for trigger The TRGFLT value sets the number of consecutive equal samples that should be detected when a level change occurs on an internal trigger before it is considered as a valid level transition. An internal clock source must be present to use this feature - 00: any trigger active level change is considered as a valid trigger - 01: trigger active level change must be stable for at least 2 clock periods before it is considered as valid trigger. - 10: trigger active level change must be stable for at least 4 clock periods before it is considered as valid trigger. - 11: trigger active level change must be stable for at least 8 clock periods before it is considered as valid trigger. - Bit 5 Reserved, must be kept at reset value. #### Bits 4:3 CKFLT[1:0]: Configurable digital filter for external clock The CKFLT value sets the number of consecutive equal samples that should be detected when a level change occurs on an external clock signal before it is considered as a valid level transition. An internal clock source must be present to use this feature - 00: any external clock signal level change is considered as a valid transition - 01: external clock signal level change must be stable for at least 2 clock periods before it is considered as valid transition. - external clock signal level change must be stable for at least 4 clock periods before it is considered as valid transition. - 11: external clock signal level change must be stable for at least 8 clock periods before it is considered as valid transition. #### Bits 2:1 CKPOL[1:0]: Clock Polarity If LPTIM is clocked by an external clock source: When the LPTIM is clocked by an external clock source, CKPOL bits is used to configure the active edge or edges used by the counter: 00:the rising edge is the active edge used for counting. If the LPTIM is configured in Encoder mode (ENC bit is set), the encoder sub-mode 1 is active. 01:the falling edge is the active edge used for counting If the LPTIM is configured in Encoder mode (ENC bit is set), the encoder sub-mode 2 is active. 10:both edges are active edges. When both external clock signal edges are considered active ones, the LPTIM must also be clocked by an internal clock source with a frequency equal to at least four times the external clock frequency. If the LPTIM is configured in Encoder mode (ENC bit is set), the encoder sub-mode 3 is active. 11:not allowed Refer to Section 26.4.15: Encoder mode for more details about Encoder mode sub-modes. #### Bit 0 CKSEL: Clock selector The CKSEL bit selects which clock source the LPTIM will use: - 0: LPTIM is clocked by internal clock source (APB clock or any of the embedded oscillators) - 1: LPTIM is clocked by an external clock source through the LPTIM external Input1 # **Caution:** The LPTIM_CFGR register must only be modified when the LPTIM is disabled (ENABLE bit reset to '0'). ## 26.7.5 LPTIM control register (LPTIM_CR) Address offset: 0x010 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------------|--------------|-------------|-------------|------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. RST
ARE | COUN
TRST | CNT
STRT | SNG
STRT | ENA
BLE | | | | | | | | | | | | | rw | rs | rw | rw | rw | 4 RM0444 Rev 5 851/1390 #### Bits 31:5 Reserved, must be kept at reset value. #### Bit 4 RSTARE: Reset after read enable This bit is set and cleared by software. When RSTARE is set to '1', any read access to LPTIM_CNT register will asynchronously reset LPTIM_CNT register content. #### Bit 3 COUNTRST: Counter reset This bit is set by software and cleared by hardware. When set to '1' this bit will trigger a synchronous reset of the LPTIM_CNT counter register. Due to the synchronous nature of this reset, it only takes place after a synchronization delay of 3 LPTimer core clock cycles (LPTimer core clock may be different from APB clock). **Caution:** COUNTRST must never be set to '1' by software before it is already cleared to '0' by hardware. Software should consequently check that COUNTRST bit is already cleared to '0' before attempting to set it to '1'. #### Bit 2 CNTSTRT: Timer start in Continuous mode This bit is set by software and cleared by hardware. In case of software start (TRIGEN[1:0] = '00'), setting this bit starts the LPTIM in Continuous mode. If the software start is disabled (TRIGEN[1:0] different than '00'), setting this bit starts the timer in Continuous mode as soon as an external trigger is detected. If this bit is set when a single pulse mode counting is ongoing, then the timer will not stop at the next match between the LPTIM_ARR and LPTIM_CNT registers and the LPTIM counter keeps counting in Continuous mode. This bit can be set only when the LPTIM is enabled. It will be automatically reset by hardware. #### Bit 1 SNGSTRT: LPTIM start in Single mode This bit is set by software and cleared by hardware. In case of software start (TRIGEN[1:0] = '00'), setting this bit starts the LPTIM in single pulse mode. If the software start is disabled (TRIGEN[1:0] different than '00'), setting this bit starts the LPTIM in single pulse mode as soon as an external trigger is detected. If this bit is set when the LPTIM is in continuous counting mode, then the LPTIM will stop at the following match between LPTIM_ARR and LPTIM_CNT registers. This bit can only be set when the LPTIM is enabled. It will be automatically reset by hardware. #### Bit 0 ENABLE: LPTIM enable The ENABLE bit is set and cleared by software. 0:LPTIM is disabled 1:LPTIM is enabled ## 26.7.6 LPTIM compare register (LPTIM_CMP) Address offset: 0x014 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|--------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | CMP | [15:0] | | | | | | | | | rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 CMP[15:0]: Compare value CMP is the compare value used by the LPTIM. Caution: The LPTIM_CMP register must only be modified when the LPTIM is enabled (ENABLE bit set to '1'). ## 26.7.7 LPTIM autoreload register (LPTIM ARR) Address offset: 0x018 Reset value: 0x0000 0001 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|-------------|------|------|------|------|------|------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | | 7
[15:0] | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Bits 31:16 Reserved, must be kept at reset value. #### Bits 15:0 ARR[15:0]: Auto reload value ARR is the autoreload value for the LPTIM. This value must be strictly greater than the CMP[15:0] value. **Caution:** The LPTIM_ARR register must only be modified when the LPTIM is enabled (ENABLE bit set to '1'). ## 26.7.8 LPTIM counter register (LPTIM_CNT) Address offset: 0x01C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|--------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | CNT | [15:0] | | | | | | | | | r | r | ŗ | ŗ | r | r | r | ŗ | r | r | r | r | r | ŗ | r | r | Bits 31:16 Reserved, must be kept at reset value. #### Bits 15:0 CNT[15:0]: Counter value When the LPTIM is running with an asynchronous clock, reading the LPTIM_CNT register may return unreliable values. So in this case it is necessary to perform two consecutive read accesses and verify that the two returned values are identical. It should be noted that for a reliable LPTIM_CNT register read access, two consecutive read accesses must be performed and compared. A read access can be considered reliable when the values of the two consecutive read accesses are equal. 4 RM0444 Rev 5 853/1390 ## 26.7.9 LPTIM configuration register 2
(LPTIM_CFGR2) Address offset: 0x024 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|-------|---------|------|------|-------|---------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. IN2SE | EL[1:0] | Res. | Res. | IN1SE | EL[1:0] | | | | | | | | | | | | rw | rw | | | rw | rw | Bits 31:6 Reserved, must be kept at reset value. ### Bits 5:4 IN2SEL[1:0]: LPTIM input 2 selection The IN2SEL bits control the LPTIM Input 2 multiplexer, which connect LPTIM Input 2 to one of the available inputs. 00: Iptim_in2_mux0 01: lptim_in2_mux1 10: lptim_in2_mux2 11: lptim_in2_mux3 For connection details refer to Section 26.4.3: LPTIM input and trigger mapping. Note: If the LPTIM does not support encoder mode feature, these bits are reserved. Please refer to Section 26.3: LPTIM implementation. Bits 3:2 Reserved, must be kept at reset value. ### Bits 1:0 IN1SEL[1:0]: LPTIM input 1 selection The IN1SEL bits control the LPTIM Input 1 multiplexer, which connects LPTIM Input 1 to one of the available inputs. 00: lptim_in1_mux0 01: lptim_in1_mux1 10: Iptim_in1_mux2 11: lptim_in1_mux3 For connection details refer to Section 26.4.3: LPTIM input and trigger mapping. Caution: The LPTIM_CFGR2 register must only be modified when the LPTIM is disabled (ENABLE bit reset to '0'). ## 26.7.10 LPTIM register map The following table summarizes the LPTIM registers. Table 143. LPTIM register map and reset values | Offset | Register name | 31 | 30 | 29 | 28 | 27 | 5 6 | 25 | 24 | 23 | 25 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | စ | œ | 7 | 9 | 2 | 4 | က | 7 | - 0 | |--------|---------------|------|------|------|------|------|------------|------|--------|-----------|---------|---------|------|--------|--------|------|------|------|--------------|------|------|------|-------|------|------|--------|-----------|---------------------|---------|----------|---------|---------------| | 0x000 | LPTIM_ISR | Res. (L)ÑMOQ | UP(¹) | ARROK | CMPOK | APPM | CMPM | | | Reset value | 0 | 0 | 0 | | | 0 0 | | 0x004 | LPTIM_ICR | Res. DOWNCE(1) | UPCF ⁽¹⁾ | ARROKCF | CMPOKCE | APPMOE | CMPMCF | | | Reset value | 0 | 0 | 0 | 0 | 0 (| 0 0 | | 0x008 | LPTIM_IER | Res. Ŏ | UPIE ⁽¹⁾ | | | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 0 | | 0x00C | LPTIM_CFGR | Res. ENC(1) | COUNTMODE | PRELOAD | WAVEPOL | WAVE | TIMOUT | TRIGEN | | Res. | | TRIGSEL[2:0] | | Res. | | PRESC | | Res. | TRGELT | 5 | Res. | CKFLT | i
; | CKPOL | CKSEL | | | Reset value | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 0 0 | | 0x010 | LPTIM_CR | Res. RSTARE | COUNTRST | CNISIRI | ENABLE | | | Reset value | - | _ | 0 (| 0 0 | | 0x014 | LPTIM_CMP | Res. | | | | | | CN | ИP | [15 | :0] | | | | | | | 0.014 | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | 0x018 | LPTIM_ARR | Res. | | | | | | AF | RR | [15 | :0] | | | | | | | 0,1010 | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | | 0x01C | LPTIM_CNT | Res | | | | | | | NΤ | [15 | :0] | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 0 | | 0x020 | Reserved | Res 200 | Res | | 0x024 | LPTIM_CFGR2 | Res. IN12SEI [1:01(1) | | Res. | Kes. | . IN1SEL[1:0] | | | Reset value | 0 | 0 | | | 0 0 | RM0444 Rev 5 855/1390 1. If LPTIM does not support encoder mode feature, this bit is reserved. Please refer to Section 26.3: LPTIM implementation. Refer to Section 2.2 on page 58 for the register boundary addresses. ## 27 Infrared interface (IRTIM) An infrared interface (IRTIM) for remote control is available on the device. It can be used with an infrared LED to perform remote control functions. It uses internal connections with USART1, USART4 (on STM32G071/81/B1/C1xx) or USART2 (STM32G031/41/51/61xx), TIM16 and TIM17 as shown in *Figure* 277. To generate the infrared remote control signals, the IR interface must be enabled and TIM16 channel 1 (TIM16_OC1) and TIM17 channel 1 (TIM17_OC1) must be properly configured to generate correct waveforms. The infrared receiver can be implemented easily through a basic input capture mode. Figure 277. IRTIM internal hardware connections 3. USART4 (on STM32G071/81/B1/C1xx) or USART2 (STM32G031/41/51/61xx). All standard IR pulse modulation modes can be obtained by programming the two timer output compare channels. TIM17 is used to generate the high frequency carrier signal, while TIM16 or alternatively USART1 or USART4^(a) generates the modulation envelope according to the setting of the IR_MOD[1:0] bits in the SYSCFG_CFGR1 register. The polarity of the output signal from IRTIM is controlled by the IR_POL bit in the SYSCFG_CFGR1 register and could be inverted by setting of this bit. The infrared function is output on the IR_OUT pin. The activation of this function is done through the GPIOx_AFRx register by enabling the related alternate function bit. The high sink LED driver capability (only available on the PB9 pin) can be activated through the I2C_PB9_FMP bit in the SYSCFG_CFGR1 register and used to sink the high current needed to directly control an infrared LED. a. USART4 (on STM32G071/81/B1/C1xx) or USART2 (STM32G031/41/51/61). RM0444 Rev 5 857/1390 ## 28 Independent watchdog (IWDG) ## 28.1 Introduction The devices feature an embedded watchdog peripheral that offers a combination of high safety level, timing accuracy and flexibility of use. The Independent watchdog peripheral detects and solves malfunctions due to software failure, and triggers system reset when the counter reaches a given timeout value. The independent watchdog (IWDG) is clocked by its own dedicated low-speed clock (LSI) and thus stays active even if the main clock fails. The IWDG is best suited for applications that require the watchdog to run as a totally independent process outside the main application, but have lower timing accuracy constraints. For further information on the window watchdog, refer to *Section 29 on page 867*. ### 28.2 IWDG main features - Free-running downcounter - Clocked from an independent RC oscillator (can operate in Standby and Stop modes) - Conditional reset - Reset (if watchdog activated) when the downcounter value becomes lower than 0x000 - Reset (if watchdog activated) if the downcounter is reloaded outside the window ## 28.3 IWDG functional description ## 28.3.1 IWDG block diagram Figure 278 shows the functional blocks of the independent watchdog module. Figure 278. Independent watchdog block diagram The register interface is located in the V_{DD} voltage domain. The watchdog function is located in the V_{DD} voltage domain, still functional in Stop and Standby modes. When the independent watchdog is started by writing the value 0x0000 CCCC in the *IWDG key register (IWDG_KR)*, the counter starts counting down from the reset value of 0xFFF. When it reaches the end of count value (0x000) a reset signal is generated (IWDG reset). Whenever the key value 0x0000 AAAA is written in the *IWDG key register (IWDG_KR)*, the IWDG_RLR value is reloaded in the counter and the watchdog reset is prevented. Once running, the IWDG cannot be stopped. ### 28.3.2 Window option The IWDG can also work as a window watchdog by setting the appropriate window in the IWDG window register (IWDG_WINR). If the reload operation is performed while the counter is greater than the value stored in the *IWDG window register (IWDG_WINR)*, then a reset is provided. The default value of the *IWDG window register (IWDG_WINR)* is 0x0000 0FFF, so if it is not updated, the window option is disabled. As soon as the window value is changed, a reload operation is performed in order to reset the downcounter to the *IWDG reload register (IWDG_RLR)* value and ease the cycle number calculation to generate the next reload. ### Configuring the IWDG when the window option is enabled - 1. Enable the IWDG by writing 0x0000 CCCC in the IWDG key register (IWDG_KR). - 2. Enable register access by writing 0x0000 5555 in the IWDG key register (IWDG_KR). - Write the IWDG prescaler by programming IWDG prescaler register (IWDG_PR) from 0 to 7. - 4. Write the IWDG reload register (IWDG_RLR). - 5. Wait for the registers to be updated (IWDG_SR = 0x0000 0000). - 6. Write to the *IWDG window register (IWDG_WINR)*. This automatically refreshes the counter value in the *IWDG reload register (IWDG_RLR)*. Note: Writing the window value allows the counter value to be refreshed by the RLR when IWDG status register (IWDG SR) is set to 0x0000 0000. ### Configuring the IWDG when the window option is disabled When the window option it is not used, the IWDG can be configured as follows: - 1. Enable the IWDG by writing 0x0000 CCCC in the IWDG key register (IWDG_KR). - 2. Enable register access by writing 0x0000 5555 in the *IWDG key register (IWDG_KR)*. - 3. Write the prescaler by programming the *IWDG prescaler register (IWDG_PR)* from 0 to 7. - 4. Write the IWDG reload register (IWDG_RLR). - 5. Wait for the registers to be updated (IWDG_SR = 0x0000 0000). - 6. Refresh the counter value with IWDG_RLR (IWDG_KR = 0x0000 AAAA). RM0444 Rev 5 859/1390 ## 28.3.3 Hardware watchdog If the "Hardware watchdog" feature is enabled through the device option bits, the watchdog is automatically enabled at power-on, and generates a reset unless the *IWDG key register* (*IWDG_KR*) is written by the software before the counter reaches end of count or if the downcounter is reloaded inside the window. ###
28.3.4 Register access protection Write access to *IWDG prescaler register (IWDG_PR)*, *IWDG reload register (IWDG_RLR)* and *IWDG window register (IWDG_WINR)* is protected. To modify them, the user must first write the code 0x0000 5555 in the *IWDG key register (IWDG_KR)*. A write access to this register with a different value breaks the sequence and register access is protected again. This is the case of the reload operation (writing 0x0000 AAAA). A status register is available to indicate that an update of the prescaler or of the downcounter reload value or of the window value is ongoing. ## 28.3.5 Debug mode When the device enters Debug mode (core halted), the IWDG counter either continues to work normally or stops, depending on the configuration of the corresponding bit in DBGMCU freeze register. ## 28.4 IWDG registers Refer to Section 1.2 on page 53 for a list of abbreviations used in register descriptions. The peripheral registers can be accessed by half-words (16-bit) or words (32-bit). ## 28.4.1 IWDG key register (IWDG_KR) Address offset: 0x00 Reset value: 0x0000 0000 (reset by Standby mode) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|--------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | KEY | [15:0] | Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 **KEY[15:0]:** Key value (write only, read 0x0000) These bits must be written by software at regular intervals with the key value 0xAAAA, otherwise the watchdog generates a reset when the counter reaches 0. Writing the key value 0x5555 to enable access to the IWDG_PR, IWDG_RLR and IWDG_WINR registers (see Section 28.3.4: Register access protection) Writing the key value 0xCCCC starts the watchdog (except if the hardware watchdog option is selected) ## 28.4.2 IWDG prescaler register (IWDG_PR) Address offset: 0x04 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------|--------------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | 3
Res. | 2 | 1
PR[2:0] | 0 | Bits 31:3 Reserved, must be kept at reset value. #### Bits 2:0 PR[2:0]: Prescaler divider These bits are write access protected see Section 28.3.4: Register access protection. They are written by software to select the prescaler divider feeding the counter clock. PVU bit of the IWDG status register (IWDG_SR) must be reset in order to be able to change the prescaler divider. 000: divider /4 001: divider /8 010: divider /16 011: divider /32 100: divider /64 101: divider /128 110: divider /256 111: divider /256 Note: Reading this register returns the prescaler value from the V_{DD} voltage domain. This value may not be up to date/valid if a write operation to this register is ongoing. For this reason the value read from this register is valid only when the PVU bit in the IWDG status register (IWDG_SR) is reset. ## 28.4.3 IWDG reload register (IWDG_RLR) Address offset: 0x08 Reset value: 0x0000 0FFF (reset by Standby mode) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------------|------------|------------|------|------|------|------|------|------|------------|------|------|------|------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | 14
Res. | 13
Res. | 12
Res. | 11 | 10 | 9 | 8 | 7 | | 5
11:0] | 4 | 3 | 2 | 1 | 0 | Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 RL[11:0]: Watchdog counter reload value These bits are write access protected see *Register access protection*. They are written by software to define the value to be loaded in the watchdog counter each time the value 0xAAAA is written in the *IWDG key register (IWDG_KR)*. The watchdog counter counts down from this value. The timeout period is a function of this value and the clock prescaler. Refer to the datasheet for the timeout information. The RVU bit in the *IWDG status register* (*IWDG_SR*) must be reset to be able to change the reload value. Note: Reading this register returns the reload value from the V_{DD} voltage domain. This value may not be up to date/valid if a write operation to this register is ongoing on it. For this reason the value read from this register is valid only when the RVU bit in the IWDG status register (IWDG_SR) is reset. ## 28.4.4 IWDG status register (IWDG_SR) Address offset: 0x0C Reset value: 0x0000 0000 (not reset by Standby mode) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | n | | | | 10 | 12 | | 10 | 9 | U | , | U | U | 7 | 3 | _ | | U | | Res. WVU | RVU | PVU | Bits 31:3 Reserved, must be kept at reset value. #### Bit 2 WVU: Watchdog counter window value update This bit is set by hardware to indicate that an update of the window value is ongoing. It is reset by hardware when the reload value update operation is completed in the V_{DD} voltage domain (takes up to five LSI cycles). Window value can be updated only when WVU bit is reset. #### Bit 1 RVU: Watchdog counter reload value update This bit is set by hardware to indicate that an update of the reload value is ongoing. It is reset by hardware when the reload value update operation is completed in the V_{DD} voltage domain (takes up to five LSI cycles). Reload value can be updated only when RVU bit is reset. #### Bit 0 PVU: Watchdog prescaler value update This bit is set by hardware to indicate that an update of the prescaler value is ongoing. It is reset by hardware when the prescaler update operation is completed in the V_{DD} voltage domain (takes up to five LSI cycles). Prescaler value can be updated only when PVU bit is reset. Note: If several reload, prescaler, or window values are used by the application, it is mandatory to wait until RVU bit is reset before changing the reload value, to wait until PVU bit is reset before changing the prescaler value, and to wait until WVU bit is reset before changing the window value. However, after updating the prescaler and/or the reload/window value it is not necessary to wait until RVU or PVU or WVU is reset before continuing code execution except in case of low-power mode entry. ## 28.4.5 IWDG window register (IWDG_WINR) Address offset: 0x10 Reset value: 0x0000 0FFF (reset by Standby mode) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|--------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | | | - | - | • | - | _ | • | • | | Res. | Res. | Res. | Res. | | | | | | WIN | [11:0] | • | | | - | | Bits 31:12 Reserved, must be kept at reset value. ## Bits 11:0 WIN[11:0]: Watchdog counter window value These bits are write access protected, see *Section 28.3.4*, they contain the high limit of the window value to be compared with the downcounter. To prevent a reset, the downcounter must be reloaded when its value is lower than the window register value and greater than 0x0 The WVU bit in the *IWDG status register (IWDG_SR)* must be reset in order to be able to change the reload value. Note: Reading this register returns the reload value from the V_{DD} voltage domain. This value may not be valid if a write operation to this register is ongoing. For this reason the value read from this register is valid only when the WVU bit in the IWDG status register (IWDG_SR) is reset. ## 28.4.6 IWDG register map The following table gives the IWDG register map and reset values. Table 144. IWDG register map and reset values | | | | | | | | | | | | | - 3 | | | | 1 | | | | | | | | | | | | | | | | | | |--------|---------------|-------|------|------|-----|------|-----| | Offset | Register name | 31 | 30 | 53 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 41 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | æ | 7 | 9 | 2 | 4 | 3 | 2 | - | 0 | | 0x00 | IWDG_KR | Res. | | | | | | k | ŒΥ | [15: | 0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x04 | IWDG_PR | Res. Р | R[2: | 0] | | | Reset value | 0 | 0 | 0 | | 0x08 | IWDG_RLR | Res. | | | | | RL[| 11:0 |] | | | | | | | Reset value | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 0x0C | IWDG_SR | Res. MVU | RVU | PVU | | - | Reset value | 0 | 0 | 0 | | 0x10 | IWDG_WINR | Res. | | • | • | ٧ | VIN | [11:0 |)] | • | • | • | | | 50 | Reset value | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Refer to Section 2.2 on page 58 for the register boundary addresses. # 29 System window watchdog (WWDG) ## 29.1
Introduction The system window watchdog (WWDG) is used to detect the occurrence of a software fault, usually generated by external interference or by unforeseen logical conditions, which causes the application program to abandon its normal sequence. The watchdog circuit generates an MCU reset on expiry of a programmed time period, unless the program refreshes the contents of the down-counter before the T6 bit becomes cleared. An MCU reset is also generated if the 7-bit down-counter value (in the control register) is refreshed before the down-counter has reached the window register value. This implies that the counter must be refreshed in a limited window. The WWDG clock is prescaled from the APB clock and has a configurable time-window that can be programmed to detect abnormally late or early application behavior. The WWDG is best suited for applications which require the watchdog to react within an accurate timing window. ## 29.2 WWDG main features - Programmable free-running down-counter - Conditional reset - Reset (if watchdog activated) when the down-counter value becomes lower than 0x40 - Reset (if watchdog activated) if the down-counter is reloaded outside the window (see Figure 280) - Early wakeup interrupt (EWI): triggered (if enabled and the watchdog activated) when the down-counter is equal to 0x40. # 29.3 WWDG functional description If the watchdog is activated (the WDGA bit is set in the WWDG_CR register) and when the 7-bit down-counter (T[6:0] bits) is decremented from 0x40 to 0x3F (T6 becomes cleared), it initiates a reset. If the software reloads the counter while the counter is greater than the value stored in the window register, then a reset is generated. The application program must write in the WWDG_CR register at regular intervals during normal operation to prevent an MCU reset. This operation must occur only when the counter value is lower than the window register value and higher than 0x3F. The value to be stored in the WWDG_CR register must be between 0xFF and 0xC0. Refer to Figure 279 for the WWDG block diagram. #### 29.3.1 WWDG block diagram **WWDG** Register interface CMP = 1 when T[6:0] > W[6:0] W[6:0] APB bus WWDG CFR wwdg out rst WWDG_SR **WDGA** Write to WWDG_CR T[6:0] T6 0x40 readback Logic WWDG_CR T[6:0] FWI ➤ wwda it ٠. **FWIF** cnt_out preload · 7-bit DownCounter (CNT) ÷ 2^{WDGTB} pclk $\div 4096$ MS47214V1 Figure 279. Watchdog block diagram #### 29.3.2 Enabling the watchdog When the user option WWDG SW selects "Software window watchdog", the watchdog is always disabled after a reset. It is enabled by setting the WDGA bit in the WWDG CR register, then it cannot be disabled again except by a reset. When the user option WWDG SW selects "Hardware window watchdog", the watchdog is always enabled after a reset, it cannot be disabled. #### 29.3.3 Controlling the down-counter This down-counter is free-running, counting down even if the watchdog is disabled. When the watchdog is enabled, the T6 bit must be set to prevent generating an immediate reset. The T[5:0] bits contain the number of increments that represent the time delay before the watchdog produces a reset. The timing varies between a minimum and a maximum value due to the unknown status of the prescaler when writing to the WWDG CR register (see Figure 280). The WWDG configuration register (WWDG_CFR) contains the high limit of the window: to prevent a reset, the down-counter must be reloaded when its value is lower than the window register value and greater than 0x3F. Figure 280 describes the window watchdog process. Note: The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is cleared). #### 29.3.4 How to program the watchdog timeout Use the formula in *Figure 280* to calculate the WWDG timeout. Warning: When writing to the WWDG_CR register, always write 1 in the T6 bit to avoid generating an immediate reset. Figure 280. Window watchdog timing diagram The formula to calculate the timeout value is given by: $$t_{WWDG} = t_{PCLK} \times 4096 \times 2^{WDGTB[1:0]} \times (T[5:0] + 1)$$ (ms) where: t_{WWDG} : WWDG timeout t_{PCLK}: APB clock period measured in ms 4096: value corresponding to internal divider As an example, lets assume APB frequency is equal to 48 MHz, WDGTB[1:0] is set to 3 and T[5:0] is set to 63: $$t_{WWDG} = (1/48000) \times 4096 \times 2^3 \times (63+1) = 43.69 \text{ms}$$ Refer to the datasheet for the minimum and maximum values of the t_{WWDG}. ## 29.3.5 Debug mode When the device enters debug mode (processor halted), the WWDG counter either continues to work normally or stops, depending on the configuration bit in DBG module. For more details refer to *Section 40: Debug support (DBG)*. ## 29.4 WWDG interrupts The early wakeup interrupt (EWI) can be used if specific safety operations or data logging must be performed before the actual reset is generated. The EWI interrupt is enabled by setting the EWI bit in the WWDG_CFR register. When the down-counter reaches the value 0x40, an EWI interrupt is generated and the corresponding interrupt service routine (ISR) can be used to trigger specific actions (such as communications or data logging), before resetting the device. In some applications, the EWI interrupt can be used to manage a software system check and/or system recovery/graceful degradation, without generating a WWDG reset. In this case, the corresponding interrupt service routine (ISR) has to reload the WWDG counter to avoid the WWDG reset, then trigger the required actions. The EWI interrupt is cleared by writing '0' to the EWIF bit in the WWDG SR register. Note: When the EWI interrupt cannot be served, e.g. due to a system lock in a higher priority task, the WWDG reset is eventually generated. # 29.5 WWDG registers Refer to Section 1.2 on page 53 for a list of abbreviations used in register descriptions. The peripheral registers can be accessed by halfwords (16-bit) or words (32-bit). ## 29.5.1 WWDG control register (WWDG_CR) Address offset: 0x000 Reset value: 0x0000 007F | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|--------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. WDGA | | | | T[6:0] | | | | | | | | | | | | | rs | rw ## Bits 31:8 Reserved, must be kept at reset value. #### Bit 7 WDGA: Activation bit This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the watchdog can generate a reset. 0: Watchdog disabled 1: Watchdog enabled #### Bits 6:0 T[6:0]: 7-bit counter (MSB to LSB) These bits contain the value of the watchdog counter, decremented every (4096 x 2^{WDGTB[1:0]}) PCLK cycles. A reset is produced when it is decremented from 0x40 to 0x3F (T6 becomes cleared). ## 29.5.2 WWDG configuration register (WWDG_CFR) Address offset: 0x004 Reset value: 0x0000 007F | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------|----------------|------|------------|----------|-----------|-----------|------|------|------|-------------|------|------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | | 12
/DGTB[2: | | 10
Res. | 9
EWI | 8
Res. | 7
Res. | 6 | 5 | 4 | 3
W[6:0] | 2 | 1 | 0 | Bits 31:10 Reserved, must be kept at reset value. ### Bits 13:11 WDGTB[2:0]: Timer base The timebase of the prescaler can be modified as follows: 000: CK Counter Clock (PCLK div 4096) div 1 001: CK Counter Clock (PCLK div 4096) div 2 010: CK Counter Clock (PCLK div 4096) div 4 011: CK Counter Clock (PCLK div 4096) div 8 100: CK Counter Clock (PCLK div 4096) div 16 101: CK Counter Clock (PCLK div 4096) div 32 110: CK Counter Clock (PCLK div 4096) div 64 111: CK Counter Clock (PCLK div 4096) div 128 ### Bit 9 EWI: Early wakeup interrupt When set, an interrupt occurs whenever the counter reaches the value 0x40. This interrupt is only cleared by hardware after a reset. #### Bits 6:0 W[6:0]: 7-bit window value These bits contain the window value to be compared with the down-counter. 4 ## 29.5.3 WWDG status register (WWDG_SR) Address offset: 0x008 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------|-----------|-----------|-----------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | Res. | 2
Res. | 1
Res. | 0
EWIF | Bits 31:1 Reserved, must be kept at reset value. Bit 0 EWIF: Early wakeup interrupt flag This bit is set by hardware when the counter has reached the value 0x40. It must be cleared by software by writing '0'. Writing '1' has no effect. This bit is also set if the interrupt is not enabled. ## 29.5.4 WWDG register map The following table gives the WWDG register map and reset values. 30 26 25 23 20 19 18 16 15 Offset 33 Register 27 21 6 œ 9 2 WWDG_CR T[6:0] 0x000 Reset value 0 1 1 1 1 1 **WDGTB** EWI WWDG_CFR W[6:0] [2:0] 0x004 Reset value 0 0 0 0 WWDG_SR 0x008 Reset value Table 145. WWDG register map and reset values Refer to Section 2.2 on page 58 for the register boundary addresses. ## 30.1 Introduction The RTC provides an automatic wakeup to manage all low-power modes. The real-time clock (RTC) is an independent BCD timer/counter. The RTC provides a time-of-day clock/calendar with programmable alarm interrupts. As long as the supply voltage remains in the operating
range, the RTC never stops, regardless of the device status (Run mode, low-power mode or under reset). The RTC is functional in V_{BAT} mode. ## 30.2 RTC main features The RTC supports the following features (see Figure 281: RTC block diagram): - Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. - Automatic correction for 28, 29 (leap year), 30, and 31 days of the month. - Two programmable alarms. - On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. - Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. - Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy. - Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to V_{BAT} mode. - 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period. The RTC is supplied through a switch that takes power either from the V_{DD} supply when present or from the V_{BAT} pin. The RTC clock sources can be: - A 32.768 kHz external crystal (LSE) - An external resonator or oscillator (LSE) - The internal low power RC oscillator (LSI, with typical frequency of 32 kHz) - The high-speed external clock (HSE), divided by a prescaler in the RCC. The RTC is functional in V_{BAT} mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in V_{BAT} mode, but is functional in all low-power modes except Shutdown mode. All RTC events (Alarm, WakeUp Timer, Timestamp) can generate an interrupt and wakeup the device from the low-power modes. # 30.3 RTC functional description ## 30.3.1 RTC block diagram Figure 281. RTC block diagram ## 30.3.2 RTC pins and internal signals Table 146. RTC input/output pins | Pin name | Signal type | Description | |-----------|-------------|---------------------------------------| | RTC_TS | Input | RTC timestamp input | | RTC_REFIN | Input | RTC 50 or 60 Hz reference clock input | | RTC_OUT1 | Output | RTC output 1 | | RTC_OUT2 | Output | RTC output 2 | - RTC_OUT1 and RTC_OUT2 which selects one of the following two outputs: - CALIB: 512 Hz or 1 Hz clock output (with an LSE frequency of 32.768 kHz). This output is enabled by setting the COE bit in the RTC_CR register. - TAMPALRM: This output is the OR between TAMP and ALARM outputs. ALARM is enabled by configuring the OSEL[1:0] bits in the RTC_CR register which select the alarm A, alarm B or wakeup outputs. TAMP is enabled by setting the TAMPOE bit in the RTC_CR register which selects the tamper event outputs. Table 147. RTC internal input/output signals | Internal signal name | Signal type | Description | |----------------------|-------------|--| | rtc_ker_ck | Input | RTC kernel clock, also named RTCCLK in this document | | rtc_pclk | Input | RTC APB clock | | rtc_its | Input | RTC internal timestamp event | | rtc_tamp_evt | Input | Tamper event (internal or external) detected in TAMP peripheral | | rtc_it | Output | RTC interrupts (refer to Section 30.5: RTC interrupts for details) | | rtc_alra_trg | Output | RTC alarm A event detection trigger | | rtc_alrb_trg | Output | RTC alarm B event detection trigger | | rtc_wut_trg | Output | RTC wakeup timer event detection trigger | | rtc_calovf | Output | RTC calendar overflow | The RTC kernel clock is usually the LSE at 32.768 kHz although it is possible to select other clock sources in the RCC (refer to RCC for more details). Some functions are not available in some low-power modes or V_{BAT} when the selected clock is not LSE. Refer to Section 30.4: RTC low-power modes for more details. | Table 1 | 48 | RTC | interconne | ction | |---------|----|-----|------------|-------| | | | | | | | Signal name | Source/destination | |--------------|--| | rtc_its | From power controller (PWR): main power loss/switch to V_{BAT} detection output | | rtc_tamp_evt | From TAMP peripheral: tamp_evt | | rtc_calovf | To TAMP peripheral: tamp_itamp5 | The triggers outputs can be used as triggers for other peripherals. ## 30.3.3 GPIOs controlled by the RTC and TAMP The GPIOs included in the Battery Backup Domain (V_{BAT}) are directly controlled by the peripherals providing functions on these I/Os, whatever the GPIO configuration. Both RTC and TAMP peripherals provide functions on these I/Os (refer to Section 31: Tamper and backup registers (TAMP)). RTC_OUT1, RTC_TS and TAMP_IN1 are mapped on the same pin (PC13). The RTC and TAMP functions mapped on PC13 are available in all low-power modes and in V_{BAT} mode. The output mechanism follows the priority order shown in *Table 149*. Table 149. PC13 configuration⁽¹⁾ | PC13 Pin function | OSEL[1:0]
(ALARM output enable) | TAMPOE
(TAMPER output enable) | COE
(CALIB output enable) | OUTZEN | TAMPALRM_TYPE | TAMPALRM_PU | TAMP1E
(TAMP_IN1 input enable) | TSE
(RTC_TS input enable) | |---------------------------|------------------------------------|----------------------------------|------------------------------|------------|---------------|-------------|-----------------------------------|------------------------------| | | 01 or
10 or
11 | 0 | | | | | | | | TAMPALRM output Push-Pull | 00 | 1 | Don't care | Don't care | 0 | 0 | Don't care | Don't
care | | | 01 or
10 or
11 | 1 | | | | | | | Table 149. PC13 configuration⁽¹⁾ (continued) | | | DIE 149. | | · · · · · · · · · · · · · · · · · · · | (| I | | 1 | | |-----------------------------|------------------|------------------------------------|-------------------------------|---------------------------------------|---------------|---------------|-------------|-----------------------------------|------------------------------| | PC13 Pin fu | unction | OSEL[1:0]
(ALARM output enable) | TAMPOE (TAMPER output enable) | CALIB output enable) | OUT2EN | TAMPALRM_TYPE | TAMPALRM_PU | TAMP1E
(TAMP_IN1 input enable) | TSE
(RTC_TS input enable) | | | | 01 or
10 or
11 | 0 | | | | | | | | | No pull | 00 | 1 | Don't care | Don't
care | 1 | 0 | Don't care | Don't
care | | TAMPALRM output | | 01 or
10 or
11 | 1 | Guio | daro | | | Garo | ou. o | | Open-Drain ⁽²⁾ | | 01 or
10 or
11 | 0 | | | | | | | | | Internal pull-up | 00 | 1 | Don't care | Don't
care | 1 | 1 | Don't care | Don't
care | | | pan ap | 01 or
10 or
11 | 1 | | Jul 5 | | | 54.5 | Sui. S | | CALIB output P | P | 00 | 0 | 1 | 0 | Don't care | Don't care | Don't care | Don't
care | | | | 00 | 0 | 0 | Don't care | | | | | | TAMP_IN1 inpu | ıt floating | 00 | 0 | 1 | | Don't care | Don't care | 1 | 0 | | | | Don't care | Don't care | 0 | 1 | | | | | | | | 00 | 0 | 0 | Don't
care | | | | | | RTC_TS and Tainput floating | AMP_IN1 | 00 | 0 | 1 | | Don't care | Don't care | 1 | 1 | | , , | | Don't
care | Don't
care | 0 | 1 | | | | | | | | 00 | 0 | 0 | Don't
care | D'' | D'' | | | | RTC_TS input f | floating | 00 | 0 | 1 | | Don't care | Don't care | 0 | 1 | | | | Don't
care | Don't
care | 0 | 1 | | | | | | PC13 Pin function | OSEL[1:0]
(ALARM output enable) | TAMPOE (TAMPER output enable) | CALIB output enable) | OUT2EN | TAMPALRM_TYPE | TAMPALRM_PU | TAMP1E (TAMP_IN1 input enable) | TSE
(RTC_TS input enable) | |-----------------------------|------------------------------------|-------------------------------|----------------------|------------|---------------|-------------|--------------------------------|------------------------------| | | 00 | 0 | 0 | Don't care | | | | | | Wakeup pin or Standard GPIO | 00 0 | | 1 | | Don't care | Don't care | 0 | 0 | | | Don't care | Don't care | 0 | 1 | | | | | Table 149. PC13 configuration⁽¹⁾ (continued) In addition, it is possible to output RTC_OUT2 on PA4 pin thanks to OUT2EN bit. This output is not available in V_{BAT} mode. The different functions are mapped on RTC_OUT1 or on RTC_OUT2 depending on OSEL, COE and OUT2EN configuration, as show in table *Table 150*. For PA4, the GPIO should be configured as an alternate function. | OSEL[1:0] bits
ALARM
output enable) | COE bit (CALIB output enable) | OUT2EN
bit | RTC_OUT1 on
PC13 | RTC_OUT2 on
PA4 | |---|-------------------------------|---------------|---------------------|--------------------| | 00 | 0 | | - | - | | 00 | 1 | 0 | CALIB | - | | 01 or 10 or 11 | Don't care | | TAMPALRM | - | | 00 | 0 | | - | - | | 00 | 1 | 4 | - | CALIB | | 01 or 10 or 11 | 0 | | - | TAMPALRM | | 01 or 10 or 11 | 1 | | TAMPALRM | CALIB | Table 150. RTC_OUT mapping ## 30.3.4 Clock and prescalers The RTC clock source (RTCCLK) is selected through the clock controller among the LSE clock, the LSI oscillator clock, and the HSE clock. For more information on the RTC clock source configuration, refer to Section 5: Reset and clock control (RCC). ^{1.} OD: open drain; PP: push-pull. ^{2.} In this configuration the GPIO must be configured in input. A programmable prescaler stage generates a 1 Hz clock which is used to update the calendar. To minimize power consumption, the prescaler is split into 2 programmable prescalers (see *Figure 281: RTC block diagram*): - A 7-bit asynchronous prescaler configured through the PREDIV_A bits of the RTC_PRER register. - A 15-bit synchronous prescaler configured through the PREDIV_S bits of the RTC_PRER register. Note: When both prescalers are used, it is recommended to configure the asynchronous prescaler to a high value to minimize consumption. The asynchronous prescaler division factor is set to 128, and the synchronous division factor to 256, to
obtain an internal clock frequency of 1 Hz (ck_spre) with an LSE frequency of 32.768 kHz. The minimum division factor is 1 and the maximum division factor is 2^{22} . This corresponds to a maximum input frequency of around 4 MHz. f_{ck} apre is given by the following formula: $$f_{CK_APRE} = \frac{f_{RTCCLK}}{PREDIV_A + 1}$$ The ck_apre clock is used to clock the binary RTC_SSR subseconds downcounter. When it reaches 0, RTC_SSR is reloaded with the content of PREDIV_S. f_{ck} spre is given by the following formula: $$f_{CK_SPRE} = \frac{f_{RTCCLK}}{(PREDIV_S + 1) \times (PREDIV_A + 1)}$$ The ck_spre clock can be used either to update the calendar or as timebase for the 16-bit wakeup auto-reload timer. To obtain short timeout periods, the 16-bit wakeup auto-reload timer can also run with the RTCCLK divided by the programmable 4-bit asynchronous prescaler (see *Section 30.3.7: Periodic auto-wakeup* for details). #### 30.3.5 Real-time clock and calendar The RTC calendar time and date registers are accessed through shadow registers which are synchronized with PCLK (APB clock). They can also be accessed directly in order to avoid waiting for the synchronization duration. - · RTC SSR for the subseconds - RTC_TR for the time - RTC_DR for the date Every RTCCLK periods, the current calendar value is copied into the shadow registers, and the RSF bit of RTC_ICSR register is set (see *Section 30.6.10: RTC shift control register (RTC_SHIFTR)*). The copy is not performed in Stop and Standby mode. When exiting these modes, the shadow registers are updated after up to 4 RTCCLK periods. When the application reads the calendar registers, it accesses the content of the shadow registers. It is possible to make a direct access to the calendar registers by setting the RM0444 Rev 5 879/1390 BYPSHAD control bit in the RTC CR register. By default, this bit is cleared, and the user accesses the shadow registers. When reading the RTC_SSR, RTC_TR or RTC_DR registers in BYPSHAD = 0 mode, the frequency of the APB clock (f_{APB}) must be at least 7 times the frequency of the RTC clock (f_{RTCCLK}). The shadow registers are reset by system reset. #### 30.3.6 Programmable alarms The RTC unit provides programmable alarm: alarm A and alarm B. The description below is given for alarm A, but can be translated in the same way for alarm B. The programmable alarm function is enabled through the ALRAE bit in the RTC_CR register. The ALRAF is set to 1 if the calendar subseconds, seconds, minutes, hours, date or day match the values programmed in the alarm registers RTC_ALRMASSR and RTC_ALRMAR. Each calendar field can be independently selected through the MSKx bits of the RTC_ALRMAR register, and through the MASKSSx bits of the RTC_ALRMASSR register. The alarm interrupt is enabled through the ALRAIE bit in the RTC_CR register. #### Caution: If the seconds field is selected (MSK1 bit reset in RTC ALRMAR), the synchronous prescaler division factor set in the RTC_PRER register must be at least 3 to ensure correct behavior. Alarm A and alarm B (if enabled by bits OSEL[1:0] in RTC CR register) can be routed to the TAMPALRM output. TAMPALRM output polarity can be configured through bit POL the RTC CR register. #### 30.3.7 Periodic auto-wakeup The periodic wakeup flag is generated by a 16-bit programmable auto-reload down-counter. The wakeup timer range can be extended to 17 bits. The wakeup function is enabled through the WUTE bit in the RTC CR register. The wakeup timer clock input ck wut can be: - RTC clock (RTCCLK) divided by 2, 4, 8, or 16. When RTCCLK is LSE (32.768 kHz), this allows to configure the wakeup interrupt period from 122 µs to 32 s, with a resolution down to 61 µs. - ck spre (usually 1 Hz internal clock) When ck spre frequency is 1 Hz, this allows to achieve a wakeup time from 1 s to around 36 hours with one-second resolution. This large programmable time range is divided in 2 parts: - from 1 s to 18 hours when WUCKSEL [2:1] = 10 - and from around 18 h to 36 h when WUCKSEL[2:1] = 11. In this last case 2¹⁶ is added to the 16-bit counter current value. When the initialization sequence is complete (see *Programming the wakeup timer on page 882*), the timer starts counting down. When the wakeup function is enabled, the down-counting remains active in low-power modes. In addition, when it reaches 0, the WUTF flag is set in the RTC_SR register, and the wakeup counter is automatically reloaded with its reload value (RTC_WUTR register value). The WUTF flag must then be cleared by software. When the periodic wakeup interrupt is enabled by setting the WUTIE bit in the RTC_CR register, it can exit the device from low-power modes. The periodic wakeup flag can be routed to the TAMPALRM output provided it has been enabled through bits OSEL[1:0] of RTC_CR register. TAMPALRM output polarity can be configured through the POL bit in the RTC_CR register. System reset, as well as low-power modes (Sleep, Stop and Standby) have no influence on the wakeup timer. ## 30.3.8 RTC initialization and configuration ## **RTC** register access The RTC registers are 32-bit registers. The APB interface introduces 2 wait-states in RTC register accesses except on read accesses to calendar shadow registers when BYPSHAD = 0. ## RTC register write protection After system reset, the RTC registers are protected against parasitic write access by the DBP bit in the power control peripheral (refer to the PWR power control section). DBP bit must be set in order to enable RTC registers write access. After Backup domain reset, some of the RTC registers are write-protected. Writing to the protected RTC registers is enabled by writing a key into the Write Protection register, RTC_WPR. The following steps are required to unlock the write protection on the protected RTC registers. - 1. Write 0xCA into the RTC WPR register. - 2. Write 0x53 into the RTC_WPR register. Writing a wrong key reactivates the write protection. The protection mechanism is not affected by system reset. ## Calendar initialization and configuration To program the initial time and date calendar values, including the time format and the prescaler configuration, the following sequence is required: RM0444 Rev 5 881/1390 1. Set INIT bit to 1 in the RTC_ICSR register to enter initialization mode. In this mode, the calendar counter is stopped and its value can be updated. - 2. Poll INITF bit of in the RTC_ICSR register. The initialization phase mode is entered when INITF is set to 1. It takes around 2 RTCCLK clock cycles (due to clock synchronization). - 3. To generate a 1 Hz clock for the calendar counter, program both the prescaler factors in RTC PRER register. - Load the initial time and date values in the shadow registers (RTC_TR and RTC_DR), and configure the time format (12 or 24 hours) through the FMT bit in the RTC_CR register. - 5. Exit the initialization mode by clearing the INIT bit. The actual calendar counter value is then automatically loaded and the counting restarts after 4 RTCCLK clock cycles. When the initialization sequence is complete, the calendar starts counting. Note: After a system reset, the application can read the INITS flag in the RTC_ICSR register to check if the calendar has been initialized or not. If this flag equals 0, the calendar has not been initialized since the year field is set at its Backup domain reset default value (0x00). To read the calendar after initialization, the software must first check that the RSF flag is set in the RTC_ICSR register. ## Daylight saving time The daylight saving time management is performed through bits SUB1H, ADD1H, and BKP of the RTC CR register. Using SUB1H or ADD1H, the software can subtract or add one hour to the calendar in one single operation without going through the initialization procedure. In addition, the software can use the BKP bit to memorize this operation. ## Programming the alarm A similar procedure must be followed to program or update the programmable alarms. The procedure below is given for alarm A but can be translated in the same way for alarm B. - 1. Clear ALRAE in RTC CR to disable alarm A. - 2. Program the alarm A registers (RTC ALRMASSR/RTC ALRMAR). - 3. Set ALRAE in the RTC_CR register to enable alarm A again. Note: Each change of the RTC_CR register is taken into account after around 2 RTCCLK clock cycles due to clock synchronization. ## Programming the wakeup timer The following sequence is required to configure or change the wakeup timer auto-reload value (WUT[15:0] in RTC_WUTR): - Clear WUTE in RTC_CR to disable the wakeup timer. - Poll WUTWF until it is set in RTC_ICSR to make sure the access to wakeup autoreload counter and to WUCKSEL[2:0] bits is allowed. This step must be skipped in calendar initialization mode. It takes around 2 RTCCLK clock cycles (due to clock synchronization). - 3. Program the wakeup auto-reload value WUT[15:0], and the wakeup clock selection (WUCKSEL[2:0] bits in RTC_CR). Set WUTE in RTC_CR to enable the timer again. 4 The wakeup timer restarts down-counting. The WUTWF bit is cleared up to 2 RTCCLK clocks cycles after WUTE is cleared, due to clock synchronization. ## 30.3.9 Reading the calendar ## When BYPSHAD control bit is cleared in the RTC_CR register To read the RTC calendar registers (RTC_SSR, RTC_TR and RTC_DR) properly, the APB1 clock frequency (f_{PCLK}) must be equal to or greater than seven times the RTC clock frequency (f_{RTCCLK}). This ensures a secure behavior of the synchronization mechanism. If the APB1 clock frequency is less than seven times the RTC clock frequency, the software must read the calendar time and date registers twice. If the second read of the RTC_TR gives the same result as the first read, this ensures that the data is correct. Otherwise a third read access must be done. In any case the APB1 clock frequency must never be lower than the RTC clock frequency. The RSF bit is set in RTC_ICSR register each time the calendar registers are copied into the RTC_SSR,
RTC_TR and RTC_DR shadow registers. The copy is performed every RTCCLK cycles. To ensure consistency between the 3 values, reading either RTC_SSR or RTC_TR locks the values in the higher-order calendar shadow registers until RTC_DR is read. In case the software makes read accesses to the calendar in a time interval smaller than 1 RTCCLK periods: RSF must be cleared by software after the first calendar read, and then the software must wait until RSF is set before reading again the RTC_SSR, RTC_TR and RTC_DR registers. After waking up from low-power mode (Stop or Standby), RSF must be cleared by software. The software must then wait until it is set again before reading the RTC_SSR, RTC_TR and RTC_DR registers. The RSF bit must be cleared after wakeup and not before entering low-power mode. After a system reset, the software must wait until RSF is set before reading the RTC_SSR, RTC_TR and RTC_DR registers. Indeed, a system reset resets the shadow registers to their default values. After an initialization (refer to *Calendar initialization and configuration on page 881*): the software must wait until RSF is set before reading the RTC_SSR, RTC_TR and RTC_DR registers. After synchronization (refer to Section 30.3.11: RTC synchronization): the software must wait until RSF is set before reading the RTC SSR, RTC TR and RTC DR registers. # When the BYPSHAD control bit is set in the RTC_CR register (bypass shadow registers) Reading the calendar registers gives the values from the calendar counters directly, thus eliminating the need to wait for the RSF bit to be set. This is especially useful after exiting from low-power modes (Stop or Standby), since the shadow registers are not updated during these modes. When the BYPSHAD bit is set to 1, the results of the different registers might not be coherent with each other if an RTCCLK edge occurs between two read accesses to the registers. Additionally, the value of one of the registers may be incorrect if an RTCCLK edge occurs during the read operation. The software must read all the registers twice, and then compare the results to confirm that the data is coherent and correct. Alternatively, the software can just compare the two results of the least-significant calendar register. RM0444 Rev 5 883/1390 Note: While BYPSHAD = 1, instructions which read the calendar registers require one extra APB cycle to complete. ## 30.3.10 Resetting the RTC The calendar shadow registers (RTC_SSR, RTC_TR and RTC_DR) and some bits of the RTC status register (RTC_ICSR) are reset to their default values by all available system reset sources. On the contrary, the following registers are reset to their default values by a Backup domain reset and are not affected by a system reset: the RTC current calendar registers, the RTC control register (RTC_CR), the prescaler register (RTC_PRER), the RTC calibration register (RTC_CALR), the RTC shift register (RTC_SHIFTR), the RTC timestamp registers (RTC_TSSSR, RTC_TSTR and RTC_TSDR), the wakeup timer register (RTC_WUTR), and the alarm A and alarm B registers (RTC_ALRMASSR/RTC_ALRMAR and RTC_ALRMBSSR/RTC_ALRMBR). In addition, when clocked by LSE, the RTC keeps on running under system reset if the reset source is different from the Backup domain reset one (refer to RCC for details about RTC clock sources not affected by system reset). When a Backup domain reset occurs, the RTC is stopped and all the RTC registers are set to their reset values. ## 30.3.11 RTC synchronization The RTC can be synchronized to a remote clock with a high degree of precision. After reading the sub-second field (RTC_SSR or RTC_TSSSR), a calculation can be made of the precise offset between the times being maintained by the remote clock and the RTC. The RTC can then be adjusted to eliminate this offset by "shifting" its clock by a fraction of a second using RTC_SHIFTR. RTC_SSR contains the value of the synchronous prescaler counter. This allows one to calculate the exact time being maintained by the RTC down to a resolution of 1 / (PREDIV_S + 1) seconds. As a consequence, the resolution can be improved by increasing the synchronous prescaler value (PREDIV_S[14:0]. The maximum resolution allowed (30.52 µs with a 32768 Hz clock) is obtained with PREDIV_S set to 0x7FFF. However, increasing PREDIV_S means that PREDIV_A must be decreased in order to maintain the synchronous prescaler output at 1 Hz. In this way, the frequency of the asynchronous prescaler output increases, which may increase the RTC dynamic consumption. The RTC can be finely adjusted using the RTC shift control register (RTC_SHIFTR). Writing to RTC_SHIFTR can shift (either delay or advance) the clock by up to a second with a resolution of 1 / (PREDIV_S + 1) seconds. The shift operation consists of adding the SUBFS[14:0] value to the synchronous prescaler counter SS[15:0]: this will delay the clock. If at the same time the ADD1S bit is set, this results in adding one second and at the same time subtracting a fraction of second, so this will advance the clock. Caution: Before initiating a shift operation, the user must check that SS[15] = 0 in order to ensure that no overflow will occur. As soon as a shift operation is initiated by a write to the RTC_SHIFTR register, the SHPF flag is set by hardware to indicate that a shift operation is pending. This bit is cleared by hardware as soon as the shift operation has completed. Caution: This synchronization feature is not compatible with the reference clock detection feature: firmware must not write to RTC_SHIFTR when REFCKON = 1. #### 30.3.12 RTC reference clock detection The update of the RTC calendar can be synchronized to a reference clock, RTC_REFIN, which is usually the mains frequency (50 or 60 Hz). The precision of the RTC_REFIN reference clock should be higher than the 32.768 kHz LSE clock. When the RTC_REFIN detection is enabled (REFCKON bit of RTC_CR set to 1), the calendar is still clocked by the LSE, and RTC_REFIN is used to compensate for the imprecision of the calendar update frequency (1 Hz). Each 1 Hz clock edge is compared to the nearest RTC_REFIN clock edge (if one is found within a given time window). In most cases, the two clock edges are properly aligned. When the 1 Hz clock becomes misaligned due to the imprecision of the LSE clock, the RTC shifts the 1 Hz clock a bit so that future 1 Hz clock edges are aligned. Thanks to this mechanism, the calendar becomes as precise as the reference clock. The RTC detects if the reference clock source is present by using the 256 Hz clock (ck_apre) generated from the 32.768 kHz quartz. The detection is performed during a time window around each of the calendar updates (every 1 s). The window equals 7 ck_apre periods when detecting the first reference clock edge. A smaller window of 3 ck_apre periods is used for subsequent calendar updates. Each time the reference clock is detected in the window, the asynchronous prescaler which outputs the ck_spre clock is forced to reload. This has no effect when the reference clock and the 1 Hz clock are aligned because the prescaler is being reloaded at the same moment. When the clocks are not aligned, the reload shifts future 1 Hz clock edges a little for them to be aligned with the reference clock. If the reference clock halts (no reference clock edge occurred during the 3 ck_apre window), the calendar is updated continuously based solely on the LSE clock. The RTC then waits for the reference clock using a large 7 ck_apre period detection window centered on the ck spre edge. When the RTC_REFIN detection is enabled, PREDIV_A and PREDIV_S must be set to their default values: - PREDIV_A = 0x007F - PREVID S = 0x00FF Note: RTC_REFIN clock detection is not available in Standby mode. ## 30.3.13 RTC smooth digital calibration The RTC frequency can be digitally calibrated with a resolution of about 0.954 ppm with a range from -487.1 ppm to +488.5 ppm. The correction of the frequency is performed using series of small adjustments (adding and/or subtracting individual RTCCLK pulses). These adjustments are fairly well distributed so that the RTC is well calibrated even when observed over short durations of time. The smooth digital calibration is performed during a cycle of about 2²⁰ RTCCLK pulses, or 32 seconds when the input frequency is 32768 Hz. This cycle is maintained by a 20-bit counter, cal_cnt[19:0], clocked by RTCCLK. RM0444 Rev 5 885/1390 The smooth calibration register (RTC_CALR) specifies the number of RTCCLK clock cycles to be masked during the 32-second cycle: - Setting the bit CALM[0] to 1 causes exactly one pulse to be masked during the 32second cycle. - Setting CALM[1] to 1 causes two additional cycles to be masked - Setting CALM[2] to 1 causes four additional cycles to be masked - and so on up to CALM[8] set to 1 which causes 256 clocks to be masked. Note: CALM[8:0] (RTC_CALR) specifies the number of RTCCLK pulses to be masked during the 32-second cycle. Setting the bit CALM[0] to 1 causes exactly one pulse to be masked during the 32-second cycle at the moment when cal_cnt[19:0] is 0x80000; CALM[1] = 1 causes two other cycles to be masked (when cal_cnt is 0x40000 and 0xC0000); CALM[2] = 1 causes four other cycles to be masked (cal_cnt = 0x20000/0x60000/0xA0000/0xE0000); and so on up to CALM[8] = 1 which causes 256 clocks to be masked (cal_cnt = 0xXX800). While CALM allows the RTC frequency to be reduced by up to 487.1 ppm with fine resolution, the bit CALP can be used to increase the frequency by 488.5 ppm. Setting CALP to 1 effectively inserts an extra RTCCLK pulse every 2¹¹ RTCCLK cycles, which means that 512 clocks are added during every 32-second cycle. Using CALM together with CALP, an offset ranging from -511 to +512 RTCCLK cycles can be added during the 32-second cycle, which translates to a calibration range of -487.1 ppm to +488.5 ppm with a resolution of about 0.954 ppm. The formula to calculate the effective calibrated frequency (FCAL) given the input frequency
(FRTCCLK) is as follows: $$F_{CAL} = F_{RTCCLK} \times [1 + (CALP \times 512 - CALM) / (2^{20} + CALM - CALP \times 512)]$$ ## Calibration when PREDIV_A < 3 The CALP bit can not be set to 1 when the asynchronous prescaler value (PREDIV_A bits in RTC_PRER register) is less than 3. If CALP was already set to 1 and PREDIV_A bits are set to a value less than 3, CALP is ignored and the calibration operates as if CALP was equal to 0. To perform a calibration with PREDIV_A less than 3, the synchronous prescaler value (PREDIV_S) should be reduced so that each second is accelerated by 8 RTCCLK clock cycles, which is equivalent to adding 256 clock cycles every 32 seconds. As a result, between 255 and 256 clock pulses (corresponding to a calibration range from 243.3 to 244.1 ppm) can effectively be added during each 32-second cycle using only the CALM bits. With a nominal RTCCLK frequency of 32768 Hz, when PREDIV_A equals 1 (division factor of 2), PREDIV_S should be set to 16379 rather than 16383 (4 less). The only other interesting case is when PREDIV_A equals 0, PREDIV_S should be set to 32759 rather than 32767 (8 less). If PREDIV_S is reduced in this way, the formula given the effective frequency of the calibrated input clock is as follows: $$F_{CAL} = F_{RTCCLK} \times [1 + (256 - CALM) / (2^{20} + CALM - 256)]$$ In this case, CALM[7:0] equals 0x100 (the midpoint of the CALM range) is the correct setting if RTCCLK is exactly 32768.00 Hz. ## Verifying the RTC calibration RTC precision is ensured by measuring the precise frequency of RTCCLK and calculating the correct CALM value and CALP values. An optional 1 Hz output is provided to allow applications to measure and verify the RTC precision. Measuring the precise frequency of the RTC over a limited interval can result in a measurement error of up to 2 RTCCLK clock cycles over the measurement period, depending on how the digital calibration cycle is aligned with the measurement period. However, this measurement error can be eliminated if the measurement period is the same length as the calibration cycle period. In this case, the only error observed is the error due to the resolution of the digital calibration. By default, the calibration cycle period is 32 seconds. Using this mode and measuring the accuracy of the 1 Hz output over exactly 32 seconds guarantees that the measure is within 0.477 ppm (0.5 RTCCLK cycles over 32 seconds, due to the limitation of the calibration resolution). CALW16 bit of the RTC_CALR register can be set to 1 to force a 16- second calibration cycle period. In this case, the RTC precision can be measured during 16 seconds with a maximum error of 0.954 ppm (0.5 RTCCLK cycles over 16 seconds). However, since the calibration resolution is reduced, the long term RTC precision is also reduced to 0.954 ppm: CALM[0] bit is stuck at 0 when CALW16 is set to 1. CALW8 bit of the RTC_CALR register can be set to 1 to force a 8-second calibration cycle period. In this case, the RTC precision can be measured during 8 seconds with a maximum error of 1.907 ppm (0.5 RTCCLK cycles over 8 s). The long term RTC precision is also reduced to 1.907 ppm: CALM[1:0] bits are stuck at 00 when CALW8 is set to 1. ## Re-calibration on-the-fly The calibration register (RTC_CALR) can be updated on-the-fly while RTC_ICSR/INITF = 0, by using the follow process: - 1. Poll the RTC ICSR/RECALPF (re-calibration pending flag). - 2. If it is set to 0, write a new value to RTC_CALR, if necessary. RECALPF is then automatically set to 1 - 3. Within three ck_apre cycles after the write operation to RTC_CALR, the new calibration settings take effect. ## 30.3.14 Timestamp function Timestamp is enabled by setting the TSE or ITSE bits of RTC_CR register to 1. When TSE is set: The calendar is saved in the timestamp registers (RTC_TSSSR, RTC_TSTR, RTC_TSDR) when a timestamp event is detected on the RTC_TS pin. When TAMPTS is set: The calendar is saved in the timestamp registers (RTC_TSSSR, RTC_TSTR, RTC_TSDR) when a tamper event is detected on the TAMP_INx pinx. When ITSE is set: RM0444 Rev 5 887/1390 The calendar is saved in the timestamp registers (RTC_TSSSR, RTC_TSTR, RTC_TSDR) when an internal timestamp event is detected. The internal timestamp event is generated by the switch to the V_{BAT} supply. When a timestamp event occurs, due to internal or external event, the timestamp flag bit (TSF) in RTC_SR register is set. In case the event is internal, the ITSF flag is also set in RTC_SR register. By setting the TSIE bit in the RTC_CR register, an interrupt is generated when a timestamp event occurs. If a new timestamp event is detected while the timestamp flag (TSF) is already set, the timestamp overflow flag (TSOVF) flag is set and the timestamp registers (RTC_TSTR and RTC_TSDR) maintain the results of the previous event. Note: TSF is set 2 ck_apre cycles after the timestamp event occurs due to synchronization process. There is no delay in the setting of TSOVF. This means that if two timestamp events are close together, TSOVF can be seen as '1' while TSF is still '0'. As a consequence, it is recommended to poll TSOVF only after TSF has been set. Caution: If a timestamp event occurs immediately after the TSF bit is supposed to be cleared, then both TSF and TSOVF bits are set. To avoid masking a timestamp event occurring at the same moment, the application must not write 0 into TSF bit unless it has already read it to 1. Optionally, a tamper event can cause a timestamp to be recorded. See the description of the TAMPTS control bit in the RTC control register (RTC_CR). ## 30.3.15 Calibration clock output When the COE bit is set to 1 in the RTC_CR register, a reference clock is provided on the CALIB device output. If the COSEL bit in the RTC_CR register is reset and PREDIV_A = 0x7F, the CALIB frequency is f_{RTCCLK/64}. This corresponds to a calibration output at 512 Hz for an RTCCLK frequency at 32.768 kHz. The CALIB duty cycle is irregular: there is a light jitter on falling edges. It is therefore recommended to use rising edges. When COSEL is set and "PREDIV_S+1" is a non-zero multiple of 256 (i.e. PREDIV_S[7:0] = 0xFF), the CALIB frequency is frcclk/(256 * (PREDIV_A+1)). This corresponds to a calibration output at 1 Hz for prescaler default values (PREDIV_A = 0x7F, PREDIV_S = 0xFF), with an RTCCLK frequency at 32.768 kHz. Note: When the CALIB output is selected, the RTC_OUT1 pin is automatically configured but the RTC_OUT2 pin must be set as alternate function. When COSEL is cleared, the CALIB output is the output of the 6th stage of the asynchronous prescaler. When COSEL is set, the CALIB output is the output of the 8th stage of the synchronous prescaler. ## 30.3.16 Tamper and alarm output The OSEL[1:0] control bits in the RTC_CR register are used to activate the alarm output TAMPALRM, and to select the function which is output. These functions reflect the contents of the corresponding flags in the RTC_SR register. When the TAMPOE control bit is set is the RTC_CR, all external and internal tamper flags are ORed and routed to the TAMPALRM output. If OSEL = 00 the TAMPALRM output reflects only the tampers flags. If OSEL ≠ 00, the signal on TAMPALRM provides both tamper flags and alarm A, B, or wakeup flag. The polarity of the TAMPALRM output is determined by the POL control bit in RTC_CR so that the opposite of the selected flags bit is output when POL is set to 1. ## **TAMPALRM** output The TAMPALRM pin can be configured in output open drain or output push-pull using the control bit TAMPALRM_TYPE in the RTC_CR register. It is possible to apply the internal pull-up in output mode thanks to TAMPALRM PU in the RTC CR. Note: Once the TAMPALRM output is enabled, it has priority over CALIB on RTC_OUT1. When TAMPALRM output is selected, the RTC_OUT1 pin is automatically configured but the RTC_OUT2 pin must be set as alternate function. In case the TAMPALRM is configured open-drain in the RTC, the RTC_OUT1 GPIO must be configured as input. ## 30.4 RTC low-power modes Table 151. Effect of low-power modes on RTC | Mode | Description | |----------|---| | Sleep | No effect
RTC interrupts cause the device to exit the Sleep mode. | | Stop | The RTC remains active when the RTC clock source is LSE or LSI. RTC interrupts cause the device to exit the Stop mode. | | Standby | The RTC remains active when the RTC clock source is LSE or LSI. RTC interrupts cause the device to exit the Standby mode. | | Shutdown | The RTC remains active when the RTC clock source is LSE. RTC interrupts cause the device to exit the Shutdown mode. | The table below summarizes the RTC pins and functions capability in all modes. Table 152. RTC pins functionality over modes | Functions | Functional in all low-
power modes except
Standby and Shutdown
modes | Functional in Standby and Shutdown mode | Functional in V _{BAT} mode | |-----------|---|---|-------------------------------------| | RTC_TS | Yes | Yes | Yes | | RTC_REFIN | Yes | No | No | | RTC_OUT1 | Yes | Yes | Yes | | RTC_OUT2 | Yes | Yes | No | RM0444 Rev 5 889/1390 ## 30.5 RTC interrupts The interrupt channel is set in the masked interrupt status register. The interrupt output is also activated. | Interrupt
acronym | Interrupt event | Event
flag ⁽¹⁾ | Enable
control bit ⁽²⁾ | Interrupt
clear
method | Exit from
Sleep
mode | Exit from
Stop and
Standby
mode | Exit from
Shutdown
mode | |----------------------|------------------------|------------------------------|--------------------------------------|------------------------------|----------------------------|--|-------------------------------| | | Alarm A | ALRAF | ALRAIE | write 1 in
CALRAF | Yes | Yes
⁽³⁾ | Yes ⁽⁴⁾ | | RTC | Alarm B | ALRBF | ALRBIE | write 1 in
CALRBF | Yes | Yes ⁽³⁾ | Yes ⁽⁴⁾ | | KIO | Timestamp | TSF | TSIE | write 1 in
CTSF | Yes | Yes ⁽³⁾ | Yes ⁽⁴⁾ | | | Wakeup timer interrupt | WUTF | WUTIE | write 1 in
CWUTF | Yes | Yes ⁽³⁾ | Yes ⁽⁴⁾ | Table 153. Interrupt requests # 30.6 RTC registers Refer to *Section 1.2 on page 53* of the reference manual for a list of abbreviations used in register descriptions. The peripheral registers can be accessed by words (32-bit). ## 30.6.1 RTC time register (RTC_TR) The RTC_TR is the calendar time shadow register. This register must be written in initialization mode only. Refer to *Calendar initialization and configuration on page 881* and *Reading the calendar on page 883*. This register is write protected. The write access procedure is described in *RTC register write protection on page 881*. Address offset: 0x00 Backup domain reset value: 0x0000 0000 System reset value: 0x0000 0000 (when BYPSHAD = 0, not affected when BYPSHAD = 1) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|----------|------|------|----------|------|------|------|----|---------|------|----|-----|-------|----| | Res. PM | НТ[| 1:0] | | HU[| [3:0] | | | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | MNT[2:0] | | | MNU[3:0] | | | Res. | | ST[2:0] | | | SU[| [3:0] | | | | rw | rw ^{1.} The event flags are in the RTC_SR register. ^{2.} The interrupt masked flags (resulting from event flags AND enable control bits) are in the RTC_MISR register. ^{3.} Wakeup from Stop and Standby modes is possible only when the RTC clock source is LSE or LSI. ^{4.} Wakeup from Shutdown modes is possible only when the RTC clock source is LSE. Bits 31:23 Reserved, must be kept at reset value. Bit 22 PM: AM/PM notation 0: AM or 24-hour format 1: PM Bits 21:20 HT[1:0]: Hour tens in BCD format Bits 19:16 HU[3:0]: Hour units in BCD format Bit 15 Reserved, must be kept at reset value. Bits 14:12 MNT[2:0]: Minute tens in BCD format Bits 11:8 MNU[3:0]: Minute units in BCD format Bit 7 Reserved, must be kept at reset value. Bits 6:4 ST[2:0]: Second tens in BCD format Bits 3:0 SU[3:0]: Second units in BCD format #### 30.6.2 RTC date register (RTC_DR) The RTC DR is the calendar date shadow register. This register must be written in initialization mode only. Refer to Calendar initialization and configuration on page 881 and Reading the calendar on page 883. This register is write protected. The write access procedure is described in RTC register write protection on page 881. Address offset: 0x04 Backup domain reset value: 0x0000 2101 System reset value: 0x0000 2101 (when BYPSHAD = 0, not affected when BYPSHAD = 1) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|----------|------|------|------|------|-------|------|------|------|-------|-------|----|-----|-------|----| | Res. | YT[| [3:0] | | | YU[| [3:0] | | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | WDU[2:0] |] | MT | | MU | [3:0] | | Res. | Res. | DT[| [1:0] | | DU | [3:0] | | | rw | | rw | rw | rw | rw | rw | rw | Bits 31:24 Reserved, must be kept at reset value. Bits 23:20 YT[3:0]: Year tens in BCD format Bits 19:16 YU[3:0]: Year units in BCD format Bits 15:13 WDU[2:0]: Week day units 000: forbidden 001: Monday 111: Sunday Bit 12 MT: Month tens in BCD format Bits 11:8 MU[3:0]: Month units in BCD format RM0444 Rev 5 891/1390 Bits 7:6 Reserved, must be kept at reset value. Bits 5:4 DT[1:0]: Date tens in BCD format Bits 3:0 DU[3:0]: Date units in BCD format Note: The calendar is frozen when reaching the maximum value, and can't roll over. ## 30.6.3 RTC sub second register (RTC_SSR) Address offset: 0x08 Backup domain reset value: 0x0000 0000 System reset value: 0x0000 0000 (when BYPSHAD = 0, not affected when BYPSHAD = 1) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|-----------------------|-------|------|----------|------|----------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 40 | 40 | 44 | 40 | _ | _ | | | E | | 2 | 2 | | ^ | | 13 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 1 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 13 | 14 | 13 | 12 | 111 | 10 | 9 | 8
SS[[*] | 15:0] | - 6 | <u> </u> | 4 | <u> </u> | | 1 | 0 | Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 SS[15:0]: Sub second value SS[15:0] is the value in the synchronous prescaler counter. The fraction of a second is given by the formula below: Second fraction = (PREDIV_S - SS) / (PREDIV_S + 1) Note: SS can be larger than PREDIV_S only after a shift operation. In that case, the correct time/date is one second less than as indicated by RTC_TR/RTC_DR. ## 30.6.4 RTC initialization control and status register (RTC_ICSR) This register is write protected. The write access procedure is described in *RTC register write protection on page 881*. Address offset: 0x0C Backup domain reset value: 0x0000 0007 System reset value: 0bxxxx xxxx xxxx xxxx xxxx xxxx 000x xxxx (not affected, except INIT, INITF, and RSF bits which are cleared to 0) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|------------|----------|------------|-----------|----------------|-----------------|-----------------| | Res. RECAL
PF | | | | | | | | | | | | | | | | | r | | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
INIT | 6
INITF | 5
RSF | 4
INITS | 3
SHPF | 2
WUTW
F | 1
ALRB
WF | 0
ALRAW
F | #### Bits 31:17 Reserved, must be kept at reset value. #### Bit 16 RECALPF: Recalibration pending Flag The RECALPF status flag is automatically set to 1 when software writes to the RTC_CALR register, indicating that the RTC_CALR register is blocked. When the new calibration settings are taken into account, this bit returns to 0. Refer to *Re-calibration on-the-fly*. #### Bits 15:8 Reserved, must be kept at reset value. #### Bit 7 INIT: Initialization mode - 0: Free running mode - 1: Initialization mode used to program time and date register (RTC_TR and RTC_DR), and prescaler register (RTC_PRER). Counters are stopped and start counting from the new value when INIT is reset. #### Bit 6 INITF: Initialization flag When this bit is set to 1, the RTC is in initialization state, and the time, date and prescaler registers can be updated. - 0: Calendar registers update is not allowed - 1: Calendar registers update is allowed ## Bit 5 RSF: Registers synchronization flag This bit is set by hardware each time the calendar registers are copied into the shadow registers (RTC_SSRx, RTC_TRx and RTC_DRx). This bit is cleared by hardware in initialization mode, while a shift operation is pending (SHPF = 1), or when in bypass shadow register mode (BYPSHAD = 1). This bit can also be cleared by software. It is cleared either by software or by hardware in initialization mode. - 0: Calendar shadow registers not yet synchronized - 1: Calendar shadow registers synchronized #### Bit 4 INITS: Initialization status flag This bit is set by hardware when the calendar year field is different from 0 (Backup domain reset state). - 0: Calendar has not been initialized - 1: Calendar has been initialized ## Bit 3 SHPF: Shift operation pending This flag is set by hardware as soon as a shift operation is initiated by a write to the RTC_SHIFTR register. It is cleared by hardware when the corresponding shift operation has been executed. Writing to the SHPF bit has no effect. - 0: No shift operation is pending - 1: A shift operation is pending #### Bit 2 WUTWF: Wakeup timer write flag This bit is set by hardware when WUT value can be changed, after the WUTE bit has been set to 0 in RTC CR. It is cleared by hardware in initialization mode. 0: Wakeup timer configuration update not allowed except in initialization mode 1: Wakeup timer configuration update allowed #### Bit 1 ALRBWF: Alarm B write flag This bit is set by hardware when alarm B values can be changed, after the ALRBE bit has been set to 0 in RTC_CR. It is cleared by hardware in initialization mode. 0: Alarm B update not allowed 1: Alarm B update allowed #### Bit 0 ALRAWF: Alarm A write flag This bit is set by hardware when alarm A values can be changed, after the ALRAE bit has been set to 0 in RTC_CR. It is cleared by hardware in initialization mode. 0: Alarm A update not allowed 1: Alarm A update allowed ## 30.6.5 RTC prescaler register (RTC_PRER) This register must be written in initialization mode only. The initialization must be performed in two separate write accesses. Refer to *Calendar initialization and configuration on page 881*. This register is write protected. The write access procedure is described in *RTC register write protection on page 881*. Address offset: 0x10 Backup domain reset value: 0x007F 00FF System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|----------|------|----|----|---------|------|----|----| | Res. | | PR | EDIV_A[| 6:0] | | | | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | | | | | PRI | EDIV_S[1 | 4:0] | | | | | | | | | rw Bits 31:23 Reserved, must be kept at reset value. ## Bits 22:16 PREDIV_A[6:0]: Asynchronous prescaler factor This is the asynchronous division factor: ck_apre frequency = RTCCLK frequency/(PREDIV_A+1) Bit 15 Reserved, must be kept at reset value. #### Bits 14:0 PREDIV_S[14:0]: Synchronous prescaler factor This is the synchronous division factor: ck_spre
frequency = ck_apre frequency/(PREDIV_S+1) ## 30.6.6 RTC wakeup timer register (RTC_WUTR) This register can be written only when WUTWF is set to 1 in RTC_ICSR. This register is write protected. The write access procedure is described in *RTC register write protection on page 881*. Address offset: 0x14 Backup domain reset value: 0x0000 FFFF System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|-----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | WUT[15:0] | | | | | | | | | | | | | | | | rw Bits 31:16 Reserved, must be kept at reset value. ### Bits 15:0 WUT[15:0]: Wakeup auto-reload value bits When the wakeup timer is enabled (WUTE set to 1), the WUTF flag is set every (WUT[15:0] + 1) ck_wut cycles. The ck_wut period is selected through WUCKSEL[2:0] bits of the RTC_CR register. When WUCKSEL[2] = 1, the wakeup timer becomes 17-bits and WUCKSEL[1] effectively becomes WUT[16] the most-significant bit to be reloaded into the timer. The first assertion of WUTF occurs between WUT and (WUT + 1) ck_wut cycles after WUTE is set. Setting WUT[15:0] to 0x0000 with WUCKSEL[2:0] = 011 (RTCCLK/2) is forbidden. ## 30.6.7 RTC control register (RTC_CR) This register is write protected. The write access procedure is described in RTC register write protection on page 881. Address offset: 0x18 Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|-----------------------|---------------------|------------|------|------------|------------|-------|------|-----|-------------|-------------|------------|--------------|-------|-------| | OUT2
EN | TAMP
ALRM_
TYPE | TAMP
ALRM_
PU | Res. | Res. | TAMP
OE | TAMP
TS | ITSE | COE | OSE | L[1:0] | POL | COSEL | ВКР | SUB1H | ADD1H | | rw | rw | rw | | | rw w | w | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | TSIE | WUTIE | ALRB
IE | ALRA
IE | TSE | WUTE | ALRBE | ALRAE | Res. | FMT | BYP
SHAD | REFCK
ON | TS
EDGE | WUCKSEL[2:0] | | 2:0] | | rw | rw RM0444 Rev 5 895/1390 ## Bit 31 OUT2EN: RTC_OUT2 output enable Setting this bit allows to remap the RTC outputs on RTC_OUT2 as follows: **OUT2EN = 0:** RTC output 2 disable If OSEL ≠ 00 or TAMPOE = 1: TAMPALRM is output on RTC OUT1 If OSEL = 00 and TAMPOE = 0 and COE = 1: CALIB is output on RTC OUT1 OUT2EN = 1: RTC output 2 enable If (OSEL \neq 00 or TAMPOE = 1) and COE = 0: TAMPALRM is output on RTC_OUT2 If OSEL = 00 and TAMPOE = 0 and COE = 1: CALIB is output on RTC_OUT2 If (OSEL \neq 00 or TAMPOE = 1) and COE = 1: CALIB is output on RTC_OUT2 and TAMPALRM is output on RTC_OUT1. #### Bit 30 TAMPALRM_TYPE: TAMPALRM output type - 0: TAMPALRM is push-pull output - 1: TAMPALRM is open-drain output #### Bit 29 TAMPALRM PU: TAMPALRM pull-up enable - 0: No pull-up is applied on TAMPALRM output - 1: A pull-up is applied on TAMPALRM output - Bits 28:27 Reserved, must be kept at reset value. #### Bit 26 TAMPOE: Tamper detection output enable on TAMPALRM - 0: The tamper flag is not routed on TAMPALRM - 1: The tamper flag is routed on TAMPALRM, combined with the signal provided by OSEL and with the polarity provided by POL. #### Bit 25 TAMPTS: Activate timestamp on tamper detection event - 0: Tamper detection event does not cause a RTC timestamp to be saved - 1: Save RTC timestamp on tamper detection event TAMPTS is valid even if TSE = 0 in the RTC_CR register. Timestamp flag is set after the tamper flags, therefore if TAMPTS and TSIE are set, it is recommended to disable the tamper interrupts in order to avoid servicing 2 interrupts. #### Bit 24 ITSE: timestamp on internal event enable - 0: internal event timestamp disabled - 1: internal event timestamp enabled #### Bit 23 COE: Calibration output enable This bit enables the CALIB output - 0: Calibration output disabled - 1: Calibration output enabled ## Bits 22:21 OSEL[1:0]: Output selection These bits are used to select the flag to be routed to TAMPALRM output. - 00: Output disabled - 01: Alarm A output enabled - 10: Alarm B output enabled - 11: Wakeup output enabled #### Bit 20 POL: Output polarity This bit is used to configure the polarity of TAMPALRM output. - 0: The pin is high when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0]), or when a TAMPxF/ITAMPxF is asserted (if TAMPOE = 1). - 1: The pin is low when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0]), or when a TAMPxF/ITAMPxF is asserted (if TAMPOE = 1). #### Bit 19 COSEL: Calibration output selection When COE = 1, this bit selects which signal is output on CALIB. - 0: Calibration output is 512 Hz - 1: Calibration output is 1 Hz These frequencies are valid for RTCCLK at 32.768 kHz and prescalers at their default values (PREDIV_A = 127 and PREDIV_S = 255). Refer to Section 30.3.15: Calibration clock output. #### Bit 18 BKP: Backup This bit can be written by the user to memorize whether the daylight saving time change has been performed or not. #### Bit 17 SUB1H: Subtract 1 hour (winter time change) When this bit is set outside initialization mode, 1 hour is subtracted to the calendar time if the current hour is not 0. This bit is always read as 0. Setting this bit has no effect when current hour is 0. - 0: No effect - 1: Subtracts 1 hour to the current time. This can be used for winter time change. #### Bit 16 ADD1H: Add 1 hour (summer time change) When this bit is set outside initialization mode, 1 hour is added to the calendar time. This bit is always read as 0. - 0: No effect - 1: Adds 1 hour to the current time. This can be used for summer time change #### Bit 15 TSIE: Timestamp interrupt enable - 0: Timestamp interrupt disable - 1: Timestamp interrupt enable #### Bit 14 WUTIE: Wakeup timer interrupt enable - 0: Wakeup timer interrupt disabled - 1: Wakeup timer interrupt enabled #### Bit 13 ALRBIE: Alarm B interrupt enable - 0: Alarm B interrupt disable - 1: Alarm B interrupt enable #### Bit 12 ALRAIE: Alarm A interrupt enable - 0: Alarm A interrupt disabled - 1: Alarm A interrupt enabled #### Bit 11 TSE: timestamp enable - 0: timestamp disable - 1: timestamp enable ## Bit 10 WUTE: Wakeup timer enable - 0: Wakeup timer disabled - 1: Wakeup timer enabled Note: When the wakeup timer is disabled, wait for WUTWF=1 before enabling it again. #### Bit 9 ALRBE: Alarm B enable - 0: Alarm B disabled - 1: Alarm B enabled #### Bit 8 ALRAE: Alarm A enable - 0: Alarm A disabled - 1: Alarm A enabled - Bit 7 Reserved, must be kept at reset value. Bit 6 FMT: Hour format 0: 24 hour/day format 1: AM/PM hour format ## Bit 5 BYPSHAD: Bypass the shadow registers 0: Calendar values (when reading from RTC_SSR, RTC_TR, and RTC_DR) are taken from the shadow registers, which are updated once every two RTCCLK cycles. 1: Calendar values (when reading from RTC_SSR, RTC_TR, and RTC_DR) are taken directly from the calendar counters. Note: If the frequency of the APB1 clock is less than seven times the frequency of RTCCLK, BYPSHAD must be set to 1. Bit 4 REFCKON: RTC_REFIN reference clock detection enable (50 or 60 Hz) RTC_REFIN detection disabled RTC_REFIN detection enabled Note: PREDIV_S must be 0x00FF. Bit 3 **TSEDGE**: Timestamp event active edge 0: RTC_TS input rising edge generates a timestamp event 1: RTC TS input falling edge generates a timestamp event TSE must be reset when TSEDGE is changed to avoid unwanted TSF setting. #### Bits 2:0 WUCKSEL[2:0]: ck_wut wakeup clock selection 000: RTC/16 clock is selected 001: RTC/8 clock is selected 010: RTC/4 clock is selected 011: RTC/2 clock is selected 10x: ck spre (usually 1 Hz) clock is selected 11x: ck_spre (usually 1 Hz) clock is selected and 2¹⁶ is added to the WUT counter value Note: Bits 6 and 4 of this register can be written in initialization mode only (RTC_ICSR/INITF = 1). WUT = wakeup unit counter value. WUT = (0x0000 to 0xFFFF) + 0x10000 added when WUCKSEL[2:1 = 11]. Bits 2 to 0 of this register can be written only when RTC_CR WUTE bit = 0 and RTC_ICSR WUTWF bit = 1. It is recommended not to change the hour during the calendar hour increment as it could mask the incrementation of the calendar hour. ADD1H and SUB1H changes are effective in the next second. ## 30.6.8 RTC write protection register (RTC_WPR) Address offset: 0x24 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | | |------|------|------|------|------|------|------|------|----------|------|------|------|------|------|------|------|--| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | Res. KEY[7:0] | | | | | | | | | | | | | | | | | | w | W | W | W | W | w | W | W | | Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 **KEY[7:0]**: Write protection key This byte is written by software. Reading this byte always returns 0x00. Refer to *RTC register write protection* for a description of how to unlock RTC register write protection. ## 30.6.9 RTC calibration register (RTC_CALR) This register is write protected. The write access procedure is described in *RTC register write protection on page 881*. Address offset: 0x28 Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | | | |------|-------|------------|------|------|------|------|-----------|------|------|------|------|------|------|------|------|--|--| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | CALP | CALW8 | CALW
16 | Res. | Res. | Res. | Res. | CALM[8:0] | | | | | | | | | | | | rw | rw | rw | | | | | rw | | Bits 31:16 Reserved, must be kept at reset value. Bit 15 CALP: Increase
frequency of RTC by 488.5 ppm 0: No RTCCLK pulses are added. 1: One RTCCLK pulse is effectively inserted every 2¹¹ pulses (frequency increased by 488.5 ppm). This feature is intended to be used in conjunction with CALM, which lowers the frequency of the calendar with a fine resolution. if the input frequency is 32768 Hz, the number of RTCCLK pulses added during a 32-second window is calculated as follows: (512 × CALP) - CALM. Refer to Section 30.3.13: RTC smooth digital calibration. Bit 14 CALW8: Use an 8-second calibration cycle period When CALW8 is set to 1, the 8-second calibration cycle period is selected. Note: CALM[1:0] are stuck at 00 when CALW8 = 1. Refer to Section 30.3.13: RTC smooth digital calibration. 899/1390 #### Bit 13 CALW16: Use a 16-second calibration cycle period When CALW16 is set to 1, the 16-second calibration cycle period is selected. This bit must not be set to 1 if CALW8 = 1. Note: CALM[0] is stuck at 0 when CALW16 = 1. Refer to Section 30.3.13: RTC smooth digital calibration. Bits 12:9 Reserved, must be kept at reset value. ### Bits 8:0 CALM[8:0]: Calibration minus The frequency of the calendar is reduced by masking CALM out of 2^{20} RTCCLK pulses (32 seconds if the input frequency is 32768 Hz). This decreases the frequency of the calendar with a resolution of 0.9537 ppm. To increase the frequency of the calendar, this feature should be used in conjunction with CALP. See Section 30.3.13: RTC smooth digital calibration on page 885. ## 30.6.10 RTC shift control register (RTC_SHIFTR) This register is write protected. The write access procedure is described in *RTC register write protection on page 881*. Address offset: 0x2C Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------|-------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | ADD1S | Res. | w | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | SUBFS[14:0] | | | | | | | | | | | | | | | | | w | w | w | w | w | w | w | w | w | w | w | w | w | w | w | ### Bit 31 ADD1S: Add one second 0: No effect 1: Add one second to the clock/calendar This bit is write only and is always read as zero. Writing to this bit has no effect when a shift operation is pending (when SHPF = 1, in RTC_ICSR). This function is intended to be used with SUBFS (see description below) in order to effectively add a fraction of a second to the clock in an atomic operation. Bits 30:15 Reserved, must be kept at reset value. ## Bits 14:0 SUBFS[14:0]: Subtract a fraction of a second These bits are write only and is always read as zero. Writing to this bit has no effect when a shift operation is pending (when SHPF = 1, in RTC_ICSR). The value which is written to SUBFS is added to the synchronous prescaler counter. Since this counter counts down, this operation effectively subtracts from (delays) the clock by: Delay (seconds) = SUBFS / (PREDIV S + 1) A fraction of a second can effectively be added to the clock (advancing the clock) when the ADD1S function is used in conjunction with SUBFS, effectively advancing the clock by: Advance (seconds) = (1 - (SUBFS / (PREDIV_S + 1))). Note: Writing to SUBFS causes RSF to be cleared. Software can then wait until RSF = 1 to be sure that the shadow registers have been updated with the shifted time. ## 30.6.11 RTC timestamp time register (RTC_TSTR) The content of this register is valid only when TSF is set to 1 in RTC_SR. It is cleared when TSF bit is reset. Address offset: 0x30 Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|----------|------|------|------|--------|------|------|----|---------|------|----|----|-------|----| | Res. PM | НТ[| 1:0] | | HU | [3:0] | | | | | | | | | | | | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | MNT[2:0] | | | MNU | J[3:0] | | Res. | | ST[2:0] | | | SU | [3:0] | | | | r | r | r | r | r | r | r | | r | r | r | r | r | r | r | Bits 31:23 Reserved, must be kept at reset value. Bit 22 PM: AM/PM notation 0: AM or 24-hour format 1: PM Bits 21:20 HT[1:0]: Hour tens in BCD format. Bits 19:16 HU[3:0]: Hour units in BCD format. Bit 15 Reserved, must be kept at reset value. Bits 14:12 MNT[2:0]: Minute tens in BCD format. Bits 11:8 MNU[3:0]: Minute units in BCD format. Bit 7 Reserved, must be kept at reset value. Bits 6:4 ST[2:0]: Second tens in BCD format. Bits 3:0 **SU[3:0]**: Second units in BCD format. ## 30.6.12 RTC timestamp date register (RTC_TSDR) The content of this register is valid only when TSF is set to 1 in RTC_SR. It is cleared when TSF bit is reset. Address offset: 0x34 Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|---------------|------|----------|------|------|---------|------|-----------|-----------|----------|------|------|----------|---------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 14
WDU[2:0 | | 12
MT | 11 | | 9 [3:0] | 8 | 7
Res. | 6
Res. | 5
DT[| • | 3 | 2
DU[| 1 [3:0] | 0 | Real-time clock (RTC) RM0444 Bits 31:16 Reserved, must be kept at reset value. Bits 15:13 WDU[2:0]: Week day units Bit 12 MT: Month tens in BCD format Bits 11:8 MU[3:0]: Month units in BCD format Bits 7:6 Reserved, must be kept at reset value. Bits 5:4 DT[1:0]: Date tens in BCD format Bits 3:0 DU[3:0]: Date units in BCD format ## 30.6.13 RTC timestamp sub second register (RTC_TSSSR) The content of this register is valid only when TSF is set to 1 in RTC_SR. It is cleared when the TSF bit is reset. Address offset: 0x38 Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|-------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | SS[| 15:0] | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 SS[15:0]: Sub second value SS[15:0] is the value of the synchronous prescaler counter when the timestamp event occurred. ## 30.6.14 RTC alarm A register (RTC_ALRMAR) This register can be written only when ALRAWF is set to 1 in RTC_ICSR, or in initialization mode. This register is write protected. The write access procedure is described in *RTC register write protection on page 881*. Address offset: 0x40 Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|-----------|----------|------|----|-----|--------|----|------|----|---------|-------|----|-----|-------|----| | MSK4 | WDSE
L | DT[| 1:0] | | DU | [3:0] | | MSK3 | PM | НТ[| [1:0] | | HUĮ | [3:0] | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | MSK2 | | MNT[2:0] | | | MNL | J[3:0] | | MSK1 | | ST[2:0] | | | SU[| [3:0] | | | rw Bit 31 MSK4: Alarm A date mask 0: Alarm A set if the date/day match 1: Date/day don't care in alarm A comparison Bit 30 WDSEL: Week day selection 0: DU[3:0] represents the date units 1: DU[3:0] represents the week day. DT[1:0] is don't care. Bits 29:28 DT[1:0]: Date tens in BCD format Bits 27:24 DU[3:0]: Date units or day in BCD format Bit 23 MSK3: Alarm A hours mask 0: Alarm A set if the hours match 1: Hours don't care in alarm A comparison Bit 22 PM: AM/PM notation 0: AM or 24-hour format 1: PM Bits 21:20 HT[1:0]: Hour tens in BCD format Bits 19:16 HU[3:0]: Hour units in BCD format Bit 15 MSK2: Alarm A minutes mask 0: Alarm A set if the minutes match 1: Minutes don't care in alarm A comparison Bits 14:12 MNT[2:0]: Minute tens in BCD format Bits 11:8 MNU[3:0]: Minute units in BCD format Bit 7 MSK1: Alarm A seconds mask 0: Alarm A set if the seconds match 1: Seconds don't care in alarm A comparison Bits 6:4 ST[2:0]: Second tens in BCD format. Bits 3:0 SU[3:0]: Second units in BCD format. RM0444 Rev 5 903/1390 Real-time clock (RTC) RM0444 ## 30.6.15 RTC alarm A sub second register (RTC_ALRMASSR) This register can be written only when ALRAWF is set to 1 in RTC_ICSR, or in initialization mode. This register is write protected. The write access procedure is described in *RTC register write protection on page 881*. Address offset: 0x44 Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|----|------|---------|----|----------|------|------|------|------|------|------|------| | Res. | Res. | Res. | Res. | | MASK | SS[3:0] | | Res. | | | | | rw | rw | rw | rw | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | | | | | | SS[14:0] | | | | | | | | | | rw W | rw | rw | Bits 31:28 Reserved, must be kept at reset value. ### Bits 27:24 MASKSS[3:0]: Mask the most-significant bits starting at this bit - 0: No comparison on sub seconds for alarm A. The alarm is set when the seconds unit is incremented (assuming that the rest of the fields match). - 1:SS[14:1] are don't care in alarm A comparison. Only SS[0] is compared. - 2:SS[14:2] are don't care in alarm A comparison. Only SS[1:0] are compared. - 3: SS[14:3] are don't care in alarm A comparison. Only SS[2:0] are compared. ... 12:SS[14:12] are don't care in alarm A comparison. SS[11:0] are compared. 13:SS[14:13] are don't care in alarm A comparison. SS[12:0] are compared. 14:SS[14] is don't care in alarm A
comparison. SS[13:0] are compared. 15:All 15 SS bits are compared and must match to activate alarm. The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be different from 0 only after a shift operation. Note: The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be different from 0 only after a shift operation. Bits 23:15 Reserved, must be kept at reset value. ### Bits 14:0 SS[14:0]: Sub seconds value This value is compared with the contents of the synchronous prescaler counter to determine if alarm A is to be activated. Only bits 0 up MASKSS-1 are compared. ## 30.6.16 RTC alarm B register (RTC_ALRMBR) This register can be written only when ALRBWF is set to 1 in RTC_ICSR, or in initialization mode. This register is write protected. The write access procedure is described in *RTC register write protection on page 881*. Address offset: 0x48 Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|-----------|----------|------|----|-----|--------|----|------|----|---------|-------|----|-----|------|----| | MSK4 | WD
SEL | DT[| 1:0] | | DU | [3:0] | | MSK3 | PM | НТ[| [1:0] | | HU[| 3:0] | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | MSK2 | | MNT[2:0] | | | MNL | J[3:0] | | MSK1 | | ST[2:0] | | | SU[| 3:0] | | | rw Bit 31 MSK4: Alarm B date mask 0: Alarm B set if the date and day match 1: Date and day don't care in alarm B comparison Bit 30 WDSEL: Week day selection 0: DU[3:0] represents the date units 1: DU[3:0] represents the week day. DT[1:0] is don't care. Bits 29:28 DT[1:0]: Date tens in BCD format Bits 27:24 DU[3:0]: Date units or day in BCD format Bit 23 MSK3: Alarm B hours mask 0: Alarm B set if the hours match 1: Hours don't care in alarm B comparison Bit 22 PM: AM/PM notation 0: AM or 24-hour format 1: PM Bits 21:20 HT[1:0]: Hour tens in BCD format Bits 19:16 HU[3:0]: Hour units in BCD format Bit 15 MSK2: Alarm B minutes mask 0: Alarm B set if the minutes match 1: Minutes don't care in alarm B comparison Bits 14:12 MNT[2:0]: Minute tens in BCD format Bits 11:8 MNU[3:0]: Minute units in BCD format Bit 7 MSK1: Alarm B seconds mask 0: Alarm B set if the seconds match 1: Seconds don't care in alarm B comparison Bits 6:4 ST[2:0]: Second tens in BCD format Bits 3:0 SU[3:0]: Second units in BCD format RM0444 Rev 5 905/1390 Real-time clock (RTC) RM0444 ## 30.6.17 RTC alarm B sub second register (RTC_ALRMBSSR) This register can be written only when ALRBE is reset in RTC_CR register, or in initialization mode. This register is write protected. The write access procedure is described in *Section : RTC register write protection*. Address offset: 0x4C Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|----|------|---------|----|----------|------|------|------|------|------|------|------| | Res. | Res. | Res. | Res. | | MASK | SS[3:0] | | Res. | | | | | rw | rw | rw | rw | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | | | | | | SS[14:0] | | | | | | | | | | rw W | rw | rw | Bits 31:28 Reserved, must be kept at reset value. Bits 27:24 MASKSS[3:0]: Mask the most-significant bits starting at this bit 0x0: No comparison on sub seconds for alarm B. The alarm is set when the seconds unit is incremented (assuming that the rest of the fields match). 0x1: SS[14:1] are don't care in alarm B comparison. Only SS[0] is compared. 0x2: SS[14:2] are don't care in alarm B comparison. Only SS[1:0] are compared. 0x3: SS[14:3] are don't care in alarm B comparison. Only SS[2:0] are compared. ... 0xC: SS[14:12] are don't care in alarm B comparison. SS[11:0] are compared. 0xD: SS[14:13] are don't care in alarm B comparison. SS[12:0] are compared. 0xE: SS[14] is don't care in alarm B comparison. SS[13:0] are compared. 0xF: All 15 SS bits are compared and must match to activate alarm. The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be different from 0 only after a shift operation. Bits 23:15 Reserved, must be kept at reset value. Bits 14:0 SS[14:0]: Sub seconds value This value is compared with the contents of the synchronous prescaler counter to determine if alarm B is to be activated. Only bits 0 up to MASKSS-1 are compared. ## 30.6.18 RTC status register (RTC_SR) Address offset: 0x50 Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|------------|----------|-----------|------------|------------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
ITSF | 4
TSOVF | 3
TSF | 2
WUTF | 1
ALRBF | 0
ALRAF | Bits 31:6 Reserved, must be kept at reset value. #### Bit 5 ITSF: Internal timestamp flag This flag is set by hardware when a timestamp on the internal event occurs. ### Bit 4 TSOVF: Timestamp overflow flag This flag is set by hardware when a timestamp event occurs while TSF is already set. It is recommended to check and then clear TSOVF only after clearing the TSF bit. Otherwise, an overflow might not be noticed if a timestamp event occurs immediately before the TSF bit is cleared. ### Bit 3 TSF: Timestamp flag This flag is set by hardware when a timestamp event occurs. If ITSF flag is set, TSF must be cleared together with ITSF. ### Bit 2 WUTF: Wakeup timer flag This flag is set by hardware when the wakeup auto-reload counter reaches 0. This flag must be cleared by software at least 1.5 RTCCLK periods before WUTF is set to 1 again. ### Bit 1 ALRBF: Alarm B flag This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the alarm B register (RTC_ALRMBR). ### Bit 0 ALRAF: Alarm A flag This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the alarm A register (RTC_ALRMAR). ### Note: The bits of this register are cleared 2 APB clock cycles after setting their corresponding clear bit in the RTC_SCR register. ## 30.6.19 RTC masked interrupt status register (RTC_MISR) Address offset: 0x54 Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|-----------|------------|----------|-----------|------------|------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. ITS
MF | TSOV
MF | TS
MF | WUT
MF | ALRB
MF | ALRA
MF | | | | | | | | | | | | r | r | r | r | r | r | RM0444 Rev 5 907/1390 Real-time clock (RTC) RM0444 ### Bits 31:6 Reserved, must be kept at reset value. #### Bit 5 ITSMF: Internal timestamp masked flag This flag is set by hardware when a timestamp on the internal event occurs and timestampinterrupt is raised. ### Bit 4 TSOVMF: Timestamp overflow masked flag This flag is set by hardware when a timestamp interrupt occurs while TSMF is already set. It is recommended to check and then clear TSOVF only after clearing the TSF bit. Otherwise, an overflow might not be noticed if a timestamp event occurs immediately before the TSF bit is cleared. ### Bit 3 TSMF: Timestamp masked flag This flag is set by hardware when a timestamp interrupt occurs. If ITSF flag is set, TSF must be cleared together with ITSF. ### Bit 2 WUTMF: Wakeup timer masked flag This flag is set by hardware when the wakeup timer interrupt occurs. This flag must be cleared by software at least 1.5 RTCCLK periods before WUTF is set to 1 ### Bit 1 ALRBMF: Alarm B masked flag This flag is set by hardware when the alarm B interrupt occurs. #### Bit 0 ALRAMF: Alarm A masked flag This flag is set by hardware when the alarm A interrupt occurs. ## 30.6.20 RTC status clear register (RTC_SCR) Address offset: 0x5C Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|-----------|------------|----------|-----------|------------|------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. CITS
F | CTSOV
F | CTS
F | CWUT
F | CALRB
F | CALRA
F | | | | | | | | | | | | W | w | W | W | W | w | Bits 31:6 Reserved, must be kept at reset value. ### Bit 5 CITSF: Clear internal timestamp flag Writing 1 in this bit clears the ITSF bit in the RTC_SR register. ### Bit 4 CTSOVF: Clear timestamp overflow flag Writing 1 in this bit clears the TSOVF bit in the RTC_SR register. It is recommended to check and then clear TSOVF only after clearing the TSF bit. Otherwise, an overflow might not be noticed if a timestamp event occurs immediately before the TSF bit is cleared. ### Bit 3 CTSF: Clear timestamp flag Writing 1 in this bit clears the TSOVF bit in the RTC_SR register. If ITSF flag is set, TSF must be cleared together with ITSF by setting CRSF and CITSF. Bit 2 CWUTF: Clear wakeup timer flag Writing 1 in this bit clears the WUTF bit in the RTC_SR register. Bit 1 CALRBF: Clear alarm B flag Writing 1 in this bit clears the ALRBF bit in the RTC_SR register. Bit 0 CALRAF: Clear alarm A flag Writing 1 in this bit clears the ALRBF bit in the RTC_SR register. Real-time clock (RTC) RM0444 ## 30.6.21 RTC register map Table 154. RTC register map and reset values | | | 1 |
_ | | | | | | 1 | 1 | 1 | ŭ | · · · | | - ' | - | | 110 | 1 | | | | | | | | 1 | | | | $\overline{}$ | | |--------|-------------|--------|---------------|-------------|------|------|------------|--------|------|------|-----------------|-----------|-----------|-------|------|-------|---------|------|-----------------|----------|--------|------|------|-------|-------|------|-------|----------|----------|--------|---------------|----------------| | Offset | Register | 31 | 30 | 29 | 28 | 27 | 5 6 | 22 | 24 | 23 | 22 | 17 | 20 | 49 | 18 | 4٤ | 91 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 8 | 7 | 1 | | 0x00 | RTC_TR | Res. PM | H
[1: | IT
:0] | | HU | [3:0] | | Res. | ММ | NT[2 | :0] | N | ΛNL | J[3:0 |)] | Res. | S | T[2: | 0] | | SU[| [3:0] | | | Reset value | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 (| | 0x04 | RTC_DR | Res. | YT[| 3:0] | | | YU[| 3:0] | | WE |)

 | 2:0] | MT | | MU | [3:0] | | Res. | Res. | D
[1: | T
[0: | | DU[| [3:0] | | | Reset value | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | | | 0 | 0 | 0 | 0 | 0 1 | | 0x08 | RTC_SSR | Res. | | | | | | 5 | SS[1 | 5:0 |] | | | | | • | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | 0x0C | RTC_ICSR | Res. RECALPF | Res. INIT | INITF | RSF | INITS | SHPF | WUT WF | ALRBWF | | | Reset value | | | | | | | | | | | | | | | | 0 | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 1 | 1 1 | | 0x10 | RTC_PRER | Res. | PF | RED | NV_ | A[6 | :0] | | | | | | | F | PREI | DIV. | _S[^ | 14:0 |] | | | | | | | Reset value | | | | | | | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | | 0x14 | RTC_WUTR | Res. | | | | | | W | יטדן | [15: | 0] | | | | | • | | | Reset value | | | | | | | | | | | | | | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | | 0x18 | RTC_CR | OUTZEN | TAMPALRM_TYPE | TAMPALRM_PU | Res. | Res. | TAMPOE | TAMPTS | ITSE | COE | ()
SI
[1] | ΞL | POL | COSEL | BKP | SUB1H | ADD1H | TSIE | WUTIE | ALRBIE | ALRAIE | TSE | WUTE | ALRBE | ALRAE | Res. | FMT | BYPSHAD | REFCKON | TSEDGE | | /UCK
EL[2:0 | | | Reset value | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 0 | | 0x24 | RTC_WPR | Res. | | ŀ | KEY | [7:0 |] | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | 0x28 | RTC_CALR | Res. CALP | CALW8 | CALW16 | Res. | Res. | Res. | Res. | | | | CAI | LM[8 | 8:0] | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | 0x2C | RTC_SHIFTR | ADD1S | Res. | | | | | S | UB | FS[| 14:0 |] | | | | | | | Reset value | 0 | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| | 0x30 | RTC_TSTR | Res. PM | [O. F]T[J | 0:-] | | HUĮ | [3:0] | | Res. | | MNT[2:0] | | N | ΛNL | J[3:C |)] | Res. | S | T[2: | 0] | | SU[| [3:0] | | | Reset value | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 (| | 0x34 | RTC_TSDR | Res. | | [0: | | | | [3:0] | | Res. | Res. | [1: | T
:0] | | | [3:0] | | | Reset value | | L | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 (| | 0x38 | RTC_TSSSR | Res. | | | | | | | SS[1 | | | | | | | | | | Reset value | | <u></u> | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | Table 154. RTC register map and reset values (continued) | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 2 | 1 | 0 | |--------|------------------|------|-------|------|----------|------|------------|-------|------|------|------|----------|------|------|------|-------|------|------|------|------|------|------|------|-------|------|------|------|-------|--------|------|-------|--------|--------| | 0x40 | RTC_ALRMAR | MSK4 | WDSEL | | T
:0] | | DU[| [3:0] | | MSK3 | PM | H
[1: | | | HUĮ | [3:0] | | MSK2 | M | NT[2 | 2:0] | N | ИNL | J[3:0 |)] | MSK1 | S | T[2: | 0] | | SU[| 3:0] | | | | Reset value | 0 | | 0x44 | RTC_
ALRMASSR | Res. | Res. | Res. | Res. | N | AAS
[3] | | S | Res. | | | | | | SS | 6[14 | :0] | | | | | | | | | Reset value | | | | | 0 | 0 | 0 | 0 | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x48 | RTC_ALRMBR | MSK4 | WDSEL | | T
:0] | | DU[| [3:0] | | MSK3 | PM | H
[1: | | | HU | [3:0] | | MSK2 | M | NT[2 | 2:0] | N | ИNL | J[3:0 |)] | MSK1 | S | T[2: | 0] | | SU[| 3:0] | | | | Reset value | 0 | | 0x4C | RTC_
ALRMBSSR | Res. | Res. | Res. | Res. | N | /AS
[3] | | S | Res. | | | | | | SS | S[14 | :0] | | | | | | | | | Reset value | | | | | 0 | 0 | 0 | 0 | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x50 | RTC_SR | Res. ITSF | TSOVF | TSF | WUTF | ALRBF | ALRAF | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | | 0x54 | RTC_MISR | Res. ITSMF | TSOVMF | TSMF | WUTMF | ALRBMF | ALRAMF | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | | 0x5C | RTC_SCR | Res. CITSF | CTSOVF | CTSF | CWUTF | CALRBF | CALRAF | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | Refer to Section 2.2 on page 58 for the register boundary addresses. RM0444 Rev 5 911/1390 # 31 Tamper and backup registers (TAMP) ## 31.1 Introduction 5 32-bit backup registers are retained in all low-power modes and also in V_{BAT} mode. They can be used to store sensitive data as their content is protected by an tamper detection circuit. Up to 3 tamper pins and 4 internal tampers are available for anti-tamper detection. The external tamper pins can be configured for edge detection, or level detection with or without filtering. ## 31.2 TAMP main features - 5 backup registers: - the backup registers (TAMP_BKPxR) are implemented in the RTC domain that remains powered-on by V_{BAT} when the V_{DD} power is switched off. - Up to 3 external tamper detection events. - External passive tampers with configurable filter and internal pull-up. - 4 internal tamper events. - Any tamper detection can generate a RTC timestamp event. - Any tamper detection can erase the backup registers. # 31.3 TAMP functional description ## 31.3.1 TAMP block diagram Figure 282. TAMP block diagram 1. The number of external and internal tampers depends on products. ## 31.3.2 TAMP pins and internal signals Table 155. TAMP input/output pins | Pin name | Signal type | Description | |--------------------------|-------------|------------------| | TAMP_INx (x = pin index) | Input | Tamper input pin | Table 156. TAMP internal input/output signals | Internal signal name | Signal type | Description | |-------------------------------------|-------------|--| | tamp_ker_ck | Input | TAMP kernel clock, connected to rtc_ker_ck and also named RTCCLK in this document | | tamp_pclk | Input | TAMP APB clock, connected to rtc_pclk | | tamp_itamp[y]
(y = signal index) | Inputs | Internal tamper event sources | | tamp_evt | Output | Tamper event detection (internal or external) The tamp_evt is used to generate a RTC timestamp event | | tamp_erase | Output | Device secrets erase request following tamper event detection (internal or external) | | tamp_it | Output | TAMP interrupt (refer to Section 31.5: TAMP interrupts for details) | | tamp_trg[x]
(x = signal index) | Output | Tamper detection trigger | The TAMP kernel clock is usually the LSE at 32.768 kHz although it is possible to select other clock sources in the RCC (refer to RCC for more details). Some detections modes are not available in some low-power modes or V_{BAT} when the selected clock is not LSE (refer to Section 31.4: TAMP low-power modes for more details. **Table 157. TAMP interconnection** | Signal name | Source/Destination | |-------------|--| | tamp_evt | rtc_tamp_evt used to generate a timestamp event | | tamp_erase | The tamp_erase signal is used to erase the device secrets listed hereafter: backup registers | | tamp_itamp3 | LSE monitoring | | tamp_itamp4 | HSE monitoring | | tamp_itamp5 | RTC calendar overflow (rtc_calovf) | | tamp_itamp6 | ST manufacturer readout | ## 31.3.3 TAMP register write protection After system reset, the TAMP registers (including backup registers) are protected against parasitic write access by the DBP bit in the power control peripheral (refer to the PWR power control section). DBP bit must be set in order to enable TAMP registers write access. ### 31.3.4 Tamper detection The tamper detection can be configured for the following purposes: - erase the backup registers (default configuration) - · generate an interrupt, capable to wakeup from Stop and Standby mode - generate a hardware trigger for the low-power timers ### TAMP backup registers The backup registers (TAMP_BKPxR) are not reset by system reset or when the device wakes up from Standby mode. The backup registers are reset when a tamper detection event occurs except if the TAMPxNOER bit is set, or if the TAMPxMSK is set in the TAMP_CR2 register. Note: The backup registers are also erased when the readout protection of the flash is changed from level 1 to level 0. ### **Tamper detection initialization** Each input can be
enabled by setting the corresponding TAMPxE bits to 1 in the TAMP_CR register. Each TAMP_INx tamper detection input is associated with a flag TAMPxF in the TAMP_SR register. When TAMPxMSK is cleared: The TAMPxF flag is asserted after the tamper event on the pin, with the latency provided below: - 3 ck_apre cycles when TAMPFLT differs from 0x0 (level detection with filtering) - 3 ck apre cycles when TAMPTS = 1 (timestamp on tamper event) - No latency when TAMPFLT = 0x0 (edge detection) and TAMPTS = 0 A new tamper occurring on the same pin during this period and as long as TAMPxF is set cannot be detected. When TAMPxMSK is set: A new tamper occurring on the same pin cannot be detected during the latency described above and 2.5 ck_rtc additional cycles. By setting the TAMPxIE bit in the TAMP_IER register, an interrupt is generated when a tamper detection event occurs (when TAMPxF is set). Setting TAMPxIE is not allowed when the corresponding TAMPxMSK is set. ### Trigger output generation on tamper event The tamper event detection can be used as trigger input by the low-power timers. When TAMPxMSK bit in cleared in TAMP_CR register, the TAMPxF flag must be cleared by software in order to allow a new tamper detection on the same pin. When TAMPxMSK bit is set, the TAMPxF flag is masked, and kept cleared in TAMP_SR register. This configuration allows to trig automatically the low-power timers in Stop mode, without requiring the system wakeup to perform the TAMPxF clearing. In this case, the backup registers are not cleared. RM0444 Rev 5 915/1390 This feature is available only when the tamper is configured in the *Level detection with filtering on tamper inputs (passive mode)* mode (TAMPFLT ≠ 00 and active mode is not selected). ### Timestamp on tamper event With TAMPTS set to 1 in the RTC_CR, any tamper event causes a timestamp to occur. In this case, either the TSF bit or the TSOVF bit is set in RTC_SR, in the same manner as if a normal timestamp event occurs. The affected tamper flag register TAMPxF is set in the TAMP SR at the same time that TSF or TSOVF is set in the RTC_SR. ### Edge detection on tamper inputs (passive mode) If the TAMPFLT bits are 00, the TAMP_INx pins generate tamper detection events when either a rising edge/high level or a falling edge/low level is observed depending on the corresponding TAMPxTRG bit. The internal pull-up resistors on the TAMP_INx inputs are deactivated when edge detection is selected. ### Caution: When using the edge detection, it is recommended to check by software the tamper pin level just after enabling the tamper detection (by reading the GPIO registers), and before writing sensitive values in the backup registers, to ensure that an active edge did not occur before enabling the tamper event detection. When TAMPFLT = 00 and TAMPxTRG = 0 (rising edge detection), a tamper event may be detected by hardware if the tamper input is already at high level before enabling the tamper detection. After a tamper event has been detected and cleared, the TAMP_INx should be disabled and then re-enabled (TAMPxE set to 1) before re-programming the backup registers (TAMP_BKPxR). This prevents the application from writing to the backup registers while the TAMP_INx input value still indicates a tamper detection. This is equivalent to a level detection on the TAMP_INx input. ### Note: Tamper detection is still active when V_{DD} power is switched off. To avoid unwanted resetting of the backup registers, the pin to which the TAMPx is mapped should be externally tied to the correct level. ### Level detection with filtering on tamper inputs (passive mode) Level detection with filtering is performed by setting TAMPFLT to a non-zero value. A tamper detection event is generated when either 2, 4, or 8 (depending on TAMPFLT) consecutive samples are observed at the level designated by the TAMPxTRG bits. The TAMP_INx inputs are precharged through the I/O internal pull-up resistance before its state is sampled, unless disabled by setting TAMPPUDIS to 1. The duration of the precharge is determined by the TAMPPRCH bits, allowing for larger capacitances on the TAMP INx inputs. The trade-off between tamper detection latency and power consumption through the pull-up can be optimized by using TAMPFREQ to determine the frequency of the sampling for level detection. Note: Refer to the datasheet for the electrical characteristics of the pull-up resistors. ## 31.4 TAMP low-power modes Table 158. Effect of low-power modes on TAMP | Mode | Description | |----------|--| | Sleep | No effect. TAMP interrupts cause the device to exit the Sleep mode. | | Stop | No effect on all features, except for level detection with filtering mode which remain active only when the clock source is LSE or LSI. Tamper events cause the device to exit the Stop mode. | | Standby | No effect on all features, except for level detection with filtering mode which remain active only when the clock source is LSE or LSI. Tamper events cause the device to exit the Standby mode. | | Shutdown | No effect on all features, except for level detection with filtering mode which remain active only when the clock source is LSE. Tamper events cause the device to exit the Shutdown mode. | ## 31.5 TAMP interrupts The interrupt channel is set in the interrupt status register. The interrupt output is also activated. Table 159. Interrupt requests | Interrupt
acronym | Interrupt
event | Event flag ⁽¹⁾ | Enable
control bit ⁽²⁾ | Interrupt
clear
method | Exit from
Sleep
mode | Exit from
Stop and
Standby
modes | Exit from
Shutdown
mode | |----------------------|-------------------------------------|---------------------------|--------------------------------------|------------------------------|----------------------------|---|-------------------------------| | TAMP | Tamper x ⁽³⁾ | TAMPxF | TAMPxIE | Write 1 in
CTAMPxF | Yes | Yes ⁽⁴⁾ | Yes ⁽⁵⁾ | | TAMP | Internal
tamper y ⁽³⁾ | ITAMPyF | ITAMPyIE | Write 1 in
CITAMPxF | Yes | Yes ⁽⁴⁾ | Yes ⁽⁵⁾ | - 1. The event flags are in the TAMP_SR register. - 2. The interrupt masked flags (resulting from event flags AND enable control bits) are in the TAMP_MISR register. - 3. The number of tampers and internal tampers events depend on products. - 4. In case of level detection with filtering passive tamper mode, wakeup from Stop and Standby modes is possible only when the TAMP clock source is LSE or LSI. - In case of level detection with filtering passive tamper mode, wakeup from Shutdown modes is possible only when the TAMP clock source is LSE. ## 31.6 TAMP registers Refer to Section 1.2 on page 53 of the reference manual for a list of abbreviations used in register descriptions. The peripheral registers can be accessed by words (32-bit). #### 31.6.1 TAMP control register 1 (TAMP_CR1) Address offset: 0x00 Backup domain reset value: 0xFFFF 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------|------------|-----------|-----------|-----------|------|-------------|-------------|-------------|-----------------|-----------------|-----------------| | Res. ITAMP6
E | ITAMP5
E | ITAMP4
E | ITAMP3
E | Res. | Res. | | | | | | | | | | | | rw | rw | rw | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | Res. | Res. | Res. | Res. | Z
TAMP3
E | 1
TAMP2
E | 0
TAMP1
E | - Bits 31:24 Reserved, must be kept at reset value. - Bit 23 Reserved, must be kept at reset value. - Bit 22 Reserved, must be kept at reset value. - Bit 21 ITAMP6E: Internal tamper 6 enable: ST manufacturer readout - 0: Internal tamper 6 disabled. - 1: Internal tamper 6 enabled: a tamper is generated in case of ST manufacturer readout. - Bit 20 ITAMP5E: Internal tamper 5 enable: RTC calendar overflow - 0: Internal tamper 5 disabled. - 1: Internal tamper 5 enabled: a tamper is generated when the RTC calendar reaches its maximum value, on the 31st of December 99, at 23:59:59. The calendar is then frozen and cannot overflow. - Bit 19 ITAMP4E: Internal tamper 4 enable: HSE monitoring - 0: Internal tamper 4 disabled. - 1: Internal tamper 4 enabled. a tamper is generated when the HSE frequency is below or above thresholds. - Bit 18 ITAMP3E: Internal tamper 3 enable: LSE monitoring - 0: Internal tamper 3 disabled. - 1: Internal tamper 3 enabled: a tamper is generated when the LSE frequency is below or above thresholds. - Bit 17 Reserved, must be kept at reset value. - Bit 16 Reserved, must be kept at reset value. - Bits 15:3 Reserved, must be kept at reset value. Bit 2 TAMP3E: Tamper detection on TAMP IN3 enable 0: Tamper detection on TAMP IN3 is disabled. 1: Tamper detection on TAMP_IN3 is enabled. Bit 1 TAMP2E: Tamper detection on TAMP IN2 enable 0: Tamper detection on TAMP IN2 is disabled. 1: Tamper detection on TAMP IN2 is enabled. Bit 0 TAMP1E: Tamper detection on TAMP IN1 enable 0: Tamper detection on TAMP IN1 is disabled. 1: Tamper detection on TAMP IN1 is enabled. ## 31.6.2 TAMP control register 2 (TAMP_CR2) Address offset: 0x04 Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|--------------|--------------|--------------|-----------|-----------|-----------|-----------|------|--------------------|--------------------|--------------------| | Res. | Res. | Res. | Res. | Res. | TAMP3
TRG | TAMP2
TRG | TAMP1
TRG |
Res. | Res. | Res. | Res. | Res. | TAMP3
MSK | TAMP2
MSK | TAMP1
MSK | | | | | | | rw | rw | rw | | | | | | rw | rw | rw | | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | Res. | 2
TAMP3
NOER | 1
TAMP2
NOER | 0
TAMP1
NOER | Bits 31:27 Reserved, must be kept at reset value. - Bit 26 TAMP3TRG: Active level for tamper 3 input (active mode disabled) - 0: If TAMPFLT ≠ 00 Tamper 3 input staying low triggers a tamper detection event. If TAMPFLT = 00 Tamper 3 input rising edge and high level triggers a tamper detection event. - 1:If TAMPFLT ≠ 00 Tamper 3 input staying high triggers a tamper detection event. If TAMPFLT = 00 Tamper 3 input falling edge and low level triggers a tamper detection event. - Bit 25 TAMP2TRG: Active level for tamper 2 input (active mode disabled) - 0: If TAMPFLT ≠ 00 Tamper 2 input staying low triggers a tamper detection event. If TAMPFLT = 00 Tamper 2 input rising edge and high level triggers a tamper detection event. - 1:If TAMPFLT ≠ 00 Tamper 2 input staying high triggers a tamper detection event. If TAMPFLT = 00 Tamper 2 input falling edge and low level triggers a tamper detection event. - Bit 24 TAMP1TRG: Active level for tamper 1 input (active mode disabled) - 0:If TAMPFLT ≠ 00 Tamper 1 input staying low triggers a tamper detection event. If TAMPFLT = 00 Tamper 1 input rising edge and high level triggers a tamper detection event. - 1: If TAMPFLT ≠ 00 Tamper 1 input staying high triggers a tamper detection event. If TAMPFLT = 00 Tamper 1 input falling edge and low level triggers a tamper detection event. - Bit 23 Reserved, must be kept at reset value. RM0444 Rev 5 919/1390 Bits 22:19 Reserved, must be kept at reset value. ### Bit 18 TAMP3MSK: Tamper 3 mask - 0: Tamper 3 event generates a trigger event and TAMP3F must be cleared by software to allow next tamper event detection. - 1: Tamper 3 event generates a trigger event. TAMP3F is masked and internally cleared by hardware. The backup registers are not erased. The tamper 3 interrupt must not be enabled when TAMP3MSK is set. #### Bit 17 TAMP2MSK: Tamper 2 mask - 0: Tamper 2 event generates a trigger event and TAMP2F must be cleared by software to allow next tamper event detection. - 1: Tamper 2 event generates a trigger event. TAMP2F is masked and internally cleared by hardware. The backup registers are not erased. The tamper 2 interrupt must not be enabled when TAMP2MSK is set. #### Bit 16 TAMP1MSK: Tamper 1 mask - 0: Tamper 1 event generates a trigger event and TAMP1F must be cleared by software to allow next tamper event detection. - 1: Tamper 1 event generates a trigger event. TAMP1F is masked and internally cleared by hardware. The backup registers are not erased. The tamper 1 interrupt must not be enabled when TAMP1MSK is set. ### Bits 15:3 Reserved, must be kept at reset value. ### Bit 2 TAMP3NOER: Tamper 3 no erase - 0: Tamper 3 event erases the backup registers. - 1: Tamper 3 event does not erase the backup registers. ### Bit 1 TAMP2NOER: Tamper 2 no erase - 0: Tamper 2 event erases the backup registers. - 1: Tamper 2 event does not erase the backup registers. ### Bit 0 TAMP1NOER: Tamper 1 no erase - 0: Tamper 1 event erases the backup registers. - 1: Tamper 1 event does not erase the backup registers. #### 31.6.3 TAMP filter control register (TAMP FLTCR) Address offset: 0x0C Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|---------------|------|-------------|-----------|-------------|------|-----------------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. TAMP
PUDIS | | PRCH
:0] | TAM
[1 | PFLT
:0] | T | AMPFRE
[2:0] | Q | | | | | | | | | | rw ### Bits 31:8 Reserved, must be kept at reset value. #### Bit 7 TAMPPUDIS: TAMP INx pull-up disable This bit determines if each of the TAMPx pins are precharged before each sample. - 0: Precharge TAMP_INx pins before sampling (enable internal pull-up) - 1: Disable precharge of TAMP_INx pins. ### Bits 6:5 TAMPPRCH[1:0]: TAMP INx precharge duration These bit determines the duration of time during which the pull-up/is activated before each sample. TAMPPRCH is valid for each of the TAMP_INx inputs. 0x0: 1 RTCCLK cycle 0x1: 2 RTCCLK cycles 0x2: 4 RTCCLK cycles 0x3: 8 RTCCLK cycles #### Bits 4:3 TAMPFLT[1:0]: TAMP INx filter count These bits determines the number of consecutive samples at the specified level (TAMP*TRG) needed to activate a tamper event. TAMPFLT is valid for each of the TAMP_INx inputs. 0x0: Tamper event is activated on edge of TAMP_INx input transitions to the active level (no internal pull-up on TAMP_INx input). 0x1: Tamper event is activated after 2 consecutive samples at the active level. 0x2: Tamper event is activated after 4 consecutive samples at the active level. 0x3: Tamper event is activated after 8 consecutive samples at the active level. ### Bits 2:0 TAMPFREQ[2:0]: Tamper sampling frequency Determines the frequency at which each of the TAMP INx inputs are sampled. 0x0: RTCCLK / 32768 (1 Hz when RTCCLK = 32768 Hz) 0x1: RTCCLK / 16384 (2 Hz when RTCCLK = 32768 Hz) 0x2: RTCCLK / 8192 (4 Hz when RTCCLK = 32768 Hz) 0x3: RTCCLK / 4096 (8 Hz when RTCCLK = 32768 Hz) 0x4: RTCCLK / 2048 (16 Hz when RTCCLK = 32768 Hz) 0x5: RTCCLK / 1024 (32 Hz when RTCCLK = 32768 Hz) 0x6: RTCCLK / 512 (64 Hz when RTCCLK = 32768 Hz) 0x7: RTCCLK / 256 (128 Hz when RTCCLK = 32768 Hz) Note: This register concerns only the tamper inputs in passive mode. ## 31.6.4 TAMP interrupt enable register (TAMP_IER) Address offset: 0x2C Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|------|-----------|-----------|--------------|--------------|--------------|------------------|------------------|------------------| | Res. ITAMP6
IE | ITAMP5
IE | ITAMP4
IE | ITAMP3
IE | Res. | Res. | | | | | | | | | | | | rw | rw | rw | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | Res. | 7
Res. | 6
Res. | Res. | 4
Res. | Res. | Z
TAMP
3IE | 1
TAMP
2IE | 0
TAMP
1IE | RM0444 Rev 5 921/1390 - Bits 31:24 Reserved, must be kept at reset value. - Bit 23 Reserved, must be kept at reset value. - Bit 22 Reserved, must be kept at reset value. - Bit 21 ITAMP6IE: Internal tamper 6 interrupt enable: ST manufacturer readout - 0: Internal tamper 6 interrupt disabled. - 1: Internal tamper 6 interrupt enabled. - Bit 20 ITAMP5IE: Internal tamper 5 interrupt enable: RTC calendar overflow - 0: Internal tamper 5 interrupt disabled. - 1: Internal tamper 5 interrupt enabled. - Bit 19 ITAMP4IE: Internal tamper 4 interrupt enable: HSE monitoring - 0: Internal tamper 4 interrupt disabled. - 1: Internal tamper 4 interrupt enabled. - Bit 18 ITAMP3IE: Internal tamper 3 interrupt enable: LSE monitoring - 0: Internal tamper 3 interrupt disabled. - 1: Internal tamper 3 interrupt enabled. - Bit 17 Reserved, must be kept at reset value. - Bit 16 Reserved, must be kept at reset value. - Bits 15:3 Reserved, must be kept at reset value. - Bit 2 **TAMP3IE**: Tamper 3 interrupt enable - 0: Tamper 3 interrupt disabled. - 1: Tamper 3 interrupt enabled.. - Bit 1 **TAMP2IE**: Tamper 2 interrupt enable - 0: Tamper 2 interrupt disabled. - 1: Tamper 2 interrupt enabled. - Bit 0 TAMP1IE: Tamper 1 interrupt enable - 0: Tamper 1 interrupt disabled. - 1: Tamper 1 interrupt enabled. #### 31.6.5 TAMP status register (TAMP SR) Address offset: 0x30 Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|-------------|-------------|-------------|-------------|------------|------------| | Res. ITAMP6
F | ITAMP5
F | ITAMP4
F | ITAMP3
F | Res. | Res. | | | | | | | | | | | | r | r | r | r | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | | | | | | | | | 10 | 12 | | 10 | 9 | 0 | 1 | 6 | 5 | 4 | 3 | 2 | 1 | U | | Res. TAMP
3F | TAMP
2F | TAMP
1F | RM0444 Rev 5 922/1390 - Bits 31:24 Reserved, must be kept at reset value. - Bit 23 Reserved, must be kept at reset value. - Bit 22 Reserved, must be kept at reset value. - Bit 21 ITAMP6F: ST manufacturer readout tamper detection flag This flag is set by hardware when a tamper detection event is detected on the internal tamper 6. Bit 20 ITAMP5F: RTC calendar overflow tamper detection flag This flag is set by hardware when a tamper detection event is detected on the internal tamper 5. Bit 19 ITAMP4F: HSE monitoring tamper detection flag This flag is set by hardware when a tamper detection event is detected on the internal tamper 4. Bit 18 ITAMP3F: LSE monitoring tamper detection flag This flag is set by hardware when a tamper detection event is detected on the internal tamper 3. - Bit 17 Reserved, must be kept at reset value. - Bit 16 Reserved, must be kept at reset value. - Bits 15:3 Reserved, must be kept at reset value. - Bit 2 TAMP3F: TAMP3 detection flag This flag is set by hardware when a tamper detection event is detected on the TAMP3 input. Bit 1 TAMP2F: TAMP2 detection flag This flag is set by hardware when a tamper detection event is detected on the TAMP2 input. Bit 0 TAMP1F: TAMP1 detection flag This flag is set by hardware when a tamper detection event is detected on the TAMP1 input.
31.6.6 TAMP masked interrupt status register (TAMP_MISR) Address offset: 0x34 Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|--------------|--------------|--------------|--------------|-------------|-------------| | Res. ITAMP6
MF | ITAMP5
MF | ITAMP4
MF | ITAMP3
MF | Res. | Res. | | | | | | | | | | | | r | r | r | r | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | | | | | | | | | | | Res. TAMP
3MF | TAMP
2MF | TAMP
1MF | Bits 31:24 Reserved, must be kept at reset value. Bit 23 Reserved, must be kept at reset value. Bit 22 Reserved, must be kept at reset value. RM0444 Rev 5 923/1390 - Bit 21 **ITAMP6MF**: ST manufacturer readout tamper interrupt masked flag This flag is set by hardware when the internal tamper 6 interrupt is raised. - Bit 20 **ITAMP5MF**: RTC calendar overflow tamper interrupt masked flag This flag is set by hardware when the internal tamper 5 interrupt is raised. - Bit 19 **ITAMP4MF**: HSE monitoring tamper interrupt masked flag This flag is set by hardware when the internal tamper 4 interrupt is raised. - Bit 18 **ITAMP3MF**: LSE monitoring tamper interrupt masked flag This flag is set by hardware when the internal tamper 3 interrupt is raised. - Bit 17 Reserved, must be kept at reset value. - Bit 16 Reserved, must be kept at reset value. - Bits 15:3 Reserved, must be kept at reset value. - Bit 2 **TAMP3MF**: TAMP3 interrupt masked flag This flag is set by hardware when the tamper 3 interrupt is raised. - Bit 1 **TAMP2MF**: TAMP2 interrupt masked flag This flag is set by hardware when the tamper 2 interrupt is raised. - Bit 0 **TAMP1MF**: TAMP1 interrupt masked flag This flag is set by hardware when the tamper 1 interrupt is raised. ## 31.6.7 TAMP status clear register (TAMP_SCR) Address offset: 0x3C System reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------------------|------------------|------------------|------------------|-------------|-------------| | Res. C
ITAMP
6F | C
ITAMP
5F | C
ITAMP
4F | C
ITAMP
3F | Res. | Res. | | | | | | | | | | | | w | w | w | w | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. CTAMP
3F | CTAMP
2F | CTAMP
1F | | | | | | | | | | | | | | | w | W | w | - Bits 31:24 Reserved, must be kept at reset value. - Bit 23 Reserved, must be kept at reset value. - Bit 22 Reserved, must be kept at reset value. - Bit 21 CITAMP6F: Clear ITAMP6 detection flag Writing 1 in this bit clears the ITAMP6F bit in the TAMP SR register. Bit 20 CITAMP5F: Clear ITAMP5 detection flag Writing 1 in this bit clears the ITAMP5F bit in the TAMP_SR register. Bit 19 CITAMP4F: Clear ITAMP4 detection flag Writing 1 in this bit clears the ITAMP4F bit in the TAMP_SR register. Bit 18 CITAMP3F: Clear ITAMP3 detection flag Writing 1 in this bit clears the ITAMP3F bit in the TAMP_SR register. Bit 17 Reserved, must be kept at reset value. Bit 16 Reserved, must be kept at reset value. Bits 15:3 Reserved, must be kept at reset value. Bit 2 CTAMP3F: Clear TAMP3 detection flag Writing 1 in this bit clears the TAMP3F bit in the TAMP SR register. Bit 1 CTAMP2F: Clear TAMP2 detection flag Writing 1 in this bit clears the TAMP2F bit in the TAMP_SR register. Bit 0 CTAMP1F: Clear TAMP1 detection flag Writing 1 in this bit clears the TAMP1F bit in the TAMP_SR register. ## 31.6.8 TAMP backup x register (TAMP_BKPxR) Address offset: 0x100 + 0x04 * x, (x = 0 to 4)Backup domain reset value: 0x0000 0000 System reset: not affected | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----| | | BKP[31:16] | | | | | | | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | BKP[15:0] | | | | | | | | | | | | | | | | rw W | rw | rw | Bits 31:0 BKP[31:0] The application can write or read data to and from these registers. register is also reset when the readout protection (RDP) is disabled. They are powered-on by V_{BAT} when V_{DD} is switched off, so that they are not reset by System reset, and their contents remain valid when the device operates in low-power mode. In the default configuration this register is reset on a tamper detection event. It is forced to reset value as long as there is at least one internal or external tamper flag being set. This ## 31.6.9 TAMP register map Table 160. TAMP register map and reset values | Offset | Register | 31 | 30 | 29 | 28 | 27 | 56 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 2 | 1 | 0 | |---------------------------|-------------|------|-----------|------|------|------|----------|----------|-----------------|------|------|-----------------|-----------------|----------|-----------------|-----------------|----------|------|------|------|------|------|------|------|------|-----------|---|----------------|---------|--------------|----------------|---------------|---------| | 0x00 | TAMP_CR1 | Res. ITAMP6E | ITAMP5E | ITAMP4E | ITAMP3E | Res. TAMP3E | TAMP2E | TAMP1E | | | Reset value | | | | | | | | | | | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | | | 0 | 0 | 0 | | 0x04 | TAMP_CR2 | Res. | Res. | Res. | Res. | Res. | TAMP3TRG | TAMP2TRG | TAMP1TRG | Res. | Res. | Res. | Res. | Res. | TAMP3MSK | TAMP2MSK | TAMP1MSK | Res. TAMP3NOER | TAMP2NOER | | | | Reset value | | | | | | 0 | 0 | 0 | | | | | | 0 | 0 | 0 | | | | | | | | | | | | | | 0 | 0 | 0 | | 0x0C | TAMP_FLTCR | Res. | Res. TAMPPUDIS | A & & C C C C C C C C C C C C C C C C C | I AIMPPROFILIO | 10. kit | IAMPFLI[1:0] | | TAMPFREQ[2:0] | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x2C | TAMP_IER | Res. ITAMP6IE | ITAMP5IE | ITAMP4IE | ITAMP3IE | Res. TAMP3IE | TAMP2IE | TAMP11E | | | Reset value | | | | | | | | | | | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | | 0 | 0 | 0 | | 0x30 | TAMP_SR | Res. ITAMP6F | ITAMP5F | ITAMP4F | ITAMP3F | Res. TAMP3F | TAMP2F | TAMP1F | | | Reset value | | | | | | | | | | | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | | 0 | 0 | 0 | | 0x34 | TAMP_MISR | Res. ITAMP6MF | ITAMP5MF | ITAMP4MF | ITAMP3MF | Res. TAMP3MF | TAMP2MF | TAMP1MF | | | Reset value | | | | | | | | | | | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | | 0 | 0 | 0 | | 0x3C | TAMP_SCR | Res. CITAMP6F | CITAMP5F | CITAMP4F | CITAMP3F | Res. CTAMP3F | CTAMP2F | CTAMP1F | | | Reset value | | | | | | | | | | | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | | 0 | 0 | 0 | | 0x100+
0x04*x,
(x = | TAMP_BKPxR | | BKP[31:0] | 0 to 4) | Reset value | 0 | Refer to Section 2.2 on page 58 for the register boundary addresses. # 32 Inter-integrated circuit (I2C) interface ## 32.1 Introduction The I^2C (inter-integrated circuit) bus interface handles communications between the microcontroller and the serial I^2C bus. It provides multimaster capability, and controls all I^2C bus-specific sequencing, protocol, arbitration and timing. It supports Standard-mode (Sm), Fast-mode (Fm) and Fast-mode Plus (Fm+). It is also SMBus (system management bus) and PMBus (power management bus) compatible. DMA can be used to reduce CPU overload. ## 32.2 I2C main features - I²C bus specification rev03 compatibility: - Slave and master modes - Multimaster capability - Standard-mode (up to 100 kHz) - Fast-mode (up to 400 kHz) - Fast-mode Plus (up to 1 MHz) - 7-bit and 10-bit addressing mode - Multiple 7-bit slave addresses (2 addresses, 1 with configurable mask) - All 7-bit addresses acknowledge mode - General call - Programmable setup and hold times - Easy to use event management - Optional clock stretching - Software reset - 1-byte buffer with DMA capability - Programmable analog and digital noise filters The following additional features are also available depending on the product implementation (see *Section 32.3: I2C implementation*): - SMBus specification rev 3.0 compatibility: - Hardware PEC (Packet Error Checking) generation and verification with ACK control - Command and data acknowledge control - Address resolution protocol (ARP) support - Host and Device support - SMBus alert - Timeouts and idle condition detection - PMBus rev 1.3 standard compatibility - Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming - Wakeup from Stop mode on address match. ## 32.3 I2C implementation The devices incorporate up to three I²C-bus controllers, I2C1, I2C2, and I2C3, with full or limited feature sets as shown in the following table. | I2C features ⁽¹⁾ | I2C1 | I2C2 | I2C3 ⁽²⁾ | |---|------|----------------------|---------------------| | 7-bit addressing mode | Х | Х | X | | 10-bit addressing mode | Х | Х | Х | | Standard mode (up to 100 kbit/s) | Х | Х | Х | | Fast mode (up to 400 kbit/s) | Х | Х | Х | | Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) | Х | Х | х | | Independent clock | Х | X ⁽²⁾ / - | - | | Wakeup from Stop mode | Х | X ⁽²⁾ / - | - | | SMBus/PMbus | Х | X ⁽²⁾ / - | - | Table 161. STM32G0x1 I2C implementation ## 32.4 I2C functional description In addition to receiving and transmitting data, this interface converts it from serial to parallel format and vice versa. The interrupts are enabled or disabled
by software. The interface is connected to the I^2C bus by a data pin (SDA) and by a clock pin (SCL). It can be connected with a standard (up to 100 kHz), Fast-mode (up to 400 kHz) or Fast-mode Plus (up to 1 MHz) I^2C bus. This interface can also be connected to a SMBus with the data pin (SDA) and clock pin (SCL). ^{1.} X = supported. ^{2.} Applies to STM32G0B1xx and STM32G0C1xx devices only. If SMBus feature is supported: the additional optional SMBus Alert pin (SMBA) is also available. ## 32.4.1 I2C1 block diagram The block diagram of the I2C1 interface is shown in Figure 283. Figure 283. I2C1 block diagram The I2C1 is clocked by an independent clock source which allows the I2C to operate independently from the PCLK frequency. For I2C I/Os supporting 20 mA output current drive for Fast-mode Plus operation, the driving capability is enabled through control bits in the system configuration controller (SYSCFG). *Refer to Section 32.3: I2C implementation.* 577 RM0444 Rev 5 929/1390 ## 32.4.2 I2C2 block diagram The block diagram of the I2C2 interface is shown in Figure 284. Figure 284. I2C2 block diagram For I2C I/Os supporting 20 mA output current drive for Fast-mode Plus operation, the driving capability is enabled through control bits in the system configuration controller (SYSCFG). *Refer to Section 32.3: I2C implementation.* ## 32.4.3 I2C pins and internal signals ### Table 162. I2C input/output pins | Pin name | Signal type | Description | |----------|---------------|-------------| | I2C_SDA | Bidirectional | I2C data | | I2C_SCL | Bidirectional | I2C clock | | I2C_SMBA | Bidirectional | SMBus Alert | ### Table 163. I2C internal input/output signals | Internal signal name | Signal type | Description | |----------------------|-------------|--| | i2c_ker_ck | Input | I2C kernel clock, also named I2CCLK in this document | | i2c_pclk | Input | I2C APB clock | | i2c_it | Output | I2C interrupts, refer to <i>Table 177: I2C Interrupt requests</i> for the full list of interrupt sources | | i2c_rx_dma | Output | I2C Receive Data DMA request (I2C_RX) | | i2c_tx_dma | Output | I2C Transmit Data DMA request (I2C_TX) | ## 32.4.4 I2C clock requirements The I2C kernel is clocked by I2CCLK. The I2CCLK period $t_{\mbox{\scriptsize I2CCLK}}$ must respect the following conditions: $t_{I2CCLK} < (t_{LOW} - t_{filters}) / 4$ and $t_{I2CCLK} < t_{HIGH}$ with: t_{LOW}: SCL low time and t_{HIGH}: SCL high time $t_{\mbox{filters}:}$ when enabled, sum of the delays brought by the analog filter and by the digital filter. Analog filter delay is maximum 260 ns. Digital filter delay is DNF x t_{I2CCLK}. The PCLK clock period $t_{\mbox{\scriptsize PCLK}}$ must respect the following condition: $t_{PCLK} < 4/3 t_{SCL}$ with t_{SCL}: SCL period Caution: When the I2C kernel is clocked by PCLK, this clock must respect the conditions for t_{I2CCLK}. ### 32.4.5 Mode selection The interface can operate in one of the four following modes: - Slave transmitter - Slave receiver - Master transmitter - Master receiver RM0444 Rev 5 931/1390 By default, it operates in slave mode. The interface automatically switches from slave to master when it generates a START condition, and from master to slave if an arbitration loss or a STOP generation occurs, allowing multimaster capability. ### **Communication flow** In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A serial data transfer always begins with a START condition and ends with a STOP condition. Both START and STOP conditions are generated in master mode by software. In Slave mode, the interface is capable of recognizing its own addresses (7 or 10-bit), and the General Call address. The General Call address detection can be enabled or disabled by software. The reserved SMBus addresses can also be enabled by software. Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the START condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is always transmitted in Master mode. A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must send an acknowledge bit to the transmitter. Refer to the following figure. Figure 285. I²C bus protocol Acknowledge can be enabled or disabled by software. The I2C interface addresses can be selected by software. ### 32.4.6 I2C initialization ### **Enabling and disabling the peripheral** The I2C peripheral clock must be configured and enabled in the clock controller. Then the I2C can be enabled by setting the PE bit in the I2C_CR1 register. When the I2C is disabled (PE=0), the I²C performs a software reset. Refer to Section 32.4.7: Software reset for more details. #### **Noise filters** Before enabling the I2C peripheral by setting the PE bit in I2C_CR1 register, the user must configure the noise filters, if needed. By default, an analog noise filter is present on the SDA and SCL inputs. This analog filter is compliant with the I²C specification which requires the suppression of spikes with a pulse width up to 50 ns in Fast-mode and Fast-mode Plus. The user can disable this analog filter by setting the ANFOFF bit, and/or select a digital filter by configuring the DNF[3:0] bit in the I2C_CR1 register. When the digital filter is enabled, the level of the SCL or the SDA line is internally changed only if it remains stable for more than DNF x I2CCLK periods. This allows spikes with a programmable length of 1 to 15 I2CCLK periods to be suppressed. Table 164. Comparison of analog vs. digital filters | - | Analog filter | Digital filter | |----------------------------------|---|--| | Pulse width of suppressed spikes | ≥ 50 ns | Programmable length from 1 to 15 I2C peripheral clocks | | Benefits | Available in Stop mode | Programmable length: extra filtering capability vs. standard requirements Stable length | | Drawbacks | Variation vs. temperature, voltage, process | Wakeup from Stop mode on address match is not available when digital filter is enabled | **Caution:** Changing the filter configuration is not allowed when the I2C is enabled. RM0444 Rev 5 933/1390 ### **I2C timings** The timings must be configured in order to guarantee a correct data hold and setup time, used in master and slave modes. This is done by programming the PRESC[3:0], SCLDEL[3:0] and SDADEL[3:0] bits in the I2C_TIMINGR register. The STM32CubeMX tool calculates and provides the I2C_TIMINGR content in the I2C configuration window When the SCL falling edge is internally detected, a delay is inserted before sending SDA output. This delay is t_{SDADEL} = SDADEL x t_{PRESC} + t_{I2CCLK} where t_{PRESC} = (PRESC+1) x t_{I2CCLK}. T_{SDADEL} impacts the hold time t_{HD;DAT.} The total SDA output delay is: $t_{SYNC1} + \{[SDADEL x (PRESC+1) + 1] x t_{I2CCLK}\}$ t_{SYNC1} duration depends on these parameters: - SCL falling slope - When enabled, input delay brought by the analog filter: $t_{AF(min)} < t_{AF} < t_{AF(max)}$ - When enabled, input delay brought by the digital filter: $t_{DNF} = DNF \times t_{12CCLK}$ - Delay due to SCL synchronization to I2CCLK clock (2 to 3 I2CCLK periods) In order to bridge the undefined region of the SCL falling edge, the user must program SDADEL in such a way that: $$\begin{aligned} & \{t_{f\;(max)} + t_{HD;DAT\;(min)} - t_{AF(min)} - [(DNF + 3) \times t_{l2CCLK}]\} \ / \ \{(PRESC + 1) \times t_{l2CCLK}\} \leq SDADEL \\ & SDADEL \leq \{t_{HD;DAT\;(max)} - t_{AF(max)} - [(DNF + 4) \times t_{l2CCLK}]\} \ / \ \{(PRESC + 1) \times t_{l2CCLK}\} \end{aligned}$$ Note: $t_{AF(min)}/t_{AF(max)}$ are part of the equation only when the analog filter is enabled. Refer to device datasheet for t_{AF} values. The maximum $t_{HD;DAT}$ can be 3.45 µs, 0.9 µs and 0.45 µs for Standard-mode, Fast-mode and Fast-mode Plus, but must be less than the maximum of $t_{VD;DAT}$ by a transition time. This maximum must only be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock. The SDA rising edge is usually the worst case, so in this case the previous equation becomes: $$\mathsf{SDADEL} \leq \{\mathsf{t_{VD;DAT\,(max)}} - \mathsf{t_{r\,(max)}} - 260 \ \textit{ns} - [(DNF + 4) \ \textit{x} \ \textit{t_{l2CCLK}}]\} \ / \ \{(\mathsf{PRESC} + 1) \ \textit{x} \ \mathsf{t_{l2CCLK}} \ \}.$$ This condition can be violated when NOSTRETCH=0, because the device stretches SCL low to guarantee the set-up time, according to the SCLDEL value. Refer to *Table 165: I2C-SMBus specification data setup and hold times* for t_f , t_r , $t_{HD;DAT}$ and $t_{VD:DAT}$ standard values. After t_{SDADEL} delay, or after sending SDA output in case the slave had to stretch the clock because the data was not yet written in I2C_TXDR register, SCL line is kept at low level during the setup time. This setup time is t_{SCLDEL} = (SCLDEL+1) x t_{PRESC} where t_{PRESC} = (PRESC+1) x t_{I2CCLK}. t_{SCLDEL} impacts the setup time t_{SU:DAT} In order to bridge the undefined region of the SDA transition (rising edge usually worst case), the user must program SCLDEL in such a way that: $$\{[t_{r\;(max)} + t_{SU;DAT\;(min)}] \: / \: [(PRESC+1)] \: x \: t_{l2CCLK}]\} \: - \: 1 \: <= \: SCLDEL$$ Refer to *Table 165: I2C-SMBus specification data setup and hold times* for t_r and $t_{SU;DAT}$ standard values. The SDA and SCL transition time values to be used are the ones in the application. Using the maximum values from the standard increases the constraints for the SDADEL and SCLDEL calculation, but ensures the feature whatever the application. 47/ Note: RM0444 Rev 5 935/1390 Note: At
every clock pulse, after SCL falling edge detection, the I2C master or slave stretches SCL low during at least [(SDADEL+SCLDEL+1) \times (PRESC+1) + 1] \times t_{12CCLK} , in both transmission and reception modes. In transmission mode, in case the data is not yet written in I2C_TXDR when SDADEL counter is finished, the I2C keeps on stretching SCL low until the next data is written. Then new data MSB is sent on SDA output, and SCLDEL counter starts, continuing stretching SCL low to guarantee the data setup time. If NOSTRETCH=1 in slave mode, the SCL is not stretched. Consequently the SDADEL must be programmed in such a way to guarantee also a sufficient setup time. Standard-mode Fast-mode **Fast-mode Plus SMBus** (Sm) (Fm) (Fm+) Unit **Symbol Parameter** Min. Max Min. Max Min. Max Min. Max Data hold time 0 0 0 0.3 t_{HD;DAT} μs Data valid time _ 3.45 0.9 0.45 t_{VD:DAT} Data setup time 250 100 50 250 t_{SU;DAT} Rise time of both SDA 1000 300 120 1000 t_r and SCL signals ns Fall time of both SDA 300 300 120 300 t_f and SCL signals Table 165. I²C-SMBus specification data setup and hold times Additionally, in master mode, the SCL clock high and low levels must be configured by programming the PRESC[3:0], SCLH[7:0] and SCLL[7:0] bits in the I2C TIMINGR register. When the SCL falling edge is internally detected, a delay is inserted before releasing the SCL output. This delay is $t_{SCLL} = (SCLL+1) \times t_{PRESC}$ where $t_{PRESC} = (PRESC+1) \times t_{PRESC}$ t_{I2CCLK}. t_{SCLI} impacts the SCL low time t_{LOW} When the SCL rising edge is internally detected, a delay is inserted before forcing the SCL output to low level. This delay is $t_{SCLH} = (SCLH+1) \times t_{PRESC}$ where $t_{PRESC} = t_{PRESC}$ (PRESC+1) $x t_{I2CCLK} t_{SCLH}$ impacts the SCL high time t_{HIGH} Refer to I2C master initialization for more details. Caution: Changing the timing configuration is not allowed when the I2C is enabled. > The I2C slave NOSTRETCH mode must also be configured before enabling the peripheral. Refer to *I2C slave initialization* for more details. Caution: Changing the NOSTRETCH configuration is not allowed when the I2C is enabled. Figure 287. I2C initialization flowchart ## 32.4.7 Software reset A software reset can be performed by clearing the PE bit in the I2C_CR1 register. In that case I2C lines SCL and SDA are released. Internal states machines are reset and communication control bits, as well as status bits come back to their reset value. The configuration registers are not impacted. Here is the list of impacted register bits: - 1. I2C CR2 register: START, STOP, NACK - 2. I2C_ISR register: BUSY, TXE, TXIS, RXNE, ADDR, NACKF, TCR, TC, STOPF, BERR, ARLO, OVR and in addition when the SMBus feature is supported: - 1. I2C_CR2 register: PECBYTE - 2. I2C_ISR register: PECERR, TIMEOUT, ALERT PE must be kept low during at least 3 APB clock cycles in order to perform the software reset. This is ensured by writing the following software sequence: - Write PE=0 - Check PE=0 - Write PE=1. ## 32.4.8 Data transfer The data transfer is managed through transmit and receive data registers and a shift register. ## Reception The SDA input fills the shift register. After the 8th SCL pulse (when the complete data byte is received), the shift register is copied into I2C_RXDR register if it is empty (RXNE=0). If RXNE=1, meaning that the previous received data byte has not yet been read, the SCL line is stretched low until I2C_RXDR is read. The stretch is inserted between the 8th and 9th SCL pulse (before the Acknowledge pulse). Figure 288. Data reception #### **Transmission** If the I2C_TXDR register is not empty (TXE=0), its content is copied into the shift register after the 9th SCL pulse (the Acknowledge pulse). Then the shift register content is shifted out on SDA line. If TXE=1, meaning that no data is written yet in I2C_TXDR, SCL line is stretched low until I2C_TXDR is written. The stretch is done after the 9th SCL pulse. Figure 289. Data transmission # Hardware transfer management The I2C has a byte counter embedded in hardware in order to manage byte transfer and to close the communication in various modes such as: - NACK, STOP and ReSTART generation in master mode - ACK control in slave receiver mode - PEC generation/checking when SMBus feature is supported The byte counter is always used in master mode. By default it is disabled in slave mode, but it can be enabled by software by setting the SBC (Slave Byte Control) bit in the I2C_CR2 register. The number of bytes to be transferred is programmed in the NBYTES[7:0] bit field in the I2C_CR2 register. If the number of bytes to be transferred (NBYTES) is greater than 255, or if a receiver wants to control the acknowledge value of a received data byte, the reload mode must be selected by setting the RELOAD bit in the I2C_CR2 register. In this mode, TCR flag is set when the number of bytes programmed in NBYTES has been transferred, and an interrupt is generated if TCIE is set. SCL is stretched as long as TCR flag is set. TCR is cleared by software when NBYTES is written to a non-zero value. When the NBYTES counter is reloaded with the last number of bytes, RELOAD bit must be cleared. 939/1390 When RELOAD=0 in master mode, the counter can be used in 2 modes: - Automatic end mode (AUTOEND = '1' in the I2C_CR2 register). In this mode, the master automatically sends a STOP condition once the number of bytes programmed in the NBYTES[7:0] bit field has been transferred. - **Software end mode** (AUTOEND = '0' in the I2C_CR2 register). In this mode, software action is expected once the number of bytes programmed in the NBYTES[7:0] bit field has been transferred; the TC flag is set and an interrupt is generated if the TCIE bit is set. The SCL signal is stretched as long as the TC flag is set. The TC flag is cleared by software when the START or STOP bit is set in the I2C_CR2 register. This mode must be used when the master wants to send a RESTART condition. Caution: The AUTOEND bit has no effect when the RELOAD bit is set. | Function | SBC bit | RELOAD bit | AUTOEND bit | |---|---------|------------|-------------| | Master Tx/Rx NBYTES + STOP | x | 0 | 1 | | Master Tx/Rx + NBYTES + RESTART | x | 0 | 0 | | Slave Tx/Rx
all received bytes ACKed | 0 | х | х | | Slave Rx with ACK control | 1 | 1 | х | Table 166. I2C configuration ### **32.4.9 I2C** slave mode ## I2C slave initialization In order to work in slave mode, the user must enable at least one slave address. Two registers I2C_OAR1 and I2C_OAR2 are available in order to program the slave own addresses OA1 and OA2. - OA1 can be configured either in 7-bit mode (by default) or in 10-bit addressing mode by setting the OA1MODE bit in the I2C_OAR1 register. - OA1 is enabled by setting the OA1EN bit in the I2C OAR1 register. - If additional slave addresses are required, the 2nd slave address OA2 can be configured. Up to 7 OA2 LSB can be masked by configuring the OA2MSK[2:0] bits in the I2C_OAR2 register. Therefore for OA2MSK configured from 1 to 6, only OA2[7:2], OA2[7:3], OA2[7:4], OA2[7:5], OA2[7:6] or OA2[7] are compared with the received address. As soon as OA2MSK is not equal to 0, the address comparator for OA2 excludes the I2C reserved addresses (0000 XXX and 1111 XXX), which are not acknowledged. If OA2MSK=7, all received 7-bit addresses are acknowledged (except reserved addresses). OA2 is always a 7-bit address. These reserved addresses can be acknowledged if they are enabled by the specific enable bit, if they are programmed in the I2C_OAR1 or I2C_OAR2 register with OA2MSK=0. - OA2 is enabled by setting the OA2EN bit in the I2C OAR2 register. - The General Call address is enabled by setting the GCEN bit in the I2C_CR1 register. When the I2C is selected by one of its enabled addresses, the ADDR interrupt status flag is set, and an interrupt is generated if the ADDRIE bit is set. By default, the slave uses its clock stretching capability, which means that it stretches the SCL signal at low level when needed, in order to perform software actions. If the master does not support clock stretching, the I2C must be configured with NOSTRETCH=1 in the I2C CR1 register. After receiving an ADDR interrupt, if several addresses are enabled the user must read the ADDCODE[6:0] bits in the I2C_ISR register in order to check which address matched. DIR flag must also be checked in order to know the transfer direction. ## Slave clock stretching (NOSTRETCH = 0) In default mode, the I2C slave stretches the SCL clock in the following situations: - When the ADDR flag is set: the received address matches with one of the enabled slave addresses. This stretch is released when the ADDR flag is cleared by software setting the ADDRCF bit. - In transmission, if the previous data transmission is completed and no new data is written in I2C_TXDR register, or if the first data byte is not written when the ADDR flag is cleared (TXE=1). This stretch is released when the data is written to the I2C_TXDR register. - In reception when the I2C_RXDR register is not read yet and a new data reception is completed. This stretch is released when I2C_RXDR is read. - When TCR = 1 in Slave Byte Control mode, reload mode (SBC=1 and RELOAD=1), meaning that the last data byte has been transferred. This stretch is released when then TCR is cleared by writing a non-zero value in the NBYTES[7:0] field. - After SCL falling edge detection, the I2C stretches SCL low during [(SDADEL+SCLDEL+1) x (PRESC+1) + 1] x t_{I2CCLK}. ## Slave without clock stretching (NOSTRETCH = 1) When NOSTRETCH = 1 in the I2C_CR1 register, the I2C slave does not stretch the SCL signal. - The SCL clock is not stretched while the ADDR flag is set. - In transmission, the data must be written in the I2C_TXDR register before the first SCL pulse corresponding to its transfer occurs. If not, an underrun occurs, the OVR flag is set in the I2C_ISR register and an interrupt
is generated if the ERRIE bit is set in the I2C_CR1 register. The OVR flag is also set when the first data transmission starts and the STOPF bit is still set (has not been cleared). Therefore, if the user clears the STOPF flag of the previous transfer only after writing the first data to be transmitted in the next transfer, he ensures that the OVR status is provided, even for the first data to be transmitted. - In reception, the data must be read from the I2C_RXDR register before the 9th SCL pulse (ACK pulse) of the next data byte occurs. If not an overrun occurs, the OVR flag is set in the I2C_ISR register and an interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. RM0444 Rev 5 941/1390 ## Slave Byte Control mode In order to allow byte ACK control in slave reception mode, Slave Byte Control mode must be enabled by setting the SBC bit in the I2C_CR1 register. This is required to be compliant with SMBus standards. Reload mode must be selected in order to allow byte ACK control in slave reception mode (RELOAD=1). To get control of each byte, NBYTES must be initialized to 0x1 in the ADDR interrupt subroutine, and reloaded to 0x1 after each received byte. When the byte is received, the TCR bit is set, stretching the SCL signal low between the 8th and 9th SCL pulses. The user can read the data from the I2C_RXDR register, and then decide to acknowledge it or not by configuring the ACK bit in the I2C_CR2 register. The SCL stretch is released by programming NBYTES to a non-zero value: the acknowledge or not-acknowledge is sent and next byte can be received. NBYTES can be loaded with a value greater than 0x1, and in this case, the reception flow is continuous during NBYTES data reception. Note: The SBC bit must be configured when the I2C is disabled, or when the slave is not addressed, or when ADDR=1. The RELOAD bit value can be changed when ADDR=1, or when TCR=1. **Caution:** Slave Byte Control mode is not compatible with NOSTRETCH mode. Setting SBC when NOSTRETCH=1 is not allowed. #### Slave transmitter A transmit interrupt status (TXIS) is generated when the I2C_TXDR register becomes empty. An interrupt is generated if the TXIE bit is set in the I2C_CR1 register. The TXIS bit is cleared when the I2C_TXDR register is written with the next data byte to be transmitted. When a NACK is received, the NACKF bit is set in the I2C_ISR register and an interrupt is generated if the NACKIE bit is set in the I2C_CR1 register. The slave automatically releases the SCL and SDA lines in order to let the master perform a STOP or a RESTART condition. The TXIS bit is not set when a NACK is received. When a STOP is received and the STOPIE bit is set in the I2C_CR1 register, the STOPF flag is set in the I2C_ISR register and an interrupt is generated. In most applications, the SBC bit is usually programmed to '0'. In this case, If TXE = 0 when the slave address is received (ADDR=1), the user can choose either to send the content of the I2C_TXDR register as the first data byte, or to flush the I2C_TXDR register by setting the TXE bit in order to program a new data byte. In Slave Byte Control mode (SBC=1), the number of bytes to be transmitted must be programmed in NBYTES in the address match interrupt subroutine (ADDR=1). In this case, the number of TXIS events during the transfer corresponds to the value programmed in NBYTES. #### Caution: When NOSTRETCH=1, the SCL clock is not stretched while the ADDR flag is set, so the user cannot flush the I2C_TXDR register content in the ADDR subroutine, in order to program the first data byte. The first data byte to be sent must be previously programmed in the I2C_TXDR register: - This data can be the data written in the last TXIS event of the previous transmission message. - If this data byte is not the one to be sent, the I2C_TXDR register can be flushed by setting the TXE bit in order to program a new data byte. The STOPF bit must be cleared only after these actions, in order to guarantee that they are executed before the first data transmission starts, following the address acknowledge. If STOPF is still set when the first data transmission starts, an underrun error is generated (the OVR flag is set). If a TXIS event is needed, (Transmit Interrupt or Transmit DMA request), the user must set the TXIS bit in addition to the TXE bit, in order to generate a TXIS event. RM0444 Rev 5 943/1390 Figure 291. Transfer sequence flowchart for I2C slave transmitter, NOSTRETCH= 0 Figure 292. Transfer sequence flowchart for I2C slave transmitter, NOSTRETCH= 1 Figure 293. Transfer bus diagrams for I2C slave transmitter ## Slave receiver RXNE is set in I2C_ISR when the I2C_RXDR is full, and generates an interrupt if RXIE is set in I2C_CR1. RXNE is cleared when I2C_RXDR is read. When a STOP is received and STOPIE is set in I2C_CR1, STOPF is set in I2C_ISR and an interrupt is generated. Figure 294. Transfer sequence flowchart for slave receiver with NOSTRETCH=0 Figure 295. Transfer sequence flowchart for slave receiver with NOSTRETCH=1 Figure 296. Transfer bus diagrams for I2C slave receiver ### 32.4.10 I2C master mode ### **I2C** master initialization Before enabling the peripheral, the I2C master clock must be configured by setting the SCLH and SCLL bits in the I2C_TIMINGR register. The STM32CubeMX tool calculates and provides the I2C_TIMINGR content in the I2C Configuration window. A clock synchronization mechanism is implemented in order to support multi-master environment and slave clock stretching. In order to allow clock synchronization: - The low level of the clock is counted using the SCLL counter, starting from the SCL low level internal detection. - The high level of the clock is counted using the SCLH counter, starting from the SCL high level internal detection. The I2C detects its own SCL low level after a t_{SYNC1} delay depending on the SCL falling edge, SCL input noise filters (analog + digital) and SCL synchronization to the I2CxCLK clock. The I2C releases SCL to high level once the SCLL counter reaches the value programmed in the SCLL[7:0] bits in the I2C_TIMINGR register. The I2C detects its own SCL high level after a t_{SYNC2} delay depending on the SCL rising edge, SCL input noise filters (analog + digital) and SCL synchronization to I2CxCLK clock. The I2C ties SCL to low level once the SCLH counter is reached reaches the value programmed in the SCLH[7:0] bits in the I2C_TIMINGR register. Consequently the master clock period is: $t_{SCL} = t_{SYNC1} + t_{SYNC2} + \{[(SCLH+1) + (SCLL+1)] \times (PRESC+1) \times t_{I2CCLK}\}$ The duration of t_{SYNC1} depends on these parameters: - SCL falling slope - When enabled, input delay induced by the analog filter. - When enabled, input delay induced by the digital filter: DNF x t_{I2CCI K} - Delay due to SCL synchronization with I2CCLK clock (2 to 3 I2CCLK periods) The duration of t_{SYNC2} depends on these parameters: - SCL rising slope - When enabled, input delay induced by the analog filter. - When enabled, input delay induced by the digital filter: DNF x t_{I2CCLK} - Delay due to SCL synchronization with I2CCLK clock (2 to 3 I2CCLK periods) Figure 297. Master clock generation **Caution:** In order to be I²C or SMBus compliant, the master clock must respect the timings given the table below. Standard-Fast-mode Fast-mode **SMBus** mode (Sm) (Fm) Plus (Fm+) **Symbol Parameter** Unit Min Max Min Max Min Max Min Max SCL clock frequency 100 400 1000 100 kHz f_{SCL} Hold time (repeated) START condition 4.0 0.6 0.26 4.0 us t_{HD:STA} Set-up time for a repeated START 4.7 0.6 0.26 4.7 us t_{SU:STA} condition Set-up time for STOP condition 4.0 0.6 _ 0.26 4.0 μs t_{SU:STO} Bus free time between a STOP and 4.7 1.3 0.5 4.7 us t_{BUF} START condition Low period of the SCL clock 4.7 1.3 0.5 4.7 t_{LOW} μs Period of the SCL clock 4.0 0.6 0.26 4.0 50 t_{HIGH} μs Rise time of both SDA and SCL signals 1000 300 120 1000 t_r ns 300 300 120 300 Fall time of both SDA and SCL signals t_f ns Table 167. I²C-SMBus specification clock timings Note: SCLL is also used to generate the t_{BUF} and $t_{SU:STA}$ timings. SCLH is also used to generate the $t_{HD:STA}$ and $t_{SU:STO}$ timings. Refer to Section 32.4.11: I2C_TIMINGR register configuration examples for examples of I2C TIMINGR settings vs. I2CCLK frequency. ### Master communication initialization (address phase) In order to initiate the communication, the user must program the following parameters for the addressed slave in the I2C CR2 register: - Addressing mode (7-bit or 10-bit): ADD10 - Slave address to be sent: SADD[9:0] - Transfer direction: RD WRN - In case of 10-bit address read: HEAD10R bit. HEAD10R must be configure to indicate if the complete address sequence must be sent, or only the header in case of a direction change. - The number of bytes to be transferred: NBYTES[7:0]. If the number of bytes is equal to or greater than 255 bytes, NBYTES[7:0] must initially be filled with 0xFF. The user must then set the START bit in I2C_CR2 register. Changing all the above bits is not allowed when START bit is set. Then the master automatically sends the START condition followed by the slave address as soon as it detects that the bus is free (BUSY = 0) and after a delay of t_{BUF} . In case of an arbitration loss, the master automatically switches back to slave mode and can acknowledge its own address if it is addressed as a slave. Note: The START bit is reset by hardware when the slave address has been sent on the bus, whatever the received acknowledge value. The START bit is also reset by hardware if an arbitration loss occurs. In 10-bit addressing mode, when the Slave Address first 7 bits is NACKed by the slave, the RM0444 Rev 5 951/1390 master re-launches automatically the slave address transmission until ACK is received. In this case ADDRCF must be set if a NACK is received from the slave, in order to stop sending the slave address. If the I2C is addressed as a slave (ADDR=1) while
the START bit is set, the I2C switches to slave mode and the START bit is cleared, when the ADDRCF bit is set. Note: The same procedure is applied for a Repeated Start condition. In this case BUSY=1. Initial settings Enable interrupts and/or DMA in I2C_CR1 End MS19859V2 Figure 298. Master initialization flowchart # Initialization of a master receiver addressing a 10-bit address slave • If the slave address is in 10-bit format, the user can choose to send the complete read sequence by clearing the HEAD10R bit in the I2C_CR2 register. In this case the master automatically sends the following complete sequence after the START bit is set: (Re)Start + Slave address 10-bit header Write + Slave address 2nd byte + REStart + Slave address 10-bit header Read Figure 299. 10-bit address read access with HEAD10R=0 577 • If the master addresses a 10-bit address slave, transmits data to this slave and then reads data from the same slave, a master transmission flow must be done first. Then a repeated start is set with the 10 bit slave address configured with HEAD10R=1. In this case the master sends this sequence: ReStart + Slave address 10-bit header Read. 11110XX Slave address Slave address R/W A/A DATA DATA 1st 7 bits 2nd byte 11110XX Slave address R/W DATA DATA 1st 7 bits Read MS19823V1 Figure 300. 10-bit address read access with HEAD10R=1 #### Master transmitter In the case of a write transfer, the TXIS flag is set after each byte transmission, after the 9th SCL pulse when an ACK is received. A TXIS event generates an interrupt if the TXIE bit is set in the I2C_CR1 register. The flag is cleared when the I2C_TXDR register is written with the next data byte to be transmitted. The number of TXIS events during the transfer corresponds to the value programmed in NBYTES[7:0]. If the total number of data bytes to be sent is greater than 255, reload mode must be selected by setting the RELOAD bit in the I2C_CR2 register. In this case, when NBYTES data have been transferred, the TCR flag is set and the SCL line is stretched low until NBYTES[7:0] is written to a non-zero value. The TXIS flag is not set when a NACK is received. - When RELOAD=0 and NBYTES data have been transferred: - In automatic end mode (AUTOEND=1), a STOP is automatically sent. - In software end mode (AUTOEND=0), the TC flag is set and the SCL line is stretched low in order to perform software actions: A RESTART condition can be requested by setting the START bit in the I2C_CR2 register with the proper slave address configuration, and number of bytes to be transferred. Setting the START bit clears the TC flag and the START condition is sent on the bus. A STOP condition can be requested by setting the STOP bit in the I2C_CR2 register. Setting the STOP bit clears the TC flag and the STOP condition is sent on the bus. If a NACK is received: the TXIS flag is not set, and a STOP condition is automatically sent after the NACK reception. the NACKF flag is set in the I2C_ISR register, and an interrupt is generated if the NACKIE bit is set. 4 RM0444 Rev 5 953/1390 Figure 301. Transfer sequence flowchart for I2C master transmitter for N≤255 bytes RM0444 Rev 5 Figure 302. Transfer sequence flowchart for I2C master transmitter for N>255 bytes Figure 303. Transfer bus diagrams for I2C master transmitter #### Master receiver In the case of a read transfer, the RXNE flag is set after each byte reception, after the 8th SCL pulse. An RXNE event generates an interrupt if the RXIE bit is set in the I2C_CR1 register. The flag is cleared when I2C_RXDR is read. If the total number of data bytes to be received is greater than 255, reload mode must be selected by setting the RELOAD bit in the I2C_CR2 register. In this case, when NBYTES[7:0] data have been transferred, the TCR flag is set and the SCL line is stretched low until NBYTES[7:0] is written to a non-zero value. - When RELOAD=0 and NBYTES[7:0] data have been transferred: - In automatic end mode (AUTOEND=1), a NACK and a STOP are automatically sent after the last received byte. - In software end mode (AUTOEND=0), a NACK is automatically sent after the last received byte, the TC flag is set and the SCL line is stretched low in order to allow software actions: A RESTART condition can be requested by setting the START bit in the I2C_CR2 register with the proper slave address configuration, and number of bytes to be transferred. Setting the START bit clears the TC flag and the START condition, followed by slave address, are sent on the bus. A STOP condition can be requested by setting the STOP bit in the I2C_CR2 register. Setting the STOP bit clears the TC flag and the STOP condition is sent on the bus. RM0444 Rev 5 957/1390 Figure 304. Transfer sequence flowchart for I2C master receiver for N≤255 bytes Figure 305. Transfer sequence flowchart for I2C master receiver for N >255 bytes Example I2C master receiver 2 bytes, automatic end mode (STOP) RXNE **RXNE** legend: NA transmission Address A data2 data1 reception EV1 EV2 SCL stretch 2 NBYTES XX INIT: program Slave address, program NBYTES = 2, AUTOEND=1, set START EV1: RXNE ISR: rd data1 EV2: RXNE ISR: rd data2 Example I2C master receiver 2 bytes, software end mode (RESTART) legend: **RXNE** RXNE TC transmission Address ReS Address reception INIT SCL stretch **NBYTES** Ν ХX 2 INIT: program Slave address, program NBYTES = 2, AUTOEND=0, set START EV1: RXNE ISR: rd data1 EV2: RXNE ISR: read data2 EV3: TC ISR: program Slave address, program NBYTES = N, set START MS19865V1 Figure 306. Transfer bus diagrams for I2C master receiver # 32.4.11 I2C_TIMINGR register configuration examples The tables below provide examples of how to program the I2C_TIMINGR to obtain timings compliant with the I²C specification. In order to get more accurate configuration values, the STM32CubeMX tool (I2C Configuration window) must be used. | Parameter | Standard-mode (Sm) | | Fast-mode (Fm) | Fast-mode Plus (Fm+) | | |---------------------------------|------------------------|-----------------------|-------------------------|-------------------------|--| | Parameter | 10 kHz | 100 kHz | 400 kHz | 500 kHz | | | PRESC | 1 | 1 | 0 | 0 | | | SCLL | 0xC7 | 0x13 | 0x9 | 0x6 | | | t _{SCLL} | 200x250 ns = 50 μs | 20x250 ns = 5.0 μs | 10x125 ns = 1250 ns | 7x125 ns = 875 ns | | | SCLH | 0xC3 | 0xF | 0x3 | 0x3 | | | t _{SCLH} | 196x250 ns = 49 μs | 16x250 ns = 4.0µs | 4x125 ns = 500 ns | 4x125 ns = 500 ns | | | t _{SCL} ⁽¹⁾ | ~100 µs ⁽²⁾ | ~10 µs ⁽²⁾ | ~2500 ns ⁽³⁾ | ~2000 ns ⁽⁴⁾ | | | SDADEL | 0x2 | 0x2 | 0x1 | 0x0 | | | t _{SDADEL} | 2x250 ns = 500 ns | 2x250 ns = 500 ns | 1x125 ns = 125 ns | 0 ns | | | SCLDEL | 0x4 | 0x4 | 0x3 | 0x1 | | | t _{SCLDEL} | 5x250 ns = 1250 ns | 5x250 ns = 1250 ns | 4x125 ns = 500 ns | 2x125 ns = 250 ns | | SCL period t_{SCL} is greater than t_{SCLL} + t_{SCLH} due to SCL internal detection delay. Values provided for t_{SCL} are examples only. Table 169. Examples of timings settings for f_{I2CCLK} = 16 MHz | Parameter | Standard-mode (Sm) | | Fast-mode (Fm) | Fast-mode Plus (Fm+) | |---------------------------------|------------------------|-----------------------|-------------------------|-------------------------| | Parameter | 10 kHz | 100 kHz | 400 kHz | 1000 kHz | | PRESC | 3 | 3 | 1 | 0 | | SCLL | 0xC7 | 0x13 | 0x9 | 0x4 | | t _{SCLL} | 200 x 250 ns = 50 μs | 20 x 250 ns = 5.0 μs | 10 x 125 ns = 1250 ns | 5 x 62.5 ns = 312.5 ns | | SCLH | 0xC3 | 0xF | 0x3 | 0x2 | | t _{SCLH} | 196 x 250 ns = 49 μs | 16 x 250 ns = 4.0 μs | 4 x 125 ns = 500 ns | 3 x 62.5 ns = 187.5 ns | | t _{SCL} ⁽¹⁾ | ~100 µs ⁽²⁾ | ~10 µs ⁽²⁾ | ~2500 ns ⁽³⁾ | ~1000 ns ⁽⁴⁾ | | SDADEL | 0x2 | 0x2 | 0x2 | 0x0 | | t _{SDADEL} | 2 x 250 ns = 500 ns | 2 x 250 ns = 500 ns | 2 x 125 ns = 250 ns | 0 ns | | SCLDEL | 0x4 | 0x4 | 0x3 | 0x2 | | t _{SCLDEL} | 5 x 250 ns = 1250 ns | 5 x 250 ns = 1250 ns | 4 x 125 ns = 500 ns | 3 x 62.5 ns = 187.5 ns | SCL period t_{SCL} is greater than t_{SCLL} + t_{SCLH} due to SCL internal detection delay. Values provided for t_{SCL} are examples only. RM0444 Rev 5 961/1390 ^{2.} $t_{SYNC1} + t_{SYNC2}$ minimum value is 4 x $t_{I2CCLK} = 500$ ns. Example with $t_{SYNC1} + t_{SYNC2} = 1000$ ns. ^{3.} $t_{SYNC1} + t_{SYNC2}$ minimum value is 4 x t_{I2CCLK} = 500 ns. Example with $t_{SYNC1} + t_{SYNC2}$ = 750 ns. ^{4.} $t_{SYNC1} + t_{SYNC2}$ minimum value is 4 x t_{I2CCLK} = 500 ns. Example with $t_{SYNC1} + t_{SYNC2}$ = 655 ns. - 2. $t_{SYNC1} + t_{SYNC2}$ minimum value is 4 x t_{I2CCLK} = 250 ns. Example with $t_{SYNC1} + t_{SYNC2}$ = 1000 ns. - 3. $t_{SYNC1} + t_{SYNC2}$ minimum value is 4 x t_{12CCLK} = 250 ns. Example with $t_{SYNC1} + t_{SYNC2}$ = 750 ns. - 4. t_{SYNC1 +} t_{SYNC2} minimum value is 4 x t_{I2CCLK} = 250 ns. Example with t_{SYNC1 +} t_{SYNC1} = 500 ns. Table 170. Examples of timings settings for f_{12CCLK} = 48 MHz | Parameter | Standard-mode (Sm) | | Fast-mode (Fm) | Fast-mode Plus (Fm+) | | |---------------------------------|------------------------|-----------------------|-------------------------|------------------------|--| | Parameter | 10 kHz | 100 kHz | 400 kHz | 1000 kHz | | | PRESC | 0xB | 0xB | 5 | 5 | | | SCLL | 0xC7 | 0x13 | 0x9 | 0x3 | | | t _{SCLL} | 200 x 250 ns = 50 μs | 20 x 250 ns = 5.0 μs | 10 x 125 ns = 1250 ns | 4 x 125 ns = 500 ns | | | SCLH | 0xC3 | 0xF | 0x3 | 0x1 | | | t _{SCLH} | 196 x 250 ns = 49 μs | 16 x 250 ns = 4.0 μs | 4 x 125 ns = 500 ns | 2 x 125 ns = 250 ns | | | t _{SCL} ⁽¹⁾ | ~100 µs ⁽²⁾ | ~10 µs ⁽²⁾ | ~2500 ns ⁽³⁾ | ~875 ns ⁽⁴⁾ | | | SDADEL | 0x2 | 0x2 | 0x3 | 0x0 | | | t _{SDADEL} | 2 x 250 ns = 500 ns | 2 x 250 ns = 500 ns | 3 x 125 ns = 375 ns | 0 ns | | | SCLDEL | 0x4 | 0x4 | 0x3 | 0x1 | | | t _{SCLDEL} | 5 x 250 ns = 1250 ns | 5 x 250 ns = 1250 ns | 4 x 125 ns = 500 ns | 2 x 125 ns = 250 ns | | The SCL period t_{SCL} is greater than t_{SCLL} + t_{SCLH} due to the SCL internal detection delay. Values provided for t_{SCL} are only examples. - 2. $t_{SYNC1} + t_{SYNC2}$ minimum value is 4x t_{I2CCLK} = 83.3 ns. Example with
$t_{SYNC1} + t_{SYNC2}$ = 1000 ns - 3. $t_{SYNC1} + t_{SYNC2}$ minimum value is 4x t_{I2CCLK} = 83.3 ns. Example with $t_{SYNC1} + t_{SYNC2}$ = 750 ns - 4. t_{SYNC1 +} t_{SYNC2} minimum value is 4x t_{I2CCLK} = 83.3 ns. Example with t_{SYNC1 +} t_{SYNC2} = 250 ns # 32.4.12 SMBus specific features This section is relevant only when SMBus feature is supported. Refer to Section 32.3: I2C implementation. # Introduction The System Management Bus (SMBus) is a two-wire interface through which various devices can communicate with each other and with the rest of the system. It is based on I²C principles of operation. SMBus provides a control bus for system and power management related tasks. This peripheral is compatible with the SMBus specification (http://smbus.org). The System Management Bus Specification refers to three types of devices. - A slave is a device that receives or responds to a command. - A master is a device that issues commands, generates the clocks and terminates the transfer. - A host is a specialized master that provides the main interface to the system's CPU. A host must be a master-slave and must support the SMBus host notify protocol. Only one host is allowed in a system. This peripheral can be configured as master or slave device, and also as a host. ## **Bus protocols** There are eleven possible command protocols for any given device. A device may use any or all of the eleven protocols to communicate. The protocols are Quick Command, Send Byte, Receive Byte, Write Byte, Write Word, Read Byte, Read Word, Process Call, Block Read, Block Write and Block Write-Block Read Process Call. These protocols should be implemented by the user software. For more details of these protocols, refer to SMBus specification (http://smbus.org). ## Address resolution protocol (ARP) SMBus slave address conflicts can be resolved by dynamically assigning a new unique address to each slave device. In order to provide a mechanism to isolate each device for the purpose of address assignment each device must implement a unique device identifier (UDID). This 128-bit number is implemented by software. This peripheral supports the Address Resolution Protocol (ARP). The SMBus Device Default Address (0b1100 001) is enabled by setting SMBDEN bit in I2C_CR1 register. The ARP commands should be implemented by the user software. Arbitration is also performed in slave mode for ARP support. For more details of the SMBus Address Resolution Protocol, refer to SMBus specification (http://smbus.org). ## Received Command and Data acknowledge control A SMBus receiver must be able to NACK each received command or data. In order to allow the ACK control in slave mode, the Slave Byte Control mode must be enabled by setting SBC bit in I2C_CR1 register. Refer to *Slave Byte Control mode on page 942* for more details. ## **Host Notify protocol** This peripheral supports the Host Notify protocol by setting the SMBHEN bit in the I2C_CR1 register. In this case the host acknowledges the SMBus Host Address (0b0001 000). When this protocol is used, the device acts as a master and the host as a slave. ### SMBus alert The SMBus ALERT optional signal is supported. A slave-only device can signal the host through the SMBALERT# pin that it wants to talk. The host processes the interrupt and simultaneously accesses all SMBALERT# devices through the Alert Response Address (0b0001 100). Only the device(s) which pulled SMBALERT# low acknowledges the Alert Response Address. When configured as a slave device(SMBHEN=0), the SMBA pin is pulled low by setting the ALERTEN bit in the I2C_CR1 register. The Alert Response Address is enabled at the same time. When configured as a host (SMBHEN=1), the ALERT flag is set in the I2C_ISR register when a falling edge is detected on the SMBA pin and ALERTEN=1. An interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. When ALERTEN=0, the ALERT line is considered high even if the external SMBA pin is low. If the SMBus ALERT pin is not needed, the SMBA pin can be used as a standard GPIO if ALERTEN=0. RM0444 Rev 5 963/1390 # Packet error checking A packet error checking mechanism has been introduced in the SMBus specification to improve reliability and communication robustness. Packet Error Checking is implemented by appending a Packet Error Code (PEC) at the end of each message transfer. The PEC is calculated by using the $C(x) = x_8 + x^2 + x + 1$ CRC-8 polynomial on all the message bytes (including addresses and read/write bits). The peripheral embeds a hardware PEC calculator and allows a Not Acknowledge to be sent automatically when the received byte does not match with the hardware calculated PEC. #### **Timeouts** This peripheral embeds hardware timers in order to be compliant with the 3 timeouts defined in SMBus specification. | Symbol | Parameter | Limits | | Unit | | |--------------------------------------|--|--------|-----|-------|--| | Symbol | Farameter | Min | Max | Oilit | | | t _{TIMEOUT} | Detect clock low timeout | 25 | 35 | ms | | | t _{LOW:SEXT} ⁽¹⁾ | Cumulative clock low extend time (slave device) | - | 25 | ms | | | t _{LOW:MEXT} ⁽²⁾ | Cumulative clock low extend time (master device) | - | 10 | ms | | Table 171. SMBus timeout specifications t_{LOW:SEXT} is the cumulative time a given slave device is allowed to extend the clock cycles in one message from the initial START to the STOP. It is possible that, another slave device or the master also extends the clock causing the combined clock low extend time to be greater than t_{LOW:SEXT}. Therefore, this parameter is measured with the slave device as the sole target of a full-speed master. t_{LOW:MEXT} is the cumulative time a master device is allowed to extend its clock cycles within each byte of a message as defined from START-to-ACK, ACK-to-ACK, or ACK-to-STOP. It is possible that a slave device or another master also extends the clock causing the combined clock low time to be greater than t_{LOW:MEXT} on a given byte. Therefore, this parameter is measured with a full speed slave device as the sole target of the master. Figure 307. Timeout intervals for $t_{LOW:SEXT}$, $t_{LOW:MEXT}$ ## **Bus idle detection** A master can assume that the bus is free if it detects that the clock and data signals have been high for t_{IDLE} greater than $t_{\text{HIGH,MAX}}$. (refer to *Table 165: I2C-SMBus specification data setup and hold times*) This timing parameter covers the condition where a master has been dynamically added to the bus and may not have detected a state transition on the SMBCLK or SMBDAT lines. In this case, the master must wait long enough to ensure that a transfer is not currently in progress. The peripheral supports a hardware bus idle detection. # 32.4.13 SMBus initialization This section is relevant only when SMBus feature is supported. Refer to Section 32.3: I2C implementation. In addition to I2C initialization, some other specific initialization must be done in order to perform SMBus communication: ## Received Command and Data Acknowledge control (Slave mode) A SMBus receiver must be able to NACK each received command or data. In order to allow ACK control in slave mode, the Slave Byte Control mode must be enabled by setting the SBC bit in the I2C_CR1 register. Refer to *Slave Byte Control mode on page 942* for more details. ## Specific address (Slave mode) The specific SMBus addresses must be enabled if needed. Refer to *Bus idle detection on page 965* for more details. - The SMBus Device Default Address (0b1100 001) is enabled by setting the SMBDEN bit in the I2C_CR1 register. - The SMBus Host Address (0b0001 000) is enabled by setting the SMBHEN bit in the I2C CR1 register. - The Alert Response Address (0b0001100) is enabled by setting the ALERTEN bit in the I2C_CR1 register. ## Packet error checking PEC calculation is enabled by setting the PECEN bit in the I2C_CR1 register. Then the PEC transfer is managed with the help of a hardware byte counter: NBYTES[7:0] in the I2C_CR2 register. The PECEN bit must be configured before enabling the I2C. The PEC transfer is managed with the hardware byte counter, so the SBC bit must be set when interfacing the SMBus in slave mode. The PEC is transferred after NBYTES-1 data have been transferred when the PECBYTE bit is set and the RELOAD bit is cleared. If RELOAD is set, PECBYTE has no effect. Caution: Changing the PECEN configuration is not allowed when the I2C is enabled. SBC bit **RELOAD** bit **AUTOEND** bit **PECBYTE** bit Mode Master Tx/Rx NBYTES + PEC+ STOP 0 Х 1 1 Master Tx/Rx NBYTES + PEC + ReSTART 0 0 Х 1 Slave Tx/Rx with PEC 1 0 х 1 Table 172. SMBus with PEC configuration #### **Timeout detection** The timeout detection is enabled by setting the TIMOUTEN and TEXTEN bits in the I2C_TIMEOUTR register. The timers must be programmed in such a way that they detect a timeout before the maximum time given in the SMBus specification. t_{TIMEOUT} check In order to enable the t_{TIMEOUT} check, the 12-bit TIMEOUTA[11:0] bits must be programmed with the timer reload value in order to check the t_{TIMEOUT} parameter. The TIDLE bit must be configured to '0' in order to detect the SCL low level timeout. Then the timer is enabled by setting the TIMOUTEN in the I2C_TIMEOUTR register. If SCL is tied low for a time greater than (TIMEOUTA+1) x 2048 x t_{I2CCLK}, the TIMEOUT flag is set in the I2C_ISR register. Refer to Table 173: Examples of TIMEOUTA settings for various I2CCLK frequencies (max $t_{TIMEOUT}$ = 25 ms). **Caution:** Changing the TIMEOUTA[11:0] bits and TIDLE bit configuration is not allowed when the TIMEOUTEN bit is set. t_{LOW:SEXT} and t_{LOW:MEXT} check Depending on if the peripheral is configured as a master or as a slave, The 12-bit TIMEOUTB timer must be configured in order to check t_{LOW:SEXT} for a slave and $t_{\text{LOW:MEXT}}$ for a master. As the standard specifies only a maximum, the user
can choose the same value for the both. Then the timer is enabled by setting the TEXTEN bit in the I2C_TIMEOUTR register. If the SMBus peripheral performs a cumulative SCL stretch for a time greater than (TIMEOUTB+1) x 2048 x $t_{\rm I2CCLK}$, and in the timeout interval described in *Bus idle detection on page 965* section, the TIMEOUT flag is set in the I2C_ISR register. Refer to Table 174: Examples of TIMEOUTB settings for various I2CCLK frequencies Caution: Changing the TIMEOUTB configuration is not allowed when the TEXTEN bit is set. ### **Bus Idle detection** In order to enable the t_{IDLE} check, the 12-bit TIMEOUTA[11:0] field must be programmed with the timer reload value in order to obtain the t_{IDLE} parameter. The TIDLE bit must be configured to '1 in order to detect both SCL and SDA high level timeout. Then the timer is enabled by setting the TIMOUTEN bit in the I2C TIMEOUTR register. If both the SCL and SDA lines remain high for a time greater than (TIMEOUTA+1) x 4 x $t_{\rm I2CCLK}$, the TIMEOUT flag is set in the I2C_ISR register. Refer to Table 175: Examples of TIMEOUTA settings for various I2CCLK frequencies (max $t_{IDLE} = 50 \ \mu s$) Caution: Changing th Changing the TIMEOUTA and TIDLE configuration is not allowed when the TIMEOUTEN is set. # 32.4.14 SMBus: I2C_TIMEOUTR register configuration examples This section is relevant only when SMBus feature is supported. Refer to Section 32.3: I2C implementation. Configuring the maximum duration of t_{TIMFOUT} to 25 ms: Table 173. Examples of TIMEOUTA settings for various I2CCLK frequencies (max $t_{TIMEOUT} = 25 \text{ ms}$) | f _{I2CCLK} | TIMEOUTA[11:0] bits | TIDLE bit | TIMEOUTEN bit | t _{TIMEOUT} | |---------------------|---------------------|-----------|---------------|-------------------------------| | 8 MHz | 0x61 | 0 | 1 | 98 x 2048 x 125 ns = 25 ms | | 16 MHz | 0xC3 | 0 | 1 | 196 x 2048 x 62.5 ns = 25 ms | | 48 MHz | 0x249 | 0 | 1 | 586 x 2048 x 20.08 ns = 25 ms | Configuring the maximum duration of $t_{\text{LOW:SEXT}}$ and $t_{\text{LOW:MEXT}}$ to 8 ms: Table 174. Examples of TIMEOUTB settings for various I2CCLK frequencies | f _{I2CCLK} | TIMEOUTB[11:0] bits | TEXTEN bit | t _{LOW:EXT} | |---------------------|---------------------|------------|------------------------------| | 8 MHz | 0x1F | 1 | 32 x 2048 x 125 ns = 8 ms | | 16 MHz | 0x3F | 1 | 64 x 2048 x 62.5 ns = 8 ms | | 48 MHz | 0xBB | 1 | 188 x 2048 x 20.08 ns = 8 ms | RM0444 Rev 5 967/1390 Configuring the maximum duration of t_{IDLE} to 50 μs Table 175. Examples of TIMEOUTA settings for various I2CCLK frequencies (max t_{IDLE} = 50 μ s) | f _{I2CCLK} | TIMEOUTA[11:0] bits | TIDLE bit | TIMEOUTEN bit | t _{TIDLE} | |---------------------|---------------------|-----------|---------------|----------------------------| | 8 MHz | 0x63 | 1 | 1 | 100 x 4 x 125 ns = 50 μs | | 16 MHz | 0xC7 | 1 | 1 | 200 x 4 x 62.5 ns = 50 μs | | 48 MHz | 0x257 | 1 | 1 | 600 x 4 x 20.08 ns = 50 μs | ## 32.4.15 SMBus slave mode This section is relevant only when SMBus feature is supported. Refer to Section 32.3: I2C implementation. In addition to I2C slave transfer management (refer to Section 32.4.9: I2C slave mode) some additional software flowcharts are provided to support SMBus. #### SMBus Slave transmitter When the IP is used in SMBus, SBC must be programmed to '1' in order to allow the PEC transmission at the end of the programmed number of data bytes. When the PECBYTE bit is set, the number of bytes programmed in NBYTES[7:0] includes the PEC transmission. In that case the total number of TXIS interrupts is NBYTES-1 and the content of the I2C_PECR register is automatically transmitted if the master requests an extra byte after the NBYTES-1 data transfer. Caution: The PECBYTE bit has no effect when the RELOAD bit is set. Figure 308. Transfer sequence flowchart for SMBus slave transmitter N bytes + PEC Figure 309. Transfer bus diagrams for SMBus slave transmitter (SBC=1) 4 RM0444 Rev 5 969/1390 #### SMBus Slave receiver When the I2C is used in SMBus mode, SBC must be programmed to '1' in order to allow the PEC checking at the end of the programmed number of data bytes. In order to allow the ACK control of each byte, the reload mode must be selected (RELOAD=1). Refer to *Slave Byte Control mode on page 942* for more details. In order to check the PEC byte, the RELOAD bit must be cleared and the PECBYTE bit must be set. In this case, after NBYTES-1 data have been received, the next received byte is compared with the internal I2C_PECR register content. A NACK is automatically generated if the comparison does not match, and an ACK is automatically generated if the comparison matches, whatever the ACK bit value. Once the PEC byte is received, it is copied into the I2C_RXDR register like any other data, and the RXNE flag is set. In the case of a PEC mismatch, the PECERR flag is set and an interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. If no ACK software control is needed, the user can program PECBYTE=1 and, in the same write operation, program NBYTES with the number of bytes to be received in a continuous flow. After NBYTES-1 are received, the next received byte is checked as being the PEC. Caution: The PECBYTE bit has no effect when the RELOAD bit is set. Figure 310. Transfer sequence flowchart for SMBus slave receiver N Bytes + PEC Figure 311. Bus transfer diagrams for SMBus slave receiver (SBC=1) This section is relevant only when SMBus feature is supported. Refer to Section 32.3: I2C implementation. In addition to I2C master transfer management (refer to Section 32.4.10: I2C master mode) some additional software flowcharts are provided to support SMBus. ### **SMBus Master transmitter** When the SMBus master wants to transmit the PEC, the PECBYTE bit must be set and the number of bytes must be programmed in the NBYTES[7:0] field, before setting the START bit. In this case the total number of TXIS interrupts is NBYTES-1. So if the PECBYTE bit is set when NBYTES=0x1, the content of the I2C_PECR register is automatically transmitted. If the SMBus master wants to send a STOP condition after the PEC, automatic end mode must be selected (AUTOEND=1). In this case, the STOP condition automatically follows the PEC transmission. When the SMBus master wants to send a RESTART condition after the PEC, software mode must be selected (AUTOEND=0). In this case, once NBYTES-1 have been transmitted, the I2C_PECR register content is transmitted and the TC flag is set after the PEC transmission, stretching the SCL line low. The RESTART condition must be programmed in the TC interrupt subroutine. **Caution:** The PECBYTE bit has no effect when the RELOAD bit is set. Figure 312. Bus transfer diagrams for SMBus master transmitter RM0444 Rev 5 973/1390 #### SMBus Master receiver When the SMBus master wants to receive the PEC followed by a STOP at the end of the transfer, automatic end mode can be selected (AUTOEND=1). The PECBYTE bit must be set and the slave address must be programmed, before setting the START bit. In this case, after NBYTES-1 data have been received, the next received byte is automatically checked versus the I2C_PECR register content. A NACK response is given to the PEC byte, followed by a STOP condition. When the SMBus master receiver wants to receive the PEC byte followed by a RESTART condition at the end of the transfer, software mode must be selected (AUTOEND=0). The PECBYTE bit must be set and the slave address must be programmed, before setting the START bit. In this case, after NBYTES-1 data have been received, the next received byte is automatically checked versus the I2C_PECR register content. The TC flag is set after the PEC byte reception, stretching the SCL line low. The RESTART condition can be programmed in the TC interrupt subroutine. **Caution:** The PECBYTE bit has no effect when the RELOAD bit is set. Figure 313. Bus transfer diagrams for SMBus master receiver RM0444 Rev 5 975/1390 ## 32.4.16 Wakeup from Stop mode on address match This section is relevant only when Wakeup from Stop mode feature is supported. Refer to Section 32.3: I2C implementation. The I2C is able to wakeup the MCU from Stop mode (APB clock is off), when it is addressed. All addressing modes are supported. Wakeup from Stop mode is enabled by setting the WUPEN bit in the I2C_CR1 register. The HSI16 oscillator must be selected as the clock source for I2CCLK in order to allow wakeup from Stop mode. During Stop mode, the HSI16 is switched off. When a START is detected, the I2C interface switches the HSI16 on, and stretches SCL low until HSI16 is woken up. HSI16 is then used for the address reception. In case of an address match, the I2C stretches SCL low during MCU wakeup time. The stretch is released when ADDR flag is cleared by software, and the transfer goes on normally. If the address does not match, the HSI16 is switched off again and the MCU is not woken up. Note: If the I2C clock is the system clock, or if WUPEN = 0, the HSI16 is not switched on after a START is received. Only an ADDR interrupt can wakeup the MCU. Therefore do not enter Stop mode when the I2C is performing a transfer as a master, or as an addressed slave after the ADDR flag is set. This can be managed by clearing SLEEPDEEP bit in the ADDR interrupt routine and setting it again only after the STOPF flag is set. **Caution:** The digital filter is not compatible with the wakeup from Stop mode feature. If the DNF bit is not equal to 0, setting the WUPEN bit has no effect. **Caution:** This feature is available only when the I2C clock source is the HSI16 oscillator. **Caution:** Clock stretching must be enabled (NOSTRETCH=0) to ensure proper operation of the wakeup from Stop mode feature. **Caution:** If wakeup from Stop mode is disabled (WUPEN=0), the I2C peripheral must be disabled before entering Stop mode (PE=0). #### 32.4.17 Error conditions The following errors are the error conditions which
may cause communication to fail. ## **Bus error (BERR)** A bus error is detected when a START or a STOP condition is detected and is not located after a multiple of 9 SCL clock pulses. A START or a STOP condition is detected when a SDA edge occurs while SCL is high. The bus error flag is set only if the I2C is involved in the transfer as master or addressed slave (i.e not during the address phase in slave mode). In case of a misplaced START or RESTART detection in slave mode, the I2C enters address recognition state like for a correct START condition. When a bus error is detected, the BERR flag is set in the I2C_ISR register, and an interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. ## **Arbitration lost (ARLO)** An arbitration loss is detected when a high level is sent on the SDA line, but a low level is sampled on the SCL rising edge. - In master mode, arbitration loss is detected during the address phase, data phase and data acknowledge phase. In this case, the SDA and SCL lines are released, the START control bit is cleared by hardware and the master switches automatically to slave mode. - In slave mode, arbitration loss is detected during data phase and data acknowledge phase. In this case, the transfer is stopped, and the SCL and SDA lines are released. When an arbitration loss is detected, the ARLO flag is set in the I2C_ISR register, and an interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. ## Overrun/underrun error (OVR) An overrun or underrun error is detected in slave mode when NOSTRETCH=1 and: - In reception when a new byte is received and the RXDR register has not been read yet. The new received byte is lost, and a NACK is automatically sent as a response to the new byte. - In transmission: - When STOPF=1 and the first data byte should be sent. The content of the I2C_TXDR register is sent if TXE=0, 0xFF if not. - When a new byte must be sent and the I2C_TXDR register has not been written yet, 0xFF is sent. When an overrun or underrun error is detected, the OVR flag is set in the I2C_ISR register, and an interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. #### Packet Error Checking Error (PECERR) This section is relevant only when the SMBus feature is supported. Refer to Section 32.3: *I2C implementation*. A PEC error is detected when the received PEC byte does not match with the I2C_PECR register content. A NACK is automatically sent after the wrong PEC reception. When a PEC error is detected, the PECERR flag is set in the I2C_ISR register, and an interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. ## **Timeout Error (TIMEOUT)** This section is relevant only when the SMBus feature is supported. Refer to Section 32.3: I2C implementation. A timeout error occurs for any of these conditions: - TIDLE=0 and SCL remained low for the time defined in the TIMEOUTA[11:0] bits: this is used to detect a SMBus timeout. - TIDLE=1 and both SDA and SCL remained high for the time defined in the TIMEOUTA [11:0] bits: this is used to detect a bus idle condition. - Master cumulative clock low extend time reached the time defined in the TIMEOUTB[11:0] bits (SMBus t_{LOW:MEXT} parameter) - Slave cumulative clock low extend time reached the time defined in TIMEOUTB[11:0] bits (SMBus t_{LOW:SEXT} parameter) RM0444 Rev 5 977/1390 When a timeout violation is detected in master mode, a STOP condition is automatically sent When a timeout violation is detected in slave mode, SDA and SCL lines are automatically released. When a timeout error is detected, the TIMEOUT flag is set in the I2C_ISR register, and an interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. ## Alert (ALERT) This section is relevant only when the SMBus feature is supported. Refer to Section 32.3: I2C implementation. The ALERT flag is set when the I2C interface is configured as a Host (SMBHEN=1), the alert pin detection is enabled (ALERTEN=1) and a falling edge is detected on the SMBA pin. An interrupt is generated if the ERRIE bit is set in the I2C CR1 register. ## 32.4.18 DMA requests ## **Transmission using DMA** DMA (Direct Memory Access) can be enabled for transmission by setting the TXDMAEN bit in the I2C_CR1 register. Data is loaded from an SRAM area configured using the DMA peripheral (see Section 10: Direct memory access controller (DMA)) to the I2C_TXDR register whenever the TXIS bit is set. Only the data are transferred with DMA. - In master mode: the initialization, the slave address, direction, number of bytes and START bit are programmed by software (the transmitted slave address cannot be transferred with DMA). When all data are transferred using DMA, the DMA must be initialized before setting the START bit. The end of transfer is managed with the NBYTES counter. Refer to *Master transmitter on page 953*. - In slave mode: - With NOSTRETCH=0, when all data are transferred using DMA, the DMA must be initialized before the address match event, or in ADDR interrupt subroutine, before clearing ADDR. - With NOSTRETCH=1, the DMA must be initialized before the address match event - For instances supporting SMBus: the PEC transfer is managed with NBYTES counter. Refer to SMBus Slave transmitter on page 968 and SMBus Master transmitter on page 972. Note: If DMA is used for transmission, the TXIE bit does not need to be enabled. ## Reception using DMA DMA (Direct Memory Access) can be enabled for reception by setting the RXDMAEN bit in the I2C_CR1 register. Data is loaded from the I2C_RXDR register to an SRAM area configured using the DMA peripheral (refer to Section 10: Direct memory access controller (DMA) on page 277) whenever the RXNE bit is set. Only the data (including PEC) are transferred with DMA. In master mode, the initialization, the slave address, direction, number of bytes and START bit are programmed by software. When all data are transferred using DMA, the DMA must be initialized before setting the START bit. The end of transfer is managed with the NBYTES counter. - In slave mode with NOSTRETCH=0, when all data are transferred using DMA, the DMA must be initialized before the address match event, or in the ADDR interrupt subroutine, before clearing the ADDR flag. - If SMBus is supported (see Section 32.3: I2C implementation): the PEC transfer is managed with the NBYTES counter. Refer to SMBus Slave receiver on page 970 and SMBus Master receiver on page 974. Note: If DMA is used for reception, the RXIE bit does not need to be enabled. ## 32.4.19 Debug mode When the microcontroller enters debug mode (core halted), the SMBus timeout either continues to work normally or stops, depending on the DBG_I2Cx_SMBUS_TIMEOUT configuration bits in the DBG module. ## 32.5 I2C low-power modes Table 176. Effect of low-power modes on the I2C | Mode | Description | |---------------------|--| | Sleep | No effect. I2C interrupts cause the device to exit the Sleep mode. | | Stop ⁽¹⁾ | The I2C registers content is kept. If WUPEN = 1 and I2C is clocked by an internal oscillator (HSI16): the address recognition is functional. The I2C address match condition causes the device to exit the Stop mode. If WUPEN=0: the I2C must be disabled before entering Stop mode | | Standby | The I2C peripheral is powered down and must be reinitialized after exiting Standby mode. | Refer to <u>Section 32.3: I2C implementation</u> for information about the Stop modes supported by each instance. If wakeup from a specific Stop mode is not supported, the instance must be disabled before entering this Stop mode. RM0444 Rev 5 979/1390 # 32.6 I2C interrupts The table below gives the list of I2C interrupt requests. Table 177. I2C Interrupt requests | | errupt
ronym | Interrupt
event | Event
flag | Enable
control bit | Interrupt clear
method | Exit the
Sleep
mode | Exit the
Stop
mode | Exit the
Standby
modes | |-----|-----------------|----------------------------------|---------------|-----------------------|--|---------------------------|--------------------------|------------------------------| | | | Receive buffer not empty | RXNE | RXIE | Read I2C_RXDR register | | | | | | | Transmit buffer interrupt status | TXIS | TXIE | Write I2C_TXDR register | | | | | | | Stop detection interrupt flag | STOPF | STOPIE | Write
STOPCF=1 | | | | | | | Transfer
Complete
Reload | TCR | TCIE | Write I2C_CR2
with
NBYTES[7:0] ≠ 0 | ., | No | | | | I2C_EV | Transfer complete | TC | | Write START=1
or STOP=1 | Yes | | No | | | | Address
matched | ADDR | ADDRIE | Write
ADDRCF=1 | | Yes ⁽¹⁾ | | | | | NACK reception | NACKF | NACKIE | Write
NACKCF=1 | | No | | | I2C | | Bus error | BERR | | Write
BERRCF=1 | | | | | | | Arbitration loss | ARLO | | Write
ARLOCF=1 | | | | | | I2C_ER | Overrun/Under run | OVR | ERRIE | Write OVRCF=1 | Yes | No | No | | | IZO_LIK | PEC error | PECERR | LIVIL | Write
PECERRCF=1 | | NO | 140 | | | | Timeout/t _{LOW} error | TIMEOUT | | Write
TIMEOUTCF=1 | | | | | | | SMBus Alert | ALERT | | Write
ALERTCF=1 | | | | ^{1.} The ADDR match event can wake up the device from Stop mode only if the I2C instance supports the Wakeup from Stop mode feature. Refer to Section 32.3: I2C implementation. ## 32.7 I2C registers Refer to Section 1.2 on page 53 for a list of abbreviations used in register descriptions. The peripheral registers are accessed by words (32-bit). ## 32.7.1 I2C control register 1 (I2C CR1) Address offset: 0x00 Reset value: 0x0000 0000 Access: No wait states, except if a write access occurs while a write access to this register is ongoing. In this case, wait states are inserted in the second write
access until the previous one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x I2CCLK. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------------|-------------|------|------------|------|------|-------|------|-------|-------------|------------|------------|------------|-----------|---------------|-----| | Res. PECEN | ALERT
EN | SMBD
EN | SMBH
EN | GCEN | WUPE
N | NOSTR
ETCH | SBC | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | RXDMA
EN | TXDMA
EN | Res. | ANF
OFF | | DNF | [3:0] | | ERRIE | TCIE | STOP
IE | NACK
IE | ADDR
IE | RXIE | TXIE | PE | | | | | | | | | | | | | | | | | | Bits 31:24 Reserved, must be kept at reset value. Bit 23 PECEN: PEC enable 0: PEC calculation disabled 1: PEC calculation enabled Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to '0'. Refer to Section 32.3: I2C implementation. #### Bit 22 ALERTEN: SMBus alert enable 0: The SMBus alert pin (SMBA) is not supported in host mode (SMBHEN=1). In device mode (SMBHEN=0), the SMBA pin is released and the Alert Response Address header is disabled (0001100x followed by NACK). 1: The SMBus alert pin is supported in host mode (SMBHEN=1). In device mode (SMBHEN=0), the SMBA pin is driven low and the Alert Response Address header is enabled (0001100x followed by ACK). Note: When ALERTEN=0, the SMBA pin can be used as a standard GPIO. If the SMBus feature is not supported, this bit is reserved and forced by hardware to '0'. Refer to Section 32.3: I2C implementation. #### Bit 21 SMBDEN: SMBus Device Default Address enable - 0: Device Default Address disabled. Address 0b1100001x is NACKed. - 1: Device Default Address enabled. Address 0b1100001x is ACKed. Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to '0'. Refer to Section 32.3: I2C implementation. #### Bit 20 SMBHEN: SMBus Host Address enable - 0: Host Address disabled. Address 0b0001000x is NACKed. - 1: Host Address enabled. Address 0b0001000x is ACKed. Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to '0'. Refer to Section 32.3: I2C implementation. RM0444 Rev 5 981/1390 #### Bit 19 GCEN: General call enable - 0: General call disabled. Address 0b00000000 is NACKed. - 1: General call enabled. Address 0b00000000 is ACKed. #### Bit 18 WUPEN: Wakeup from Stop mode enable - 0: Wakeup from Stop mode disable. - 1: Wakeup from Stop mode enable. Note: If the Wakeup from Stop mode feature is not supported, this bit is reserved and forced by hardware to '0'. Refer to Section 32.3: I2C implementation. Note: WUPEN can be set only when DNF = '0000' #### Bit 17 NOSTRETCH: Clock stretching disable This bit is used to disable clock stretching in slave mode. It must be kept cleared in master mode. - 0: Clock stretching enabled - 1: Clock stretching disabled Note: This bit can only be programmed when the I2C is disabled (PE = 0). #### Bit 16 SBC: Slave byte control This bit is used to enable hardware byte control in slave mode. - 0: Slave byte control disabled - 1: Slave byte control enabled #### Bit 15 **RXDMAEN**: DMA reception requests enable - 0: DMA mode disabled for reception - 1: DMA mode enabled for reception #### Bit 14 TXDMAEN: DMA transmission requests enable - 0: DMA mode disabled for transmission - 1: DMA mode enabled for transmission # Bit 13 Reserved, must be kept at reset value. - Bit 12 **ANFOFF:** Analog noise filter OFF 0: Analog noise filter enabled - 1: Analog noise filter disabled Note: This bit can only be programmed when the I2C is disabled (PE = 0). ## Bits 11:8 DNF[3:0]: Digital noise filter These bits are used to configure the digital noise filter on SDA and SCL input. The digital filter, filters spikes with a length of up to DNF[3:0] * t_{12CCLK} 0000: Digital filter disabled 0001: Digital filter enabled and filtering capability up to 1 t_{I2CCLK} ... 1111: digital filter enabled and filtering capability up to15 t_{l2CCLK} Note: If the analog filter is also enabled, the digital filter is added to the analog filter. This filter can only be programmed when the I2C is disabled (PE = 0). Bit 7 ERRIE: Error interrupts enable 0: Error detection interrupts disabled 1: Error detection interrupts enabled Note: Any of these errors generate an interrupt: Arbitration Loss (ARLO) Bus Error detection (BERR) Overrun/Underrun (OVR) Timeout detection (TIMEOUT) PEC error detection (PECERR) Alert pin event detection (ALERT) Bit 6 TCIE: Transfer Complete interrupt enable 0: Transfer Complete interrupt disabled 1: Transfer Complete interrupt enabled Note: Any of these events generate an interrupt: Transfer Complete (TC) Transfer Complete Reload (TCR) Bit 5 **STOPIE**: Stop detection Interrupt enable 0: Stop detection (STOPF) interrupt disabled 1: Stop detection (STOPF) interrupt enabled Bit 4 NACKIE: Not acknowledge received Interrupt enable 0: Not acknowledge (NACKF) received interrupts disabled 1: Not acknowledge (NACKF) received interrupts enabled Bit 3 ADDRIE: Address match Interrupt enable (slave only) 0: Address match (ADDR) interrupts disabled 1: Address match (ADDR) interrupts enabled Bit 2 RXIE: RX Interrupt enable 0: Receive (RXNE) interrupt disabled 1: Receive (RXNE) interrupt enabled Bit 1 TXIE: TX Interrupt enable 0: Transmit (TXIS) interrupt disabled 1: Transmit (TXIS) interrupt enabled Bit 0 PE: Peripheral enable 0: Peripheral disable 1: Peripheral enable Note: When PE=0, the I2C SCL and SDA lines are released. Internal state machines and status bits are put back to their reset value. When cleared, PE must be kept low for at least 3 APB clock cycles. RM0444 Rev 5 983/1390 #### 32.7.2 I2C control register 2 (I2C_CR2) Address offset: 0x04 Reset value: 0x0000 0000 Access: No wait states, except if a write access occurs while a write access to this register is ongoing. In this case, wait states are inserted in the second write access until the previous one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x I2CCLK. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|-------|-------------|-------|-------------|-------------|------------|----|----|------|--------|---------|----|----|----| | Res. | Res. | Res. | Res. | Res. | PEC
BYTE | AUTOE
ND | RE
LOAD | | | | NBYT | ES[7:0] | | | | | | | | | | rs | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | NACK | STOP | START | HEAD1
0R | ADD10 | RD_
WRN | | | | | SADI | D[9:0] | | | | _ | | rs | rs | rs | rw Bits 31:27 Reserved, must be kept at reset value. #### Bit 26 PECBYTE: Packet error checking byte This bit is set by software, and cleared by hardware when the PEC is transferred, or when a STOP condition or an Address matched is received, also when PE=0. 0: No PEC transfer. 1: PEC transmission/reception is requested Note: Writing '0' to this bit has no effect. This bit has no effect when RELOAD is set. This bit has no effect is slave mode when SBC=0. If the SMBus feature is not supported, this bit is reserved and forced by hardware to '0'. Refer to Section 32.3: I2C implementation. ### Bit 25 AUTOEND: Automatic end mode (master mode) This bit is set and cleared by software. 0: software end mode: TC flag is set when NBYTES data are transferred, stretching SCL low. 1: Automatic end mode: a STOP condition is automatically sent when NBYTES data are transferred. Note: This bit has no effect in slave mode or when the RELOAD bit is set. #### Bit 24 RELOAD: NBYTES reload mode This bit is set and cleared by software. 0: The transfer is completed after the NBYTES data transfer (STOP or RESTART follows). 1: The transfer is not completed after the NBYTES data transfer (NBYTES is reloaded). TCR flag is set when NBYTES data are transferred, stretching SCL low. #### Bits 23:16 NBYTES[7:0]: Number of bytes The number of bytes to be transmitted/received is programmed there. This field is don't care in slave mode with SBC=0. Note: Changing these bits when the START bit is set is not allowed. #### Bit 15 NACK: NACK generation (slave mode) The bit is set by software, cleared by hardware when the NACK is sent, or when a STOP condition or an Address matched is received, or when PE=0. 0: an ACK is sent after current received byte. 1: a NACK is sent after current received byte. Note: Writing '0' to this bit has no effect. This bit is used in slave mode only: in master receiver mode, NACK is automatically generated after last byte preceding STOP or RESTART condition, whatever the NACK bit value. When an overrun occurs in slave receiver NOSTRETCH mode, a NACK is automatically generated whatever the NACK bit value. When hardware PEC checking is enabled (PECBYTE=1), the PEC acknowledge value does not depend on the NACK value. ## Bit 14 **STOP**: Stop generation (master mode) The bit is set by software, cleared by hardware when a STOP condition is detected, or when PE = 0. #### In Master Mode: - 0: No Stop generation. - 1: Stop generation after current byte transfer. Note: Writing '0' to this bit has no effect. #### Bit 13 START: Start generation This bit is set by software, and cleared by hardware after the Start followed by the address sequence is sent, by an arbitration loss, by a timeout error detection, or when PE = 0. It can also be cleared by software by writing '1' to the ADDRCF bit in the I2C_ICR register. 0: No Start generation. 1: Restart/Start generation: If the I2C is already in master mode with AUTOEND = 0, setting this bit generates a Repeated Start condition when RELOAD=0, after the end of the NBYTES transfer. Otherwise setting this bit generates a START condition once the bus is free. Note: Writing '0' to this bit has no effect. The START bit can be set even if the bus is BUSY or I2C is in slave mode. This bit has no effect when RELOAD is set. ## Bit 12 **HEAD10R**:
10-bit address header only read direction (master receiver mode) - 0: The master sends the complete 10 bit slave address read sequence: Start + 2 bytes 10bit address in write direction + Restart + 1st 7 bits of the 10 bit address in read direction. - 1: The master only sends the 1st 7 bits of the 10 bit address, followed by Read direction. Note: Changing this bit when the START bit is set is not allowed. RM0444 Rev 5 985/1390 ## Bit 11 ADD10: 10-bit addressing mode (master mode) - 0: The master operates in 7-bit addressing mode, - 1: The master operates in 10-bit addressing mode Note: Changing this bit when the START bit is set is not allowed. ## Bit 10 RD_WRN: Transfer direction (master mode) - 0: Master requests a write transfer. - 1: Master requests a read transfer. Note: Changing this bit when the START bit is set is not allowed. ## Bits 9:0 SADD[9:0]: Slave address (master mode) ## In 7-bit addressing mode (ADD10 = 0): SADD[7:1] should be written with the 7-bit slave address to be sent. The bits SADD[9], SADD[8] and SADD[0] are don't care. ## In 10-bit addressing mode (ADD10 = 1): SADD[9:0] should be written with the 10-bit slave address to be sent. Note: Changing these bits when the START bit is set is not allowed. RM0444 Rev 5 986/1390 ## 32.7.3 I2C own address 1 register (I2C_OAR1) Address offset: 0x08 Reset value: 0x0000 0000 Access: No wait states, except if a write access occurs while a write access to this register is ongoing. In this case, wait states are inserted in the second write access until the previous one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x I2CCLK. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------|------|------|------|------|-------------|------|------|------|------|------|-------|------|------|------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | OA1EN | | Res. | Res. | Res. | OA1
MODE | 9 | 8 | 7 | 6 | | [9:0] | 3 | 2 | 1 | 0 | Bits 31:16 Reserved, must be kept at reset value. Bit 15 OA1EN: Own Address 1 enable 0: Own address 1 disabled. The received slave address OA1 is NACKed. 1: Own address 1 enabled. The received slave address OA1 is ACKed. Bits 14:11 Reserved, must be kept at reset value. Bit 10 OA1MODE: Own Address 1 10-bit mode 0: Own address 1 is a 7-bit address. 1: Own address 1 is a 10-bit address. Note: This bit can be written only when OA1EN=0. Bits 9:0 OA1[9:0]: Interface own slave address 7-bit addressing mode: OA1[7:1] contains the 7-bit own slave address. The bits OA1[9], OA1[8] and OA1[0] are don't care. 10-bit addressing mode: OA1[9:0] contains the 10-bit own slave address. Note: These bits can be written only when OA1EN=0. 5 RM0444 Rev 5 987/1390 #### 32.7.4 I2C own address 2 register (I2C_OAR2) Address offset: 0x0C Reset value: 0x0000 0000 Access: No wait states, except if a write access occurs while a write access to this register is ongoing. In this case, wait states are inserted in the second write access until the previous one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x I2CCLK. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------|------|------|------|------|------|---------|------|------|------|------|----------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | OA2EN | Res. | Res. | Res. | Res. | 0. | A2MSK[2 | :0] | | | | OA2[7:1] | | | | Res. | | | | | | | rw | Bits 31:16 Reserved, must be kept at reset value. #### Bit 15 OA2EN: Own Address 2 enable - 0: Own address 2 disabled. The received slave address OA2 is NACKed. - 1: Own address 2 enabled. The received slave address OA2 is ACKed. Bits 14:11 Reserved, must be kept at reset value. ## Bits 10:8 OA2MSK[2:0]: Own Address 2 masks 000: No mask 001: OA2[1] is masked and don't care. Only OA2[7:2] are compared. 010: OA2[2:1] are masked and don't care. Only OA2[7:3] are compared. 011: OA2[3:1] are masked and don't care. Only OA2[7:4] are compared. 100: OA2[4:1] are masked and don't care. Only OA2[7:5] are compared. 101: OA2[5:1] are masked and don't care. Only OA2[7:6] are compared. 110: OA2[6:1] are masked and don't care. Only OA2[7] is compared. 111: OA2[7:1] are masked and don't care. No comparison is done, and all (except reserved) 7-bit received addresses are acknowledged. Note: These bits can be written only when OA2EN=0. As soon as OA2MSK is not equal to 0, the reserved I2C addresses (0b0000xxx and 0b1111xxx) are not acknowledged even if the comparison matches. ## Bits 7:1 OA2[7:1]: Interface address 7-bit addressing mode: 7-bit address Note: These bits can be written only when OA2EN=0. Bit 0 Reserved, must be kept at reset value. ## 32.7.5 I2C timing register (I2C_TIMINGR) Address offset: 0x10 Reset value: 0x0000 0000 Access: No wait states | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|------|---------|------|--------|------|------|------|----|-------|--------|------|--------|------|----------|----| | | PRES | SC[3:0] | | Res. | Res. | Res. | Res. | | SCLDE | L[3:0] | | | SDAD | DEL[3:0] | | | rw | rw | rw | rw | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | SCLF | I[7:0] | | | | | | | SCLL | .[7:0] | | | | | rw #### Bits 31:28 PRESC[3:0]: Timing prescaler This field is used to prescale I2CCLK in order to generate the clock period t_{PRESC} used for data setup and hold counters (refer to *I2C timings on page 934*) and for SCL high and low level counters (refer to *I2C master initialization on page 949*). $t_{PRESC} = (PRESC+1) \times t_{I2CCLK}$ Bits 27:24 Reserved, must be kept at reset value. #### Bits 23:20 SCLDEL[3:0]: Data setup time This field is used to generate a delay t_{SCLDEL} between SDA edge and SCL rising edge. In master mode and in slave mode with NOSTRETCH = 0, the SCL line is stretched low during toology. $t_{SCLDEL} = (SCLDEL+1) x t_{PRESC}$ Note: t_{SCLDEL} is used to generate t_{SU:DAT} timing. #### Bits 19:16 SDADEL[3:0]: Data hold time This field is used to generate the delay t_{SDADEL} between SCL falling edge and SDA edge. In master mode and in slave mode with NOSTRETCH = 0, the SCL line is stretched low during t_{SDADEL} . t_{SDADEL} = SDADEL x t_{PRESC} Note: SDADEL is used to generate t_{HD:DAT} timing. ## Bits 15:8 SCLH[7:0]: SCL high period (master mode) This field is used to generate the SCL high period in master mode. $t_{SCIH} = (SCLH+1) \times t_{PRESC}$ Note: SCLH is also used to generate $t_{SU:STO}$ and $t_{HD:STA}$ timing. #### Bits 7:0 SCLL[7:0]: SCL low period (master mode) This field is used to generate the SCL low period in master mode. $t_{SCLL} = (SCLL+1) \times t_{PRESC}$ Note: SCLL is also used to generate t_{BUF} and t_{SU:STA} timings. Note: This register must be configured when the I2C is disabled (PE = 0). Note: The STM32CubeMX tool calculates and provides the I2C_TIMINGR content in the I2C Configuration window. ## 32.7.6 I2C timeout register (I2C_TIMEOUTR) Address offset: 0x14 Reset value: 0x0000 0000 Access: No wait states, except if a write access occurs while a write access to this register is ongoing. In this case, wait states are inserted in the second write access until the previous one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x I2CCLK. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----------|------|------|-------|----|----|----|----|----|--------|----------|----|----|----|----|----| | TEXTEN | Res. | Res. | Res. | | | | | - | TIMEOU | TB[11:0] | | | | | | | rw | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | TIMOUTEN | Res. | Res. | TIDLE | | | | | | TIMEOU | TA[11:0] | | | | | | | rw | | | rw #### Bit 31 TEXTEN: Extended clock timeout enable - 0: Extended clock timeout detection is disabled - 1: Extended clock timeout detection is enabled. When a cumulative SCL stretch for more than $t_{LOW:EXT}$ is done by the I2C interface, a timeout error is detected (TIMEOUT=1). Bits 30:28 Reserved, must be kept at reset value. #### Bits 27:16 TIMEOUTB[11:0]: Bus timeout B This field is used to configure the cumulative clock extension timeout: In master mode, the master cumulative clock low extend time ($t_{LOW:MEXT}$) is detected In slave mode, the slave cumulative clock low extend time ($t_{LOW:SEXT}$) is detected t_{LOW:EXT}= (TIMEOUTB+1) x 2048 x t_{I2CCLK} Note: These bits can be written only when TEXTEN=0. ## Bit 15 TIMOUTEN: Clock timeout enable - 0: SCL timeout detection is disabled - 1: SCL timeout detection is enabled: when SCL is low for more than t_{TIMEOUT} (TIDLE=0) or high for more than t_{IDLE} (TIDLE=1), a timeout error is detected (TIMEOUT=1). - Bits 14:13 Reserved, must be kept at reset value. #### Bit 12 TIDLE: Idle clock timeout detection - 0: TIMEOUTA is used to detect SCL low timeout - 1: TIMEOUTA is used to detect both SCL and SDA high timeout (bus idle condition) Note: This bit can be written only when TIMOUTEN=0. ## Bits 11:0 TIMEOUTA[11:0]: Bus Timeout A This field is used to configure: The SCL low timeout condition t_{TIMEOUT} when TIDLE=0 t_{TIMEOUT}= (TIMEOUTA+1) x 2048 x t_{I2CCLK} The bus idle condition (both SCL and SDA high) when TIDLE=1 t_{IDLE}= (TIMEOUTA+1) x 4 x t_{I2CCLK} Note: These bits can be written only when TIMOUTEN=0. Note: If the SMBus feature is not supported, this register is reserved and forced by hardware to "0x0000000". Refer to Section 32.3: I2C implementation. ## 32.7.7 I2C interrupt and status register (I2C_ISR) Address offset: 0x18 Reset value: 0x0000 0001 Access: No wait states | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|-------|-------------|------------|------
------|------|-----|----|----|---------|------|------|------|-----| | Res. | | AD | DCODE[6 | 6:0] | | | DIR | | | | | | | | | | r | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 2 | 2 | -1 | | | | | | | • • • | 10 | 9 | U | , | О | 5 | 4 | 3 | 2 | ı | 0 | | BUSY | Res. | ALERT | TIME
OUT | PEC
ERR | OVR | ARLO | BERR | TCR | TC | | NACKF | | RXNE | TXIS | TXE | Bits 31:24 Reserved, must be kept at reset value. ## Bits 23:17 ADDCODE[6:0]: Address match code (Slave mode) These bits are updated with the received address when an address match event occurs (ADDR = 1). In the case of a 10-bit address, ADDCODE provides the 10-bit header followed by the 2 MSBs of the address. #### Bit 16 **DIR**: Transfer direction (Slave mode) This flag is updated when an address match event occurs (ADDR=1). 0: Write transfer, slave enters receiver mode. 1: Read transfer, slave enters transmitter mode. #### Bit 15 BUSY: Bus busy This flag indicates that a communication is in progress on the bus. It is set by hardware when a START condition is detected. It is cleared by hardware when a STOP condition is detected, or when PE=0. #### Bit 14 Reserved, must be kept at reset value. #### Bit 13 ALERT: SMBus alert This flag is set by hardware when SMBHEN=1 (SMBus host configuration), ALERTEN=1 and a SMBALERT event (falling edge) is detected on SMBA pin. It is cleared by software by setting the ALERTCF bit. Note: This bit is cleared by hardware when PE=0. If the SMBus feature is not supported, this bit is reserved and forced by hardware to '0'. Refer to Section 32.3: I2C implementation. #### Bit 12 **TIMEOUT**: Timeout or t_{LOW} detection flag This flag is set by hardware when a timeout or extended clock timeout occurred. It is cleared by software by setting the TIMEOUTCF bit. Note: This bit is cleared by hardware when PE=0. If the SMBus feature is not supported, this bit is reserved and forced by hardware to '0'. Refer to Section 32.3: I2C implementation. RM0444 Rev 5 991/1390 #### Bit 11 **PECERR**: PEC Error in reception This flag is set by hardware when the received PEC does not match with the PEC register content. A NACK is automatically sent after the wrong PEC reception. It is cleared by software by setting the PECCF bit. Note: This bit is cleared by hardware when PE=0. If the SMBus feature is not supported, this bit is reserved and forced by hardware to '0'. Refer to Section 32.3: I2C implementation. #### Bit 10 OVR: Overrun/Underrun (slave mode) This flag is set by hardware in slave mode with NOSTRETCH=1, when an overrun/underrun error occurs. It is cleared by software by setting the OVRCF bit. Note: This bit is cleared by hardware when PE=0. #### Bit 9 ARLO: Arbitration lost This flag is set by hardware in case of arbitration loss. It is cleared by software by setting the ARLOCF bit. Note: This bit is cleared by hardware when PE=0. #### Bit 8 BERR: Bus error This flag is set by hardware when a misplaced Start or STOP condition is detected whereas the peripheral is involved in the transfer. The flag is not set during the address phase in slave mode. It is cleared by software by setting *BERRCF bit*. Note: This bit is cleared by hardware when PE=0. #### Bit 7 TCR: Transfer Complete Reload This flag is set by hardware when RELOAD=1 and NBYTES data have been transferred. It is cleared by software when NBYTES is written to a non-zero value. Note: This bit is cleared by hardware when PE=0. This flag is only for master mode, or for slave mode when the SBC bit is set. #### Bit 6 TC: Transfer Complete (master mode) This flag is set by hardware when RELOAD=0, AUTOEND=0 and NBYTES data have been transferred. It is cleared by software when START bit or STOP bit is set. Note: This bit is cleared by hardware when PE=0. #### Bit 5 STOPF: Stop detection flag This flag is set by hardware when a STOP condition is detected on the bus and the peripheral is involved in this transfer: - either as a master, provided that the STOP condition is generated by the peripheral. - or as a slave, provided that the peripheral has been addressed previously during this transfer. It is cleared by software by setting the STOPCF bit. Note: This bit is cleared by hardware when PE=0. #### Bit 4 NACKF: Not Acknowledge received flag This flag is set by hardware when a NACK is received after a byte transmission. It is cleared by software by setting the NACKCF bit. Note: This bit is cleared by hardware when PE=0. #### Bit 3 ADDR: Address matched (slave mode) This bit is set by hardware as soon as the received slave address matched with one of the enabled slave addresses. It is cleared by software by setting *ADDRCF bit*. Note: This bit is cleared by hardware when PE=0. #### Bit 2 **RXNE**: Receive data register not empty (receivers) This bit is set by hardware when the received data is copied into the I2C_RXDR register, and is ready to be read. It is cleared when I2C_RXDR is read. Note: This bit is cleared by hardware when PE=0. #### Bit 1 TXIS: Transmit interrupt status (transmitters) This bit is set by hardware when the I2C_TXDR register is empty and the data to be transmitted must be written in the I2C_TXDR register. It is cleared when the next data to be sent is written in the I2C_TXDR register. This bit can be written to '1' by software when NOSTRETCH=1 only, in order to generate a TXIS event (interrupt if TXIE=1 or DMA request if TXDMAEN=1). Note: This bit is cleared by hardware when PE=0. #### Bit 0 TXE: Transmit data register empty (transmitters) This bit is set by hardware when the I2C_TXDR register is empty. It is cleared when the next data to be sent is written in the I2C_TXDR register. This bit can be written to '1' by software in order to flush the transmit data register I2C TXDR. Note: This bit is set by hardware when PE=0. ## 32.7.8 I2C interrupt clear register (I2C_ICR) Address offset: 0x1C Reset value: 0x0000 0000 Access: No wait states | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|-------------|-------|------|------|------|------------|------|------|------|------------|----|------|------|------| | Res. | Res. | Res. | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | | | | | | | | | | | Res. | Res. | ALERT
CF | TIMOU | | | | BERRC
F | Res. | Res. | | NACKC
F | | Res. | Res. | Res. | Bits 31:14 Reserved, must be kept at reset value. ### Bit 13 ALERTCF: Alert flag clear Writing 1 to this bit clears the ALERT flag in the I2C ISR register. Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to '0'. Refer to Section 32.3: I2C implementation. ## Bit 12 **TIMOUTCF**: Timeout detection flag clear Writing 1 to this bit clears the TIMEOUT flag in the I2C ISR register. Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to '0'. Refer to Section 32.3: I2C implementation. #### Bit 11 PECCF: PEC Error flag clear Writing 1 to this bit clears the PECERR flag in the I2C_ISR register. Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to '0'. Refer to Section 32.3: I2C implementation. 4 RM0444 Rev 5 993/1390 Bit 10 OVRCF: Overrun/Underrun flag clear Writing 1 to this bit clears the OVR flag in the I2C_ISR register. Bit 9 **ARLOCF**: Arbitration lost flag clear Writing 1 to this bit clears the ARLO flag in the I2C_ISR register. Bit 8 BERRCF: Bus error flag clear Writing 1 to this bit clears the BERRF flag in the I2C ISR register. Bits 7:6 Reserved, must be kept at reset value. Bit 5 STOPCF: STOP detection flag clear Writing 1 to this bit clears the STOPF flag in the I2C_ISR register. Bit 4 NACKCF: Not Acknowledge flag clear Writing 1 to this bit clears the NACKF flag in I2C_ISR register. Bit 3 ADDRCF: Address matched flag clear Writing 1 to this bit clears the ADDR flag in the I2C_ISR register. Writing 1 to this bit also clears the START bit in the I2C_CR2 register. Bits 2:0 Reserved, must be kept at reset value. ## 32.7.9 I2C PEC register (I2C_PECR) Address offset: 0x20 Reset value: 0x0000 0000 Access: No wait states | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | PEC | [7:0] | | | | | | | | | | | | | r | r | r | r | r | r | r | r | Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 PEC[7:0] Packet error checking register This field contains the internal PEC when PECEN=1. The PEC is cleared by hardware when PE=0. Note: If the SMBus feature is not supported, this register is reserved and forced by hardware to "0x00000000". Refer to Section 32.3: I2C implementation. ## 32.7.10 I2C receive data register (I2C_RXDR) Address offset: 0x24 Reset value: 0x0000 0000 Access: No wait states | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|------|------|------|-----------|------|------|------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7 | 6 | 5 | 4
RXDA | | 2 | 1 | 0 | Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 RXDATA[7:0] 8-bit receive data $\hbox{ Data byte received from the I^2C bus }$ ## 32.7.11 I2C transmit data register (I2C_TXDR) Address offset: 0x28 Reset value: 0x0000 0000 Access: No wait states | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|---------|------|------|------| | Res. | | | | | | | | | |
| | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | TXDA | TA[7:0] | | | | | | | | | | | | | rw Bits 31:8 Reserved, must be kept at reset value. ## Bits 7:0 TXDATA[7:0] 8-bit transmit data Data byte to be transmitted to the I²C bus Note: These bits can be written only when TXE=1. RM0444 Rev 5 995/1390 # 32.7.12 I2C register map The table below provides the I2C register map and reset values. Table 178. I2C register map and reset values | Offset | Register
name | 31 | 30 | 29 | 28 | 27 | 5 6 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | ဗ | 2 | 7 | 0 | | |--------|------------------|--------|------|------|------|------|------------|---------|--------|-------|------------|-----------|--------|------|------------|-----------|------|----------|---------|---------|----------|--------|----------------|---------------------------|--------|-------------|-----------|--------|--------|--------|------|------|------|--| | 0x0 | I2C_CR1 | Res. PECEN | ALERTEN | SMBDEN | SMBHEN | GCEN | WUPEN | NOSTRETCH | SBC | RXDMAEN | TXDMAEN | Res. | ANFOFF | С | NF | [3:0 |)] | ERRIE | TCIE | STOPIE | NACKIE | ADDRIE | RXIE | TXIE | PE | | | | Reset value | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0x4 | I2C_CR2 | Res. | Res. | Res. | Res. | Res. | PECBYTE | AUTOEND | RELOAD | | | NB | YTE | ES[7 | 7:0] | | | NACK | STOP | START | HEAD10R | ADD10 | RD_WRN | | | | SADD[9:0] | | | | | | | | | | Reset value | | | | | | 0 | | | 0x8 | I2C_OAR1 | Res. | Res. | Res. | Res. | OA1EN | Res. | Res. | Res. | Res. | OA1MODE | | | | (| OA1 | [9:0 | l | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0xC | I2C_OAR2 | Res. OA2EN | Res. | Res. | Res. | Res. | | OA2MS
K [2:0] OA2[7:1] | | | | | | Res. | | | | | | | Reset value | | | | | | | | | | | | | | | | | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 0x10 | I2C_
Timingr | PF | RES | C[3 | :0] | Res. | Res. | Res. | Res. | 5 | SCL
[3: | DEI
0] | | 5 | SDA
[3: | | L | | 1 | S | CLF | 1[7:0 | 7:0] SCLL[7:0] | | | | | | | | | | | | | | Reset value | 0 | 0 | 0 | 0 | | | | | 0 | | | 0x14 | I2C_
TIMEOUTR | TEXTEN | Res. | Res. | Res. | | | | Т | IME | OU | тв[| 11:0 |)] | | | | TIMOUTEN | Res. | Res. | TIDLE | | | | - | TIMI | EOL | JTA[| 11:0 |] | | | | | | | Reset value | 0 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0x18 | I2C_ISR | Res. | ΑĽ | DC | OD | E[6 | :0] | | DIR | BUSY | Res. | ALERT | TIMEOUT | PECERR | OVR | ARLO | BERR | TCR | TC | STOPF | NACKF | ADDR | RXNE | TXIS | TXE | | | | Reset value | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | 0x1C | I2C_ICR | Res. | Res. | Res. | Res. | Res. | Res. | ALERTCF | TIMOUTCF | PECCF | OVRCF | ARLOCF | BERRCF | Res. | Res. | STOPCF | NACKCF | ADDRCF | Res. | Res. | Res. | | | | Reset value | | | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | | | | | | 0x20 | I2C_PECR | Res. PEC[7:0] | | | | | | | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0x24 | I2C_RXDR | Res. RXDATA[7:0] | | | | | | | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | # Table 178. I2C register map and reset values (continued) | Offset | Register
name | 31 | 30 | 29 | 28 | 22 | 26 | 22 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 2 | - | 0 | |--------|------------------|-------------|---|---|---|---|---|---|---| | 0x28 | I2C_TXDR | Res. TXDATA[7:0] | | | | | | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Refer to Section 2.2 on page 58 for the register boundary addresses. RM0444 Rev 5 997/1390 # 33 Universal synchonous receiver transmitter (USART) This section describes the universal synchronous asynchronous receiver transmitter (USART). ## 33.1 USART introduction The USART offers a flexible means to perform Full-duplex data exchange with external equipments requiring an industry standard NRZ asynchronous serial data format. A very wide range of baud rates can be achieved through a fractional baud rate generator. The USART supports both synchronous one-way and Half-duplex Single-wire communications, as well as LIN (local interconnection network), Smartcard protocol, IrDA (infrared data association) SIR ENDEC specifications, and Modem operations (CTS/RTS). Multiprocessor communications are also supported. High-speed data communications are possible by using the DMA (direct memory access) for multibuffer configuration. ## 33.2 USART main features - Full-duplex asynchronous communication - NRZ standard format (mark/space) - Configurable oversampling method by 16 or 8 to achieve the best compromise between speed and clock tolerance - Baud rate generator systems - Two internal FIFOs for transmit and receive data Each FIFO can be enabled/disabled by software and come with a status flag. - A common programmable transmit and receive baud rate - Dual clock domain with dedicated kernel clock for peripherals independent from PCLK - Auto baud rate detection - Programmable data word length (7, 8 or 9 bits) - Programmable data order with MSB-first or LSB-first shifting - Configurable stop bits (1 or 2 stop bits) - Synchronous master/slave mode and clock output/input for synchronous communications - SPI slave transmission underrun error flag - Single-wire Half-duplex communications - Continuous communications using DMA - Received/transmitted bytes are buffered in reserved SRAM using centralized DMA. - Separate enable bits for transmitter and receiver - Separate signal polarity control for transmission and reception - Swappable Tx/Rx pin configuration - Hardware flow control for modem and RS-485 transceiver - Communication control/error detection flags - Parity control: - Transmits parity bit - Checks parity of received data byte - Interrupt sources with flags - Multiprocessor communications: wakeup from Mute mode by idle line detection or address mark detection - Wakeup from Stop mode ## 33.3 USART extended features - LIN master synchronous break send capability and LIN slave break detection capability - 13-bit break generation and 10/11 bit break detection when USART is hardware configured for LIN - IrDA SIR encoder decoder supporting 3/16 bit duration for normal mode - Smartcard mode - Supports the T = 0 and T = 1 asynchronous protocols for smartcards as defined in the ISO/IEC 7816-3 standard - 0.5 and 1.5 stop bits for Smartcard operation - Support for Modbus communication - Timeout feature - CR/LF character recognition # 33.4 USART implementation The table below describes USART implementation on STM32G0x1 devices. It also includes LPUART for comparison. Table 179. STM32G0x1 features | USART / LPUART instances | STM32G031xx,
STM32G041xx
STM32G051xx
STM32G061xx | STM32G071xx,
STM32G081xx | STM32G0B1xx,
STM32G0C1xx | |--------------------------|---|-----------------------------|-----------------------------| | USART1 | FULL | FULL | FULL | | USART2 | BASIC | FULL | FULL | | USART3 | - | BASIC | FULL | | USART4 | - | BASIC | BASIC | | USART5 | - | - | BASIC | | USART6 | - | - | BASIC | | LPUART1 | LP | LP | LP | | LPUART2 | - | - | LP | Table 180. USART / LPUART features | USART / LPUART modes/features ⁽¹⁾ | Full feature set | Basic feature set | Low-power feature set | |--|------------------|-------------------|-----------------------| | Hardware flow control for modem | X | X | Χ | | Continuous communication using DMA | Х | Х | Х | | Multiprocessor communication | Х | Х | Х | | Synchronous mode (Master/Slave) | Х | Х | - | | Smartcard mode | Х | - | - | | Single-wire Half-duplex communication | Х | Х | Х | | IrDA SIR ENDEC block | Х | - | - | | LIN mode | Х | - | - | | Dual clock domain and wakeup from low-power mode | Х | - | Х | | Receiver timeout interrupt | Х | - | - | | Modbus communication | Х | - | - | | Auto baud rate detection | Х | - | - | | Driver Enable | Х | Х | Х | | USART data length | | 7, 8 and 9 bits | | | Tx/Rx FIFO | Х | - | Х | | Tx/Rx FIFO size | 8 | - | 8 | | Prescaler | Х | - | Х | ^{1.} X = supported. 1001/1390 ## 33.5 USART functional description ## 33.5.1 USART block diagram Figure 314. USART block diagram The simplified block diagram given in *Figure 314* shows two fully-independent clock domains: - The usart_pclk clock domain - The **usart_pclk** clock signal feeds the peripheral bus interface. It must be active when accesses to the USART registers are required. - The usart_ker_ck kernel clock domain. - The **usart_ker_ck** is the USART clock source. It is independent from **usart_pclk** and delivered by the RCC. The USART registers can consequently be written/read even when the **usart_ker_ck** clock is stopped. When the dual clock domain feature is disabled, the **usart_ker_ck** clock is the same as the **usart_pclk** clock. There is no constraint between **usart_pclk** and **usart_ker_ck**: **usart_ker_ck** can be faster or slower than **usart_pclk**. The only limitation is the software ability to manage the communication fast enough. When the USART operates in SPI slave mode, it handles data flow
using the serial interface clock derived from the external SCLK signal provided by the external master SPI device. The **usart_ker_ck** clock must be at least 3 times faster than the clock on the CK input. ## 33.5.2 USART signals #### **USART** bidirectional communications USART bidirectional communications require a minimum of two pins: Receive Data In (RX) and Transmit Data Out (TX): RX (Receive Data Input) RX is the serial data input. Oversampling techniques are used for data recovery. They discriminate between valid incoming data and noise. • **TX** (Transmit Data Output) When the transmitter is disabled, the output pin returns to its I/O port configuration. When the transmitter is enabled and no data needs to be transmitted, the TX pin is High. In Single-wire and Smartcard modes, this I/O is used to transmit and receive data. #### RS232 Hardware flow control mode The following pins are required in RS232 Hardware flow control mode: • CTS (Clear To Send) When driven high, this signal blocks the data transmission at the end of the current transfer. RTS (Request To Send) When it is low, this signal indicates that the USART is ready to receive data. #### **RS485 Hardware control mode** The following pin is required in RS485 Hardware control mode: • **DE** (Driver Enable) This signal activates the transmission mode of the external transceiver. Note: DE and RTS share the same pin. ## Synchronous master/slave mode and Smartcard mode The following pin is required in synchronous master/slave mode and Smartcard mode: CK This pin acts as Clock output in Synchronous master and Smartcard modes. It acts as Clock input is Synchronous slave mode. In Synchronous Master mode, this pin outputs the transmitter data clock for synchronous transmission corresponding to SPI master mode (no clock pulses on start bit and stop bit, and a software option to send a clock pulse on the last data bit). In parallel, data can be received synchronously on RX pin. This mechanism can be used to control peripherals featuring shift registers (e.g. LCD drivers). The clock phase and polarity are software programmable. In Smartcard mode, CK output provides the clock to the smartcard. NSS This pin acts as Slave Select input in Synchronous slave mode. Note: NSS and CTS share the same pin. RM0444 Rev 5 1003/1390 ## 33.5.3 USART character description The word length can be set to 7, 8 or 9 bits, by programming the M bits (M0: bit 12 and M1: bit 28) in the USART_CR1 register (see *Figure 315*): - 7-bit character length: M[1:0] = '10' - 8-bit character length: M[1:0] = '00' - 9-bit character length: M[1:0] = '01' Note: In 7-bit data length mode, the Smartcard mode, LIN master mode and Auto baud rate (0x7F and 0x55 frames detection) are not supported. By default, the signal (TX or RX) is in low state during the start bit. It is in high state during the stop bit. These values can be inverted, separately for each signal, through polarity configuration control. An *Idle character* is interpreted as an entire frame of "1"s (the number of "1"s includes the number of stop bits). A **Break character** is interpreted on receiving "0"s for a frame period. At the end of the break frame, the transmitter inserts 2 stop bits. Transmission and reception are driven by a common baud rate generator. The transmission and reception clock are generated when the enable bit is set for the transmitter and receiver, respectively. A detailed description of each block is given below. 4 Figure 315. Word length programming #### 33.5.4 USART FIFOs and thresholds The USART can operate in FIFO mode. The USART comes with a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). The FIFO mode is enabled by setting FIFOEN in USART_CR1 register (bit 29). This mode is supported only in UART, SPI and Smartcard modes. Since the maximum data word length is 9 bits, the TXFIFO is 9-bit wide. However the RXFIFO default width is 12 bits. This is due to the fact that the receiver does not only store the data in the FIFO, but also the error flags associated to each character (Parity error, Noise error and Framing error flags). Note: The received data is stored in the RXFIFO together with the corresponding flags. However, only the data are read when reading the RDR. The status flags are available in the USART ISR register. It is possible to configure the TXFIFO and RXFIFO levels at which the Tx and RX interrupts are triggered. These thresholds are programmed through RXFTCFG and TXFTCFG bitfields in USART_CR3 control register. In this case: - The RXFT flag is set in the USART_ISR register and the corresponding interrupt (if enabled) is generated, when the number of received data in the RXFIFO reaches the threshold programmed in the RXFTCFG bits fields. - This means that the RXFIFO is filled until the number of data in the RXFIFO is equal to the programmed threshold. - RXFTCFG data have been received: one data in USART_RDR and (RXFTCFG 1) data in the RXFIFO. As an example, when the RXFTCFG is programmed to '101', the RXFT flag is set when a number of data corresponding to the FIFO size has been received (FIFO size -1 data in the RXFIFO and 1 data in the USART_RDR). As a result, the next received data is not set the overrun flag. - The TXFT flag is set in the USART_ISR register and the corresponding interrupt (if enabled) is generated when the number of empty locations in the TXFIFO reaches the threshold programmed in the TXFTCFG bits fields. - This means that the TXFIFO is emptied until the number of empty locations in the TXFIFO is equal to the programmed threshold. #### 33.5.5 USART transmitter The transmitter can send data words of either 7 or 8 or 9 bits, depending on the M bit status. The Transmit Enable bit (TE) must be set in order to activate the transmitter function. The data in the transmit shift register is output on the TX pin while the corresponding clock pulses are output on the SCLK pin. #### **Character transmission** During an USART transmission, data shifts out the least significant bit first (default configuration) on the TX pin. In this mode, the USART_TDR register consists of a buffer (TDR) between the internal bus and the transmit shift register. When FIFO mode is enabled, the data written to the transmit data register (USART_TDR) are queued in the TXFIFO. Every character is preceded by a start bit which corresponds to a low logic level for one bit period. The character is terminated by a configurable number of stop bits. The number of stop bits can be configured to 0.5, 1, 1.5 or 2. Note: The TE bit must be set before writing the data to be transmitted to the USART_TDR. The TE bit should not be reset during data transmission. Resetting the TE bit during the transmission corrupts the data on the TX pin as the baud rate counters get frozen. The current data being transmitted are then lost. An idle frame is sent when the TE bit is enabled. #### Configurable stop bits The number of stop bits to be transmitted with every character can be programmed in USART_CR2, bits 13,12. - 1 stop bit: This is the default value of number of stop bits. - 2 stop bits: This is supported by normal USART, Single-wire and Modem modes. - 1.5 stop bits: To be used in Smartcard mode. An idle frame transmission includes the stop bits. A break transmission features 10 low bits (when M[1:0] = '00') or 11 low bits (when M[1:0] = '01') or 9 low bits (when M[1:0] = '10') followed by 2 stop bits (see *Figure 316*). It is not possible to transmit long breaks (break of length greater than 9/10/11 low bits). Figure 316. Configurable stop bits 4 RM0444 Rev 5 1007/1390 #### Character transmission procedure To transmit a character, follow the sequence below: - 1. Program the M bits in USART CR1 to define the word length. - 2. Select the desired baud rate using the USART_BRR register. - 3. Program the number of stop bits in USART_CR2. - 4. Enable the USART by writing the UE bit in USART CR1 register to 1. - Select DMA enable (DMAT) in USART_CR3 if multibuffer communication must take place. Configure the DMA register as explained in Section 33.5.10: USART multiprocessor communication. - 6. Set the TE bit in USART CR1 to send an idle frame as first transmission. - 7. Write the data to send in the USART_TDR register. Repeat this for each data to be transmitted in case of single buffer. - When FIFO mode is disabled, writing a data to the USART_TDR clears the TXE flag. - When FIFO mode is enabled, writing a data to the USART_TDR adds one data to the TXFIFO. Write operations to the USART_TDR are performed when TXFNF flag is set. This flag remains set until the TXFIFO is full. - 8. When the last data is written to the USART TDR register, wait until TC = 1. - When FIFO mode is disabled, this indicates that the transmission of the last frame is complete. - When FIFO mode is enabled, this indicates that both TXFIFO and shift register are empty. This check is required to avoid corrupting the last transmission when the USART is disabled or enters Halt mode. # Single byte communication When FIFO mode is disabled Writing to the transmit data register always clears the TXE bit. The TXE flag is set by hardware. It indicates that: - the data have been moved from the USART_TDR register to the shift register and the data transmission has started; - the USART_TDR register is empty; - the next data can be written to the USART_TDR register without overwriting the previous data. This flag generates an interrupt if the TXEIE bit is set. When a transmission is ongoing, a write instruction to the USART_TDR register stores the data in the TDR buffer. It is then copied in the shift register at the end of the current transmission. When no transmission is ongoing, a write instruction to the USART_TDR register places the data in the shift register, the data transmission starts, and the TXE bit is set. - When FIFO mode is enabled, the TXFNF (TXFIFO not full) flag is set by hardware to indicate that: - the TXFIFO is not full; - the USART_TDR register is
empty; - the next data can be written to the USART_TDR register without overwriting the previous data. When a transmission is ongoing, a write operation to the USART_TDR register stores the data in the TXFIFO. Data are copied from the TXFIFO to the shift register at the end of the current transmission. When the TXFIFO is not full, the TXFNF flag stays at '1' even after a write operation to USART_TDR register. It is cleared when the TXFIFO is full. This flag generates an interrupt if the TXFNFIE bit is set. Alternatively, interrupts can be generated and data can be written to the FIFO when the TXFIFO threshold is reached. In this case, the CPU can write a block of data defined by the programmed trigger level. If a frame is transmitted (after the stop bit) and the TXE flag (TXFE in case of FIFO mode) is set, the TC flag goes high. An interrupt is generated if the TCIE bit is set in the USART_CR1 register. After writing the last data to the USART_TDR register, it is mandatory to wait until TC is set before disabling the USART or causing the device to enter the low-power mode (see *Figure 317: TC/TXE behavior when transmitting*). RM0444 Rev 5 1009/1390 Figure 317. TC/TXE behavior when transmitting Note: When FIFO management is enabled, the TXFNF flag is used for data transmission. #### **Break characters** Setting the SBKRQ bit transmits a break character. The break frame length depends on the M bit (see *Figure 315*). If a '1' is written to the SBKRQ bit, a break character is sent on the TX line after completing the current character transmission. The SBKF bit is set by the write operation and it is reset by hardware when the break character is completed (during the stop bits after the break character). The USART inserts a logic 1 signal (stop) for the duration of 2 bits at the end of the break frame to guarantee the recognition of the start bit of the next frame. When the SBKRQ bit is set, the break character is sent at the end of the current transmission. When FIFO mode is enabled, sending the break character has priority on sending data even if the TXFIFO is full. ## Idle characters Setting the TE bit drives the USART to send an idle frame before the first data frame. #### 33.5.6 USART receiver The USART can receive data words of either 7 or 8 or 9 bits depending on the M bits in the USART_CR1 register. # Start bit detection The start bit detection sequence is the same when oversampling by 16 or by 8. In the USART, the start bit is detected when a specific sequence of samples is recognized. This sequence is: 1 1 1 0 X 0 X 0X 0X 0 X 0X 0. Figure 318. Start bit detection when oversampling by 16 or 8 Note: If the sequence is not complete, the start bit detection aborts and the receiver returns to the idle state (no flag is set), where it waits for a falling edge. The start bit is confirmed (RXNE flag set and interrupt generated if RXNEIE = 1, or RXFNE flag set and interrupt generated if RXFNEIE = 1 if FIFO mode enabled) if the 3 sampled bits are at '0' (first sampling on the 3rd, 5th and 7th bits finds the 3 bits at '0' and second sampling on the 8th, 9th and 10th bits also finds the 3 bits at '0'). The start bit is validated but the NE noise flag is set if, a) for both samplings, 2 out of the 3 sampled bits are at '0' (sampling on the 3rd, 5th and 7th bits and sampling on the 8th, 9th and 10th bits) or b) for one of the samplings (sampling on the 3rd, 5th and 7th bits or sampling on the 8th, 9th and 10th bits), 2 out of the 3 bits are found at '0'. If neither of the above conditions are met, the start detection aborts and the receiver returns to the idle state (no flag is set). RM0444 Rev 5 1011/1390 # **Character reception** During an USART reception, data are shifted out least significant bit first (default configuration) through the RX pin. #### Character reception procedure To receive a character, follow the sequence below: - 1. Program the M bits in USART_CR1 to define the word length. - 2. Select the desired baud rate using the baud rate register USART BRR - 3. Program the number of stop bits in USART_CR2. - 4. Enable the USART by writing the UE bit in USART_CR1 register to '1'. - 5. Select DMA enable (DMAR) in USART_CR3 if multibuffer communication is to take place. Configure the DMA register as explained in *Section 33.5.10: USART multiprocessor communication*. - Set the RE bit USART_CR1. This enables the receiver which begins searching for a start bit. #### When a character is received: - When FIFO mode is disabled, the RXNE bit is set to indicate that the content of the shift register is transferred to the RDR. In other words, data have been received and can be read (as well as their associated error flags). - When FIFO mode is enabled, the RXFNE bit is set to indicate that the RXFIFO is not empty. Reading the USART_RDR returns the oldest data entered in the RXFIFO. When a data is received, it is stored in the RXFIFO together with the corresponding error bits. - An interrupt is generated if the RXNEIE (RXFNEIE when FIFO mode is enabled) bit is set. - The error flags can be set if a frame error, noise, parity or an overrun error was detected during reception. - In multibuffer communication mode: - When FIFO mode is disabled, the RXNE flag is set after every byte reception. It is cleared when the DMA reads the Receive data Register. - When FIFO mode is enabled, the RXFNE flag is set when the RXFIFO is not empty. After every DMA request, a data is retrieved from the RXFIFO. A DMA request is triggered when the RXFIFO is not empty i.e. when there are data to be read from the RXFIFO. - In single buffer mode: - When FIFO mode is disabled, clearing the RXNE flag is done by performing a software read from the USART_RDR register. The RXNE flag can also be cleared by programming RXFRQ bit to '1' in the USART_RQR register. The RXNE flag must be cleared before the end of the reception of the next character to avoid an overrun error. - When FIFO mode is enabled, the RXFNE is set when the RXFIFO is not empty. After every read operation from USART_RDR, a data is retrieved from the RXFIFO. When the RXFIFO is empty, the RXFNE flag is cleared. The RXFNE flag can also be cleared by programming RXFRQ bit to '1' in USART_RQR. When the RXFIFO is full, the first entry in the RXFIFO must be read before the end of the reception of the next character, to avoid an overrun error. The RXFNE flag generates an interrupt if the RXFNEIE bit is set. Alternatively, interrupts can be generated and data can be read from RXFIFO when the RXFIFO threshold is reached. In this case, the CPU can read a block of data defined by the programmed threshold. ## **Break character** When a break character is received, the USART handles it as a framing error. #### Idle character When an idle frame is detected, it is handled in the same way as a data character reception except that an interrupt is generated if the IDLEIE bit is set. #### Overrun error FIFO mode disabled An overrun error occurs if a character is received and RXNE has not been reset. Data can not be transferred from the shift register to the RDR register until the RXNE bit is cleared. The RXN E flag is set after every byte reception. An overrun error occurs if RXNE flag is set when the next data is received or the previous DMA request has not been serviced. When an overrun error occurs: - the ORE bit is set; - the RDR content is not lost. The previous data is available by reading the USART RDR register. - the shift register is overwritten. After that, any data received during overrun is lost. - an interrupt is generated if either the RXNEIE or the EIE bit is set. - FIFO mode enabled An overrun error occurs when the shift register is ready to be transferred and the receive FIFO is full. Data can not be transferred from the shift register to the USART_RDR register until there is one free location in the RXFIFO. The RXFNE flag is set when the RXFIFO is not empty. An overrun error occurs if the RXFIFO is full and the shift register is ready to be transferred. When an overrun error occurs: - The ORE bit is set. - The first entry in the RXFIFO is not lost. It is available by reading the USART_RDR register. - The shift register is overwritten. After that point, any data received during overrun is lost. - An interrupt is generated if either the RXFNEIE or EIE bit is set. The ORE bit is reset by setting the ORECF bit in the USART ICR register. Note: The ORE bit, when set, indicates that at least 1 data has been lost. When the FIFO mode is disabled, there are two possibilities - if RXNE = 1, then the last valid data is stored in the receive register (RDR) and can be read, - if RXNE = 0, the last valid data has already been read and there is nothing left to be read in the RDR register. This case can occur when the last valid data is read in the RDR register at the same time as the new (and lost) data is received. RM0444 Rev 5 1013/1390 # Selecting the clock source and the appropriate oversampling method The choice of the clock source is done through the Clock Control system (see Section *Reset and clock control (RCC)*). The clock source must be selected through the UE bit before enabling the USART. The clock source must be selected according to two criteria: - Possible use of the USART in low-power mode - Communication speed. The clock source frequency is usart ker ck. When the dual clock domain and the wakeup from low-power mode features are supported, the usart_ker_ck clock source can be configurable in the RCC (see Section *Reset and clock control (RCC)*). Otherwise the usart_ker_ck clock is the same as usart_pclk. The usart_ker_ck clock can be divided by a programmable factor, defined in the USART_PRESC register. Figure 319. usart_ker_ck clock divider block diagram Some usart_ker_ck sources enable the USART to receive data while the MCU is in low-power mode. Depending on the received data and wakeup mode selected, the USART wakes up the MCU, when needed, in order to transfer the received data,
by performing a software read to the USART_RDR register or by DMA. For the other clock sources, the system must be active to enable USART communications. The communication speed range (specially the maximum communication speed) is also determined by the clock source. The receiver implements different user-configurable oversampling techniques (except in synchronous mode) for data recovery by discriminating between valid incoming data and noise. This enables obtaining the best a trade-off between the maximum communication speed and noise/clock inaccuracy immunity. The oversampling method can be selected by programming the OVER8 bit in the USART_CR1 register either to 16 or 8 times the baud rate clock (see *Figure 320* and *Figure 321*). Depending on your application: - select oversampling by 8 (OVER8 = 1) to achieve higher speed (up to usart_ker_ck_pres/8). In this case the maximum receiver tolerance to clock deviation is reduced (refer to Section 33.5.8: Tolerance of the USART receiver to clock deviation on page 1018) - select oversampling by 16 (OVER8 = 0) to increase the tolerance of the receiver to clock deviations. In this case, the maximum speed is limited to maximum usart_ker_ck_pres/16 (where usart_ker_ck_pres is the USART input clock divided by a prescaler). Programming the ONEBIT bit in the USART_CR3 register selects the method used to evaluate the logic level. Two options are available: - The majority vote of the three samples in the center of the received bit. In this case, when the 3 samples used for the majority vote are not equal, the NE bit is set. - A single sample in the center of the received bit Depending on your application: - select the three sample majority vote method (ONEBIT = 0) when operating in a noisy environment and reject the data when a noise is detected (refer to Figure 181) because this indicates that a glitch occurred during the sampling. - select the single sample method (ONEBIT = 1) when the line is noise-free to increase the receiver tolerance to clock deviations (see Section 33.5.8: Tolerance of the USART receiver to clock deviation on page 1018). In this case the NE bit is never set. When noise is detected in a frame: - The NE bit is set at the rising edge of the RXNE bit (RXFNE in case of FIFO mode enabled). - The invalid data is transferred from the Shift register to the USART_RDR register. - No interrupt is generated in case of single byte communication. However this bit rises at the same time as the RXNE bit (RXFNE in case of FIFO mode enabled) which itself generates an interrupt. In case of multibuffer communication an interrupt is issued if the EIE bit is set in the USART_CR3 register. The NE bit is reset by setting NECF bit in USART ICR register. Note: Noise error is not supported in SPI mode. Oversampling by 8 is not available in the Smartcard, IrDA and LIN modes. In those modes, the OVER8 bit is forced to '0' by hardware. Figure 320. Data sampling when oversampling by 16 RM0444 Rev 5 1015/1390 Figure 321. Data sampling when oversampling by 8 Table 181. Noise detection from sampled data | Sampled value | NE status | Received bit value | |---------------|-----------|--------------------| | 000 | 0 | 0 | | 001 | 1 | 0 | | 010 | 1 | 0 | | 011 | 1 | 1 | | 100 | 1 | 0 | | 101 | 1 | 1 | | 110 | 1 | 1 | | 111 | 0 | 1 | # Framing error A framing error is detected when the stop bit is not recognized on reception at the expected time, following either a de-synchronization or excessive noise. When the framing error is detected: - the FE bit is set by hardware; - the invalid data is transferred from the Shift register to the USART_RDR register (RXFIFO in case FIFO mode is enabled). - no interrupt is generated in case of single byte communication. However this bit rises at the same time as the RXNE bit (RXFNE in case FIFO mode is enabled) which itself generates an interrupt. In case of multibuffer communication an interrupt is issued if the EIE bit is set in the USART_CR3 register. The FE bit is reset by writing '1' to the FECF in the USART_ICR register. Note: Framing error is not supported in SPI mode. # Configurable stop bits during reception The number of stop bits to be received can be configured through the control bits of USART_CR: it can be either 1 or 2 in normal mode and 0.5 or 1.5 in Smartcard mode. - **0.5 stop bit (reception in Smartcard mode)**: no sampling is done for 0.5 stop bit. As a consequence, no framing error and no break frame can be detected when 0.5 stop bit is selected. - 1 stop bit: sampling for 1 stop bit is done on the 8th, 9th and 10th samples. - 1.5 stop bits (Smartcard mode) When transmitting in Smartcard mode, the device must check that the data are correctly sent. The receiver block must consequently be enabled (RE = 1 in USART_CR1) and the stop bit is checked to test if the Smartcard has detected a parity error. In the event of a parity error, the Smartcard forces the data signal low during the sampling (NACK signal), which is flagged as a framing error. The FE flag is then set through RXNE flag (RXFNE if the FIFO mode is enabled) at the end of the 1.5 stop bit. Sampling for 1.5 stop bits is done on the 16th, 17th and 18th samples (1 baud clock period after the beginning of the stop bit). The 1.5 stop bit can be broken into 2 parts: one 0.5 baud clock period during which nothing happens, followed by 1 normal stop bit period during which sampling occurs halfway through (refer to Section 33.5.16: USART receiver timeout on page 1032 for more details). 2 stop bits Sampling for 2 stop bits is done on the 8th, 9th and 10th samples of the first stop bit. The framing error flag is set if a framing error is detected during the first stop bit. The second stop bit is not checked for framing error. The RXNE flag (RXFNE if the FIFO mode is enabled) is set at the end of the first stop bit. # 33.5.7 USART baud rate generation The baud rate for the receiver and transmitter (Rx and Tx) are both set to the value programmed in the USART BRR register. Equation 1: baud rate for standard USART (SPI mode included) (OVER8 = '0' or '1') In case of oversampling by 16, the baud rate is given by the following formula: $$Tx/Rx \text{ baud} = \frac{usart_ker_ckpres}{USARTDIV}$$ In case of oversampling by 8, the baud rate is given by the following formula: $$Tx/Rx \text{ baud} = \frac{2 \times usart_ker_ckpres}{USARTDIV}$$ Equation 2: baud rate in Smartcard, LIN and IrDA modes (OVER8 = 0) The baud rate is given by the following formula: $$Tx/Rx baud = \frac{usart_ker_ckpres}{USARTDIV}$$ USARTDIV is an unsigned fixed point number that is coded on the USART BRR register. - When OVER8 = 0. BRR = USARTDIV. - When OVER8 = 1 - BRR[2:0] = USARTDIV[3:0] shifted 1 bit to the right. - BRR[3] must be kept cleared. - BRR[15:4] = USARTDIV[15:4] Note: The baud counters are updated to the new value in the baud registers after a write operation to USART_BRR. Hence the baud rate register value should not be changed during communication. In case of oversampling by 16 and 8, USARTDIV must be greater than or equal to 16. # How to derive USARTDIV from USART_BRR register values # Example 1 To obtain 9600 baud with usart ker ck pres = 8 MHz: • In case of oversampling by 16: ``` USARTDIV = 8 000 000/9600 ``` BRR = USARTDIV = $$0d833 = 0x0341$$ In case of oversampling by 8: ``` USARTDIV = 2 * 8 000 000/9600 ``` USARTDIV = 1666,66 (0d1667 = 0x683) BRR[3:0] = 0x3 >> 1 = 0x1 BRR = 0x681 ## Example 2 To obtain 921.6 Kbaud with usart ker ck pres = 48 MHz: In case of oversampling by 16: ``` USARTDIV = 48 000 000/921 600 ``` BRR = USARTDIV = $$0d52 = 0x34$$ • In case of oversampling by 8: USARTDIV = 2 * 48 000 000/921 600 USARTDIV = 104 (0d104 = 0x68) BRR[3:0] = USARTDIV[3:0] >> 1 = 0x8 >> 1 = 0x4 BRR = 0x64 # 33.5.8 Tolerance of the USART receiver to clock deviation The USART asynchronous receiver operates correctly only if the total clock system deviation is less than the tolerance of the USART receiver. 4 The causes which contribute to the total deviation are: - DTRA: deviation due to the transmitter error (which also includes the deviation of the transmitter's local oscillator) - DQUANT: error due to the baud rate quantization of the receiver - DREC: deviation of the receiver local oscillator - DTCL: deviation due to the transmission line (generally due to the transceivers which can introduce an asymmetry between the low-to-high transition timing and the high-tolow transition timing) #### where DWU is the error due to sampling point deviation when the wakeup from low-power mode is used. when M[1:0] = 01: $$DWU = \frac{t_{WUUSART}}{11 \times Tbit}$$ when M[1:0] = 00: $$DWU = \frac{t_{WUUSART}}{10 \times Tbit}$$ when M[1:0] = 10: $$DWU = \frac{t_{WUUSART}}{9 \times Tbit}$$ t_{WUUSART} is the time between the detection of the start bit falling edge and the instant when the clock (requested by the peripheral) is ready and reaching the peripheral, and the regulator is ready. The USART receiver can receive data correctly at up to the maximum tolerated deviation specified in *Table 182*, *Table 183*, depending on the following settings: - 9-, 10- or 11-bit character length defined by the M bits in the USART_CR1 register - Oversampling by 8 or 16 defined by the OVER8 bit in the USART_CR1 register - Bits BRR[3:0] of USART BRR register are equal to or different from 0000. - Use of 1 bit or 3 bits to sample the data, depending on the value of the ONEBIT bit in the USART_CR3 register. Table 182. Tolerance of the USART receiver when BRR [3:0] = 0000 | M bits | OVER8 bit = 0 | | OVER8 bit = 1 | | |--------|---------------|------------|---------------|------------| | | ONEBIT = 0 | ONEBIT = 1 | ONEBIT = 0 | ONEBIT = 1 | | 00 | 3.75% | 4.375% | 2.50% | 3.75% | | 01 | 3.41% | 3.97% | 2.27% | 3.41% | | 10 | 4.16% | 4.86% | 2.77% | 4.16% | Table 183. Tolerance of the USART receiver when BRR[3:0] is different from 0000 | M bits | OVER8 bit = 0 | | OVER8 bit = 1 | | |---------|---------------|------------|---------------
------------| | WI DIES | ONEBIT = 0 | ONEBIT = 1 | ONEBIT = 0 | ONEBIT = 1 | | 00 | 3.33% | 3.88% | 2% | 3% | | 01 | 3.03% | 3.53% | 1.82% | 2.73% | | 10 | 3.7% | 4.31% | 2.22% | 3.33% | Note: The data specified in Table 182 and Table 183 may slightly differ in the special case when the received frames contain some Idle frames of exactly 10-bit times when M bits = 00 (11-bit times when M = 01 or 9-bit times when M = 10). #### 33.5.9 USART Auto baud rate detection The USART can detect and automatically set the USART_BRR register value based on the reception of one character. Automatic baud rate detection is useful under two circumstances: - The communication speed of the system is not known in advance. - The system is using a relatively low accuracy clock source and this mechanism enables the correct baud rate to be obtained without measuring the clock deviation. The clock source frequency must be compatible with the expected communication speed. - When oversampling by 16, the baud rate ranges from usart_ker_ck_pres/65535 and usart_ker_ck_pres/16. - When oversampling by 8, the baud rate ranges from usart_ker_ck_pres/65535 and usart_ker_ck_pres/8. Before activating the auto baud rate detection, the auto baud rate detection mode must be selected through the ABRMOD[1:0] field in the USART_CR2 register. There are four modes based on different character patterns. In these auto baud rate modes, the baud rate is measured several times during the synchronization data reception and each measurement is compared to the previous one. These modes are the following: - Mode 0: Any character starting with a bit at '1'. In this case the USART measures the duration of the start bit (falling edge to rising edge). - Mode 1: Any character starting with a 10xx bit pattern. In this case, the USART measures the duration of the Start and of the 1st data bit. The measurement is done falling edge to falling edge, to ensure a better accuracy in the case of slow signal slopes. - **Mode 2**: A 0x7F character frame (it may be a 0x7F character in LSB first mode or a 0xFE in MSB first mode). In this case, the baud rate is updated first at the end of the start bit (BRs), then at the end of bit 6 (based on the measurement done from falling edge to falling edge: BR6). Bit0 to bit6 are sampled at BRs while further bits of the character are sampled at BR6. Mode 3: A 0x55 character frame. In this case, the baud rate is updated first at the end of the start bit (BRs), then at the end of bit0 (based on the measurement done from falling edge to falling edge: BR0), and finally at the end of bit6 (BR6). Bit 0 is sampled at BRs, bit 1 to bit 6 are sampled at BR0, and further bits of the character are sampled at BR6. In parallel, another check is performed for each intermediate RX line transition. An error is generated if the transitions on RX are not sufficiently synchronized with the receiver (the receiver being based on the baud rate calculated on bit 0). Prior to activating the auto baud rate detection, the USART_BRR register must be initialized by writing a non-zero baud rate value. The automatic baud rate detection is activated by setting the ABREN bit in the USART_CR2 register. The USART then waits for the first character on the RX line. The auto baud rate operation completion is indicated by the setting of the ABRF flag in the USART_ISR register. If the line is noisy, the correct baud rate detection cannot be guaranteed. In this case the BRR value may be corrupted and the ABRE error flag is set. This also happens if the communication speed is not compatible with the automatic baud rate detection range (bit duration not between 16 and 65536 clock periods (oversampling by 16) and not between 8 and 65536 clock periods (oversampling by 8)). The auto baud rate detection can be re-launched later by resetting the ABRF flag (by writing a '0'). When FIFO management is disabled and an auto baud rate error occurs, the ABRE flag is set through RXNE and FE bits. When FIFO management is enabled and an auto baud rate error occurs, the ABRE flag is set through RXFNE and FE bits. If the FIFO mode is enabled, the auto baud rate detection should be made using the data on the first RXFIFO location. So, prior to launching the auto baud rate detection, make sure that the RXFIFO is empty by checking the RXFNE flag in USART_ISR register. The BRR value might be corrupted if the USART is disabled (UE = 0) during an auto baud rate operation. Note: RM0444 Rev 5 1021/1390 # 33.5.10 USART multiprocessor communication It is possible to perform USART multiprocessor communications (with several USARTs connected in a network). For instance one of the USARTs can be the master with its TX output connected to the RX inputs of the other USARTs, while the others are slaves with their respective TX outputs logically ANDed together and connected to the RX input of the master. In multiprocessor configurations, it is often desirable that only the intended message recipient actively receives the full message contents, thus reducing redundant USART service overhead for all non addressed receivers. The non-addressed devices can be placed in Mute mode by means of the muting function. To use the Mute mode feature, the MME bit must be set in the USART CR1 register. Note: When FIFO management is enabled and MME is already set, MME bit must not be cleared and then set again quickly (within two usart_ker_ck cycles), otherwise Mute mode might remain active. When the Mute mode is enabled: - none of the reception status bits can be set; - all the receive interrupts are inhibited; - the RWU bit in USART_ISR register is set to '1'. RWU can be controlled automatically by hardware or by software, through the MMRQ bit in the USART_RQR register, under certain conditions. The USART can enter or exit from Mute mode using one of two methods, depending on the WAKE bit in the USART CR1 register: - Idle Line detection if the WAKE bit is reset, - Address Mark detection if the WAKE bit is set. ## Idle line detection (WAKE = 0) The USART enters Mute mode when the MMRQ bit is written to '1' and the RWU is automatically set. The USART wakes up when an Idle frame is detected. The RWU bit is then cleared by hardware but the IDLE bit is not set in the USART_ISR register. An example of Mute mode behavior using Idle line detection is given in *Figure 322*. Figure 322. Mute mode using Idle line detection Note: If the MMRQ is set while the IDLE character has already elapsed, Mute mode is not entered (RWU is not set). If the USART is activated while the line is IDLE, the idle state is detected after the duration of one IDLE frame (not only after the reception of one character frame). ## 4-bit/7-bit address mark detection (WAKE = 1) In this mode, bytes are recognized as addresses if their MSB is a '1', otherwise they are considered as data. In an address byte, the address of the targeted receiver is put in the 4 or 7 LSBs. The choice of 7 or 4 bit address detection is done using the ADDM7 bit. This 4-bit/7-bit word is compared by the receiver with its own address which is programmed in the ADD bits in the USART_CR2 register. Note: In 7-bit and 9-bit data modes, address detection is done on 6-bit and 8-bit addresses (ADD[5:0] and ADD[7:0]) respectively. The USART enters Mute mode when an address character is received which does not match its programmed address. In this case, the RWU bit is set by hardware. The RXNE flag is not set for this address byte and no interrupt or DMA request is issued when the USART enters Mute mode. When FIFO management is enabled, the software should ensure that there is at least one empty location in the RXFIFO before entering Mute mode. The USART also enters Mute mode when the MMRQ bit is written to 1. The RWU bit is also automatically set in this case. The USART exits from Mute mode when an address character is received which matches the programmed address. Then the RWU bit is cleared and subsequent bytes are received normally. The RXNE/RXFNE bit is set for the address character since the RWU bit has been cleared. Note: When FIFO management is enabled, when MMRQ is set while the receiver is sampling last bit of a data, this data may be received before effectively entering in Mute mode An example of Mute mode behavior using address mark detection is given in Figure 323. RM0444 Rev 5 Figure 323. Mute mode using address mark detection #### 33.5.11 **USART Modbus communication** The USART offers basic support for the implementation of Modbus/RTU and Modbus/ASCII protocols. Modbus/RTU is a Half-duplex, block-transfer protocol. The control part of the protocol (address recognition, block integrity control and command interpretation) must be implemented in software. The USART offers basic support for the end of the block detection, without software overhead or other resources. #### Modbus/RTU In this mode, the end of one block is recognized by a "silence" (idle line) for more than 2 character times. This function is implemented through the programmable timeout function. The timeout function and interrupt must be activated, through the RTOEN bit in the USART CR2 register and the RTOIE in the USART CR1 register. The value corresponding to a timeout of 2 character times (for example 22 x bit time) must be programmed in the RTO register. When the receive line is idle for this duration, after the last stop bit is received, an interrupt is generated, informing the software that the current block reception is completed. ## Modbus/ASCII In this mode, the end of a block is recognized by a specific (CR/LF) character sequence. The USART manages this mechanism using the character match function. By programming the LF ASCII code in the ADD[7:0] field and by activating the character match interrupt (CMIE = 1), the software is informed when a LF has been received and can check the CR/LF in the DMA buffer. # 33.5.12 USART parity control Parity control (generation of parity bit in transmission and parity checking in
reception) can be enabled by setting the PCE bit in the USART_CR1 register. Depending on the frame length defined by the M bits, the possible USART frame formats are as listed in *Table 184*. | M bits | PCE bit | USART frame ⁽¹⁾ | |--------|---------|----------------------------| | 00 | 0 | SB 8 bit data STB | | 00 | 1 | SB 7-bit data PB STB | | 01 | 0 | SB 9-bit data STB | | 01 | 1 | SB 8-bit data PB STB | | 10 | 0 | SB 7bit data STB | | 10 | 1 | SB 6-bit data PB STB | **Table 184. USART frame formats** ## **Even parity** The parity bit is calculated to obtain an even number of "1s" inside the frame of the 6, 7 or 8 LSB bits (depending on M bit values) and the parity bit. As an example, if data = 00110101 and 4 bits are set, the parity bit is equal to 0 if even parity is selected (PS bit in USART_CR1 = 0). # **Odd parity** The parity bit is calculated to obtain an odd number of "1s" inside the frame made of the 6, 7 or 8 LSB bits (depending on M bit values) and the parity bit. As an example, if data = 00110101 and 4 bits set, then the parity bit is equal to 1 if odd parity is selected (PS bit in USART_CR1 = 1). ## Parity checking in reception If the parity check fails, the PE flag is set in the USART_ISR register and an interrupt is generated if PEIE is set in the USART_CR1 register. The PE flag is cleared by software writing 1 to the PECF in the USART_ICR register. ## Parity generation in transmission If the PCE bit is set in USART_CR1, then the MSB bit of the data written in the data register is transmitted but is changed by the parity bit (even number of "1s" if even parity is selected (PS = 0) or an odd number of "1s" if odd parity is selected (PS=1). RM0444 Rev 5 1025/1390 ^{1.} Legends: SB: start bit, STB: stop bit, PB: parity bit. In the data register, the PB is always taking the MSB position (8th or 7th, depending on the M bit value). # 33.5.13 USART LIN (local interconnection network) mode This section is relevant only when LIN mode is supported. Refer to Section 33.4: USART implementation on page 1000. The LIN mode is selected by setting the LINEN bit in the USART_CR2 register. In LIN mode, the following bits must be kept cleared: - · CLKEN in the USART CR2 register, - STOP[1:0], SCEN, HDSEL and IREN in the USART_CR3 register. ## LIN transmission The procedure described in *Section 33.5.4* has to be applied for LIN Master transmission. It must be the same as for normal USART transmission with the following differences: - Clear the M bit to configure 8-bit word length. - Set the LINEN bit to enter LIN mode. In this case, setting the SBKRQ bit sends 13 '0 bits as a break character. Then two bits of value '1 are sent to enable the next start detection. # LIN reception When LIN mode is enabled, the break detection circuit is activated. The detection is totally independent from the normal USART receiver. A break can be detected whenever it occurs, during Idle state or during a frame. When the receiver is enabled (RE = 1 in USART_CR1), the circuit looks at the RX input for a start signal. The method for detecting start bits is the same when searching break characters or data. After a start bit has been detected, the circuit samples the next bits exactly like for the data (on the 8th, 9th and 10th samples). If 10 (when the LBDL = 0 in USART_CR2) or 11 (when LBDL = 1 in USART_CR2) consecutive bits are detected as '0, and are followed by a delimiter character, the LBDF flag is set in USART_ISR. If the LBDIE bit = 1, an interrupt is generated. Before validating the break, the delimiter is checked for as it signifies that the RX line has returned to a high level. If a '1 is sampled before the 10 or 11 have occurred, the break detection circuit cancels the current detection and searches for a start bit again. If the LIN mode is disabled (LINEN = 0), the receiver continues working as normal USART, without taking into account the break detection. If the LIN mode is enabled (LINEN = 1), as soon as a framing error occurs (i.e. stop bit detected at '0, which is the case for any break frame), the receiver stops until the break detection circuit receives either a '1, if the break word was not complete, or a delimiter character if a break has been detected. The behavior of the break detector state machine and the break flag is shown on the Figure 324: Break detection in LIN mode (11-bit break length - LBDL bit is set) on page 1027. Examples of break frames are given on *Figure 325: Break detection in LIN mode vs. Framing error detection on page 1028.* Figure 324. Break detection in LIN mode (11-bit break length - LBDL bit is set) 5 RM0444 Rev 5 1027/1390 Figure 325. Break detection in LIN mode vs. Framing error detection # 33.5.14 USART synchronous mode #### Master mode The synchronous master mode is selected by programming the CLKEN bit in the USART CR2 register to '1'. In synchronous mode, the following bits must be kept cleared: - LINEN bit in the USART CR2 register, - SCEN, HDSEL and IREN bits in the USART CR3 register. In this mode, the USART can be used to control bidirectional synchronous serial communications in master mode. The SCLK pin is the output of the USART transmitter clock. No clock pulses are sent to the SCLK pin during start bit and stop bit. Depending on the state of the LBCL bit in the USART_CR2 register, clock pulses are, or are not, generated during the last valid data bit (address mark). The CPOL bit in the USART_CR2 register is used to select the clock polarity, and the CPHA bit in the USART_CR2 register is used to select the phase of the external clock (see *Figure 326*, *Figure 327* and *Figure 328*). During the Idle state, preamble and send break, the external SCLK clock is not activated. In synchronous master mode, the USART transmitter operates exactly like in asynchronous mode. However, since SCLK is synchronized with TX (according to CPOL and CPHA), the data on TX is synchronous. In synchronous master mode, the USART receiver operates in a different way compared to asynchronous mode. If RE is set to 1, the data are sampled on SCLK (rising or falling edge, depending on CPOL and CPHA), without any oversampling. A given setup and a hold time must be respected (which depends on the baud rate: 1/16 bit time). Note: In master mode, the SCLK pin operates in conjunction with the TX pin. Thus, the clock is provided only if the transmitter is enabled (TE = 1) and data are being transmitted (USART_TDR data register written). This means that it is not possible to receive synchronous data without transmitting data. USART Data out Data in Synchronous device (e.g. slave SPI) Clock MSv31158V1 Figure 326. USART example of synchronous master transmission 577 RM0444 Rev 5 Figure 328. USART data clock timing diagram in synchronous master mode (M bits = 01) #### Slave mode The synchronous slave mode is selected by programming the SLVEN bit in the USART_CR2 register to '1'. In synchronous slave mode, the following bits must be kept cleared: - LINEN and CLKEN bits in the USART CR2 register, - SCEN, HDSEL and IREN bits in the USART_CR3 register. In this mode, the USART can be used to control bidirectional synchronous serial communications in slave mode. The SCLK pin is the input of the USART in slave mode. Note: When the peripheral is used in SPI slave mode, the frequency of peripheral clock source (usart ker ck pres) must be greater than 3 times the CK input frequency. The CPOL bit and the CPHA bit in the USART_CR2 register are used to select the clock polarity and the phase of the external clock, respectively (see *Figure 329*). An underrun error flag is available in slave transmission mode. This flag is set when the first clock pulse for data transmission appears while the software has not yet loaded any value to USART TDR. The slave supports the hardware and software NSS management. Figure 329. USART data clock timing diagram in synchronous slave mode (M bits = 00) ## Slave Select (NSS) pin management The hardware or software slave select management can be set through the DIS_NSS bit in the USART_CR2 register: - Software NSS management (DIS_NSS = 1) - The SPI slave is always selected and NSS input pin is ignored. - The external NSS pin remains free for other application uses. - Hardware NSS management (DIS_NSS = 0) - The SPI slave selection depends on NSS input pin. The slave is selected when NSS is low and deselected when NSS is high. Note: The LBCL (used only on SPI master mode), CPOL and CPHA bits have to be selected when the USART is disabled (UE = 0) to ensure that the clock pulses function correctly. In SPI slave mode, the USART must be enabled before starting the master communications (or between frames while the clock is stable). Otherwise, if the USART slave is enabled while the master is in the middle of a frame, it becomes desynchronized with the master. The data register of the slave needs to be ready before the first edge of the communication clock or before the end of the ongoing communication, otherwise the SPI slave transmits zeros. #### SPI Slave underrun error When an underrun error occurs, the UDR flag is set in the USART_ISR register, and the SPI slave goes on sending the last data until the underrun error flag is cleared by software. The underrun flag is set at the beginning of the frame. An underrun error interrupt is triggered if EIE bit is set in the USART_CR3 register. The underrun error flag is cleared by setting bit UDRCF in the USART ICR register. RM0444 Rev 5 1031/1390 In case of underrun error, it is still possible to write to the TDR register. Clearing the underrun error enables sending new data. If an underrun error occurred and there is no new data written in TDR, then the TC flag is set at the end of the frame. Note: An underrun error may occur if the moment the data is written to the USART_TDR is too close to the first SCLK transmission edge. To avoid this underrun error, the USART_TDR should be written 3 usart ker ck cycles before the first SCLK edge. # 33.5.15 USART
single-wire Half-duplex communication Single-wire Half-duplex mode is selected by setting the HDSEL bit in the USART_CR3 register. In this mode, the following bits must be kept cleared: - LINEN and CLKEN bits in the USART_CR2 register, - SCEN and IREN bits in the USART CR3 register. The USART can be configured to follow a Single-wire Half-duplex protocol where the TX and RX lines are internally connected. The selection between half- and Full-duplex communication is made with a control bit HDSEL in USART_CR3. As soon as HDSEL is written to '1': - The TX and RX lines are internally connected. - The RX pin is no longer used. - The TX pin is always released when no data is transmitted. Thus, it acts as a standard I/O in idle or in reception. It means that the I/O must be configured so that TX is configured as alternate function open-drain with an external pull-up. Apart from this, the communication protocol is similar to normal USART mode. Any conflict on the line must be managed by software (for instance by using a centralized arbiter). In particular, the transmission is never blocked by hardware and continues as soon as data are written in the data register while the TE bit is set. ## 33.5.16 USART receiver timeout The receiver timeout feature is enabled by setting the RTOEN bit in the USART_CR2 control register. The timeout duration is programmed using the RTO bitfields in the USART_RTOR register. The receiver timeout counter starts counting: - from the end of the stop bit if STOP = '00' or STOP = '11' - from the end of the second stop bit if STOP = '10'. - from the beginning of the stop bit if STOP = '01'. When the timeout duration has elapsed, the RTOF flag in the USART_ISR register is set. A timeout is generated if RTOIE bit in USART_CR1 register is set. #### 33.5.17 USART Smartcard mode This section is relevant only when Smartcard mode is supported. Refer to Section 33.4: USART implementation on page 1000. Smartcard mode is selected by setting the SCEN bit in the USART_CR3 register. In Smartcard mode, the following bits must be kept cleared: - LINEN bit in the USART CR2 register, - HDSEL and IREN bits in the USART_CR3 register. The CLKEN bit can also be set to provide a clock to the Smartcard. The Smartcard interface is designed to support asynchronous Smartcard protocol as defined in the ISO 7816-3 standard. Both T = 0 (character mode) and T = 1 (block mode) are supported. The USART should be configured as: - 8 bits plus parity: M = 1 and PCE = 1 in the USART CR1 register - 1.5 stop bits when transmitting and receiving data: STOP = '11' in the USART_CR2 register. It is also possible to choose 0.5 stop bit for reception. In T = 0 (character) mode, the parity error is indicated at the end of each character during the guard time period. *Figure 330* shows examples of what can be seen on the data line with and without parity error. Figure 330. ISO 7816-3 asynchronous protocol When connected to a Smartcard, the TX output of the USART drives a bidirectional line that is also driven by the Smartcard. The TX pin must be configured as open drain. Smartcard mode implements a single wire half duplex communication protocol. - Transmission of data from the transmit shift register is guaranteed to be delayed by a minimum of 1/2 baud clock. In normal operation a full transmit shift register starts shifting on the next baud clock edge. In Smartcard mode this transmission is further delayed by a guaranteed 1/2 baud clock. - In transmission, if the Smartcard detects a parity error, it signals this condition to the USART by driving the line low (NACK). This NACK signal (pulling transmit line low for 1 baud clock) causes a framing error on the transmitter side (configured with 1.5 stop bits). The USART can handle automatic re-sending of data according to the protocol. RM0444 Rev 5 1033/1390 The number of retries is programmed in the SCARCNT bitfield. If the USART continues receiving the NACK after the programmed number of retries, it stops transmitting and signals the error as a framing error. The TXE bit (TXFNF bit in case FIFO mode is enabled) may be set using the TXFRQ bit in the USART_RQR register. - Smartcard auto-retry in transmission: A delay of 2.5 baud periods is inserted between the NACK detection by the USART and the start bit of the repeated character. The TC bit is set immediately at the end of reception of the last repeated character (no guardtime). If the software wants to repeat it again, it must insure the minimum 2 baud periods required by the standard. - If a parity error is detected during reception of a frame programmed with a 1.5 stop bit period, the transmit line is pulled low for a baud clock period after the completion of the receive frame. This is to indicate to the Smartcard that the data transmitted to the USART has not been correctly received. A parity error is NACKed by the receiver if the NACK control bit is set, otherwise a NACK is not transmitted (to be used in T = 1 mode). If the received character is erroneous, the RXNE (RXFNE in case FIFO mode is enabled)/receive DMA request is not activated. According to the protocol specification, the Smartcard must resend the same character. If the received character is still erroneous after the maximum number of retries specified in the SCARCNT bitfield, the USART stops transmitting the NACK and signals the error as a parity error. - Smartcard auto-retry in reception: the BUSY flag remains set if the USART NACKs the card but the card doesn't repeat the character. - In transmission, the USART inserts the Guard Time (as programmed in the Guard Time register) between two successive characters. As the Guard Time is measured after the stop bit of the previous character, the GT[7:0] register must be programmed to the desired CGT (Character Guard Time, as defined by the 7816-3 specification) minus 12 (the duration of one character). - The assertion of the TC flag can be delayed by programming the Guard Time register. In normal operation, TC is asserted when the transmit shift register is empty and no further transmit requests are outstanding. In Smartcard mode an empty transmit shift register triggers the Guard Time counter to count up to the programmed value in the Guard Time register. TC is forced low during this time. When the Guard Time counter reaches the programmed value TC is asserted high. The TCBGT flag can be used to detect the end of data transfer without waiting for guard time completion. This flag is set just after the end of frame transmission and if no NACK has been received from the card. - The deassertion of TC flag is unaffected by Smartcard mode. - If a framing error is detected on the transmitter end (due to a NACK from the receiver), the NACK is not detected as a start bit by the receive block of the transmitter. According to the ISO protocol, the duration of the received NACK can be 1 or 2 baud clock periods. - On the receiver side, if a parity error is detected and a NACK is transmitted the receiver does not detect the NACK as a start bit. Note: Break characters are not significant in Smartcard mode. A 0x00 data with a framing error is treated as data and not as a break. No Idle frame is transmitted when toggling the TE bit. The Idle frame (as defined for the other configurations) is not defined by the ISO protocol. *Figure 331* shows how the NACK signal is sampled by the USART. In this example the USART is transmitting data and is configured with 1.5 stop bits. The receiver part of the USART is enabled in order to check the integrity of the data and the NACK signal. Figure 331. Parity error detection using the 1.5 stop bits The USART can provide a clock to the Smartcard through the SCLK output. In Smartcard mode, SCLK is not associated to the communication but is simply derived from the internal peripheral input clock through a 5-bit prescaler. The division ratio is configured in the USART_GTPR register. SCLK frequency can be programmed from usart_ker_ck_pres/2 to usart_ker_ck_pres/62, where usart_ker_ck_pres is the peripheral input clock divided by a programmed prescaler. # Block mode (T = 1) In T = 1 (block) mode, the parity error transmission can be deactivated by clearing the NACK bit in the USART CR3 register. When requesting a read from the Smartcard, in block mode, the software must program the RTOR register to the BWT (block wait time) - 11 value. If no answer is received from the card before the expiration of this period, a timeout interrupt is generated. If the first character is received before the expiration of the period, it is signaled by the RXNE/RXFNE interrupt. Note: The RXNE/RXFNE interrupt must be enabled even when using the USART in DMA mode to read from the Smartcard in block mode. In parallel, the DMA must be enabled only after the first received byte. After the reception of the first character (RXNE/RXFNE interrupt), the RTO register must be programmed to the CWT (character wait time -11 value), in order to enable the automatic check of the maximum wait time between two consecutive characters. This time is expressed in baud time units. If the Smartcard does not send a new character in less than the CWT period after the end of the previous character, the USART signals it to the software through the RTOF flag and interrupt (when RTOIE bit is set). Note: As in the Smartcard protocol definition, the BWT/CWT values should be defined from the beginning (start bit) of the last character. The RTO register must be programmed to BWT - 11 or CWT -11, respectively, taking into account the length of the last character itself. A block length counter is used to count all the characters received by the USART. This counter is reset when the USART is transmitting. The length of the block is communicated by the Smartcard in the third byte of the block (prologue field). This value must be programmed to the BLEN field in the USART_RTOR register. When using DMA mode, before the start of the block, this register field must be
programmed to the minimum value RM0444 Rev 5 1035/1390 (0x0). With this value, an interrupt is generated after the 4th received character. The software must read the LEN field (third byte), its value must be read from the receive buffer. In interrupt driven receive mode, the length of the block may be checked by software or by programming the BLEN value. However, before the start of the block, the maximum value of BLEN (0xFF) may be programmed. The real value is programmed after the reception of the third character. If the block is using the LRC longitudinal redundancy check (1 epilogue byte), the BLEN = LEN. If the block is using the CRC mechanism (2 epilog bytes), BLEN = LEN+1 must be programmed. The total block length (including prologue, epilogue and information fields) equals BLEN+4. The end of the block is signaled to the software through the EOBF flag and interrupt (when EOBIE bit is set). In case of an error in the block length, the end of the block is signaled by the RTO interrupt (Character Wait Time overflow). Note: The error checking code (LRC/CRC) must be computed/verified by software. #### Direct and inverse convention The Smartcard protocol defines two conventions: direct and inverse. The direct convention is defined as: LSB first, logical bit value of 1 corresponds to a H state of the line and parity is even. In order to use this convention, the following control bits must be programmed: MSBFIRST = 0, DATAINV = 0 (default values). The inverse convention is defined as: MSB first, logical bit value 1 corresponds to an L state on the signal line and parity is even. In order to use this convention, the following control bits must be programmed: MSBFIRST = 1, DATAINV = 1. Note: When logical data values are inverted (0 = H, 1 = L), the parity bit is also inverted in the same way. In order to recognize the card convention, the card sends the initial character, TS, as the first character of the ATR (Answer To Reset) frame. The two possible patterns for the TS are: LHHL LLL LLH and LHHL HHH LLH. - (H) LHHL LLL LLH sets up the inverse convention: state L encodes value 1 and moment 2 conveys the most significant bit (MSB first). When decoded by inverse convention, the conveyed byte is equal to '3F'. - (H) LHHL HHH LLH sets up the direct convention: state H encodes value 1 and moment 2 conveys the least significant bit (LSB first). When decoded by direct convention, the conveyed byte is equal to '3B'. Character parity is correct when there is an even number of bits set to 1 in the nine moments 2 to 10. As the USART does not know which convention is used by the card, it needs to be able to recognize either pattern and act accordingly. The pattern recognition is not done in hardware, but through a software sequence. Moreover, assuming that the USART is configured in direct convention (default) and the card answers with the inverse convention, TS = LHHL LLL LLH results in a USART received character of 03 and an odd parity. Therefore, two methods are available for TS pattern recognition: #### Method 1 The USART is programmed in standard Smartcard mode/direct convention. In this case, the TS pattern reception generates a parity error interrupt and error signal to the card. - The parity error interrupt informs the software that the card did not answer correctly in direct convention. Software then reprograms the USART for inverse convention - In response to the error signal, the card retries the same TS character, and it is correctly received this time, by the reprogrammed USART. Alternatively, in answer to the parity error interrupt, the software may decide to reprogram the USART and to also generate a new reset command to the card, then wait again for the TS. #### Method 2 The USART is programmed in 9-bit/no-parity mode, no bit inversion. In this mode it receives any of the two TS patterns as: - (H) LHHL LLL LLH = 0x103: inverse convention to be chosen - (H) LHHL HHH LLH = 0x13B: direct convention to be chosen The software checks the received character against these two patterns and, if any of them match, then programs the USART accordingly for the next character reception. If none of the two is recognized, a card reset may be generated in order to restart the negotiation. #### 33.5.18 USART IrDA SIR ENDEC block This section is relevant only when IrDA mode is supported. Refer to Section 33.4: USART implementation on page 1000. IrDA mode is selected by setting the IREN bit in the USART_CR3 register. In IrDA mode, the following bits must be kept cleared: - LINEN, STOP and CLKEN bits in the USART_CR2 register, - SCEN and HDSEL bits in the USART_CR3 register. The IrDA SIR physical layer specifies use of a Return to Zero, Inverted (RZI) modulation scheme that represents logic 0 as an infrared light pulse (see *Figure 332*). The SIR Transmit encoder modulates the Non Return to Zero (NRZ) transmit bit stream output from USART. The output pulse stream is transmitted to an external output driver and infrared LED. USART supports only bit rates up to 115.2 Kbps for the SIR ENDEC. In normal mode the transmitted pulse width is specified as 3/16 of a bit period. The SIR receive decoder demodulates the return-to-zero bit stream from the infrared detector and outputs the received NRZ serial bit stream to the USART. The decoder input is normally high (marking state) in the Idle state. The transmit encoder output has the opposite polarity to the decoder input. A start bit is detected when the decoder input is low. IrDA is a half duplex communication protocol. If the Transmitter is busy (when the USART is sending data to the IrDA encoder), any data on the IrDA receive line is ignored by the IrDA decoder and if the Receiver is busy (when the USART is receiving decoded data from the USART), data on the TX from the USART to IrDA is not RM0444 Rev 5 1037/1390 - encoded. While receiving data, transmission should be avoided as the data to be transmitted could be corrupted. - A '0' is transmitted as a high pulse and a '1' is transmitted as a '0'. The width of the pulse is specified as 3/16th of the selected bit period in normal mode (see Figure 333). - The SIR decoder converts the IrDA compliant receive signal into a bit stream for USART. - The SIR receive logic interprets a high state as a logic one and low pulses as logic - The transmit encoder output has the opposite polarity to the decoder input. The SIR output is in low state when Idle. - The IrDA specification requires the acceptance of pulses greater than 1.41 µs. The acceptable pulse width is programmable. Glitch detection logic on the receiver end filters out pulses of width less than 2 PSC periods (PSC is the prescaler value programmed in the USART GTPR). Pulses of width less than 1 PSC period are always rejected, but those of width greater than one and less than two periods may be accepted or rejected, those greater than two periods are accepted as a pulse. The IrDA encoder/decoder doesn't work when PSC = 0. - The receiver can communicate with a low-power transmitter. - In IrDA mode, the stop bits in the USART_CR2 register must be configured to '1 stop biť. ## IrDA low-power mode Transmitter In low-power mode, the pulse width is not maintained at 3/16 of the bit period. Instead, the width of the pulse is 3 times the low-power baud rate which can be a minimum of 1.42 MHz. Generally, this value is 1.8432 MHz (1.42 MHz < PSC < 2.12 MHz). A lowpower mode programmable divisor divides the system clock to achieve this value. Receiver Receiving in low-power mode is similar to receiving in normal mode. For glitch detection the USART should discard pulses of duration shorter than 1/PSC. A valid low is accepted only if its duration is greater than 2 periods of the IrDA low-power Baud clock (PSC value in the USART GTPR). Note: A pulse of width less than two and greater than one PSC period(s) may or may not be rejected. > The receiver set up time should be managed by software. The IrDA physical layer specification specifies a minimum of 10 ms delay between transmission and reception (IrDA is a half duplex protocol). TX OR USART_TX SIREN IrDA_OUT Encoder IrDA_IN DEcoder USART_RX MSv31164V1 Figure 332. IrDA SIR ENDEC block diagram Figure 333. IrDA data modulation (3/16) - Normal mode #### 33.5.19 Continuous communication using USART and DMA The USART is capable of performing continuous communications using the DMA. The DMA requests for Rx buffer and Tx buffer are generated independently. Note: Refer to Section 33.4: USART implementation on page 1000 to determine if the DMA mode is supported. If DMA is not supported, use the USART as explained in Section 33.5.6. To perform continuous communications when the FIFO is disabled, clear the TXE/RXNE flags in the USART ISR register. ## Transmission using DMA DMA mode can be enabled for transmission by setting DMAT bit in the USART CR3 register. Data are loaded from an SRAM area configured using the DMA peripheral (refer to the corresponding *Direct memory access controller* section) to the USART TDR register whenever the TXE flag (TXFNF flag if FIFO mode is enabled) is set. To map a DMA channel for USART transmission, use the following procedure (x denotes the channel number): - Write the USART TDR register address in the DMA control register to configure it as the destination of the transfer. The data is moved to this address from memory after each TXE (or TXFNF if FIFO mode is enabled) event. - 2. Write the memory address in the DMA control register to configure it as the source of the transfer. The data is loaded into the USART TDR register from this memory area after each TXE (or TXFNF if FIFO mode is enabled) event. - Configure the total number of bytes to be transferred to the DMA control register. 3. - Configure the channel priority in the DMA register - Configure DMA interrupt generation after half/ full transfer as required by the application. - Clear the TC flag in the USART ISR register by setting the TCCF bit in the USART ICR
register. - 7. Activate the channel in the DMA register. When the number of data transfers programmed in the DMA Controller is reached, the DMA controller generates an interrupt on the DMA channel interrupt vector. In transmission mode, once the DMA has written all the data to be transmitted (the TCIF flag is set in the DMA_ISR register), the TC flag can be monitored to make sure that the USART communication is complete. This is required to avoid corrupting the last transmission before disabling the USART or before the system enters a low-power mode when the peripheral clock is disabled. Software must wait until TC = 1. The TC flag remains cleared during all data transfers and it is set by hardware at the end of transmission of the last frame. Figure 334. Transmission using DMA Note: When FIFO management is enabled, the DMA request is triggered by Transmit FIFO not full (i.e. TXFNF = 1). ## Reception using DMA DMA mode can be enabled for reception by setting the DMAR bit in USART_CR3 register. Data are loaded from the USART_RDR register to an SRAM area configured using the DMA peripheral (refer to the corresponding *Direct memory access controller* section) whenever a data byte is received. To map a DMA channel for USART reception, use the following procedure: - 1. Write the USART_RDR register address in the DMA control register to configure it as the source of the transfer. The data is moved from this address to the memory after each RXNE (RXFNE in case FIFO mode is enabled) event. - 2. Write the memory address in the DMA control register to configure it as the destination of the transfer. The data is loaded from USART_RDR to this memory area after each RXNE (RXFNE in case FIFO mode is enabled) event. - Configure the total number of bytes to be transferred to the DMA control register. - 4. Configure the channel priority in the DMA control register - 5. Configure interrupt generation after half/ full transfer as required by the application. - 6. Activate the channel in the DMA control register. When the number of data transfers programmed in the DMA Controller is reached, the DMA controller generates an interrupt on the DMA channel interrupt vector. RM0444 Rev 5 1041/1390 Figure 335. Reception using DMA Note: When FIFO management is enabled, the DMA request is triggered by Receive FIFO not empty (i.e. RXFNE = 1). ## Error flagging and interrupt generation in multibuffer communication If any error occurs during a transaction in multibuffer communication mode, the error flag is asserted after the current byte. An interrupt is generated if the interrupt enable flag is set. For framing error, overrun error and noise flag which are asserted with RXNE (RXFNE in case FIFO mode is enabled) in single byte reception, there is a separate error flag interrupt enable bit (EIE bit in the USART_CR3 register), which, if set, enables an interrupt after the current byte if any of these errors occur. #### 33.5.20 RS232 Hardware flow control and RS485 Driver Enable It is possible to control the serial data flow between 2 devices by using the nCTS input and the nRTS output. The *Figure 336* shows how to connect 2 devices in this mode: Figure 336. Hardware flow control between 2 USARTs 4 RS232 RTS and CTS flow control can be enabled independently by writing the RTSE and CTSE bits to '1' in the USART_CR3 register. ## **RS232 RTS flow control** If the RTS flow control is enabled (RTSE = 1), then nRTS is asserted (tied low) as long as the USART receiver is ready to receive a new data. When the receive register is full, nRTS is deasserted, indicating that the transmission is expected to stop at the end of the current frame. *Figure 337* shows an example of communication with RTS flow control enabled. Figure 337. RS232 RTS flow control Note: When FIFO mode is enabled, nRTS is deasserted only when RXFIFO is full. ## **RS232 CTS flow control** If the CTS flow control is enabled (CTSE = 1), then the transmitter checks the nCTS input before transmitting the next frame. If nCTS is asserted (tied low), then the next data is transmitted (assuming that data is to be transmitted, in other words, if TXE/TXFE = 0), else the transmission does not occur. When nCTS is deasserted during a transmission, the current transmission is completed before the transmitter stops. When CTSE = 1, the CTSIF status bit is automatically set by hardware as soon as the nCTS input toggles. It indicates when the receiver becomes ready or not ready for communication. An interrupt is generated if the CTSIE bit in the USART_CR3 register is set. *Figure 338* shows an example of communication with CTS flow control enabled. RM0444 Rev 5 Figure 338. RS232 CTS flow control Note: For correct behavior, nCTS must be asserted at least 3 USART clock source periods before the end of the current character. In addition it should be noted that the CTSCF flag may not be set for pulses shorter than 2 x PCLK periods. ## RS485 driver enable The driver enable feature is enabled by setting bit DEM in the USART_CR3 control register. This enables the user to activate the external transceiver control, through the DE (Driver Enable) signal. The assertion time is the time between the activation of the DE signal and the beginning of the start bit. It is programmed using the DEAT [4:0] bitfields in the USART_CR1 control register. The deassertion time is the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE signal. It is programmed using the DEDT [4:0] bitfields in the USART_CR1 control register. The polarity of the DE signal can be configured using the DEP bit in the USART_CR3 control register. In USART, the DEAT and DEDT are expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). ## 33.5.21 USART low-power management The USART has advanced low-power mode functions, that enables transferring properly data even when the usart_pclk clock is disabled. The USART is able to wake up the MCU from low-power mode when the UESM bit is set. When the usart_pclk is gated, the USART provides a wakeup interrupt (usart_wkup) if a specific action requiring the activation of the usart_pclk clock is needed: - If FIFO mode is disabled - usart pclk clock has to be activated to empty the USART data register. - In this case, the usart_wkup interrupt source is RXNE set to '1'. The RXNEIE bit must be set before entering low-power mode. - If FIFO mode is enabled usart pclk clock has to be activated to: - to fill the TXFIFO - or to empty the RXFIFO In this case, the usart wkup interrupt source can be: - RXFIFO not empty. In this case, the RXFNEIE bit must be set before entering lowpower mode. - RXFIFO full. In this case, the RXFFIE bit must be set before entering low-power mode, the number of received data corresponds to the RXFIFO size, and the RXFF flag is not set. - TXFIFO empty. In this case, the TXFEIE bit must be set before entering low-power mode. This enables sending/receiving the data in the TXFIFO/RXFIFO during low-power mode. To avoid overrun/underrun errors and transmit/receive data in low-power mode, the usart_wkup interrupt source can be one of the following events: - TXFIFO threshold reached. In this case, the TXFTIE bit must be set before entering low-power mode. - RXFIFO threshold reached. In this case, the RXFTIE bit must be set before entering low-power mode. For example, the application can set the threshold to the maximum RXFIFO size if the wakeup time is less than the time required to receive a single byte across the line. Using the RXFIFO full, TXFIFO empty, RXFIFO not empty and RXFIFO/TXFIFO threshold interrupts to wakeup the MCU from low-power mode enables doing as many USART transfers as possible during low-power mode with the benefit of optimizing consumption. Alternatively, a specific **usart_wkup** interrupt can be selected through the WUS bitfields. When the wakeup event is detected, the WUF flag is set by hardware and a **usart_wkup** interrupt is generated if the WUFIE bit is set. In this case the **usart_wkup** interrupt is not mandatory and setting the WUF being is sufficient to wake up the MCU from low-power mode. RM0444 Rev 5 1045/1390 Note: Before entering low-power mode, make sure that no USART transfers are ongoing. Checking the BUSY flag cannot ensure that low-power mode is never entered when data reception is ongoing. The WUF flag is set when a wakeup event is detected, independently of whether the MCU is in low-power or active mode. When entering low-power mode just after having initialized and enabled the receiver, the REACK bit must be checked to make sure the USART is enabled. When DMA is used for reception, it must be disabled before entering low-power mode and re-enabled when exiting from low-power mode. When the FIFO is enabled, waking up from low-power mode on address match is only possible when Mute mode is enabled. ## Using Mute mode with low-power mode If the USART is put into Mute mode before entering low-power mode: - Wakeup from Mute mode on idle detection must not be used, because idle detection cannot work in low-power mode. - If the wakeup from Mute mode on address match is used, then the low-power mode wakeup source must also be the address match. If the RXNE flag was set when entering the low-power mode, the interface remains in Mute mode upon address match and wake up from low-power mode. Note: When FIFO management is enabled, Mute mode can be used with wakeup from low-power mode without any constraints (i.e.the two points mentioned above about Mute and low-power mode are valid only when FIFO management is disabled). # Wakeup from low-power mode when USART kernel clock (usart_ker_ck) is OFF in low-power mode If during low-power mode, the usart_ker_ck clock is switched OFF when a falling edge on the USART receive line is detected, the USART interface requests the usart_ker_ck clock to be switched ON thanks to the usart_ker_ck_req signal. usart_ker_ck is then used for the frame
reception. If the wakeup event is verified, the MCU wakes up from low-power mode and data reception goes on normally. If the wakeup event is not verified, usart_ker_ck is switched OFF again, the MCU is not woken up and remains in low-power mode, and the kernel clock request is released. The example below shows the case of a wakeup event programmed to "address match detection" and FIFO management disabled. Figure 339 shows the USART behavior when the wakeup event is verified. Address match event WUF ='1' USART sends a wakeup event to the MCU Data reception goes on Þ Idle Start Rx data 1 Rx data 2 Þị þ **RX** line Stop Startup time Usart_ker_ck ON **OFF** Low-power mode Run mode Figure 339. Wakeup event verified (wakeup event = address match, FIFO disabled) Figure 340 shows the USART behavior when the wakeup event is not verified. Figure 340. Wakeup event not verified (wakeup event = address match, FIFO disabled) Note: The figures above are valid when address match or any received frame is used as wakeup event. If the wakeup event is the start bit detection, the USART sends the wakeup event to the MCU at the end of the start bit. MSv40856V2 # Determining the maximum USART baud rate that enables to correctly wake up the device from low-power mode The maximum baud rate that enables to correctly wake up the device from low-power mode depends on the wakeup time parameter (refer to the device datasheet) and on the USART receiver tolerance (see Section 33.5.8: Tolerance of the USART receiver to clock deviation). Let us take the example of OVER8 = 0, M bits = '01', ONEBIT = 0 and BRR [3:0] = 0000. In these conditions, according to *Table 182: Tolerance of the USART receiver when BRR* [3:0] = 0000, the USART receiver tolerance equals 3.41%. DTRA + DQUANT + DREC + DTCL + DWU < USART receiver tolerance $D_{WUmax} = t_{WUUSART} / (11 x T_{bit Min})$ $T_{bit Min} = t_{WUUSART} / (11 \times D_{WUmax})$ where two user is the wakeup time from low-power mode. If we consider the ideal case where DTRA, DQUANT, DREC and DTCL parameters are at 0%, the maximum value of DWU is 3.41%. In reality, we need to consider at least the usart_ker_ck inaccuracy. For example, if HSI is used as usart_ker_ck, and the HSI inaccuracy is of 1%, then we obtain: $t_{WUUSART}$ = 3 μs (values provided only as examples; for correct values, refer to the device datasheet). $D_{WUmax} = 3.41\% - 1\% = 2.41\%$ $T_{bit min} = 3 \mu s / (11 \times 2.41\%) = 11.32 \mu s.$ As a result, the maximum baud rate that enables to wakeup correctly from low-power mode is: $1/11.32 \mu s = 88.36 \text{ Kbaud}$. ## 33.6 USART in low-power modes Table 185. Effect of low-power modes on the USART | Mode | Description | |---------------------|---| | Sleep | No effect. USART interrupts cause the device to exit Sleep mode. | | Stop ⁽¹⁾ | The content of the USART registers is kept. The USART is able to wake up the microcontroller from Stop mode when the USART is clocked by an oscillator available in Stop mode. | | Standby | The USART peripheral is powered down and must be reinitialized after exiting Standby mode. | ^{1.} Refer to Section 33.4: USART implementation to know if the wakeup from Stop mode is supported for a given peripheral instance. If an instance is not functional in a given Stop mode, it must be disabled before entering this Stop mode. ## 33.7 USART interrupts Refer to *Table 186* for a detailed description of all USART interrupt requests. Table 186. USART interrupt requests | Interrupt
vector | Interrupt event | Event
flag | Enable
Control bit | Interrupt clear
method | Exit from
Sleep
mode | Exit from
Stop ⁽¹⁾
modes | Exit from
Standby
mode | |---------------------|---|---------------------|-----------------------|---|----------------------------|---|------------------------------| | | Transmit data register empty | TXE | TXEIE | Write TDR | | NO | | | | Transmit FIFO not Full | TXFNF | TXFNFIE | TXFIFO full | | NO | | | | Transmit FIFO Empty | TXFE | TXFEIE | Write TDR or write 1 in TXFRQ | | YES | | | USART
or UART | Transmit FIFO threshold reached | TXFT | TXFTIE | Write TDR | YES | YES | NO | | | CTS interrupt | CTSIF | CTSIE | Write 1 in CTSCF | | NO | | | | Transmission Complete | TC | TCIE | Write TDR or write 1 in TCCF | | NO | | | | Transmission Complete Before Guard Time | TCBGT | TCBGTIE | Write TDR or write 1 in TCBGT | | NO | | | | Receive data register not empty (data ready to be read) | RXNE | RXNEIE | Read RDR or write 1 in RXFRQ | | YES | | | | Receive FIFO Not Empty | RXFNE | RXFNEIE | Read RDR until
RXFIFO empty or
write 1 in RXFRQ | | YES | | | | Receive FIFO Full | RXFF ⁽²⁾ | RXFFIE | Read RDR | | YES | | | | Receive FIFO threshold reached | RXFT | RXFTIE | Read RDR | | YES | | | | Overrun error detected | ORE | RXNEIE/
RXFNEIE | Write 1 in ORECF | | NO | | | | Idle line detected | IDLE | IDLEIE | Write 1 in IDLECF | | NO | | | LICART | Parity error | PE | PEIE | Write 1 in PECF | | NO | | | USART
or UART | LIN break | LBDF | LBDIE | Write 1 in LBDCF | YES | NO | NO | | | Noise error in multibuffer communication | NE | | Write 1 in NFCF | | NO | | | | Overrun error in multibuffer communication | ORE ⁽³⁾ | EIE | Write 1 in ORECF | | NO | | | | Framing Error in multibuffer communication | FE | | Write 1 in FECF | | NO | | | | Character match | CMF | CMIE | Write 1 in CMCF | | NO | | | | Receiver timeout | RTOF | RTOFIE | Write 1 in RTOCCF | | NO | | | | End of Block | EOBF | EOBIE | Write 1 in EOBCF | | NO | | | | Wakeup from low-power mode | WUF | WUFIE | Write 1 in WUC | | YES | | | | SPI slave underrun error | UDR | EIE | Write 1 in UDRCF | | NO | | The USART can wake up the device from Stop mode only if the peripheral instance supports the Wakeup from Stop mode feature. Refer to Section 33.4: USART implementation for the list of supported Stop modes. RM0444 Rev 5 1049/1390 - 2. RXFF flag is asserted if the USART receives n+1 data (n being the RXFIFO size): n data in the RXFIFO and 1 data in USART_RDR. In Stop mode, USART_RDR is not clocked. As a result, this register is not written and once n data are received and written in the RXFIFO, the RXFF interrupt is asserted (RXFF flag is not set). - 3. When OVRDIS = 0. ## 33.8 USART registers Refer to Section 1.2 on page 53 for a list of abbreviations used in register descriptions. The peripheral registers have to be accessed by words (32 bits). ## 33.8.1 USART control register 1 [alternate] (USART_CR1) Address offset: 0x00 Reset value: 0x0000 0000 The same register can be used in FIFO mode enabled (this section) and FIFO mode disabled (next section). #### FIFO mode enabled | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|--------|------------|----|-------|-------|----|------|-----------|------|---------|--------|----|-----------|------|----| | RXF
FIE | TXFEIE | FIFO
EN | M1 | EOBIE | RTOIE | | | DEAT[4:0] |] | | | [| DEDT[4:0] | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | OVER8 | CMIE | MME | M0 | WAKE | PCE | PS | PEIE | TXFNFIE | TCIE | RXFNEIE | IDLEIE | TE | RE | UESM | UE | | rw #### Bit 31 RXFFIE: RXFIFO Full interrupt enable This bit is set and cleared by software. 0: Interrupt inhibited 1: USART interrupt generated when RXFF = 1 in the USART ISR register #### Bit 30 TXFEIE: TXFIFO empty interrupt enable This bit is set and cleared by software. 0: Interrupt inhibited 1: USART interrupt generated when TXFE = 1 in the USART_ISR register #### Bit 29 FIFOEN: FIFO mode enable This bit is set and cleared by software. 0: FIFO mode is disabled. 1: FIFO mode is enabled. This bitfield can only be written when the USART is disabled (UE = 0). Note: FIFO mode can be used on standard UART communication, in SPI master/slave mode and in Smartcard modes only. It must not be enabled in IrDA and LIN modes. #### Bit 28 M1: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = '00': 1 start bit, 8 Data bits, n Stop bit M[1:0] = '01': 1 start bit, 9 Data bits, n Stop bit M[1:0] = '10': 1 start bit, 7 Data bits, n Stop bit This bit can only be written when the USART is disabled (UE = 0). Note: In 7-bits data length mode, the Smartcard mode, LIN master mode and Auto baud rate (0x7F and 0x55 frames detection) are not supported. #### Bit 27 EOBIE: End of Block interrupt enable This bit is set and cleared by software. 0: Interrupt inhibited 1: USART interrupt generated when the EOBF flag is set in the USART_ISR register Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 26 RTOIE: Receiver timeout interrupt enable This bit is set and cleared by software. 0: Interrupt inhibited 1: USART interrupt generated when the RTOF bit is set in the USART_ISR register. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Section 33.4: USART implementation on page 1000. #### Bits 25:21 **DEAT[4:0]**: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). This bitfield can only be written when the USART is disabled (UE = 0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bits 20:16
DEDT[4:0]: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). If the USART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the USART is disabled (UE = 0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 15 OVER8: Oversampling mode 0: Oversampling by 16 1: Oversampling by 8 This bit can only be written when the USART is disabled (UE = 0). Note: In LIN, IrDA and Smartcard modes, this bit must be kept cleared. #### Bit 14 CMIE: Character match interrupt enable This bit is set and cleared by software. 0: Interrupt inhibited 1: USART interrupt generated when the CMF bit is set in the USART_ISR register. RM0444 Rev 5 1051/1390 #### Bit 13 MME: Mute mode enable This bit enables the USART Mute mode function. When set, the USART can switch between active and Mute mode, as defined by the WAKE bit. It is set and cleared by software. - 0: Receiver in active mode permanently - 1: Receiver can switch between Mute mode and active mode. #### Bit 12 M0: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1)description). This bit can only be written when the USART is disabled (UE = 0). #### Bit 11 WAKE: Receiver wakeup method This bit determines the USART wakeup method from Mute mode. It is set or cleared by software. - 0: Idle line - 1: Address mark This bitfield can only be written when the USART is disabled (UE = 0). #### Bit 10 PCE: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M = 1; 8th bit if M = 0) and the parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). - 0: Parity control disabled - 1: Parity control enabled This bitfield can only be written when the USART is disabled (UE = 0). #### Bit 9 **PS**: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. - 0: Even parity - 1: Odd parity This bitfield can only be written when the USART is disabled (UE = 0). #### Bit 8 PEIE: PE interrupt enable This bit is set and cleared by software. - 0: Interrupt inhibited - 1: USART interrupt generated whenever PE = 1 in the USART_ISR register #### Bit 7 TXFNFIE: TXFIFO not full interrupt enable This bit is set and cleared by software. - 0: Interrupt inhibited - 1: USART interrupt generated whenever TXFNF =1 in the USART_ISR register #### Bit 6 **TCIE**: Transmission complete interrupt enable This bit is set and cleared by software. - 0: Interrupt inhibited - 1: USART interrupt generated whenever TC = 1 in the USART_ISR register ## Bit 5 RXFNEIE: RXFIFO not empty interrupt enable This bit is set and cleared by software. - 0: Interrupt inhibited - 1: USART interrupt generated whenever ORE = 1 or RXFNE = 1 in the USART_ISR register #### Bit 4 IDLEIE: IDLE interrupt enable This bit is set and cleared by software. - 0: Interrupt inhibited - 1: USART interrupt generated whenever IDLE = 1 in the USART ISR register #### Bit 3 TE: Transmitter enable This bit enables the transmitter. It is set and cleared by software. - 0: Transmitter is disabled - 1: Transmitter is enabled Note: During transmission, a low pulse on the TE bit ('0' followed by '1') sends a preamble (idle line) after the current word, except in Smartcard mode. In order to generate an idle character, the TE must not be immediately written to '1'. To ensure the required duration, the software can poll the TEACK bit in the USART_ISR register. In Smartcard mode, when TE is set, there is a 1 bit-time delay before the transmission starts. #### Bit 2 RE: Receiver enable This bit enables the receiver. It is set and cleared by software. - 0: Receiver is disabled - 1: Receiver is enabled and begins searching for a start bit #### Bit 1 UESM: USART enable in low-power mode When this bit is cleared, the USART cannot wake up the MCU from low-power mode. When this bit is set, the USART can wake up the MCU from low-power mode. This bit is set and cleared by software. - 0: USART not able to wake up the MCU from low-power mode. - 1: USART able to wake up the MCU from low-power mode. Note: It is recommended to set the UESM bit just before entering low-power mode and clear it when exit from low-power mode. If the USART does not support the wakeup from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 0 UE: USART enable When this bit is cleared, the USART prescalers and outputs are stopped immediately, and all current operations are discarded. The USART configuration is kept, but all the USART_ISR status flags are reset. This bit is set and cleared by software. - 0: USART prescaler and outputs disabled, low-power mode - 1: USART enabled Note: To enter low-power mode without generating errors on the line, the TE bit must be previously reset and the software must wait for the TC bit in the USART_ISR to be set before resetting the UE bit. The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit. In Smartcard mode, (SCEN = 1), the SCLK is always available when CLKEN = 1, regardless of the UE bit value. RM0444 Rev 5 1053/1390 ## 33.8.2 USART control register 1 [alternate] (USART_CR1) Address offset: 0x00 Reset value: 0x0000 0000 The same register can be used in FIFO mode enabled (previous section) and FIFO mode disabled (this section). #### FIFO mode disabled | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------|------|------------|----|-------|-------|----|------|----------|------|--------|--------|----|----------|------|----| | Res. | Res. | FIFO
EN | M1 | EOBIE | RTOIE | | | DEAT[4:0 |] | | | ſ | DEDT[4:0 |] | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | OVER8 | CMIE | MME | M0 | WAKE | PCE | PS | PEIE | TXEIE | TCIE | RXNEIE | IDLEIE | TE | RE | UESM | UE | | rw Bits 31:30 Reserved, must be kept at reset value. #### Bit 29 FIFOEN: FIFO mode enable This bit is set and cleared by software. 0: FIFO mode is disabled. 1: FIFO mode is enabled. This bitfield can only be written when the USART is disabled (UE = 0). Note: FIFO mode can be used on standard UART communication, in SPI master/slave mode and in Smartcard modes only. It must not be enabled in IrDA and LIN modes. #### Bit 28 M1: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = '00': 1 start bit, 8 Data bits, n Stop bit M[1:0] = '01': 1 start bit, 9 Data bits, n Stop bit M[1:0] = '10': 1 start bit, 7 Data bits, n Stop bit This bit can only be written when the USART is disabled (UE = 0). Note: In 7-bits data length mode, the Smartcard mode, LIN master mode and Auto baud rate (0x7F and 0x55 frames detection) are not supported. #### Bit 27 EOBIE: End of Block interrupt enable This bit is set and cleared by software. 0: Interrupt inhibited 1: USART interrupt generated when the EOBF flag is set in the USART_ISR register Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 26 RTOIE: Receiver timeout interrupt enable This bit is set and cleared by software. 0: Interrupt inhibited 1: USART interrupt generated when the RTOF bit is set in the USART_ISR register. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Section 33.4: USART implementation on page 1000. #### Bits 25:21 **DEAT[4:0]**: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). This bitfield can only be written when the USART is disabled (UE = 0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bits 20:16 **DEDT[4:0]**: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal. It is expressed in sample time units (1/8 or 1/16 bit time, depending on the oversampling rate). If the USART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the USART is disabled (UE = 0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. ### Bit 15 OVER8: Oversampling mode - 0: Oversampling by 16 - 1: Oversampling by 8 This bit can only be written when the USART is disabled (UE = 0). Note: In LIN, IrDA and Smartcard modes, this bit must be kept cleared. #### Bit 14 CMIE: Character match interrupt enable This bit is set and cleared by software. - 0: Interrupt inhibited - 1: USART interrupt generated when the CMF bit is set in the USART ISR register. #### Bit 13 MME: Mute mode enable This bit enables
the USART Mute mode function. When set, the USART can switch between active and Mute mode, as defined by the WAKE bit. It is set and cleared by software. - 0: Receiver in active mode permanently - 1: Receiver can switch between Mute mode and active mode. #### Bit 12 M0: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1)description). This bit can only be written when the USART is disabled (UE = 0). #### Bit 11 WAKE: Receiver wakeup method This bit determines the USART wakeup method from Mute mode. It is set or cleared by software. - 0: Idle line - 1: Address mark This bitfield can only be written when the USART is disabled (UE = 0). #### Bit 10 PCE: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and the parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). - 0: Parity control disabled - 1: Parity control enabled This bitfield can only be written when the USART is disabled (UE = 0). RM0444 Rev 5 1055/1390 #### Bit 9 PS: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. 0: Even parity 1: Odd parity This bitfield can only be written when the USART is disabled (UE = 0). #### Bit 8 PEIE: PE interrupt enable This bit is set and cleared by software. 0: Interrupt inhibited 1: USART interrupt generated whenever PE = 1 in the USART ISR register #### Bit 7 TXEIE: Transmit data register empty This bit is set and cleared by software. 0: Interrupt inhibited 1: USART interrupt generated whenever TXE =1 in the USART ISR register #### Bit 6 TCIE: Transmission complete interrupt enable This bit is set and cleared by software. 0: Interrupt inhibited 1: USART interrupt generated whenever TC = 1 in the USART_ISR register #### Bit 5 RXNEIE: Receive data register not empty This bit is set and cleared by software. 0: Interrupt inhibited 1: USART interrupt generated whenever ORE = 1 or RXNE = 1 in the USART_ISR register #### Bit 4 IDLEIE: IDLE interrupt enable This bit is set and cleared by software. 0: Interrupt inhibited 1: USART interrupt generated whenever IDLE = 1 in the USART_ISR register #### Bit 3 TE: Transmitter enable This bit enables the transmitter. It is set and cleared by software. 0: Transmitter is disabled 1: Transmitter is enabled Note: During transmission, a low pulse on the TE bit ('0' followed by '1') sends a preamble (idle line) after the current word, except in Smartcard mode. In order to generate an idle character, the TE must not be immediately written to '1'. To ensure the required duration, the software can poll the TEACK bit in the USART_ISR register. In Smartcard mode, when TE is set, there is a 1 bit-time delay before the transmission starts. #### Bit 2 RE: Receiver enable This bit enables the receiver. It is set and cleared by software. - 0: Receiver is disabled - 1: Receiver is enabled and begins searching for a start bit #### Bit 1 UESM: USART enable in low-power mode When this bit is cleared, the USART cannot wake up the MCU from low-power mode. When this bit is set, the USART can wake up the MCU from low-power mode. This bit is set and cleared by software. - 0: USART not able to wake up the MCU from low-power mode. - 1: USART able to wake up the MCU from low-power mode. Note: It is recommended to set the UESM bit just before entering low-power mode and clear it when exit from low-power mode. If the USART does not support the wakeup from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 0 UE: USART enable When this bit is cleared, the USART prescalers and outputs are stopped immediately, and all current operations are discarded. The USART configuration is kept, but all the USART_ISR status flags are reset. This bit is set and cleared by software. - 0: USART prescaler and outputs disabled, low-power mode - 1: USART enabled Note: To enter low-power mode without generating errors on the line, the TE bit must be previously reset and the software must wait for the TC bit in the USART_ISR to be set before resetting the UE bit. The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit. In Smartcard mode, (SCEN = 1), the SCLK is always available when CLKEN = 1, regardless of the UE bit value. ## 33.8.3 USART control register 2 (USART CR2) Address offset: 0x04 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|-------|------|--------|-------|------|------|------|-------|-------|---------|-------|--------------|---------|-------|-------| | | | | ADD | [7:0] | | | | RTOEN | ABRM | OD[1:0] | ABREN | MSBFI
RST | DATAINV | TXINV | RXINV | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SWAP | LINEN | STOR | P[1:0] | CLKEN | CPOL | СРНА | LBCL | Res. | LBDIE | LBDL | ADDM7 | DIS_
NSS | Res. | Res. | SLVEN | | rw | rw | rw | rw | rw | | | rw | #### Bits 31:24 ADD[7:0]: Address of the USART node #### ADD[7:4]: These bits give the address of the USART node or a character code to be recognized. They are used to wake up the MCU with 7-bit address mark detection in multiprocessor communication during Mute mode or low-power mode. The MSB of the character sent by the transmitter should be equal to 1. They can also be used for character detection during normal reception, Mute mode inactive (for example, end of block detection in ModBus protocol). In this case, the whole received character (8-bit) is compared to the ADD[7:0] value and CMF flag is set on match These bits can only be written when reception is disabled (RE = 0) or the USART is disabled (UE = 0). #### ADD[3:0]: These bits give the address of the USART node or a character code to be recognized. They are used for wakeup with address mark detection, in multiprocessor communication during Mute mode or low-power mode. These bits can only be written when reception is disabled (RE = 0) or the USART is disabled (UE = 0). #### Bit 23 RTOEN: Receiver timeout enable This bit is set and cleared by software. - 0: Receiver timeout feature disabled. - 1: Receiver timeout feature enabled. When this feature is enabled, the RTOF flag in the USART_ISR register is set if the RX line is idle (no reception) for the duration programmed in the RTOR (receiver timeout register). Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. ## Bits 22:21 ABRMOD[1:0]: Auto baud rate mode These bits are set and cleared by software. - 00: Measurement of the start bit is used to detect the baud rate. - 01: Falling edge to falling edge measurement (the received frame must start with a single bit = 1 and Frame = Start10xxxxxxx) - 10: 0x7F frame detection. - 11: 0x55 frame detection This bitfield can only be written when ABREN = 0 or the USART is disabled (UE = 0). Note: If DATAINV = 1 and/or MSBFIRST = 1 the patterns must be the same on the line, for example 0xAA for MSBFIRST) If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 20 ABREN: Auto baud rate enable This bit is set and cleared by software. - 0: Auto baud rate detection is disabled. - 1: Auto baud rate detection is enabled. Note: If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 19 MSBFIRST: Most significant bit first This bit is set and cleared by software. - 0: data is transmitted/received with data bit 0 first, following the start bit. - 1: data is transmitted/received with the MSB (bit 7/8) first, following the start bit. This bitfield can only be written when the USART is disabled (UE = 0). #### Bit 18 DATAINV: Binary data inversion This bit is set and cleared by software. 0: Logical data from the data register are send/received in positive/direct logic. (1 = H, 0 = L) 1: Logical data from the data register are send/received in negative/inverse logic. (1 = L, 0 = H). The parity bit is also inverted. This bitfield can only be written when the USART is disabled (UE = 0). #### Bit 17 TXINV: TX pin active level inversion This bit is set and cleared by software. 0: TX pin signal works using the standard logic levels (V_{DD} =1/idle, Gnd = 0/mark) 1: TX pin signal values are inverted (V_{DD} =0/mark, Gnd = 1/idle). This enables the use of an external inverter on the TX line. This bitfield can only be written when the USART is disabled (UE = 0). #### Bit 16 RXINV: RX pin active level inversion This bit is set and cleared by software. 0: RX pin signal works using the standard logic levels (V_{DD} =1/idle, Gnd = 0/mark) 1: RX pin signal values are inverted (V_{DD} =0/mark, Gnd = 1/idle). This enables the use of an external inverter on the RX line. This bitfield can only be written when the USART is disabled (UE = 0). #### Bit 15 SWAP: Swap TX/RX pins This bit is set and cleared by software. 0: TX/RX pins are used as defined in standard pinout 1: The TX and RX pins functions are swapped. This enables to work in the case of a cross-wired connection to another UART. This bitfield can only be written when the USART is disabled (UE = 0). #### Bit 14 LINEN: LIN mode enable This bit is set and cleared by software. 0: LIN mode disabled 1: LIN mode enabled The LIN mode enables the capability to send LIN synchronous breaks (13 low
bits) using the SBKRQ bit in the USART_CR1 register, and to detect LIN Sync breaks. This bitfield can only be written when the USART is disabled (UE = 0). Note: If the USART does not support LIN mode, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bits 13:12 STOP[1:0]: stop bits These bits are used for programming the stop bits. 00: 1 stop bit 01: 0.5 stop bit. 10: 2 stop bits 11: 1.5 stop bits This bitfield can only be written when the USART is disabled (UE = 0). RM0444 Rev 5 1059/1390 #### Bit 11 CLKEN: Clock enable This bit enables the user to enable the SCLK pin. 0: SCLK pin disabled 1: SCLK pin enabled This bit can only be written when the USART is disabled (UE = 0). Note: If neither synchronous mode nor Smartcard mode is supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. In Smartcard mode, in order to provide correctly the SCLK clock to the smartcard, the steps below must be respected: UE = 0 SCEN = 1 GTPR configuration CLKEN= 1 UE = 1 #### Bit 10 CPOL: Clock polarity This bit enables the user to select the polarity of the clock output on the SCLK pin in synchronous mode. It works in conjunction with the CPHA bit to produce the desired clock/data relationship - 0: Steady low value on SCLK pin outside transmission window - 1: Steady high value on SCLK pin outside transmission window This bit can only be written when the USART is disabled (UE = 0). Note: If synchronous mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 9 CPHA: Clock phase This bit is used to select the phase of the clock output on the SCLK pin in synchronous mode. It works in conjunction with the CPOL bit to produce the desired clock/data relationship (see *Figure 320* and *Figure 321*) - 0: The first clock transition is the first data capture edge - 1: The second clock transition is the first data capture edge This bit can only be written when the USART is disabled (UE = 0). Note: If synchronous mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 8 LBCL: Last bit clock pulse This bit is used to select whether the clock pulse associated with the last data bit transmitted (MSB) has to be output on the SCLK pin in synchronous mode. - 0: The clock pulse of the last data bit is not output to the SCLK pin - 1: The clock pulse of the last data bit is output to the SCLK pin **Caution:** The last bit is the 7th or 8th or 9th data bit transmitted depending on the 7 or 8 or 9 bit format selected by the M bit in the USART CR1 register. This bit can only be written when the USART is disabled (UE = 0). Note: If synchronous mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 7 Reserved, must be kept at reset value. #### Bit 6 LBDIE: LIN break detection interrupt enable Break interrupt mask (break detection using break delimiter). - 0: Interrupt is inhibited - 1: An interrupt is generated whenever LBDF = 1 in the USART_ISR register Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. ## Bit 5 LBDL: LIN break detection length This bit is for selection between 11 bit or 10 bit break detection. 0: 10-bit break detection 1: 11-bit break detection This bit can only be written when the USART is disabled (UE = 0). Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 4 ADDM7: 7-bit Address Detection/4-bit Address Detection This bit is for selection between 4-bit address detection or 7-bit address detection. 0: 4-bit address detection 1: 7-bit address detection (in 8-bit data mode) This bit can only be written when the USART is disabled (UE = 0) Note: In 7-bit and 9-bit data modes, the address detection is done on 6-bit and 8-bit address (ADD[5:0] and ADD[7:0]) respectively. #### Bit 3 DIS NSS: When the DIS_NSS bit is set, the NSS pin input is ignored. 0: SPI slave selection depends on NSS input pin. 1: SPI slave is always selected and NSS input pin is ignored. Note: When SPI slave mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bits 2:1 Reserved, must be kept at reset value. #### Bit 0 SLVEN: Synchronous Slave mode enable When the SLVEN bit is set, the synchronous slave mode is enabled. 0: Slave mode disabled. 1: Slave mode enabled. Note: When SPI slave mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. Note: The CPOL, CPHA and LBCL bits should not be written while the transmitter is enabled. ## 33.8.4 USART control register 3 (USART_CR3) Address offset: 0x08 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-----|----------|------|------------|------------|---------|------|-------------|--------|-------|------|--------|-----------|---------|------|------| | TX | (FTCFG[2 | 2:0] | RXF
TIE | RX | FTCFG[2 | 2:0] | TCBG
TIE | TXFTIE | WUFIE | WUS | 6[1:0] | SC | ARCNT[2 | 2:0] | Res. | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | DEP | DEM | DDRE | OVR
DIS | ONE
BIT | CTSIE | CTSE | RTSE | DMAT | DMAR | SCEN | NACK | HD
SEL | IRLP | IREN | EIE | | rw RM0444 Rev 5 1061/1390 #### Bits 31:29 TXFTCFG[2:0]: TXFIFO threshold configuration 000:TXFIFO reaches 1/8 of its depth 001:TXFIFO reaches 1/4 of its depth 010:TXFIFO reaches 1/2 of its depth 011:TXFIFO reaches 3/4 of its depth 100:TXFIFO reaches 7/8 of its depth 101:TXFIFO becomes empty Remaining combinations: Reserved #### Bit 28 RXFTIE: RXFIFO threshold interrupt enable This bit is set and cleared by software. 0: Interrupt inhibited 1: USART interrupt generated when Receive FIFO reaches the threshold programmed in RXFTCFG. ## Bits 27:25 RXFTCFG[2:0]: Receive FIFO threshold configuration 000:Receive FIFO reaches 1/8 of its depth 001:Receive FIFO reaches 1/4 of its depth 010:Receive FIFO reaches 1/2 of its depth 011:Receive FIFO reaches 3/4 of its depth 100:Receive FIFO reaches 7/8 of its depth 101:Receive FIFO becomes full Remaining combinations: Reserved #### Bit 24 TCBGTIE: Transmission Complete before guard time, interrupt enable This bit is set and cleared by software. 0: Interrupt inhibited 1: USART interrupt generated whenever TCBGT=1 in the USART_ISR register Note: If the USART does not support the Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 23 TXFTIE: TXFIFO threshold interrupt enable This bit is set and cleared by software. 0: Interrupt inhibited 1: USART interrupt generated when TXFIFO reaches the threshold programmed in TXFTCFG. ## Bit 22 WUFIE: Wakeup from low-power mode interrupt enable This bit is set and cleared by software. 0: Interrupt inhibited 1: USART interrupt generated whenever WUF = 1 in the USART_ISR register Note: WUFIE must be set before entering in low-power mode. If the USART does not support the wakeup from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bits 21:20 WUS[1:0]: Wakeup from low-power mode interrupt flag selection This bitfield specifies the event which activates the WUF (Wakeup from low-power mode flag). 00: WUF active on address match (as defined by ADD[7:0] and ADDM7) 01: Reserved. 10. WUE active on start bit detection 11: WUF active on RXNE/RXFNE. This bitfield can only be written when the USART is disabled (UE = 0). If the USART does not support the wakeup from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bits 19:17 SCARCNT[2:0]: Smartcard auto-retry count This bitfield specifies the number of retries for transmission and reception in Smartcard mode. In transmission mode, it specifies the number of automatic retransmission retries, before generating a transmission error (FE bit set). In reception mode, it specifies the number or erroneous reception trials, before generating a reception error (RXNE/RXFNE and PE bits set). This bitfield must be programmed only when the USART is disabled (UE = 0). When the USART is enabled (UE = 1), this bitfield may only be written to 0x0, in order to stop retransmission. 0x0: retransmission disabled - No automatic retransmission in transmit mode. 0x1 to 0x7: number of automatic retransmission attempts (before signaling error) Note: If Smartcard mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. Bit 16 Reserved, must be kept at reset value. Bit 15 **DEP**: Driver enable polarity selection 0: DE signal is active high. 1: DE signal is active low. This bit can only be written when the USART is disabled (UE = 0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 14 **DEM**: Driver enable mode This bit enables the user to activate the external transceiver control, through the DE signal. 0: DE function is disabled. 1: DE function is enabled. The DE signal is output on the RTS pin. This bit can only be written when the USART is disabled (UE = 0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Section 33.4: USART implementation on page 1000. #### Bit 13 DDRE: DMA Disable on Reception Error 0: DMA is not disabled in case of reception error.
The corresponding error flag is set but RXNE is kept 0 preventing from overrun. As a consequence, the DMA request is not asserted, so the erroneous data is not transferred (no DMA request), but next correct received data is transferred (used for Smartcard mode). 1: DMA is disabled following a reception error. The corresponding error flag is set, as well as RXNE. The DMA request is masked until the error flag is cleared. This means that the software must first disable the DMA request (DMAR = 0) or clear RXNE/RXFNE is case FIFO mode is enabled) before clearing the error flag. This bit can only be written when the USART is disabled (UE=0). Note: The reception errors are: parity error, framing error or noise error. RM0444 Rev 5 1063/1390 #### Bit 12 OVRDIS: Overrun Disable This bit is used to disable the receive overrun detection. 0: Overrun Error Flag, ORE, is set when received data is not read before receiving new data 1: Overrun functionality is disabled. If new data is received while the RXNE flag is still set the ORE flag is not set and the new received data overwrites the previous content of the USART_RDR register. When FIFO mode is enabled, the RXFIFO is bypassed and data is written directly in USART_RDR register. Even when FIFO management is enabled, the RXNE flag is to be used. This bit can only be written when the USART is disabled (UE = 0). Note: This control bit enables checking the communication flow w/o reading the data #### Bit 11 **ONEBIT**: One sample bit method enable This bit enables the user to select the sample method. When the one sample bit method is selected the noise detection flag (NE) is disabled. 0: Three sample bit method 1: One sample bit method This bit can only be written when the USART is disabled (UE = 0). #### Bit 10 CTSIE: CTS interrupt enable 0: Interrupt is inhibited 1: An interrupt is generated whenever CTSIF = 1 in the USART ISR register Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 9 CTSE: CTS enable 0: CTS hardware flow control disabled 1: CTS mode enabled, data is only transmitted when the nCTS input is asserted (tied to 0). If the nCTS input is deasserted while data is being transmitted, then the transmission is completed before stopping. If data is written into the data register while nCTS is asserted, the transmission is postponed until nCTS is asserted. This bit can only be written when the USART is disabled (UE = 0) Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. ## Bit 8 RTSE: RTS enable 0: RTS hardware flow control disabled 1: RTS output enabled, data is only requested when there is space in the receive buffer. The transmission of data is expected to cease after the current character has been transmitted. The nRTS output is asserted (pulled to 0) when data can be received. This bit can only be written when the USART is disabled (UE = 0). Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 7 DMAT: DMA enable transmitter This bit is set/reset by software - 1: DMA mode is enabled for transmission - 0: DMA mode is disabled for transmission #### Bit 6 DMAR: DMA enable receiver This bit is set/reset by software - 1: DMA mode is enabled for reception - 0: DMA mode is disabled for reception #### Bit 5 SCEN: Smartcard mode enable This bit is used for enabling Smartcard mode. - 0: Smartcard Mode disabled - 1: Smartcard Mode enabled This bitfield can only be written when the USART is disabled (UE = 0). Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 4 NACK: Smartcard NACK enable - 0: NACK transmission in case of parity error is disabled - 1: NACK transmission during parity error is enabled This bitfield can only be written when the USART is disabled (UE = 0). Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 3 HDSEL: Half-duplex selection Selection of Single-wire Half-duplex mode - 0: Half duplex mode is not selected - 1: Half duplex mode is selected This bit can only be written when the USART is disabled (UE = 0). #### Bit 2 IRLP: IrDA low-power This bit is used for selecting between normal and low-power IrDA modes - 0: Normal mode - 1: Low-power mode This bit can only be written when the USART is disabled (UE = 0). Note: If IrDA mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 1 IREN: IrDA mode enable This bit is set and cleared by software. - 0: IrDA disabled - 1: IrDA enabled This bit can only be written when the USART is disabled (UE = 0). Note: If IrDA mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 0 **EIE**: Error interrupt enable Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing error, overrun error noise flag or SPI slave underrun error (FE = 1 or ORE = 1 or NE = 1 or UDR = 1 in the USART_ISR register). 0: Interrupt inhibited 1: interrupt generated when FE = 1 or ORE = 1 or NE = 1 or UDR = 1 (in SPI slave mode) in the USART_ISR register. RM0444 Rev 5 1065/1390 ## 33.8.5 USART baud rate register (USART_BRR) This register can only be written when the USART is disabled (UE = 0). It may be automatically updated by hardware in auto baud rate detection mode. Address offset: 0x0C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|--------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | BRR | [15:0] | | | | | | | | | rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 BRR[15:0]: USART baud rate BRR[15:4] BRR[15:4] = USARTDIV[15:4] BRR[3:0] When OVER8 = 0, BRR[3:0] = USARTDIV[3:0]. When OVER8 = 1: BRR[2:0] = USARTDIV[3:0] shifted 1 bit to the right. BRR[3] must be kept cleared. ## 33.8.6 USART guard time and prescaler register (USART_GTPR) Address offset: 0x10 Reset value: 0x0000 0000 | rw |------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|------| | | | | GT[| 7:0] | | | | | | | PSC | [7:0] | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | Bits 31:16 Reserved, must be kept at reset value. #### Bits 15:8 GT[7:0]: Guard time value This bitfield is used to program the Guard time value in terms of number of baud clock periods. This is used in Smartcard mode. The Transmission Complete flag is set after this guard time value. This bitfield can only be written when the USART is disabled (UE = 0). Note: If Smartcard mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bits 7:0 PSC[7:0]: Prescaler value #### In IrDA low-power and normal IrDA mode: PSC[7:0] = IrDA Normal and Low-Power baud rate PSC[7:0] is used to program the prescaler for dividing the USART source clock to achieve the low-power frequency: the source clock is divided by the value given in the register (8 significant bits): #### In Smartcard mode: PSC[4:0] = Prescaler value PSC[4:0] is used to program the prescaler for dividing the USART source clock to provide the Smartcard clock. The value given in the register (5 significant bits) is multiplied by 2 to give the division factor of the source clock frequency: 00000: Reserved - do not program this value 00001: Divides the source clock by 1 (IrDA mode) / by 2 (Smarcard mode) 00010: Divides the source clock by 2 (IrDA mode) / by 4 (Smartcard mode) 00011: Divides the source clock by 3 (IrDA mode) / by 6 (Smartcard mode) . . . 11111: Divides the source clock by 31 (IrDA mode) / by 62 (Smartcard mode) 0010 0000: Divides the source clock by 32 (IrDA mode) ... 1111 1111: Divides the source clock by 255 (IrDA mode) This bitfield can only be written when the USART is disabled (UE = 0). Note: Bits [7:5] must be kept cleared if Smartcard mode is used. This bitfield is reserved and forced by hardware to '0' when the Smartcard and IrDA modes are not supported. Refer to Section 33.4: USART implementation on page 1000. ## 33.8.7 USART receiver timeout register (USART_RTOR) Address offset: 0x14 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|------|--------|----|----|-----|--------|----|----|------|--------|----|----|----| | | | | BLEN | N[7:0] | | | | | | | RTO[| 23:16] | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | RTO | [15:0] | | | | | | | | | rw RM0444 Rev 5 1067/1390 #### Bits 31:24 BLEN[7:0]: Block Length This bitfield gives the Block length in Smartcard T = 1 Reception. Its value equals the number of information characters + the length of the Epilogue Field (1-LEC/2-CRC) - 1. Examples: BLEN = 0: 0 information characters + LEC BLEN = 1: 0 information characters + CRC BLEN = 255: 254 information characters + CRC (total 256 characters)) In Smartcard mode, the Block length counter is reset when TXE = 0 (TXFE = 0 in case FIFO mode is enabled). This bitfield can be used also in other modes. In this case, the Block length counter is reset when RE = 0 (receiver disabled) and/or when the EOBCF
bit is written to 1. Note: This value can be programmed after the start of the block reception (using the data from the LEN character in the Prologue Field). It must be programmed only once per received block. #### Bits 23:0 RTO[23:0]: Receiver timeout value This bitfield gives the Receiver timeout value in terms of number of bits during which there is no activity on the RX line. In standard mode, the RTOF flag is set if, after the last received character, no new start bit is detected for more than the RTO value. In Smartcard mode, this value is used to implement the CWT and BWT. See Smartcard chapter for more details. In the standard, the CWT/BWT measurement is done starting from the start bit of the last received character. Note: This value must only be programmed once per received character. Note: RTOR can be written on-the-fly. If the new value is lower than or equal to the counter, the RTOF flag is set. This register is reserved and forced by hardware to "0x0000000" when the Receiver timeout feature is not supported. Refer to Section 33.4: USART implementation on page 1000. #### USART request register (USART_RQR) 33.8.8 Address offset: 0x18 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|-------|-------|------|-------|-------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. TXFRQ | RXFRQ | MMRQ | SBKRQ | ABRRQ | | | | | | | | | | | | | w | W | W | w | w | #### Bits 31:5 Reserved, must be kept at reset value. #### Bit 4 TXFRQ: Transmit data flush request When FIFO mode is disabled, writing '1' to this bit sets the TXE flag. This enables to discard the transmit data. This bit must be used only in Smartcard mode, when data have not been sent due to errors (NACK) and the FE flag is active in the USART_ISR register. If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. When FIFO is enabled, TXFRQ bit is set to flush the whole FIFO. This sets the TXFE flag (Transmit FIFO empty, bit 23 in the USART_ISR register). Flushing the Transmit FIFO is supported in both UART and Smartcard modes. Note: In FIFO mode, the TXFNF flag is reset during the flush request until TxFIFO is empty in order to ensure that no data are written in the data register. #### Bit 3 RXFRQ: Receive data flush request Writing 1 to this bit empties the entire receive FIFO i.e. clears the bit RXFNE. This enables to discard the received data without reading them, and avoid an overrun condition. #### Bit 2 MMRQ: Mute mode request Writing 1 to this bit puts the USART in Mute mode and resets the RWU flag. #### Bit 1 SBKRQ: Send break request Writing 1 to this bit sets the SBKF flag and request to send a BREAK on the line, as soon as the transmit machine is available. Note: When the application needs to send the break character following all previously inserted data, including the ones not yet transmitted, the software should wait for the TXE flag assertion before setting the SBKRQ bit. #### Bit 0 ABRRQ: Auto baud rate request Writing 1 to this bit resets the ABRF and ABRE flags in the USART_ISR and requests an automatic baud rate measurement on the next received data frame. Note: If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. ## 33.8.9 USART interrupt and status register [alternate] (USART_ISR) Address offset: 0x1C Reset value: 0x0X80 00C0 X = 2 if FIFO/Smartcard mode is enabled X = 0 if FIFO is enabled and Smartcard mode is disabled The same register can be used in FIFO mode enabled (this section) and FIFO mode disabled (next section). ## FIFO mode enabled | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|-------|------|-------|-----------|-----------|------|-----|------|-----|------| | Res. | Res. | Res. | Res. | TXFT | RXFT | TCBGT | RXFF | TXFE | RE
ACK | TE
ACK | WUF | RWU | SBKF | CMF | BUSY | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | ABRF | ABRE | UDR | EOBF | RTOF | CTS | CTSIF | LBDF | TXFNF | TC | RXFNE | IDLE | ORE | NE | FE | PE | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | RM0444 Rev 5 1069/1390 #### Bits 31:28 Reserved, must be kept at reset value. #### Bit 27 TXFT: TXFIFO threshold flag This bit is set by hardware when the TXFIFO reaches the threshold programmed in TXFTCFG of USART_CR3 register i.e. the TXFIFO contains TXFTCFG empty locations. An interrupt is generated if the TXFTIE bit = 1 (bit 31) in the USART CR3 register. 0: TXFIFO does not reach the programmed threshold. 1: TXFIFO reached the programmed threshold. #### Bit 26 RXFT: RXFIFO threshold flag This bit is set by hardware when the threshold programmed in RXFTCFG in USART_CR3 register is reached. This means that there are (RXFTCFG - 1) data in the Receive FIFO and one data in the USART_RDR register. An interrupt is generated if the RXFTIE bit = 1 (bit 27) in the USART_CR3 register. - 0: Receive FIFO does not reach the programmed threshold. - 1: Receive FIFO reached the programmed threshold. Note: When the RXFTCFG threshold is configured to '101', RXFT flag is set if 16 data are available i.e. 15 data in the RXFIFO and 1 data in the USART_RDR. Consequently, the 17th received data does not cause an overrun error. The overrun error occurs after receiving the 18th data. #### Bit 25 TCBGT: Transmission complete before guard time flag This bit is set when the last data written in the USART_TDR has been transmitted correctly out of the shift register. It is set by hardware in Smartcard mode, if the transmission of a frame containing data is complete and if the smartcard did not send back any NACK. An interrupt is generated if TCBGTIE = 1 in the USART_CR3 register. This bit is cleared by software, by writing 1 to the TCBGTCF in the USART_ICR register or by a write to the USART_TDR register. - 0: Transmission is not complete or transmission is complete unsuccessfully (i.e. a NACK is received from the card) - 1: Transmission is complete successfully (before Guard time completion and there is no NACK from the smart card). Note: If the USART does not support the Smartcard mode, this bit is reserved and kept at reset value. If the USART supports the Smartcard mode and the Smartcard mode is enabled, the TCBGT reset value is '1'. Refer to Section 33.4: USART implementation on page 1000. #### Bit 24 RXFF: RXFIFO full This bit is set by hardware when the number of received data corresponds to RXFIFO size + 1 (RXFIFO full + 1 data in the USART_RDR register. An interrupt is generated if the RXFFIE bit = 1 in the USART_CR1 register. - 0: RXFIFO not full. - 1: RXFIFO Full. #### Bit 23 TXFE: TXFIFO empty This bit is set by hardware when TXFIFO is empty. When the TXFIFO contains at least one data, this flag is cleared. The TXFE flag can also be set by writing 1 to the bit TXFRQ (bit 4) in the USART RQR register. An interrupt is generated if the TXFEIE bit = 1 (bit 30) in the USART CR1 register. - 0: TXFIFO not empty. - 1: TXFIFO empty. #### Bit 22 REACK: Receive enable acknowledge flag This bit is set/reset by hardware, when the Receive Enable value is taken into account by the USART. It can be used to verify that the USART is ready for reception before entering low-power mode. Note: If the USART does not support the wakeup from Stop feature, this bit is reserved and kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 21 **TEACK**: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the USART. It can be used when an idle frame request is generated by writing TE = 0, followed by TE = 1 in the USART CR1 register, in order to respect the TE = 0 minimum period. #### Bit 20 WUF: Wakeup from low-power mode flag This bit is set by hardware, when a wakeup event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the USART_ICR register. An interrupt is generated if WUFIE = 1 in the USART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. If the USART does not support the wakeup from Stop feature, this bit is reserved and kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 19 RWU: Receiver wakeup from Mute mode This bit indicates if the USART is in Mute mode. It is cleared/set by hardware when a wakeup/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the USART CR1 register. When wakeup on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the USART RQR register. - 0: Receiver in active mode - 1: Receiver in Mute mode Note: If the USART does not support the wakeup from Stop feature, this bit is reserved and kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 18 SBKF: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the USART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission. - 0: Break character transmitted - 1: Break character requested by setting SBKRQ bit in USART_RQR register #### Bit 17 CMF: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the USART_ICR register. An interrupt is generated if CMIE = 1in the USART_CR1 register. - 0: No Character match detected - 1: Character Match detected #### Bit 16 BUSY: Busy flag This bit is set and reset by hardware. It is
active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not) - 0: USART is idle (no reception) - 1: Reception on going RM0444 Rev 5 1071/1390 #### Bit 15 ABRF: Auto baud rate flag This bit is set by hardware when the automatic baud rate has been set (RXFNE is also set, generating an interrupt if RXFNEIE = 1) or when the auto baud rate operation was completed without success (ABRE = 1) (ABRE, RXFNE and FE are also set in this case) It is cleared by software, in order to request a new auto baud rate detection, by writing 1 to the ABRRQ in the USART RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value. #### Bit 14 ABRE: Auto baud rate error This bit is set by hardware if the baud rate measurement failed (baud rate out of range or character comparison failed) It is cleared by software, by writing 1 to the ABRRQ bit in the USART RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value. #### Bit 13 UDR: SPI slave underrun error flag In slave transmission mode, this flag is set when the first clock pulse for data transmission appears while the software has not yet loaded any value into USART_TDR. This flag is reset by setting UDRCF bit in the USART_ICR register. 0: No underrun error 1: underrun error Note: If the USART does not support the SPI slave mode, this bit is reserved and kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 12 EOBF: End of block flag This bit is set by hardware when a complete block has been received (for example T = 1 Smartcard mode). The detection is done when the number of received bytes (from the start of the block, including the prologue) is equal or greater than BLEN + 4. An interrupt is generated if the EOBIE = 1 in the USART CR1 register. It is cleared by software, writing 1 to the EOBCF in the USART_ICR register. 0: End of Block not reached 1: End of Block (number of characters) reached Note: If Smartcard mode is not supported, this bit is reserved and kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 11 RTOF: Receiver timeout This bit is set by hardware when the timeout value, programmed in the RTOR register has lapsed, without any communication. It is cleared by software, writing 1 to the RTOCF bit in the USART_ICR register. An interrupt is generated if RTOIE = 1 in the USART_CR2 register. In Smartcard mode, the timeout corresponds to the CWT or BWT timings. 0: Timeout value not reached 1: Timeout value reached without any data reception Note: If a time equal to the value programmed in RTOR register separates 2 characters, RTOF is not set. If this time exceeds this value + 2 sample times (2/16 or 2/8, depending on the oversampling method), RTOF flag is set. The counter counts even if RE = 0 but RTOF is set only when RE = 1. If the timeout has already elapsed when RE is set, then RTOF is set. If the USART does not support the Receiver timeout feature, this bit is reserved and kept at reset value. #### Bit 10 CTS: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the nCTS input pin. 0: nCTS line set 1: nCTS line reset Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value. #### Bit 9 CTSIF: CTS interrupt flag This bit is set by hardware when the nCTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the USART ICR register. An interrupt is generated if CTSIE = 1 in the USART_CR3 register. 0: No change occurred on the nCTS status line 1: A change occurred on the nCTS status line Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value. #### Bit 8 LBDF: LIN break detection flag This bit is set by hardware when the LIN break is detected. It is cleared by software, by writing 1 to the LBDCF in the USART_ICR. An interrupt is generated if LBDIE = 1 in the USART_CR2 register. 0: LIN Break not detected 1: LIN break detected Note: If the USART does not support LIN mode, this bit is reserved and kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 7 TXFNF: TXFIFO not full TXFNF is set by hardware when TXFIFO is not full meaning that data can be written in the USART_TDR. Every write operation to the USART_TDR places the data in the TXFIFO. This flag remains set until the TXFIFO is full. When the TXFIFO is full, this flag is cleared indicating that data can not be written into the USART_TDR. An interrupt is generated if the TXFNFIE bit =1 in the USART CR1 register. 0: Transmit FIFO is full 1: Transmit FIFO is not full Note: The TXFNF is kept reset during the flush request until TXFIFO is empty. After sending the flush request (by setting TXFRQ bit), the flag TXFNF should be checked prior to writing in TXFIFO (TXFNF and TXFE are set at the same time). This bit is used during single buffer transmission. #### Bit 6 TC: Transmission complete This bit indicates that the last data written in the USART_TDR has been transmitted out of the shift register. It is set by hardware when the transmission of a frame containing data is complete and when TXFE is set. An interrupt is generated if TCIE = 1 in the USART CR1 register. TC bit is is cleared by software, by writing 1 to the TCCF in the USART_ICR register or by a write to the USART_TDR register. 0: Transmission is not complete 1: Transmission is complete Note: If TE bit is reset and no transmission is on going, the TC bit is immediately set. RM0444 Rev 5 1073/1390 #### Bit 5 RXFNE: RXFIFO not empty RXFNE bit is set by hardware when the RXFIFO is not empty, meaning that data can be read from the USART_RDR register. Every read operation from the USART_RDR frees a location in the RXFIFO. RXFNE is cleared when the RXFIFO is empty. The RXFNE flag can also be cleared by writing 1 to the RXFRQ in the USART RQR register. An interrupt is generated if RXFNEIE = 1 in the USART CR1 register. - 0: Data is not received - 1: Received data is ready to be read. #### Bit 4 IDLE: Idle line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if IDLEIE = 1 in the USART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the USART_ICR register. - 0: No Idle line is detected - 1: Idle line is detected Note: The IDLE bit is not set again until the RXFNE bit has been set (i.e. a new idle line occurs). If Mute mode is enabled (MME = 1), IDLE is set if the USART is not mute (RWU = 0), whatever the Mute mode selected by the WAKE bit. If RWU = 1, IDLE is not set. #### Bit 3 ORE: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the USART_RDR register while RXFF = 1. It is cleared by a software, writing 1 to the ORECF, in the USART_ICR register. An interrupt is generated if RXFNEIE = 1 or EIE = 1 in the USART_CR1 register. - 0: No overrun error - 1: Overrun error is detected Note: When this bit is set, the USART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the USART_CR3 register. #### Bit 2 NE: Noise detection flag This bit is set by hardware when noise is detected on a received frame. It is cleared by software, writing 1 to the NECF bit in the USART_ICR register. 0: No noise is detected 1: Noise is detected Note: This bit does not generate an interrupt as it appears at the same time as the RXFNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. When the line is noise-free, the NE flag can be disabled by programming the ONEBIT bit to 1 to increase the USART tolerance to deviations (Refer to Section 33.5.8: Tolerance of the USART receiver to clock deviation on page 1018). This error is associated with the character in the USART_RDR. #### Bit 1 FE: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the USART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE = 1 in the USART CR1 register. 0: No Framing error is detected 1: Framing error or break character is detected Note: This error is associated with the character in the USART_RDR. #### Bit 0 PE: Parity error This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by software, writing 1 to the PECF in the USART ICR register. An interrupt is generated if PEIE = 1 in the USART_CR1 register. 0: No parity error 1: Parity error Note: This error is associated with the character in the USART_RDR. ## 33.8.10 USART interrupt and status register [alternate] (USART ISR) Address offset: 0x1C Reset value: 0x0000 00C0 The same register can be used in FIFO mode enabled (previous section) and FIFO mode disabled (this section). #### FIFO mode disabled | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|-------|------|------|-----------|-----------|------|-----|------|-----|------| | Res. | Res. | Res. | Res. | Res. | Res. | TCBGT | Res. | Res. | RE
ACK | TE
ACK | WUF | RWU | SBKF | CMF | BUSY | | | | | | | | r | | | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | ABRF | ABRE | UDR | EOBF | RTOF | CTS | CTSIF | LBDF | TXE | TC | RXNE | IDLE | ORE | NE |
FE | PE | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | Bits 31:26 Reserved, must be kept at reset value. #### Bit 25 TCBGT: Transmission complete before guard time flag This bit is set when the last data written in the USART_TDR has been transmitted correctly out of the shift register. It is set by hardware in Smartcard mode, if the transmission of a frame containing data is complete and if the smartcard did not send back any NACK. An interrupt is generated if TCBGTIE = 1 in the USART_CR3 register. This bit is cleared by software, by writing 1 to the TCBGTCF in the USART_ICR register or by a write to the USART_TDR register. - 0: Transmission is not complete or transmission is complete unsuccessfully (i.e. a NACK is received from the card) - 1: Transmission is complete successfully (before Guard time completion and there is no NACK from the smart card). Note: If the USART does not support the Smartcard mode, this bit is reserved and kept at reset value. If the USART supports the Smartcard mode and the Smartcard mode is enabled, the TCBGT reset value is '1'. Refer to Section 33.4: USART implementation on page 1000. Bits 24:23 Reserved, must be kept at reset value. #### Bit 22 **REACK**: Receive enable acknowledge flag This bit is set/reset by hardware, when the Receive Enable value is taken into account by the USART. It can be used to verify that the USART is ready for reception before entering low-power mode. Note: If the USART does not support the wakeup from Stop feature, this bit is reserved and kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 21 **TEACK**: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the USART. It can be used when an idle frame request is generated by writing TE = 0, followed by TE = 1 in the USART_CR1 register, in order to respect the TE = 0 minimum period. #### Bit 20 WUF: Wakeup from low-power mode flag This bit is set by hardware, when a wakeup event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the USART_ICR register. An interrupt is generated if WUFIE = 1 in the USART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. If the USART does not support the wakeup from Stop feature, this bit is reserved and kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 19 RWU: Receiver wakeup from Mute mode This bit indicates if the USART is in Mute mode. It is cleared/set by hardware when a wakeup/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the USART_CR1 register. When wakeup on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the USART_RQR register. - 0: Receiver in active mode - 1: Receiver in Mute mode Note: If the USART does not support the wakeup from Stop feature, this bit is reserved and kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 18 SBKF: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the USART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission. 0: Break character transmitted 1: Break character requested by setting SBKRQ bit in USART RQR register #### Bit 17 CMF: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the USART_ICR register. An interrupt is generated if CMIE = 1in the USART_CR1 register. 0: No Character match detected 1: Character Match detected #### Bit 16 BUSY: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not). 0: USART is idle (no reception) 1: Reception on going #### Bit 15 **ABRF**: Auto baud rate flag This bit is set by hardware when the automatic baud rate has been set (RXNE is also set, generating an interrupt if RXNEIE = 1) or when the auto baud rate operation was completed without success (ABRE = 1) (ABRE, RXNE and FE are also set in this case) It is cleared by software, in order to request a new auto baud rate detection, by writing 1 to the ABRRQ in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value. #### Bit 14 ABRE: Auto baud rate error This bit is set by hardware if the baud rate measurement failed (baud rate out of range or character comparison failed) It is cleared by software, by writing 1 to the ABRRQ bit in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value. ## Bit 13 UDR: SPI slave underrun error flag In slave transmission mode, this flag is set when the first clock pulse for data transmission appears while the software has not yet loaded any value into USART_TDR. This flag is reset by setting UDRCF bit in the USART_ICR register. 0: No underrun error 1: underrun error Note: If the USART does not support the SPI slave mode, this bit is reserved and kept at reset value. Refer to Section 33.4: USART implementation on page 1000. ## Bit 12 **EOBF**: End of block flag This bit is set by hardware when a complete block has been received (for example T = 1 Smartcard mode). The detection is done when the number of received bytes (from the start of the block, including the prologue) is equal or greater than BLEN + 4. An interrupt is generated if the EOBIE = 1 in the USART_CR1 register. It is cleared by software, writing 1 to the EOBCF in the USART ICR register. 0: End of Block not reached 1: End of Block (number of characters) reached Note: If Smartcard mode is not supported, this bit is reserved and kept at reset value. Refer to Section 33.4: USART implementation on page 1000. RM0444 Rev 5 1077/1390 #### Bit 11 RTOF: Receiver timeout This bit is set by hardware when the timeout value, programmed in the RTOR register has lapsed, without any communication. It is cleared by software, writing 1 to the RTOCF bit in the USART_ICR register. An interrupt is generated if RTOIE = 1 in the USART_CR2 register. In Smartcard mode, the timeout corresponds to the CWT or BWT timings. 0: Timeout value not reached 1: Timeout value reached without any data reception Note: If a time equal to the value programmed in RTOR register separates 2 characters, RTOF is not set. If this time exceeds this value + 2 sample times (2/16 or 2/8, depending on the oversampling method), RTOF flag is set. The counter counts even if RE = 0 but RTOF is set only when RE = 1. If the timeout has already elapsed when RE is set, then RTOF is set. If the USART does not support the Receiver timeout feature, this bit is reserved and kept at reset value. #### Bit 10 CTS: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the nCTS input pin. 0: nCTS line set 1: nCTS line reset Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value. #### Bit 9 CTSIF: CTS interrupt flag This bit is set by hardware when the nCTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the USART_ICR register. An interrupt is generated if CTSIE = 1 in the USART_CR3 register. 0: No change occurred on the nCTS status line 1: A change occurred on the nCTS status line Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value. ## Bit 8 LBDF: LIN break detection flag This bit is set by hardware when the LIN break is detected. It is cleared by software, by writing 1 to the LBDCF in the USART_ICR. An interrupt is generated if LBDIE = 1 in the USART CR2 register. 0: LIN Break not detected 1: LIN break detected Note: If the USART does not support LIN mode, this bit is reserved and kept at reset value. Refer to Section 33.4: USART implementation on page 1000. #### Bit 7 TXE: Transmit data register empty TXE is set by hardware when the content of the USART TDR register has been transferred into the shift register. It is cleared by writing to the USART TDR register. The TXE flag can also be set by writing 1 to the TXFRQ in the USART RQR register, in order to discard the data (only in Smartcard T = 0 mode, in case of transmission failure). An interrupt is generated if the TXEIE bit = 1 in the USART CR1 register. 0: Data register full 1: Data register not full #### Bit 6 TC: Transmission complete This bit indicates that the last data written in the USART_TDR has been transmitted out of the shift register. It is set by hardware when the transmission of a frame containing data is complete and when TXE is set. An interrupt is generated if TCIE = 1 in the USART CR1 register. TC bit is is cleared by software, by writing 1 to the TCCF in the USART_ICR register or by a write to the USART_TDR register. - 0: Transmission is not complete - 1: Transmission is complete Note: If TE bit is reset and no transmission is on going, the TC bit is set immediately. #### Bit 5 **RXNE**: Read data register not empty RXNE bit is set by hardware when the content of the USART_RDR shift register has been transferred to the USART_RDR register. It is cleared by reading from the USART_RDR register. The RXNE flag can also be cleared by writing 1 to the RXFRQ in the USART_RQR register. An interrupt is generated if RXNEIE = 1 in the USART_CR1 register. - 0: Data is not received - 1: Received data is ready to be read. #### Bit 4 IDLE: Idle line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if IDLEIE = 1 in the USART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the USART_ICR register. - 0: No Idle line is
detected - 1: Idle line is detected Note: The IDLE bit is not set again until the RXNE bit has been set (i.e. a new idle line occurs). If Mute mode is enabled (MME = 1), IDLE is set if the USART is not mute (RWU = 0), whatever the Mute mode selected by the WAKE bit. If RWU = 1, IDLE is not set. #### Bit 3 ORE: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the USART_RDR register while RXNE = 1. It is cleared by a software, writing 1 to the ORECF, in the USART_ICR register. An interrupt is generated if RXNEIE = 1 or EIE = 1 in the USART_CR1 register. - 0: No overrun error - 1: Overrun error is detected Note: When this bit is set, the USART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the USART_CR3 register. RM0444 Rev 5 1079/1390 #### Bit 2 NE: Noise detection flag This bit is set by hardware when noise is detected on a received frame. It is cleared by software, writing 1 to the NECF bit in the USART_ICR register. 0: No noise is detected 1: Noise is detected Note: This bit does not generate an interrupt as it appears at the same time as the RXNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. When the line is noise-free, the NE flag can be disabled by programming the ONEBIT bit to 1 to increase the USART tolerance to deviations (Refer to Section 33.5.8: Tolerance of the USART receiver to clock deviation on page 1018). #### Bit 1 FE: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the USART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE = 1 in the USART_CR1 register. 0: No Framing error is detected 1: Framing error or break character is detected #### Bit 0 PE: Parity error This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by software, writing 1 to the PECF in the USART_ICR register. An interrupt is generated if PEIE = 1 in the USART_CR1 register. 0: No parity error 1: Parity error ## 33.8.11 USART interrupt flag clear register (USART_ICR) Address offset: 0x20 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|-------|-------|-------|------|-------|-------|-------------|------|------------|--------|-------|------|------|------| | Res. WUCF | Res. | Res. | CMCF | Res. | | | | | | | | | | | | | w | | | w | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | UDRCF | EOBCF | RTOCF | Res. | CTSCF | LBDCF | TCBGT
CF | TCCF | TXFEC
F | IDLECF | ORECF | NECF | FECF | PECF | | | | w | w | w | | w | w | w | w | w | w | w | W | w | w | Bits 31:21 Reserved, must be kept at reset value. #### Bit 20 WUCF: Wakeup from low-power mode clear flag Writing 1 to this bit clears the WUF flag in the USART ISR register. Note: If the USART does not support the wakeup from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. Bits 19:18 Reserved, must be kept at reset value. ## Bit 17 CMCF: Character match clear flag Writing 1 to this bit clears the CMF flag in the USART ISR register. Bits 16:14 Reserved, must be kept at reset value. Bit 13 UDRCF:SPI slave underrun clear flag Writing 1 to this bit clears the UDRF flag in the USART_ISR register. Note: If the USART does not support SPI slave mode, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000 Bit 12 EOBCF: End of block clear flag Writing 1 to this bit clears the EOBF flag in the USART ISR register. Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. Bit 11 RTOCF: Receiver timeout clear flag Writing 1 to this bit clears the RTOF flag in the USART_ISR register. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. Bit 10 Reserved, must be kept at reset value. Bit 9 CTSCF: CTS clear flag Writing 1 to this bit clears the CTSIF flag in the USART_ISR register. Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. Bit 8 LBDCF: LIN break detection clear flag Writing 1 to this bit clears the LBDF flag in the USART_ISR register. Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation on page 1000. Bit 7 TCBGTCF: Transmission complete before Guard time clear flag Writing 1 to this bit clears the TCBGT flag in the USART ISR register. Bit 6 TCCF: Transmission complete clear flag Writing 1 to this bit clears the TC flag in the USART ISR register. Bit 5 TXFECF: TXFIFO empty clear flag Writing 1 to this bit clears the TXFE flag in the USART_ISR register. Bit 4 IDLECF: Idle line detected clear flag Writing 1 to this bit clears the IDLE flag in the USART_ISR register. Bit 3 ORECF: Overrun error clear flag Writing 1 to this bit clears the ORE flag in the USART_ISR register. Bit 2 NECF: Noise detected clear flag Writing 1 to this bit clears the NE flag in the USART_ISR register. Bit 1 FECF: Framing error clear flag Writing 1 to this bit clears the FE flag in the USART ISR register. Bit 0 PECF: Parity error clear flag Writing 1 to this bit clears the PE flag in the USART_ISR register. # 33.8.12 USART receive data register (USART_RDR) Address offset: 0x24 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|------|------|------|------|---------------|------|------|------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8 | 7 | 6 | | 4
RDR[8:0] | | 2 | 1 | 0 | Bits 31:9 Reserved, must be kept at reset value. Bits 8:0 RDR[8:0]: Receive data value Contains the received data character. The RDR register provides the parallel interface between the input shift register and the internal bus (see *Figure 314*). When receiving with the parity enabled, the value read in the MSB bit is the received parity bit # 33.8.13 USART transmit data register (USART_TDR) Address offset: 0x28 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|------|------|------|------|---------------|------|------|------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8 | 7 | 6 | | 4
TDR[8:0] | | 2 | 1 | 0 | Bits 31:9 Reserved, must be kept at reset value. Bits 8:0 TDR[8:0]: Transmit data value Contains the data character to be transmitted. The USART_TDR register provides the parallel interface between the internal bus and the output shift register (see *Figure 314*). When transmitting with the parity enabled (PCE bit set to 1 in the USART_CR1 register), the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because it is replaced by the parity. Note: This register must be written only when TXE/TXFNF = 1. # 33.8.14 USART prescaler register (USART_PRESC) This register can only be written when the USART is disabled (UE = 0). Address offset: 0x2C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------|-------------|---------------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | | 2
PRESCA | 1
LER[3:0] | 0 | Bits 31:4 Reserved, must be kept at reset value. # Bits 3:0 PRESCALER[3:0]: Clock prescaler The USART input clock can be divided by a prescaler factor: 0000: input clock not divided 0001: input clock divided by 2 0010: input clock divided by 4 0011: input clock divided by 6 0100: input clock divided by 8 0101: input clock divided by 10 0110: input clock divided by 12 0111: input clock divided by 16 1000: input clock divided by 32 1001: input clock divided by 64 1010: input clock divided by 18 1010: input clock divided by 128 1011: input clock divided by 256 Remaining combinations: Reserved Note: When PRESCALER is programmed with a value different of the allowed ones, programmed prescaler value is 1011 i.e. input clock divided by 256. 4 RM0444 Rev 5 1083/1390 # 33.8.15 USART register map The table below gives the USART register map and reset values. Table 187. USART register map and reset values | Company Comp | | | | | | ub | 10 | | ••• | | , N. | <u> </u> | | 9'' | ,,,, | r
n | ıa | y u | 1110 | | ,,,,, | | uiu | - | | | | | | | | | | | |--|--------|------------------|--------|--------------|--------|--------|-------|--------------|-------|---------|--------|-------------------|-------|-------|----------|---------|-------|-------|-------|----------|-------|--------|--------|-------|----------|-------|---------|-------|---------|--------|---------|------|------|-------| | Reset value | Offset | Register
name | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | ω | 7 | 9 | 2 | 4 | က | 2 | 1 | 0 | | | 0x00 | | RXFFIE | TXFEIE | FIFOEN | M1 | EOBIE | RTOIE | | DE | AT[4 | 4:0] | | | DE | DT[| 4:0] | | OVER8 | CMIE | MME | MO | WAKE | PCE | PS | PEIE | TXFNFIE | TCIE | RXFNEIE | IDLEIE | TE | RE | NESM | nE | | Reset value | | Reset value | 0 | | NAME | 0x00 | | Res. | Res. | FIFOEN | M1 | EOBIE | RTOIE | | DE | AT[4 | 4:0] | | | DE | DT[| 4:0] | | OVER8 | CMIE | MME | MO | WAKE | PCE | PS | PEIE | TXEIE | TCIE | RXNEIE | IDLEIE | TE | RE | UESM | NE | | Reset value | | Reset value | | | 0 | | USART_CR3 | 0x04 | USART_CR2 | | | , | ADE |)[7:0 |)] | | | RTOEN | A P P M O D 14:01 | | ABREN | MSBFIRST | DATAINV | VNIXT | RXINV | SWAP | LINEN | | | CLKEN | CPOL | CPHA | LBCL | Res. | LBDIE | LBDL | ADDM7 | DIS_NSS | Res. | Res. | SLVEN | | Reset value 0 0 0 0 0 0 0 0 0 | | Reset value | 0 | | 0 | 0 | 0 | 0 | | | 0 | | USART_BRR S | 0x08 | USART_CR3 | | TXFTCFG[2:0] | • | RXFTIE | | RXFTCFG[2:0] | • | TCBGTIE | TXFTIE | WUFIE | | | | | | Res. | DEP | DEM | DDRE | OVRDIS | ONEBIT | CTSIE | CTSE | RTSE | DMAT | DMAR | SCEN | NACK | HDSEL | IRLP | IREN | EIE | | Reset value USART_GTPR See | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | USART_GTPR | 0x0C | USART_BRR | Res. | | | | | | В | RR | [15: | 0] | | | | | | | | Reset value | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ox10 USART_ICR USART_ICR Reset value Ox10 | 0x10 | USART_GTPR | Res. | | | GT[| 7:0] | | | | | | ١ | PSC | [7:0 |] | | | | Ox10 Ox20 | | | | | | | | | | | | | | | | | | | 0 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x1C USART_ICR Reset value | 0x14 | | _ | _ | | | | | _ | _ | | ١, | ١. | _ | _ | _ | _ | ١. | _ | <u> </u> | | | | | <u> </u> | I ^ | ١. | _ | ١, | _ | ١, | _ | _ | _ | | 0x1C Reset value | | Reset value | 0 | 0 | | 0 | | | | | | 0 | 0 | | 0 | 0 | | 0 | | 0 | | | | 0 | | 0 | 0 | 0 | 0 | | | - | | | | 0x1C | 0x18 | USART_RQR | Res TXFR | | | | | | Ox1C Reset value Image: Control of the | 0 | 0 | 0 | 0 | 0 | | Ox1C | 0x1C | FIFO mode | Res. | Res. | Res. | Res. | TXFT | RXFT | TCBGT | RXFF | TXFE | REACK | TEACK | WUF | RWU | SBKF | CMF | BUSY | ABRF | ABRE | UDR | EOBF | RTOF | CTS | CTSIF | LBDF | TXFNF | TC | RXFNE | IDLE | ORE | 뮏 | 핌 | PE | | 0x1C FIFO mode disabled Reset value | | Reset value | | | | | Х | Х | Х | Х | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | Reset value | 0x1C | FIFO mode | Res. | Res. | Res. | Res. | Res. | Res. | TCBGT | Res. | Res. | REACK | TEACK | WUF | RWU | SBKF | CMF | BUSY | ABRF | ABRE | UDR | EOBF | RTOF | CTS | CTSIF | LBDF | TXE | TC | RXNE | IDLE | ORE | NE | 핌 | PE | | | | Reset value | | | | | | | | | | 0 | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0x20 | USART_ICR | Res. WUCF | Res. | Res. | CMCF | Res. | Res. | Res. | UDRCF | EOBCF | RTOCF | Res. | CTSCF | LBDCF | TCBGTCF | TCCF | TXFECF | IDLECF | ORECF | NECF | FECF | PECF | | | | Reset value | | | | | | | | | | | | 0 | | | 0 | | | | 0 | 0 | 0 | | 0 | _ | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 187. USART register map and reset values (continued) | | | | | | | | _ | _ | | _ | | _ | | | _ | _ | | _ | | | | | _ | | | _ | | | _ | _ | | | | |--------|------------------|---|-------------|---| | Offset | Register
name | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 4 | 9 | 5 | 4 | က | 2 | 1 | 0 | | 0x24 | USART_RDR | Res. | | | RE | DR[8 | 3:0] | | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x28 | USART_TDR | Res. | | | TE | R[8 | 3:0] | | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x2C | USART_
PRESC | Res. Р | | CAI
3:0] | E | | | Reset value | 0 | 0 | 0 | 0 | Refer to Section 2.2: Memory organization for the register boundary addresses. RM0444 Rev 5 1085/1390 # Low-power universal asynchronous receiver transmitter (LPUART) This section describes the low-power universal asynchronous receiver transmitted (LPUART). # 34.1 LPUART introduction The LPUART is an UART which enables bidirectional UART communications with a limited power consumption. Only 32.768 kHz LSE clock is required to enable UART communications up to 9600 baud/s. Higher baud rates can be reached when the LPUART is clocked by clock sources different from the LSE clock. Even when the device is in low-power mode, the LPUART can wait for an incoming UART frame while having an extremely low energy consumption. The LPUART includes all necessary hardware support to make asynchronous serial communications possible with minimum power consumption. It supports Half-duplex Single-wire communications and modem operations (CTS/RTS). It also supports multiprocessor communications. DMA (direct memory access) can be used for data transmission/reception. # 34.2 LPUART main features - Full-duplex asynchronous communications - NRZ standard format (mark/space) - Programmable baud rate - From 300 baud/s to 9600 baud/s using a 32.768 kHz clock source. - Higher baud rates can be achieved by using a higher frequency clock source - Two internal FIFOs to transmit and receive data - Each FIFO can be enabled/disabled by software and come with status flags for FIFOs states. - Dual clock domain with dedicated kernel clock for peripherals independent from PCLK. - Programmable data word length (7 or 8 or 9 bits) - Programmable data order with MSB-first or LSB-first shifting - Configurable stop bits (1 or 2 stop bits) - Single-wire Half-duplex communications - Continuous communications using DMA - Received/transmitted bytes are buffered in reserved SRAM using centralized DMA. - Separate enable bits for transmitter and receiver - Separate signal polarity control for transmission and reception - Swappable Tx/Rx pin configuration - Hardware flow control for modem and RS-485 transceiver - Transfer detection flags: - Receive buffer full - Transmit buffer empty - Busy and end of transmission flags - Parity control: - Transmits parity bit - Checks parity of received data byte - Four error detection flags: - Overrun error - Noise detection - Frame error - Parity error - Interrupt sources with flags - Multiprocessor communications: wakeup from Mute mode by idle line detection or address mark detection # 34.3 LPUART implementation Below the description of LPUART implementation in comparison with USART. Table 188. STM32G0x1 features | USART / LPUART instances | STM32G0x31xx,
STM32G0x41xx |
STM32G0x71xx,
STM32G0x81xx | |--------------------------|-------------------------------|-------------------------------| | USART1 | FULL | FULL | | USART2 | BASIC | FULL | | USART3 | - | BASIC | | USART4 | - | BASIC | | LPUART1 | LP | LP | Table 189. USART / LPUART features | USART / LPUART modes/features ⁽¹⁾ | Full feature set | Basic feature set | Low-power feature set | |--|------------------|-------------------|-----------------------| | Hardware flow control for modem | X | X | Χ | | Continuous communication using DMA | Х | Х | Х | | Multiprocessor communication | Х | Х | Х | | Synchronous mode (Master/Slave) | Х | Х | - | | Smartcard mode | Х | - | - | | Single-wire Half-duplex communication | Х | X | Х | | IrDA SIR ENDEC block | Х | - | - | | LIN mode | Х | - | - | | Dual clock domain and wakeup from low-power mode | Х | - | Х | | Receiver timeout interrupt | Х | - | - | | Modbus communication | Х | - | - | | Auto baud rate detection | Х | - | - | | Driver Enable | Х | Х | Х | | USART data length | | 7, 8 and 9 bits | | | Tx/Rx FIFO | Х | - | Х | | Tx/Rx FIFO size | 8 | - | 8 | | Prescaler | Х | - | Х | ^{1.} X = supported. # 34.4 LPUART functional description # 34.4.1 LPUART block diagram Figure 341. LPUART block diagram The simplified block diagram given in *Figure 341* shows two fully independent clock domains: - The lpuart_pclk clock domain - The **Ipuart_pclk** clock signal feeds the peripheral bus interface. It must be active when accesses to the LPUART registers are required. - The **lpuart_ker_ck** kernel clock domain - The **lpuart_ker_ck** is the LPUART clock source. It is independent of the **lpuart_pclk** and delivered by the RCC. So, the LPUART registers can be written/read even when the **lpuart_ker_ck** is stopped. When the dual clock domain feature is disabled, the **lpuart_ker_ck** is the same as the lpuart_pclk clock. There is no constraint between **lpuart_pclk** and **lpuart_ker_ck**: **lpuart_ker_ck** can be faster or slower than **lpuart_pclk**, with no more limitation than the ability for the software to manage the communication fast enough. 4 RM0444 Rev 5 1089/1390 # 34.4.2 LPUART signals LPUART bidirectional communications requires a minimum of two pins: Receive Data In (RX) and Transmit Data Out (TX): - RX (Receive Data Input) - RX is the serial data input. - TX (Transmit Data Output) When the transmitter is disabled, the output pin returns to its I/O port configuration. When the transmitter is enabled and nothing is to be transmitted, the TX pin is at high level. In Single-wire mode, this I/O is used to transmit and receive the data. # RS232 hardware flow control mode The following pins are required in RS232 Hardware flow control mode: - CTS (Clear To Send) - When driven high, this signal blocks the data transmission at the end of the current transfer. - RTS (Request to send) When it is low, this signal indicates that the USART is ready to receive data. # RS485 hardware flow control mode The following pin is required in RS485 Hardware control mode: DE (Driver Enable) This signal activates the transmission mode of the external transceiver. Note: DE and RTS share the same pin. # 34.4.3 LPUART character description The word length can be set to 7 or 8 or 9 bits, by programming the M bits (M0: bit 12 and M1: bit 28) in the LPUART_CR1 register (see *Figure 315*). - 7-bit character length: M[1:0] = '10' - 8-bit character length: M[1:0] = '00' - 9-bit character length: M[1:0] = '01' By default, the signal (TX or RX) is in low state during the start bit. It is in high state during the stop bit. These values can be inverted, separately for each signal, through polarity configuration control. An *Idle character* is interpreted as an entire frame of "1"s. (The number of "1" 's includes the number of stop bits). A **Break character** is interpreted on receiving "0"s for a frame period. At the end of the break frame, the transmitter inserts 2 stop bits. Transmission and reception are driven by a common baud rate generator. The transmission and reception clocks are generated when the enable bit is set for the transmitter and receiver, respectively. The details of each block is given below. Figure 342. LPUART word length programming # 34.4.4 LPUART FIFOs and thresholds The LPUART can operate in FIFO mode. The LPUART comes with a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). The FIFO mode is enabled by setting FIFOEN bit (bit 29) in LPUART_CR1 register. Since 9 bits the maximum data word length is 9 bits, the TXFIFO is 9-bits wide. However the RXFIFO default width is 12 bits. This is due to the fact that the receiver does not only store RM0444 Rev 5 1091/1390 the data in the FIFO, but also the error flags associated to each character (Parity error, Noise error and Framing error flags). Note: The received data is stored in the RXFIFO together with the corresponding flags. However, only the data are read when reading the RDR. The status flags are available in the LPUART_ISR register. It is possible to define the TXFIFO and RXFIFO levels at which the Tx and RX interrupts are triggered. These thresholds are programmed through RXFTCFG and TXFTCFG bitfields in LPUART CR3 control register. In this case: The RXFT flag is set in the LPUART_ISR register and the corresponding interrupt (if enabled) is generated, when the number of received data in the RXFIFO reaches the threshold programmed in the RXFTCFG bits fields. This means that the RXFIFO is filled until the number of data in the RXFIFO is equal to the programmed threshold. RXFTCFG data have been received: one data in LPUART_RDR and (RXFTCFG - 1) data in the RXFIFO. As an example, when the RXFTCFG is programmed to '101', the RXFT flag is set when a number of data corresponding to the FIFO size has been received: FIFO size – 1 data in the RXFIFO and 1 data in the LPUART_RDR. As a result, the next received data does not set the overrun flag. The TXFT flag is set in the LPUART_ISR register and the corresponding interrupt (if enabled) is generated when the number of empty locations in the TXFIFO reaches the threshold programmed in the TXFTCFG bits fields. This means that the TXFIFO is emptied until the number of empty locations in the TXFIFO is equal to the programmed threshold. #### 34.4.5 LPUART transmitter The transmitter can send data words of either 7 or 8 or 9 bits, depending on the M bit status. The Transmit Enable bit (TE) must be set in order to activate the transmitter function. The data in the transmit shift register is output on the TX pin. # **Character transmission** During an LPUART transmission, data shifts out least significant bit first (default configuration) on the TX pin. In this mode, the LPUART_TDR register consists of a buffer (TDR) between the internal bus and the transmit shift register (see *Figure 341*). When FIFO mode is enabled, the data written to the LPUART_TDR register are queued in the TXFIFO. Every character is preceded by a start bit which corresponds to a low logic level for one bit period. The character is terminated by a configurable number of stop bits. The number of stop bits can be 1 or 2. Note: 1092/1390 The TE bit must be set before writing the data to be transmitted to the LPUART TDR. The TE bit should not be reset during data transmission. Resetting the TE bit during the transmission corrupts the data on the TX pin as the baud rate counters is frozen. The current data being transmitted are lost. An idle frame is sent after the TE bit is enabled. RM0444 Rev 5 #### Configurable stop bits The number of stop bits to be transmitted with every character can be programmed in LPUART_CR2 (bits 13,12). - 1 stop bit: This is the default value of number of stop bits. - 2 Stop bits: This is supported by normal LPUART, Single-wire and Modem modes. An idle frame transmission includes the stop bits. A break transmission is 10 low bits (when M[1:0] = '00') or 11 low bits (when M[1:0] = '01') or 9 low bits (when M[1:0] = '10') followed by 2 stop bits. It is not possible to transmit long breaks (break of length greater than 9/10/11 low bits). Figure 343. Configurable stop bits # Character transmission procedure To transmit a character, follow the sequence below: - Program the M bits in LPUART_CR1 to define the word length. - 2. Select the desired baud rate using the LPUART_BRR register. - 3. Program the number of stop bits in LPUART CR2. - Enable the LPUART by writing the UE bit in LPUART_CR1 register to '1'. - Select DMA enable (DMAT) in LPUART CR3 if Multi buffer Communication is to take place. Configure the DMA register as explained in Section 33.5.10: USART multiprocessor communication. - Set the TE bit in LPUART_CR1 to send an idle frame as first transmission. - Write the data to send in the LPUART TDR register. Repeat this operation for each data to be transmitted in case of single buffer. - When FIFO mode is disabled, writing a data in the LPUART_TDR clears the TXE flag. - When FIFO mode is enabled, writing a data in the LPUART_TDR adds one data to the TXFIFO. Write operations to the LPUART_TDR are performed when TXFNF flag is set. This flag remains set until the TXFIFO is full. - When the last data is written to the LPUART TDR register, wait until TC = 1. This indicates that the transmission of the last frame is complete. - When FIFO mode is disabled, this indicates that the transmission of the last frame is complete. RM0444 Rev 5 1093/1390 When FIFO mode is enabled, this indicates that both TXFIFO and shift register are empty. This check is required to avoid corrupting the last transmission when the LPUART is disabled or enters Halt mode. # Single byte communication • When FIFO mode disabled: Writing to the transmit data register always clears the TXE bit. The TXE flag is set by hardware to indicate that: - the data have been moved from the LPUART_TDR register to the shift register and data transmission has started; - the LPUART TDR register is empty; - the
next data can be written to the LPUART_TDR register without overwriting the previous data. The TXE flag generates an interrupt if the TXEIE bit is set. When a transmission is ongoing, a write instruction to the LPUART_TDR register stores the data in the TDR register, which is copied to the shift register at the end of the current transmission. When no transmission is ongoing, a write instruction to the LPUART_TDR register places the data in the shift register, the data transmission starts, and the TXE bit is set. - When FIFO mode is enabled, the TXFNF (TXFIFO Not Full) flag is set by hardware to indicate that: - the TXFIFO is not full; - the LPUART_TDR register is empty; - the next data can be written to the LPUART_TDR register without overwriting the previous data. When a transmission is ongoing, a write operation to the LPUART_TDR register stores the data in the TXFIFO. Data are copied from the TXFIFO to the shift register at the end of the current transmission. When the TXFIFO is not full, the TXFNF flag stays at '1' even after a write in LPUART_TDR. It is cleared when the TXFIFO is full. This flag generates an interrupt if TXFNEIE bit is set. Alternatively, interrupts can be generated and data can be written to the TXFIFO when the TXFIFO threshold is reached. In this case, the CPU can write a block of data defined by the programmed threshold. If a frame is transmitted (after the stop bit) and the TXE flag (TXFE is case of FIFO mode) is set, the TC bit goes high. An interrupt is generated if the TCIE bit is set in the LPUART_CR1 register. After writing the last data in the LPUART_TDR register, it is mandatory to wait for TC = 1 before disabling the LPUART or causing the device to enter the low-power mode (see *Figure 344: TC/TXE behavior when transmitting*). Figure 344. TC/TXE behavior when transmitting Note: When FIFO management is enabled, the TXFNF flag is used for data transmission. #### **Break characters** Setting the SBKRQ bit transmits a break character. The break frame length depends on the M bits (see *Figure 342*). If a '1' is written to the SBKRQ bit, a break character is sent on the TX line after completing the current character transmission. The SBKF bit is set by the write operation and it is reset by hardware when the break character is completed (during the stop bits after the break character). The LPUART inserts a logic 1 signal (STOP) for the duration of 2 bits at the end of the break frame to guarantee the recognition of the start bit of the next frame. When the SBKRQ bit is set, the break character is sent at the end of the current transmission. When FIFO mode is enabled, sending the break character has priority on sending data even if the TXFIFO is full. #### Idle characters Setting the TE bit drives the LPUART to send an idle frame before the first data frame. #### 34.4.6 LPUART receiver The LPUART can receive data words of either 7 or 8 or 9 bits depending on the M bits in the LPUART_CR1 register. # Start bit detection In the LPUART, the start bit is detected when a falling edge occurs on the Rx line, followed by a sample taken in the middle of the start bit to confirm that it is still '0'. If the start sample is at '1', then the noise error flag (NE) is set, then the start bit is discarded and the receiver waits for a new start bit. Else, the receiver continues to sample all incoming bits normally. RM0444 Rev 5 1095/1390 # **Character reception** During an LPUART reception, data are shifted in least significant bit first (default configuration) through the RX pin. In this mode, the LPUART_RDR register consists of a buffer (RDR) between the internal bus and the received shift register. # Character reception procedure To receive a character, follow the sequence below: - 1. Program the M bits in LPUART_CR1 to define the word length. - 2. Select the desired baud rate using the baud rate register LPUART_BRR - 3. Program the number of stop bits in LPUART_CR2. - 4. Enable the LPUART by writing the UE bit in LPUART_CR1 register to '1'. - 5. Select DMA enable (DMAR) in LPUART_CR3 if multibuffer communication is to take place. Configure the DMA register as explained in *Section 33.5.10: USART multiprocessor communication*. - 6. Set the RE bit LPUART_CR1. This enables the receiver which begins searching for a start bit. #### When a character is received - When FIFO mode is disabled, the RXNE bit is set. It indicates that the content of the shift register is transferred to the RDR. In other words, data has been received and can be read (as well as its associated error flags). - When FIFO mode is enabled, the RXFNE bit is set indicating that the RXFIFO is not empty. Reading the LPUART_RDR returns the oldest data entered in the RXFIFO. When a data is received, it is stored in the RXFIFO, together with the corresponding error bits. - An interrupt is generated if the RXNEIE (RXFNEIE in case of FIFO mode) bit is set. - The error flags can be set if a frame error, noise or an overrun error has been detected during reception. - In multibuffer communication mode: - When FIFO mode is disabled, the RXNE flag is set after every byte received and is cleared by the DMA read of the Receive Data Register. - When FIFO mode is enabled, the RXFNE flag is set when the RXFIFO is not empty. After every DMA request, a data is retrieved from the RXFIFO. DMA request is triggered by RXFIFO is not empty i.e. there is a data in the RXFIFO to be read. - In single buffer mode: - When FIFO mode is disabled, clearing the RXNE flag is done by performing a software read from the LPUART_RDR register. The RXNE flag can also be cleared by writing 1 to the RXFRQ in the LPUART_RQR register. The RXNE bit must be cleared before the end of the reception of the next character to avoid an overrun error. - When FIFO mode is enabled, the RXFNE flag is set when the RXFIFO is not empty. After every read operation from the LPUART_RDR register, a data is retrieved from the RXFIFO. When the RXFIFO is empty, the RXFNE flag is cleared. The RXFNE flag can also be cleared by writing 1 to the RXFRQ bit in the LPUART_RQR register. When the RXFIFO is full, the first entry in the RXFIFO must be read before the end of the reception of the next character to avoid an overrun error. The RXFNE flag generates an interrupt if the RXFNEIE bit is set. Alternatively, interrupts can be generated and data can be read from RXFIFO when the RXFIFO threshold is reached. In this case, the CPU can read a block of data defined by the programmed threshold. #### **Break character** When a break character is received, the USART handles it as a framing error. #### Idle character When an idle frame is detected, it is handled in the same way as a data character reception except that an interrupt is generated if the IDLEIE bit is set. #### Overrun error FIFO mode disabled An overrun error occurs when a character is received when RXNE has not been reset. Data can not be transferred from the shift register to the RDR register until the RXNE bit is cleared. The RXNE flag is set after every byte received. An overrun error occurs if RXNE flag is set when the next data is received or the previous DMA request has not been serviced. When an overrun error occurs: - the ORE bit is set; - the RDR content is not lost. The previous data is available when a read to LPUART RDR is performed.; - the shift register is overwritten. After that, any data received during overrun is lost. - an interrupt is generated if either the RXNEIE bit or EIE bit is set. - FIFO mode enabled An overrun error occurs when the shift register is ready to be transferred when the receive FIFO is full. Data can not be transferred from the shift register to the LPUART RDR register until there is one free location in the RXFIFO. The RXFNE flag is set when the RXFIFO is not empty. An overrun error occurs if the RXFIFO is full and the shift register is ready to be transferred. When an overrun error occurs: - the ORE bit is set: - the first entry in the RXFIFO is not lost. It is available when a read to LPUART RDR is performed. - the shift register is overwritten. After that, any data received during overrun is lost. - an interrupt is generated if either the RXFNEIE bit or EIE bit is set. The ORE bit is reset by setting the ORECF bit in the ICR register. Note: The ORE bit, when set, indicates that at least 1 data has been lost. T When the FIFO mode is disabled, there are two possibilities - if RXNE = 1, then the last valid data is stored in the receive register (RDR) and can be read. - if RXNE = 0, then the last valid data has already been read and there is nothing left to be read in the RDR. This case can occur when the last valid data is read in the RDR at the same time as the new (and lost) data is received. RM0444 Rev 5 1097/1390 # Selecting the clock source The choice of the clock source is done through the Clock Control system (see Section Reset and clock controller (RCC)). The clock source must be selected through the UE bit, before enabling the LPUART. The clock source must be selected according to two criteria: - Possible use of the LPUART in low-power mode - Communication speed. The clock source frequency is lpuart ker ck. When the dual clock domain and the wakeup from low-power mode features are supported, the lpuart_ker_ck clock source can be configured in the RCC (see Section Reset and clock controller (RCC)). Otherwise, the lpuart_ker_ck is the same as lpuart_pclk. The lpuart_ker_ck can be divided by a programmable factor in the LPUART_PRESC register. Figure 345. lpuart_ker_ck clock divider block diagram Some lpuart_ker_ck sources enable the LPUART to receive data while the MCU is in low-power mode. Depending on the received data and wakeup mode selection, the LPUART wakes up the MCU, when needed, in order to transfer the received data by software reading the LPUART_RDR register or by DMA. For the other clock sources, the system must be active to enable LPUART communications. The communication speed range
(specially the maximum communication speed) is also determined by the clock source. The receiver samples each incoming baud as close as possible to the middle of the baudperiod. Only a single sample is taken of each of the incoming bauds. Note: There is no noise detection for data. ### Framing error A framing error is detected when the stop bit is not recognized on reception at the expected time, following either a de-synchronization or excessive noise. When the framing error is detected: - the FE bit is set by hardware; - the invalid data is transferred from the Shift register to the LPUART_RDR register. - no interrupt is generated in case of single byte communication. However this bit rises at the same time as the RXNE bit which itself generates an interrupt. In case of multibuffer communication, an interrupt is issued if the EIE bit is set in the LPUART_CR3 register. The FE bit is reset by writing 1 to the FECF in the LPUART_ICR register. # Configurable stop bits during reception The number of stop bits to be received can be configured through the control bits of LPUART_CR2: it can be either 1 or 2 in normal mode. - 1 stop bit: sampling for 1 stop bit is done on the 8th, 9th and 10th samples. - **2 stop bits**: sampling for the 2 stop bits is done in the middle of the second stop bit. The RXNE and FE flags are set just after this sample i.e. during the second stop bit. The first stop bit is not checked for framing error. # 34.4.7 LPUART baud rate generation The baud rate for the receiver and transmitter (Rx and Tx) are both set to the value programmed in the LPUART_BRR register. $$Tx/Rx \ baud = \frac{256 \times Ipuartckpres}{LPUARTDIV}$$ LPUARTDIV is defined in the LPUART_BRR register. Note: The baud counters are updated to the new value in the baud registers after a write operation to LPUART_BRR. Hence the baud rate register value should not be changed during communication. It is forbidden to write values lower than 0x300 in the LPUART_BRR register. f_{CK} must range from 3 x baud rate to 4096 x baud rate. The maximum baud rate that can be reached when the LPUART clock source is the LSE, is 9600 baud. Higher baud rates can be reached when the LPUART is clocked by clock sources different from the LSE clock. For example, if the LPUART clock source frequency is 100 MHz, the maximum baud rate that can be reached is about 33 Mbaud. Table 190. Error calculation for programmed baud rates at lpuart_ker_ck_pres = 32,768 KHz | В | Baud rate | | lpuart_ker_ck_pres = 32, | 768 KHz | |------|-----------|--------------|--|---| | S.No | Desired | Actual | Value programmed in the baud rate register | % Error = (Calculated - Desired)
B.rate / Desired B.rate | | 1 | 0.3 KBps | 0.3 KBps | 0x6D3A | 0 | | 2 | 0.6 KBps | 0.6 KBps | 0x369D | 0 | | 3 | 1200 Bps | 1200.087 Bps | 0x1B4E | 0.007 | | 4 | 2400 Bps | 2400.17 Bps | 0xDA7 | 0.007 | | 5 | 4800 Bps | 4801.72 Bps | 0x6D3 | 0.035 | | 6 | 9600 KBps | 9608.94 Bps | 0x369 | 0.093 | $f_{CK} = 100MHz$ **Baud rate** Value programmed in the baud % Error = (Calculated - Desired) S.No **Desired Actual** rate register B.rate / Desired B.rate 38400 Baud 38400,04 Baud A2C2A 0.0001 1 57600 Baud 6C81C 2 57600,06 Baud 0,0001 3640E 0,0001 3 115200 Baud 115200,12 Baud 230400 Baud 1B207 4 230400,23 Baud 0.0001 5 460800 Baud 460804,61 Baud D903 0,001 921600 Baud 6 921625,81 Baud 6C81 0.0028 7 4000 KBaud 4000000,00 Baud 1900 0 8 10000 Kbaud 10000000,00 Baud A00 0 9 20000 Kbaud 20000000,00 Baud 500 0 30000 Kbaud 0,1 10 33032258,06 Baud 307 Table 191. Error calculation for programmed baud rates at f_{CK} = 100 MHz #### 34.4.8 Tolerance of the LPUART receiver to clock deviation The asynchronous receiver of the LPUART works correctly only if the total clock system deviation is less than the tolerance of the LPUART receiver. The causes which contribute to the total deviation are: - DTRA: deviation due to the transmitter error (which also includes the deviation of the transmitter's local oscillator) - DQUANT: error due to the baud rate quantization of the receiver - DREC: deviation of the receiver local oscillator - DTCL: deviation due to the transmission line (generally due to the transceivers which can introduce an asymmetry between the low-to-high transition timing and the high-tolow transition timing) $${\tt DTRA} + {\tt DQUANT} + {\tt DREC} + {\tt DTCL} + {\tt DWU} < {\tt LPUART} \ receiver \ tolerance$$ where DWU is the error due to sampling point deviation when the wakeup from lowpower mode is used. The LPUART receiver can receive data correctly at up to the maximum tolerated deviation specified in Table 192: - Number of Stop bits defined through STOP[1:0] bits in the LPUART_CR2 register - LPUART_BRR register value. RM0444 Rev 5 1100/1390 | M bits | 768 < BRR < 1024 | 1024 < BRR < 2048 | 2048 < BRR < 4096 | 4096 ≤ BRR | |----------------------------------|------------------|-------------------|-------------------|------------| | 8 bits (M = 00'), 1 Stop
bit | 1.82% | 2.56% | 3.90% | 4.42% | | 9 bits (M = 01'), 1 Stop
bit | 1.69% | 2.33% | 2.53% | 4.14% | | 7 bits (M = '10'), 1 Stop
bit | 2.08% | 2.86% | 4.35% | 4.42% | | 8 bits (M = 00'), 2 Stop
bit | 2.08% | 2.86% | 4.35% | 4.42% | | 9 bits (M = 01'), 2 Stop
bit | 1.82% | 2.56% | 3.90% | 4.42% | | 7 bits (M = '10'), 2 Stop
bit | 2.34% | 3.23% | 4.92% | 4.42% | Table 192. Tolerance of the LPUART receiver Note: The data specified in Table 192 may slightly differ in the special case when the received frames contain some Idle frames of exactly 10-bit times when M bits = '00' (11-bit times when M = '01' or 9- bit times when M = '10'). # 34.4.9 LPUART multiprocessor communication It is possible to perform LPUART multiprocessor communications (with several LPUARTs connected in a network). For instance one of the LPUARTs can be the master, with its TX output connected to the RX inputs of the other LPUARTs. The others are slaves, with their respective TX outputs are logically ANDed together and connected to the RX input of the master. In multiprocessor configurations it is often desirable that only the intended message recipient actively receives the full message contents, thus reducing redundant LPUART service overhead for all non addressed receivers. The non addressed devices can be placed in Mute mode by means of the muting function. To use the Mute mode feature, the MME bit must be set in the LPUART_CR1 register. Note: When FIFO management is enabled and MME is already set, MME bit must not be cleared and then set again quickly (within two lpuart_ker_ck cycles), otherwise Mute mode might remain active. When the Mute mode is enabled: - none of the reception status bits can be set; - all the receive interrupts are inhibited; - the RWU bit in LPUART_ISR register is set to '1'. RWU can be controlled automatically by hardware or by software, through the MMRQ bit in the LPUART_RQR register, under certain conditions. The LPUART can enter or exit from Mute mode using one of two methods, depending on the WAKE bit in the LPUART CR1 register: - Idle Line detection if the WAKE bit is reset, - Address Mark detection if the WAKE bit is set. RM0444 Rev 5 1101/1390 # Idle line detection (WAKE = 0) The LPUART enters Mute mode when the MMRQ bit is written to 1 and the RWU is automatically set. The LPUART wakes up when an Idle frame is detected. The RWU bit is then cleared by hardware but the IDLE bit is not set in the LPUART_ISR register. An example of Mute mode behavior using Idle line detection is given in *Figure 346*. RX Data 1 Data 2 Data 3 Data 4 IDLE Data 5 Data 6 RWU Mute mode Normal mode MMRQ written to 1 Idle frame detected Figure 346. Mute mode using Idle line detection Note: If the MMRQ is set while the IDLE character has already elapsed, the Mute mode is not entered (RWU is not set). If the LPUART is activated while the line is IDLE, the idle state is detected after the duration of one IDLE frame (not only after the reception of one character frame). # 4-bit/7-bit address mark detection (WAKE = 1) In this mode, bytes are recognized as addresses if their MSB is a '1' otherwise they are considered as data. In an address byte, the address of the targeted receiver is put in the 4 or 7 LSBs. The choice of 7 or 4 bit address detection is done using the ADDM7 bit. This 4-bit/7-bit word is compared by the receiver with its own address which is programmed in the ADD bits in the LPUART_CR2 register. Note: In 7-bit and 9-bit data modes, address detection is done on 6-bit and 8-bit addresses (ADD[5:0] and ADD[7:0]) respectively. The LPUART enters Mute mode when an address character is received which does not match its programmed address. In this case, the RWU bit is set by hardware. The RXNE flag is not set for this address byte and no interrupt or DMA request is issued when the LPUART enters Mute mode. The LPUART also enters Mute mode when the MMRQ bit is written to '1'. The RWU bit is also automatically set in this case. The LPUART exits from Mute mode when an address character is received which matches the programmed address. Then the RWU bit is cleared and subsequent bytes are received normally. The RXNE/RXFNE bit is set for the address character since the RWU bit has been cleared. Note: When FIFO management is enabled, when MMRQ bit is set while the receiver is sampling the last bit of a data, this data may be received before effectively entering in Mute mode. An example of Mute mode behavior using address mark detection is given in Figure 347. In this example, the current address of the receiver is 1 (programmed in the LUART_CR2 register) RXNE RXNE IDLE Addr=0 Data 1 Data 2 IDLE Addr=1 Data 3 Data 4 Addr=2 Data 5 RX RWU Mute mode Normal mode Mute mode MMRQ written to 1 Matching address Non-matching address (RXNE was cleared) Non-matching address MSv31888V1 Figure 347. Mute mode using address mark detection # 34.4.10 LPUART parity
control Parity control (generation of parity bit in transmission and parity checking in reception) can be enabled by setting the PCE bit in the LPUART_CR1 register. Depending on the frame length defined by the M bits, the possible LPUART frame formats are as listed in *Table 193*. | M bits | PCE bit | LPUART frame ⁽¹⁾ | |--------|---------|-----------------------------| | 00 | 0 | SB 8 bit data STB | | 00 | 1 | SB 7-bit data PB STB | | 01 | 0 | SB 9-bit data STB | | 01 | 1 | SB 8-bit data PB STB | | 10 | 0 | SB 7bit data STB | | 10 | 1 | SB 6-bit data PB STB | **Table 193: LPUART frame formats** # **Even parity** The parity bit is calculated to obtain an even number of "1s" inside the frame which is made of the 6, 7 or 8 LSB bits (depending on M bit values) and the parity bit. As an example, if data equal 00110101, and 4 bits are set, then the parity bit is equal to 0 if even parity is selected (PS bit in LPUART_CR1 = 0). # **Odd parity** The parity bit is calculated to obtain an odd number of "1s" inside the frame made of the 6, 7 or 8 LSB bits (depending on M bit values) and the parity bit. As an example, if data equal 00110101 and 4 bits set, then the parity bit is equal to 1 if odd parity is selected (PS bit in LPUART_CR1 = 1). RM0444 Rev 5 1103/1390 ^{1.} Legends: SB: start bit, STB: stop bit, PB: parity bit. ^{2.} In the data register, the PB is always taking the MSB position (8th or 7th, depending on the M bit value). # Parity checking in reception If the parity check fails, the PE flag is set in the LPUART_ISR register and an interrupt is generated if PEIE is set in the LPUART_CR1 register. The PE flag is cleared by software writing 1 to the PECF in the LPUART_ICR register. # Parity generation in transmission If the PCE bit is set in LPUART_CR1, then the MSB bit of the data written in the data register is transmitted but is changed by the parity bit (even number of "1s" if even parity is selected (PS = 0) or an odd number of "1s" if odd parity is selected (PS = 1)). # 34.4.11 LPUART single-wire Half-duplex communication Single-wire Half-duplex mode is selected by setting the HDSEL bit in the LPUART_CR3 register. In this mode, the following bits must be kept cleared: - LINEN and CLKEN bits in the LPUART_CR2 register, - SCEN and IREN bits in the LPUART CR3 register. The LPUART can be configured to follow a Single-wire Half-duplex protocol where the TX and RX lines are internally connected. The selection between half- and Full-duplex communication is made with a control bit HDSEL in LPUART CR3. As soon as HDSEL is written to '1': - The TX and RX lines are internally connected. - The RX pin is no longer used - The TX pin is always released when no data is transmitted. Thus, it acts as a standard I/O in idle or in reception. It means that the I/O must be configured so that TX is configured as alternate function open-drain with an external pull-up. Apart from this, the communication protocol is similar to normal LPUART mode. Any conflict on the line must be managed by software (for instance by using a centralized arbiter). In particular, the transmission is never blocked by hardware and continues as soon as data is written in the data register while the TE bit is set. Note: In LPUART communications, in the case of 1-stop bit configuration, the RXNE flag is set in the middle of the stop bit. # 34.4.12 Continuous communication using DMA and LPUART The LPUART is capable of performing continuous communication using the DMA. The DMA requests for Rx buffer and Tx buffer are generated independently. Note: Refer to Section 33.4: USART implementation on page 1000 to determine if the DMA mode is supported. If DMA is not supported, use the LPUSRT as explained in Section 33.5.6. To perform continuous communication. When FIFO is disabled, you can clear the TXE/RXNE flags in the LPUART_ISR register. # **Transmission using DMA** DMA mode can be enabled for transmission by setting DMAT bit in the LPUART_CR3 register. Data are loaded from an SRAM area configured using the DMA peripheral (refer to the corresponding *Direct memory access controller* section) to the LPUART_TDR register whenever the TXE flag (TXFNF flag if FIFO mode is enabled) is set. To map a DMA channel for LPUART transmission, use the following procedure (x denotes the channel number): - Write the LPUART_TDR register address in the DMA control register to configure it as the destination of the transfer. The data is moved to this address from memory after each TXE (or TXFNF if FIFO mode is enabled) event. - 2. Write the memory address in the DMA control register to configure it as the source of the transfer. The data is loaded into the LPUART_TDR register from this memory area after each TXE (or TXFNF if FIFO mode is enabled) event. - 3. Configure the total number of bytes to be transferred to the DMA control register. - 4. Configure the channel priority in the DMA register - 5. Configure DMA interrupt generation after half/ full transfer as required by the application. - 6. Clear the TC flag in the LPUART_ISR register by setting the TCCF bit in the LPUART_ICR register. - 7. Activate the channel in the DMA register. When the number of data transfers programmed in the DMA Controller is reached, the DMA controller generates an interrupt on the DMA channel interrupt vector. In transmission mode, once the DMA has written all the data to be transmitted (the TCIF flag is set in the DMA_ISR register), the TC flag can be monitored to make sure that the LPUART communication is complete. This is required to avoid corrupting the last transmission before disabling the LPUART or entering low-power mode. Software must wait until TC = 1. The TC flag remains cleared during all data transfers and it is set by hardware at the end of transmission of the last frame. Figure 348. Transmission using DMA Note: When FIFO management is enabled, the DMA request is triggered by Transmit FIFO not full (i.e. TXFNF = 1). 57 RM0444 Rev 5 1105/1390 # **Reception using DMA** DMA mode can be enabled for reception by setting the DMAR bit in LPUART_CR3 register. Data are loaded from the LPUART_RDR register to a SRAM area configured using the DMA peripheral (refer to the corresponding *Direct memory access controller (DMA)* section) whenever a data byte is received. To map a DMA channel for LPUART reception, use the following procedure: - Write the LPUART_RDR register address in the DMA control register to configure it as the source of the transfer. The data is moved from this address to the memory after each RXNE (RXFNE in case FIFO mode is enabled) event. - 2. Write the memory address in the DMA control register to configure it as the destination of the transfer. The data is loaded from LPUART_RDR to this memory area after each RXNE (RXFNE in case FIFO mode is enabled) event. - 3. Configure the total number of bytes to be transferred to the DMA control register. - 4. Configure the channel priority in the DMA control register - 5. Configure interrupt generation after half/ full transfer as required by the application. - 6. Activate the channel in the DMA control register. When the number of data transfers programmed in the DMA Controller is reached, the DMA controller generates an interrupt on the DMA channel interrupt vector. Figure 349. Reception using DMA Note: When FIFO management is enabled, the DMA request is triggered by Receive FIFO not empty (i.e. RXFNE = 1). # Error flagging and interrupt generation in multibuffer communication If any error occurs during a transaction In multibuffer communication mode, the error flag is asserted after the current byte. An interrupt is generated if the interrupt enable flag is set. For framing error, overrun error and noise flag which are asserted with RXNE (RXFNE in case FIFO mode is enabled) in single byte reception, there is a separate error flag interrupt enable bit (EIE bit in the LPUART_CR3 register), which, if set, enables an interrupt after the current byte if any of these errors occur. # 34.4.13 RS232 Hardware flow control and RS485 Driver Enable It is possible to control the serial data flow between 2 devices by using the nCTS input and the nRTS output. The *Figure 336* shows how to connect 2 devices in this mode: LPUART 1 TX TX circuit CTS RX RX circuit RX circuit TX circuit RX circuit RX TX RX circuit RX CTS MSv31892V2 Figure 350. Hardware flow control between 2 LPUARTs RS232 RTS and CTS flow control can be enabled independently by writing the RTSE and CTSE bits respectively to 1 (in the LPUART_CR3 register). #### **RS232 RTS flow control** If the RTS flow control is enabled (RTSE = 1), then nRTS is asserted (tied low) as long as the LPUART receiver is ready to receive a new data. When the receive register is full, nRTS is deasserted, indicating that the transmission is expected to stop at the end of the current frame. *Figure 351* shows an example of communication with RTS flow control enabled. Figure 351. RS232 RTS flow control Note: When FIFO mode is enabled, nRTS is deasserted only when RXFIFO is full. RM0444 Rev 5 1107/1390 #### **RS232 CTS flow control** If the CTS flow control is enabled (CTSE = 1), then the transmitter checks the nCTS input before transmitting the next frame. If nCTS is asserted (tied low), then the next data is transmitted (assuming that data is to be transmitted, in other words, if TXE/TXFE = 0), else the transmission does not occur. When nCTS is deasserted during a transmission, the current transmission is completed before the transmitter stops. When CTSE = 1, the CTSIF status bit is automatically set by hardware as soon as the nCTS input toggles. It indicates when the receiver becomes ready or not ready for communication. An interrupt is generated if the CTSIE bit in the LPUART_CR3 register is set. *Figure 352* shows an example of communication with CTS flow control enabled. Figure 352. RS232 CTS flow control Note: For correct behavior, nCTS must be asserted at least 3 LPUART clock source periods before the end
of the current character. In addition it should be noted that the CTSCF flag may not be set for pulses shorter than 2 x PCLK periods. # RS485 driver enable The driver enable feature is enabled by setting bit DEM in the LPUART_CR3 control register. This enables activating the external transceiver control, through the DE (Driver Enable) signal. The assertion time is the time between the activation of the DE signal and the beginning of the start bit. It is programmed using the DEAT [4:0] bitfields in the LPUART_CR1 control register. The deassertion time is the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE signal. It is programmed using the DEDT [4:0] bitfields in the LPUART_CR1 control register. The polarity of the DE signal can be configured using the DEP bit in the LPUART_CR3 control register. The LPUART DEAT and DEDT are expressed in LPUART clock source (f_{CK}) cycles: - The Driver enable assertion time equals - (1 + (DEAT x P)) x f_{CK}, if P # 0 - (1 + DEAT) x f_{CK}, if P = 0 - The Driver enable deassertion time equals - (1 + (DEDT x P)) x f_{CK}, if P # 0 - (1 + DEDT) x f_{CK}, if P = 0 where P = BRR[20:11] # 34.4.14 LPUART low-power management The LPUART has advanced low-power mode functions that enable it to transfer properly data even when the lpuart pclk clock is disabled. The LPUART is able to wake up the MCU from low-power mode when the UESM bit is set. When the usart_pclk is gated, the LPUART provides a wakeup interrupt (usart_wkup) if a specific action requiring the activation of the usart_pclk clock is needed: If FIFO mode is disabled luart_pclk clock has to be activated to empty the LPUART data register. In this case, the lpuart_wkup interrupt source is the RXNE set to '1'. The RXNEIE bit must be set before entering low-power mode. • If FIFO mode is enabled luart pclk clock has to be activated - to fill the TXFIFO - or to empty the RXFIFO In this case, the lpuart_wkup interrupt source can be: - RXFIFO not empty. In this case, the RXFNEIE bit must be set before entering low-power mode. - RXFIFO full. In this case, the RXFFIE bit must be set before entering low-power mode, the number of received data corresponds to the RXFIFO size, and the RXFF flag is not set. - TXFIFO empty. In this case, the TXFEIE bit must be set before entering low-power mode. This enables sending/receiving the data in the TXFIFO/RXFIFO during low-power mode. To avoid overrun/underrun errors and transmit/receive data in low-power mode, the lpuart_wkup interrupt source can be one of the following events: - TXFIFO threshold reached. In this case, the TXFTIE bit must be set before entering low-power mode. - RXFIFO threshold reached. In this case, the RXFTIE bit must be set before entering low-power mode. For example, the application can set the threshold to the maximum RXFIFO size if the wakeup time is less than the time to receive a single byte across the line. Using the RXFIFO full, TXFIFO empty, RXFIFO not empty and RXFIFO/TXFIFO threshold interrupts to wakeup the MCU from low-power mode enables doing as many LPUART transfers as possible during low-power mode with the benefit of optimizing consumption. RM0444 Rev 5 1109/1390 Alternatively, a specific **Ipuart wkup** interrupt may be selected through the WUS bitfields. When the wakeup event is detected, the WUF flag is set by hardware and **lpuart_wkup** interrupt is generated if the WUFIE bit is set. In this case the **lpuart_wkup** interrupt is not mandatory for the wakeup. The WUF being set is sufficient to wakeup the MCU from low-power mode. Note: Before entering low-power mode, make sure that no LPUART transfer is ongoing. Checking the BUSY flag cannot ensure that low-power mode is never entered when data reception is ongoing. The WUF flag is set when a wakeup event is detected, independently of whether the MCU is in low-power or in an active mode. When entering low-power mode just after having initialized and enabled the receiver, the REACK bit must be checked to ensure the LPUART is actually enabled. When DMA is used for reception, it must be disabled before entering low-power mode and re-enabled upon exit from low-power mode. When FIFO is enabled, the wakeup from low-power mode on address match is only possible when Mute mode is enabled. # Using Mute mode with low-power mode If the LPUART is put into Mute mode before entering low-power mode: - Wakeup from Mute mode on idle detection must not be used, because idle detection cannot work in low-power mode. - If the wakeup from Mute mode on address match is used, then the low-power mode wakeup source from must also be the address match. If the RXNE flag was set when entering the low-power mode, the interface remains in Mute mode upon address match and wake up from low-power mode. Note: When FIFO management is enabled, Mute mode is used with wakeup from low-power mode without any constraints (i.e.the two points mentioned above about mute and low-power mode are valid only when FIFO management is disabled). # Wakeup from low-power mode when LPUART kernel clock lpuart_ker_ck is OFF in low-power mode If during low-power mode, the lpuart_ker_ck clock is switched OFF, when a falling edge on the LPUART receive line is detected, the LPUART interface requests the lpuart_ker_ck clock to be switched ON thanks to the lpuart_ker_ck_req signal. The lpuart_ker_ck is then used for the frame reception. If the wakeup event is verified, the MCU wakes up from low-power mode and data reception goes on normally. If the wakeup event is not verified, the usart_ker_ck is switched OFF again, the MCU is not waken up and stays in low-power mode and the kernel clock request is released. The example below shows the case of wakeup event programmed to "address match detection" and FIFO management disabled. Figure 353 shows the behavior when the wakeup event is verified. 4 Figure 353. Wakeup event verified (wakeup event = address match, FIFO disabled) Figure 354 shows the behavior when the wakeup event is not verified. Figure 354. Wakeup event not verified (wakeup event = address match, FIFO disabled) Note: The above figures are valid when address match or any received frame is used as wakeup event. In the case the wakeup event is the start bit detection, the LPUART sends the wakeup event to the MCU at the end of the start bit. # Determining the maximum LPUART baud rate that enables to correctly wake up the MCU from low-power mode The maximum baud rate that enables to correctly wake up the MCU from low-power mode depends on the wakeup time parameter (refer to the device datasheet) and on the LPUART receiver tolerance (see Section 34.4.8: Tolerance of the LPUART receiver to clock deviation). Let us take the example of OVER8 = 0, M bits = '01', ONEBIT = 0 and BRR [3:0] = 0000. In these conditions, according to *Table 192: Tolerance of the LPUART receiver*, the LPUART receiver tolerance equals 3.41%. DTRA + DQUANT + DREC + DTCL + DWU < LPUART receiver tolerance $D_{WUmax} = t_{WULPUART} / (11 x T_{bit Min})$ $T_{bit Min} = t_{WULPUART} / (11 \times D_{WUmax})$ where t_{WULPUART} is the wakeup time from low-power mode. If we consider the ideal case where DTRA, DQUANT, DREC and DTCL parameters are at 0%, the maximum value of DWU is 3.41%. In reality, we need to consider at least the lpuart_ker_ck inaccuracy. For example, if HSI is used as Ipuart_ker_ck, and the HSI inaccuracy is of 1%, then we obtain: $t_{WULPUART}$ = 3 µs (values provided only as examples; for correct values, refer to the device datasheet). $D_{WUmax} = 3.41\% - 1\% = 2.41\%$ $T_{bit min} = 3 \mu s / (11 \times 2.41\%) = 11.32 \mu s.$ As a result, the maximum baud rate that enables to wakeup correctly from low-power mode is: 1/11.32 μs = 88.36 Kbaud. # 34.5 LPUART in low-power modes Table 194. Effect of low-power modes on the LPUART | Mode | Description | |---------------------|--| | Sleep | No effect. LPUART interrupts cause the device to exit Sleep mode. | | Stop ⁽¹⁾ | The content of the LPUART registers is kept. The LPUART is able to wake up the microcontroller from Stop mode when the LPUART is clocked by an oscillator available in Stop mode. | | Standby | The LPUART peripheral is powered down and must be reinitialized after exiting Standby mode. | Refer to Section 34.3: LPUART implementation to know if the wakeup from Stop mode is supported for a given peripheral instance. If an instance is not functional in a given Stop mode, it must be disabled before entering this Stop mode. # 34.6 LPUART interrupts Refer to *Table 195* for a detailed description of all LPUART interrupt requests. Table 195. LPUART interrupt requests | Interrupt
vector | Interrupt event | Event
flag | Enable
Control
bit | Interrupt clear
method | Exit from
Sleep
mode | Exit from
Stop ⁽¹⁾
modes | Exit from
Standby
mode | |---------------------|--|---------------------|--------------------------|---|----------------------------|---|------------------------------| | | Transmit data register empty | TXE | TXEIE | Write TDR | | NO | | | | Transmit FIFO Not Full | TXFNF | TXFNFIE | TXFIFO full | | NO | | | | Transmit FIFO
Empty | TXFE | TXFEIE | Write TDR or write 1 in TXFRQ | YES | YES | | | | Transmit FIFO threshold reached | TXFT | TXFTIE | Write TDR | | YES | | | | CTS interrupt | CTSIF (| CTSIE | Write 1 in CTSCF | | NO | | | | Transmission
Complete | TC | TCIE | Write TDR or write 1 in TCCF | | NO | | | | Receive data
register not empty
(data ready to be
read) | RXNE | RXNEIE | Read RDR or write
1 in RXFRQ | | YES | | | | Receive FIFO Not
Empty | RXFNE | RXFNEIE | Read RDR
until
RXFIFO empty or
write 1 in RXFRQ | | YES | | | LPUART | Receive FIFO Full | RXFF ⁽²⁾ | RXFFIE | Read RDR | | YES | NO | | LPUARI | Receive FIFO threshold reached | RXFT | RXFTIE | Read RDR | | YES | NO | | | Overrun error detected | ORE | RX-
NEIE/RX
FNEIE | Write 1 in ORECF | | NO | | | | Idle line detected | IDLE | IDLEIE | Write 1 in IDLECF | YES | NO | | | | Parity error | PE | PEIE | Write 1 in PECF | | NO | | | | Noise error in multibuffer communication. | NE | | Write 1 in NFCF | | NO | | | | Overrun error in multibuffer communication. | ORE ⁽³⁾ | EIE | Write 1 in ORECF | | NO | | | | Framing Error in multibuffer communication. | FE | | Write 1 in FECF | | NO | | | | Character match | CMF | CMIE | Write 1 in CMCF | | NO | | | | Wakeup from low-
power mode | WUF | WUFIE | Write 1 in WUC | | YES | | 1113/1390 - The LPUART can wake up the device from Stop mode only if the peripheral instance supports the Wakeup from Stop mode feature. Refer to Section 34.3: LPUART implementation for the list of supported Stop modes. - 2. RXFF flag is asserted if the LPUART receives n+1 data (n being the RXFIFO size): n data in the RXFIFO and 1 data in LPUART_RDR. In Stop mode, LPUART_RDR is not clocked. As a result, this register is not written and once n data are received and written in the RXFIFO, the RXFF interrupt is asserted (RXFF flag is not set). - 3. When OVRDIS = 0. # 34.7 LPUART registers Refer to Section 1.2 on page 53 for a list of abbreviations used in register descriptions. The peripheral registers have to be accessed by words (32 bits). # 34.7.1 LPUART control register 1 [alternate] (LPUART_CR1) Address offset: 0x00 Reset value: 0x0000 0000 The same register can be used in FIFO mode enabled (this section) and FIFO mode disabled (next section). #### FIFO mode enabled | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|--------|------------|----|------|------|-----------|------|-------------|------|-------------|-----------|----|----|------|----| | RXF
FIE | TXFEIE | FIFO
EN | M1 | Res. | Res. | DEAT[4:0] | | | | | DEDT[4:0] | | | | | | rw | rw | rw | rw | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | CMIE | MME | M0 | WAKE | PCE | PS | PEIE | TXFN
FIE | TCIE | RXFN
EIE | IDLEIE | TE | RE | UESM | UE | | | rw #### Bit 31 RXFFIE:RXFIFO Full interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An LPUART interrupt is generated when RXFF = 1 in the LPUART ISR register # Bit 30 TXFEIE:TXFIFO empty interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An LPUART interrupt is generated when TXFE = 1 in the LPUART_ISR register #### Bit 29 FIFOEN:FIFO mode enable This bit is set and cleared by software. 0: FIFO mode is disabled. 1: FIFO mode is enabled. #### Bit 28 M1: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = '00': 1 Start bit, 8 Data bits, n Stop bit M[1:0] = '01': 1 Start bit, 9 Data bits, n Stop bit M[1:0] = '10': 1 Start bit, 7 Data bits, n Stop bit This bit can only be written when the LPUART is disabled (UE = 0). Note: In 7-bit data length mode, the Smartcard mode, LIN master mode and Auto baud rate (0x7F and 0x55 frames detection) are not supported. # Bits 27:26 Reserved, must be kept at reset value. #### Bits 25:21 **DEAT[4:0]**: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in Ipuart_ker_ck clock cycles. For more details, refer *Section 33.5.20: RS232 Hardware flow control and RS485 Driver Enable*. This bitfield can only be written when the LPUART is disabled (UE = 0). #### Bits 20:16 **DEDT[4:0]**: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal. It is expressed in lpuart_ker_ck clock cycles. For more details, refer Section 34.4.13: RS232 Hardware flow control and RS485 Driver Enable. If the LPUART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the LPUART is disabled (UE = 0). #### Bit 15 Reserved, must be kept at reset value. ### Bit 14 CMIE: Character match interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A LPUART interrupt is generated when the CMF bit is set in the LPUART_ISR register. #### Bit 13 MME: Mute mode enable This bit activates the Mute mode function of the LPUART. When set, the LPUART can switch between the active and Mute modes, as defined by the WAKE bit. It is set and cleared by software. - 0: Receiver in active mode permanently - 1: Receiver can switch between Mute mode and active mode. ### Bit 12 M0: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1) description). This bit can only be written when the LPUART is disabled (UE = 0). #### Bit 11 WAKE: Receiver wakeup method This bit determines the LPUART wakeup method from Mute mode. It is set or cleared by software. 0: Idle line 1: Address mark This bitfield can only be written when the LPUART is disabled (UE = 0). #### Bit 10 PCE: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). - 0: Parity control disabled - 1: Parity control enabled This bitfield can only be written when the LPUART is disabled (UE = 0). #### Bit 9 PS: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. - 0: Even parity - 1: Odd parity This bitfield can only be written when the LPUART is disabled (UE = 0). #### Bit 8 PEIE: PE interrupt enable This bit is set and cleared by software. - 0: Interrupt is inhibited - 1: An LPUART interrupt is generated whenever PE = 1 in the LPUART ISR register #### Bit 7 TXFNFIE: TXFIFO not full interrupt enable This bit is set and cleared by software. - 0: Interrupt is inhibited - 1: A LPUART interrupt is generated whenever TXE/TXFNF =1 in the LPUART ISR register #### Bit 6 TCIE: Transmission complete interrupt enable This bit is set and cleared by software. - 0: Interrupt is inhibited - 1: An LPUART interrupt is generated whenever TC = 1 in the LPUART_ISR register #### Bit 5 RXFNEIE: RXFIFO not empty interrupt enable This bit is set and cleared by software. - 0: Interrupt is inhibited - 1: A LPUART interrupt is generated whenever ORE = 1 or RXNE/RXFNE = 1 in the LPUART_ISR register ### Bit 4 IDLEIE: IDLE interrupt enable This bit is set and cleared by software. - 0: Interrupt is inhibited - 1: An LPUART interrupt is generated whenever IDLE = 1 in the LPUART_ISR register #### Bit 3 TE: Transmitter enable This bit enables the transmitter. It is set and cleared by software. - 0: Transmitter is disabled - 1: Transmitter is enabled Note: During transmission, a low pulse on the TE bit ("0" followed by "1") sends a preamble (idle line) after the current word. In order to generate an idle character, the TE must not be immediately written to 1. In order to ensure the required duration, the software can poll the TEACK bit in the LPUART_ISR register. When TE is set there is a 1 bit-time delay before the transmission starts. #### Bit 2 RE: Receiver enable This bit enables the receiver. It is set and cleared by software. - 0: Receiver is disabled - 1: Receiver is enabled and begins searching for a start bit ## Bit 1 UESM: LPUART enable in Stop mode When this bit is cleared, the LPUART is not able to wake up the MCU from low-power mode. When this bit is set, the LPUART is able to wake up the MCU from low-power mode, provided that the LPUART clock selection is HSI or LSE in the RCC. This bit is set and cleared by software. 0: LPUART not able to wake up the MCU from low-power mode. 1: LPUART able to wake up the MCU from low-power mode. When this function is active, the clock source for the LPUART must be HSI or LSE (see RCC chapter) Note: It is recommended to set the UESM bit just before entering low-power mode and clear it on exit from low-power mode. ## Bit 0 UE: LPUART enable When this bit is cleared, the LPUART prescalers and outputs are stopped immediately, and current operations are discarded. The configuration of the LPUART is kept, but all the status flags, in the LPUART ISR are reset. This bit is set and cleared by software. 0: LPUART prescaler and outputs disabled, low-power mode 1: LPUART enabled Note: To enter low-power mode without generating errors on the line, the TE bit must be reset before and the software must wait for the TC bit in the LPUART_ISR to be set before resetting the UE bit. The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit. # 34.7.2 LPUART control register 1 [alternate] (LPUART_CR1) Address offset: 0x00 Reset value: 0x0000 0000 The same register can be used in FIFO mode enabled (previous section) and FIFO mode disabled (this section). ## FIFO mode disabled | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------------|----|------|------|----|------|----------|------|--------|--------|----|----------|------|----| | Res. | Res. | FIFO
EN | M1 | Res. | Res. | | | DEAT[4:0 |] | | | [| DEDT[4:0 |] | | | | | rw | rw | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | CMIE | MME | M0 | WAKE | PCE | PS | PEIE | TXEIE | TCIE | RXNEIE | IDLEIE | TE | RE | UESM | UE | | | rw Bits 31:30 Reserved, must be kept at reset value. #### Bit 29 FIFOEN:FIFO mode enable This bit is set and cleared by software. 0: FIFO mode is disabled. 1: FIFO mode is enabled. ## Bit 28 M1: Word length This bit must be used in conjunction with bit 12 (M0) to determine the word length. It is set or cleared by software. M[1:0] = '00': 1 Start bit, 8 Data bits, n Stop bit M[1:0] = '01': 1 Start bit, 9 Data bits, n Stop bit M[1:0] = '10': 1 Start bit, 7 Data bits, n Stop bit This bit can only be written when the LPUART is disabled (UE = 0). Note: In 7-bit data length mode, the Smartcard mode, LIN master mode and Auto baud rate (0x7F and 0x55 frames detection) are not supported. Bits 27:26 Reserved, must be kept at reset value. ## Bits 25:21 **DEAT[4:0]**: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in lpuart_ker_ck clock cycles. For more details, refer *Section 33.5.20: RS232 Hardware flow control and RS485 Driver Enable*. This bitfield can only be written when the LPUART is disabled (UE = 0). ## Bits 20:16 **DEDT[4:0]**: Driver Enable deassertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal. It is expressed in lpuart_ker_ck clock cycles. For more details, refer Section 34.4.13: RS232 Hardware flow control and RS485 Driver Enable. If the LPUART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bitfield can only be written when the LPUART is disabled (UE = 0). ## Bit 15 Reserved, must be kept at reset value. ## Bit 14 CMIE: Character match interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A LPUART interrupt is generated when the CMF bit is set in the LPUART_ISR register. #### Bit 13 MME: Mute mode enable This bit activates the Mute mode function of the LPUART. When set, the LPUART can switch between the active and Mute modes, as defined by the WAKE bit. It is set and cleared by software - 0: Receiver in active mode permanently - 1: Receiver can switch between Mute mode and active mode. ## Bit 12 M0: Word length This bit is used in conjunction with bit 28 (M1) to determine the word length. It is set or cleared by software (refer to bit 28 (M1) description). This bit can only be written when the LPUART is disabled (UE = 0). #### Bit 11 WAKE: Receiver wakeup method This bit determines the LPUART wakeup method from Mute mode. It is set or cleared by software. 0: Idle line 1: Address mark This bitfield can only be written when the LPUART is disabled (UE = 0). #### Bit 10 PCE: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). 0: Parity control disabled 1: Parity control enabled This bitfield can only be written when the LPUART is disabled (UE = 0). #### Bit 9 PS: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity is selected after the current byte. 0: Even parity 1: Odd parity This bitfield can only be written when the LPUART is disabled (UE = 0). ## Bit 8 PEIE: PE interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An LPUART interrupt is generated whenever PE = 1 in the LPUART_ISR register #### Bit 7 TXEIE: Transmit data register empty This bit is set and cleared by software. 0: Interrupt is inhibited 1: A LPUART interrupt is generated whenever TXE/TXFNF =1 in the LPUART_ISR register #### Bit 6 TCIE: Transmission complete interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An LPUART interrupt is generated whenever TC = 1 in the LPUART ISR register ## Bit 5 **RXNEIE**: Receive data register not empty This bit is set and cleared by software. 0: Interrupt is inhibited 1: A LPUART interrupt is generated whenever ORE = 1 or RXNE/RXFNE = 1 in the LPUART ISR register #### Bit 4 IDLEIE: IDLE interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An LPUART interrupt is generated whenever IDLE = 1 in the LPUART ISR register #### Bit 3 TE: Transmitter enable This bit enables the transmitter. It is set and cleared by software. 0: Transmitter is disabled 1: Transmitter is enabled Note: During transmission, a low pulse on the TE bit ("0" followed by "1") sends a preamble (idle line) after the current word. In order to generate an idle character, the TE must not be immediately written to 1. In order to ensure the required duration, the software can poll the TEACK bit in the LPUART_ISR register. When TE is set there is a 1 bit-time delay before the transmission starts. #### Bit 2 RE: Receiver enable This bit enables the receiver. It is set and cleared by software. - 0: Receiver is disabled - 1: Receiver is enabled and begins searching for a start bit ## Bit 1 UESM: LPUART enable in Stop mode When this bit is cleared, the LPUART is not able to wake up the MCU from low-power mode. When this bit is set, the LPUART is able to wake up the MCU from low-power mode, provided that the LPUART clock selection is HSI or LSE in the RCC. This bit is set and cleared by software. - 0: LPUART not able to wake up the MCU from low-power mode. - 1: LPUART able to wake up the MCU from low-power mode. When this function is active, the clock source for the LPUART must be HSI or LSE (see RCC chapter) Note: It is recommended to set the UESM bit just before entering low-power mode and clear it on exit from low-power mode. #### Bit 0 UE: LPUART enable When this bit is cleared, the LPUART prescalers and outputs are stopped immediately, and current operations are discarded. The configuration of the LPUART is kept, but all the status flags, in the LPUART_ISR are reset. This bit is set and cleared by software. - 0: LPUART prescaler and outputs disabled, low-power mode - 1: LPUART enabled Note: To enter low-power mode without generating errors on the line, the TE bit must be reset before and the software must wait for the TC bit in the LPUART_ISR to be set before resetting the UE bit. The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit. ## 34.7.3 LPUART control register 2 (LPUART_CR2) Address offset: 0x04 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|--------|-------|------|------|------|------|------|------|-------|--------------|---------|-------|-------| | | | | ADD | [7:0] | | | | Res. | Res. | Res. | Res. | MSBFI
RST | DATAINV | TXINV | RXINV | | rw | | | | rw | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SWAP | Res. | STOR | P[1:0] | Res. ADDM7 | Res. | Res. | Res. | Res. | | rw | | rw | rw | | | | | | | | rw | | | | | ## Bits 31:24 ADD[7:0]: Address of the LPUART node ## ADD[7:4]: These bits give the address of the LPUART node or a character code to be recognized. They are used to wake up the MCU with 7-bit address mark detection in multiprocessor communication during Mute mode or Stop mode. The MSB of the character sent by the transmitter should be equal to 1. They can also be used for character detection during normal reception, Mute mode inactive (for example, end of block detection in ModBus protocol). In this case, the whole received character (8-bit) is compared to the ADD[7:0] value and CMF flag is set on match. These bits can only be written when reception is disabled (RE = 0) or the LPUART is disabled (UE = 0) ### ADD[3:0]: These bits give the address of the LPUART node or a character code to be recognized. They are used for wakeup with address mark detection in multiprocessor communication during Mute mode or low-power mode. These bits can only be written when reception is disabled (RE = 0) or the LPUART is disabled (UE = 0) #### Bits 23:20 Reserved, must be kept at reset value. ## Bit 19 MSBFIRST: Most significant bit first This bit is set and cleared by software. 0: data is transmitted/received with data bit 0 first, following the start bit. 1: data is transmitted/received with the MSB (bit 7/8) first, following the start bit. This bitfield can only be written when the LPUART is disabled (UE = 0). ## Bit 18 DATAINV: Binary data inversion This bit is set and cleared by software. 0: Logical data from the data register are send/received in positive/direct logic. (1 = H, 0 = L) 1: Logical data from the data register are send/received in negative/inverse logic. (1 = L, 0 = H). The parity bit is also inverted. This bitfield can only be written when the LPUART is disabled (UE = 0). ## Bit 17 TXINV: TX pin active level inversion This bit is set and cleared by software. 0: TX pin signal works using the standard logic levels (V_{DD} = 1/idle, Gnd = 0/mark) 1: TX pin signal values are inverted ($V_{DD} = 0/\text{mark}$, Gnd = 1/idle). This enables the use of an external inverter on the TX line. This bitfield can only be written when the LPUART is disabled (UE = 0). ## Bit 16 RXINV: RX pin active level inversion This bit is set and cleared by software. 0: RX pin signal works using the standard logic levels (V_{DD} = 1/idle, Gnd = 0/mark) 1: RX pin signal values are inverted (V_{DD} = 0/mark, Gnd = 1/idle). This enables the use of an external inverter on the RX line. This bitfield can only be written when the LPUART is disabled
(UE = 0). ## Bit 15 SWAP: Swap TX/RX pins This bit is set and cleared by software. 0: TX/RX pins are used as defined in standard pinout 1: The TX and RX pins functions are swapped. This enables to work in the case of a cross-wired connection to another UART. This bitfield can only be written when the LPUART is disabled (UE = 0). ## Bit 14 Reserved, must be kept at reset value. RM0444 Rev 5 1121/1390 ## Bits 13:12 STOP[1:0]: STOP bits These bits are used for programming the stop bits. 00: 1 stop bit 01: Reserved. 10: 2 stop bits 11: Reserved This bitfield can only be written when the LPUART is disabled (UE = 0). ## Bits 11:5 Reserved, must be kept at reset value. ## Bit 4 ADDM7:7-bit Address Detection/4-bit Address Detection This bit is for selection between 4-bit address detection or 7-bit address detection. 0: 4-bit address detection 1: 7-bit address detection (in 8-bit data mode) This bit can only be written when the LPUART is disabled (UE = 0) Note: In 7-bit and 9-bit data modes, the address detection is done on 6-bit and 8-bit address (ADD[5:0] and ADD[7:0]) respectively. Bits 3:0 Reserved, must be kept at reset value. ## 34.7.4 LPUART control register 3 (LPUART_CR3) Address offset: 0x08 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-----|----------|------|------------|------|----------|------|------|--------|-------|------|--------|-------|------|------|------| | TX | (FTCFG[2 | 2:0] | RXFTIE | RX | (FTCFG[2 | 2:0] | Res. | TXFTIE | WUFIE | WUS | S[1:0] | Res. | Res. | Res. | Res. | | rw | rw | rw | rw | rw | rw | | | rw | rw | rw | rw | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | DEP | DEM | DDRE | OVRDI
S | Res. | CTSIE | CTSE | RTSE | DMAT | DMAR | Res. | Res. | HDSEL | Res. | Res. | EIE | | rw | rw | rw | rw | | rw | rw | rw | rw | rw | | | rw | | | rw | ## Bits 31:29 TXFTCFG[2:0]: TXFIFO threshold configuration 000:TXFIFO reaches 1/8 of its depth. 001:TXFIFO reaches 1/4 of its depth. 110:TXFIFO reaches 1/2 of its depth. 011:TXFIFO reaches 3/4 of its depth. 100:TXFIFO reaches 7/8 of its depth. 101:TXFIFO becomes empty. Remaining combinations: Reserved. ## Bit 28 RXFTIE: RXFIFO threshold interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An LPUART interrupt is generated when Receive FIFO reaches the threshold programmed in RXFTCFG. #### Bits 27:25 RXFTCFG[2:0]: Receive FIFO threshold configuration 000:Receive FIFO reaches 1/8 of its depth. 001:Receive FIFO reaches 1/4 of its depth. 110:Receive FIFO reaches 1/2 of its depth. 011:Receive FIFO reaches 3/4 of its depth. 100:Receive FIFO reaches 7/8 of its depth. 101:Receive FIFO becomes full. Remaining combinations: Reserved. ## Bit 24 Reserved, must be kept at reset value. ## Bit 23 TXFTIE: TXFIFO threshold interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A LPUART interrupt is generated when TXFIFO reaches the threshold programmed in TXFTCFG. ## Bit 22 WUFIE: Wakeup from low-power mode interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An LPUART interrupt is generated whenever WUF = 1 in the LPUART ISR register Note: WUFIE must be set before entering in low-power mode. If the LPUART does not support the wakeup from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation. ## Bits 21:20 WUS[1:0]: Wakeup from low-power mode interrupt flag selection This bitfield specifies the event which activates the WUF (Wakeup from low-power mode flag). 00: WUF active on address match (as defined by ADD[7:0] and ADDM7) 01:Reserved. 10: WUF active on Start bit detection 11: WUF active on RXNE. This bitfield can only be written when the LPUART is disabled (UE = 0). Note: If the LPUART does not support the wakeup from Stop feature, this bit is reserved and must be kept at reset value. Refer to Section 33.4: USART implementation. Bits 19:16 Reserved, must be kept at reset value. RM0444 Rev 5 1123/1390 #### Bit 15 **DEP**: Driver enable polarity selection - 0: DE signal is active high. - 1: DE signal is active low. This bit can only be written when the LPUART is disabled (UE = 0). #### Bit 14 **DEM**: Driver enable mode This bit enables the user to activate the external transceiver control, through the DE signal. - 0: DE function is disabled. - 1: DE function is enabled. The DE signal is output on the RTS pin. This bit can only be written when the LPUART is disabled (UE = 0). ## Bit 13 DDRE: DMA Disable on Reception Error 0: DMA is not disabled in case of reception error. The corresponding error flag is set but RXNE is kept 0 preventing from overrun. As a consequence, the DMA request is not asserted, so the erroneous data is not transferred (no DMA request), but next correct received data is transferred. 1: DMA is disabled following a reception error. The corresponding error flag is set, as well as RXNE. The DMA request is masked until the error flag is cleared. This means that the software must first disable the DMA request (DMAR = 0) or clear RXNE before clearing the error flag. This bit can only be written when the LPUART is disabled (UE = 0). Note: The reception errors are: parity error, framing error or noise error. #### Bit 12 OVRDIS: Overrun Disable This bit is used to disable the receive overrun detection. - 0: Overrun Error Flag, ORE is set when received data is not read before receiving new data. - 1: Overrun functionality is disabled. If new data is received while the RXNE flag is still set the ORE flag is not set and the new received data overwrites the previous content of the LPUART RDR register. This bit can only be written when the LPUART is disabled (UE = 0). Note: This control bit enables checking the communication flow w/o reading the data. - Bit 11 Reserved, must be kept at reset value. - Bit 10 CTSIE: CTS interrupt enable - 0: Interrupt is inhibited - 1: An interrupt is generated whenever CTSIF = 1 in the LPUART_ISR register #### Bit 9 CTSE: CTS enable - 0: CTS hardware flow control disabled - 1: CTS mode enabled, data is only transmitted when the nCTS input is asserted (tied to 0). If the nCTS input is deasserted while data is being transmitted, then the transmission is completed before stopping. If data is written into the data register while nCTS is asserted, the transmission is postponed until nCTS is asserted. This bit can only be written when the LPUART is disabled (UE = 0) ## Bit 8 RTSE: RTS enable - 0: RTS hardware flow control disabled - 1: RTS output enabled, data is only requested when there is space in the receive buffer. The transmission of data is expected to cease after the current character has been transmitted. The nRTS output is asserted (pulled to 0) when data can be received. This bit can only be written when the LPUART is disabled (UE = 0). ## Bit 7 DMAT: DMA enable transmitter This bit is set/reset by software - 1: DMA mode is enabled for transmission - 0: DMA mode is disabled for transmission Bit 6 DMAR: DMA enable receiver This bit is set/reset by software - 1: DMA mode is enabled for reception - 0: DMA mode is disabled for reception - Bits 5:4 Reserved, must be kept at reset value. - Bit 3 HDSEL: Half-duplex selection Selection of Single-wire Half-duplex mode - 0: Half duplex mode is not selected - 1: Half duplex mode is selected This bit can only be written when the LPUART is disabled (UE = 0). - Bits 2:1 Reserved, must be kept at reset value. - Bit 0 EIE: Error interrupt enable Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing error, overrun error or noise flag (FE = 1 or ORE = 1 or NE = 1 in the LPUART_ISR register). 0: Interrupt is inhibited 1: An interrupt is generated when FE = 1 or ORE = 1 or NE = 1 in the LPUART_ISR register. ## 34.7.5 LPUART baud rate register (LPUART_BRR) This register can only be written when the LPUART is disabled (UE = 0). It may be automatically updated by hardware in auto baud rate detection mode. Address offset: 0x0C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|--------|------|------|------|----|------|--------|----| | Res. | BRR[| 19:16] | _ | | | | | | | | | | | | | | rw | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | _ | | _ | | _ | BRR | [15:0] | | | | | _ | _ | _ | | rw Bits 31:20 Reserved, must be kept at reset value. Bits 19:0 BRR[19:0]: LPUART baud rate Note: It is forbidden to write values lower than 0x300 in the LPUART_BRR register. Provided that LPUART_BRR must be $\ge 0x300$ and LPUART_BRR is 20 bits, a care should be taken when generating high baud rates using high fck values. fck must be in the range [3 x baud rate..4096 x baud rate]. RM0444 Rev 5 1125/1390 ## 34.7.6 LPUART request register (LPUART_RQR) Address offset: 0x18 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|------|------------|-----------|------------|-----------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | | 3
RXFRQ | 2
MMRQ | 1
SBKRQ | 0
Res. | Bits 31:5 Reserved, must be kept at reset value. #### Bit 4 TXFRQ: Transmit data flush request This bit is used when FIFO mode is enabled. TXFRQ bit is set to flush the whole FIFO. This sets the flag TXFE (TXFIFO empty, bit 23 in the LPUART_ISR register). Note: In FIFO mode, the TXFNF flag is reset during the flush request until TxFIFO is empty in order to ensure
that no data are written in the data register. ## Bit 3 RXFRQ: Receive data flush request Writing 1 to this bit clears the RXNE flag. This enables discarding the received data without reading it, and avoid an overrun condition. #### Bit 2 MMRQ: Mute mode request Writing 1 to this bit puts the LPUART in Mute mode and resets the RWU flag. ## Bit 1 SBKRQ: Send break request Writing 1 to this bit sets the SBKF flag and request to send a BREAK on the line, as soon as the transmit machine is available. Note: If the application needs to send the break character following all previously inserted data, including the ones not yet transmitted, the software should wait for the TXE flag assertion before setting the SBKRQ bit. Bit 0 Reserved, must be kept at reset value. ## 34.7.7 LPUART interrupt and status register [alternate] (LPUART_ISR) Address offset: 0x1C Reset value: 0x0080 00C0 The same register can be used in FIFO mode enabled (this section) and FIFO mode disabled (next section). ## FIFO mode enabled | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|-------|------|-------|-------|-------|------|-----|------|-----|------| | Res. | Res. | Res. | Res. | TXFT | RXFT | Res. | RXFF | TXFE | REACK | TEACK | WUF | RWU | SBKF | CMF | BUSY | | | | | | r | r | | r | r | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | CTS | CTSIF | Res. | TXFNF | TC | RXFNE | IDLE | ORE | NE | FE | PE | | | | | | | r | r | | r | r | r | r | r | r | r | r | Bits 31:28 Reserved, must be kept at reset value. #### Bit 27 TXFT: TXFIFO threshold flag This bit is set by hardware when the TXFIFO reaches the threshold programmed in TXFTCFG in LPUART_CR3 register i.e. the TXFIFO contains TXFTCFG empty locations. An interrupt is generated if the TXFTIE bit = 1 (bit 31) in the LPUART CR3 register. 0: TXFIFO does not reach the programmed threshold. 1: TXFIFO reached the programmed threshold. #### Bit 26 RXFT: RXFIFO threshold flag This bit is set by hardware when the RXFIFO reaches the threshold programmed in RXFTCFG in LPUART_CR3 register i.e. the Receive FIFO contains RXFTCFG data. An interrupt is generated if the RXFTIE bit = 1 (bit 27) in the LPUART_CR3 register. 0: Receive FIFO does not reach the programmed threshold. 1: Receive FIFO reached the programmed threshold. Bit 25 Reserved, must be kept at reset value. ## Bit 24 RXFF: RXFIFO full This bit is set by hardware when the number of received data corresponds to RXFIFO size + 1 (RXFIFO full + 1 data in the LPUART RDR register. An interrupt is generated if the RXFFIE bit = 1 in the LPUART_CR1 register. 0: RXFIFO is not full 1: RXFIFO is full ## Bit 23 TXFE: TXFIFO empty This bit is set by hardware when TXFIFO is empty. When the TXFIFO contains at least one data, this flag is cleared. The TXFE flag can also be set by writing 1 to the bit TXFRQ (bit 4) in the LPUART RQR register. An interrupt is generated if the TXFEIE bit = 1 (bit 30) in the LPUART CR1 register. 0: TXFIFO is not empty 1: TXFIFO is empty ## Bit 22 **REACK**: Receive enable acknowledge flag This bit is set/reset by hardware, when the Receive Enable value is taken into account by the LPUART. It can be used to verify that the LPUART is ready for reception before entering low-power mode. Note: If the LPUART does not support the wakeup from Stop feature, this bit is reserved and kept at reset value. ## Bit 21 TEACK: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the LPUART. It can be used when an idle frame request is generated by writing TE = 0, followed by TE = 1 in the LPUART CR1 register, in order to respect the TE = 0 minimum period. ## Bit 20 WUF: Wakeup from low-power mode flag This bit is set by hardware, when a wakeup event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the LPUART_ICR register. An interrupt is generated if WUFIE = 1 in the LPUART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. If the LPUART does not support the wakeup from Stop feature, this bit is reserved and kept at reset value RM0444 Rev 5 1127/1390 #### Bit 19 RWU: Receiver wakeup from Mute mode This bit indicates if the LPUART is in Mute mode. It is cleared/set by hardware when a wakeup/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the LPUART_CR1 register. When wakeup on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the LPUART RQR register. - 0: Receiver in Active mode - 1: Receiver in Mute mode Note: If the LPUART does not support the wakeup from Stop feature, this bit is reserved and kept at reset value. ## Bit 18 SBKF: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the LPUART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission. - 0: Break character transmitted - 1: Break character requested by setting SBKRQ bit in LPUART RQR register ## Bit 17 CMF: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the LPUART_ICR register. An interrupt is generated if CMIE = 1in the LPUART CR1 register. - 0: No Character match detected - 1: Character Match detected ## Bit 16 BUSY: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not). - 0: LPUART is idle (no reception) - 1: Reception on going ## Bits 15:11 Reserved, must be kept at reset value. #### Bit 10 CTS: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the nCTS input pin. - 0: nCTS line set - 1: nCTS line reset Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value. ## Bit 9 CTSIF: CTS interrupt flag This bit is set by hardware when the nCTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the LPUART_ICR register. An interrupt is generated if CTSIE = 1 in the LPUART_CR3 register. - 0: No change occurred on the nCTS status line - 1: A change occurred on the nCTS status line Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value. Bit 8 Reserved, must be kept at reset value. #### Bit 7 TXFNF: TXFIFO not full TXFNF is set by hardware when TXFIFO is not full, and so data can be written in the LPUART_TDR. Every write in the LPUART_TDR places the data in the TXFIFO. This flag remains set until the TXFIFO is full. When the TXFIFO is full, this flag is cleared indicating that data can not be written into the LPUART_TDR. The TXFNF is kept reset during the flush request until TXFIFO is empty. After sending the flush request (by setting TXFRQ bit), the flag TXFNF should be checked prior to writing in TXFIFO (TXFNF and TXFE are set at the same time). An interrupt is generated if the TXFNFIE bit = 1 in the LPUART CR1 register. 0: Data register is full/Transmit FIFO is full. 1: Data register/Transmit FIFO is not full. Note: This bit is used during single buffer transmission. ## Bit 6 TC: Transmission complete This bit is set by hardware if the transmission of a frame containing data is complete and if TXFF is set. An interrupt is generated if TCIE = 1 in the LPUART_CR1 register. It is cleared by software, writing 1 to the TCCF in the LPUART_ICR register or by a write to the LPUART_TDR register. An interrupt is generated if TCIE = 1 in the LPUART CR1 register. 0: Transmission is not complete 1: Transmission is complete Note: If TE bit is reset and no transmission is on going, the TC bit is set immediately. #### Bit 5 RXFNE: RXFIFO not empty RXFNE bit is set by hardware when the RXFIFO is not empty, and so data can be read from the LPUART_RDR register. Every read of the LPUART_RDR frees a location in the RXFIFO. It is cleared when the RXFIFO is empty. The RXFNE flag can also be cleared by writing 1 to the RXFRQ in the LPUART_RQR register. An interrupt is generated if RXFNEIE = 1 in the LPUART_CR1 register. 0: Data is not received 1: Received data is ready to be read. ## Bit 4 IDLE: Idle line detected This bit is set by hardware when an Idle line is detected. An interrupt is generated if IDLEIE = 1 in the LPUART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the LPUART_ICR register. 0: No Idle line is detected 1: Idle line is detected Note: The IDLE bit is not set again until the RXFNE bit has been set (i.e. a new idle line occurs). If Mute mode is enabled (MME = 1), IDLE is set if the LPUART is not mute (RWU = 0), whatever the Mute mode selected by the WAKE bit. If RWU = 1, IDLE is not set. RM0444 Rev 5 1129/1390 #### Bit 3 ORE: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the LPUART RDR register while RXFF = 1. It is cleared by a software, writing 1 to the ORECF, in the LPUART ICR register. An interrupt is generated if RXFNEIE = 1 or EIE = 1 in the LPUART CR1 register. 0: No overrun error 1: Overrun error is detected Note: When this bit is set, the LPUART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the LPUART_CR3 register. #### Bit 2 **NE**: Start bit noise detection flag This bit is set by hardware when noise is detected on the start bit of a received frame. It is cleared by software, writing 1 to the NECF bit in the
LPUART ICR register. 0: No noise is detected 1: Noise is detected Note: This bit does not generate an interrupt as it appears at the same time as the RXFNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. This error is associated with the character in the LPUART RDR. #### Bit 1 FE: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the LPUART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE = 1 in the LPUART_CR1 register. 0: No Framing error is detected 1: Framing error or break character is detected Note: This error is associated with the character in the LPUART_RDR. ## Bit 0 PE: Parity error This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by software, writing 1 to the PECF in the LPUART ICR register. An interrupt is generated if PEIE = 1 in the LPUART CR1 register. 0: No parity error 1: Parity error Note: This error is associated with the character in the LPUART RDR. # 34.7.8 LPUART interrupt and status register [alternate] (LPUART_ISR) Address offset: 0x1C Reset value: 0x0000 00C0 The same register can be used in FIFO mode enabled (previous section) and FIFO mode disabled (this section). #### FIFO mode disabled | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|-----------|------------|-----------|----------|---------|-----------|-----------|----------|---------|---------|---------| | Res. REACK | TEACK | WUF | RWU | SBKF | CMF | BUSY | | | | | | | | | | | r | r | r | r | r | r | r | | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
CTS | 9
CTSIF | 8
Res. | 7
TXE | 6
TC | 5
RXNE | 4
IDLE | 3
ORE | 2
NE | 1
FE | 0
PE | Bits 31:23 Reserved, must be kept at reset value. #### Bit 22 REACK: Receive enable acknowledge flag This bit is set/reset by hardware when the Receive Enable value is taken into account by the LPUART. It can be used to verify that the LPUART is ready for reception before entering low-power mode. Note: If the LPUART does not support the wakeup from Stop feature, this bit is reserved and kept at reset value. #### Bit 21 **TEACK**: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the LPUART. It can be used when an idle frame request is generated by writing TE = 0, followed by TE = 1 in the LPUART_CR1 register, in order to respect the TE = 0 minimum period. #### Bit 20 WUF: Wakeup from low-power mode flag This bit is set by hardware, when a wakeup event is detected. The event is defined by the WUS bitfield. It is cleared by software, writing a 1 to the WUCF in the LPUART_ICR register. An interrupt is generated if WUFIE = 1 in the LPUART_CR3 register. Note: When UESM is cleared, WUF flag is also cleared. If the LPUART does not support the wakeup from Stop feature, this bit is reserved and kept at reset value ## Bit 19 RWU: Receiver wakeup from Mute mode This bit indicates if the LPUART is in Mute mode. It is cleared/set by hardware when a wakeup/mute sequence is recognized. The Mute mode control sequence (address or IDLE) is selected by the WAKE bit in the LPUART_CR1 register. When wakeup on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the LPUART_RQR register. - 0: Receiver in active mode - 1: Receiver in Mute mode Note: If the LPUART does not support the wakeup from Stop feature, this bit is reserved and kept at reset value. RM0444 Rev 5 1131/1390 #### Bit 18 SBKF: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the LPUART_CR3 register. It is automatically reset by hardware during the stop bit of break transmission. - 0: Break character transmitted - 1: Break character requested by setting SBKRQ bit in LPUART RQR register #### Bit 17 CMF: Character match flag This bit is set by hardware, when a the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the LPUART_ICR register. An interrupt is generated if CMIE = 1in the LPUART CR1 register. - 0: No Character match detected - 1: Character Match detected #### Bit 16 BUSY: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or - 0: LPUART is idle (no reception) - 1: Reception on going ## Bits 15:11 Reserved, must be kept at reset value. #### Bit 10 CTS: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the nCTS input pin. 0: nCTS line set 1: nCTS line reset Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value. ## Bit 9 CTSIF: CTS interrupt flag This bit is set by hardware when the nCTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the LPUART_ICR register. An interrupt is generated if CTSIE = 1 in the LPUART_CR3 register. - 0: No change occurred on the nCTS status line - 1: A change occurred on the nCTS status line Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value. Bit 8 Reserved, must be kept at reset value. #### Bit 7 TXE: Transmit data register empty/TXFIFO not full TXE is set by hardware when the content of the LPUART TDR register has been transferred into the shift register. It is cleared by a write to the LPUART_TDR register. An interrupt is generated if the TXEIE bit =1 in the LPUART_CR1 register. - 0: Data register full - 1: Data register not full Note: This bit is used during single buffer transmission. #### Bit 6 TC: Transmission complete This bit is set by hardware if the transmission of a frame containing data is complete and if TXE is set. An interrupt is generated if TCIE = 1 in the LPUART_CR1 register. It is cleared by software, writing 1 to the TCCF in the LPUART_ICR register or by a write to the LPUART_TDR register. An interrupt is generated if TCIE = 1 in the LPUART CR1 register. - 0: Transmission is not complete - 1: Transmission is complete Note: If TE bit is reset and no transmission is on going, the TC bit is immediately set. ## Bit 5 RXNE: Read data register not empty RXNE bit is set by hardware when the content of the LPUART_RDR shift register has been transferred to the LPUART_RDR register. It is cleared by reading from the LPUART_RDR register. The RXNE flag can also be cleared by writing 1 to the RXFRQ in the LPUART_RQR register. An interrupt is generated if RXNEIE = 1 in the LPUART_CR1 register. - 0: Data is not received - 1: Received data is ready to be read. #### Bit 4 IDLE: Idle line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if IDLEIE = 1 in the LPUART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the LPUART_ICR register. - 0: No Idle line is detected - 1: Idle line is detected Note: The IDLE bit is not set again until the RXNE bit has been set (i.e. a new idle line occurs). If Mute mode is enabled (MME = 1), IDLE is set if the LPUART is not mute (RWU = 0), whatever the Mute mode selected by the WAKE bit. If RWU = 1, IDLE is not set. #### Bit 3 ORE: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the LPUART_RDR register while RXNE = 1. It is cleared by a software, writing 1 to the ORECF, in the LPUART_ICR register. An interrupt is generated if RXNEIE = 1 or EIE = 1 in the LPUART_CR1 register. - 0: No overrun error - 1: Overrun error is detected Note: When this bit is set, the LPUART_RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multi buffer communication if the EIE bit is set. This bit is permanently forced to 0 (no overrun detection) when the bit OVRDIS is set in the LPUART_CR3 register. RM0444 Rev 5 1133/1390 #### Bit 2 **NE**: Start bit noise detection flag This bit is set by hardware when noise is detected on the start bit of a received frame. It is cleared by software, writing 1 to the NECF bit in the LPUART ICR register. 0: No noise is detected 1: Noise is detected Note: This bit does not generate an interrupt as it appears at the same time as the RXNE bit which itself generates an interrupt. An interrupt is generated when the NE flag is set during multi buffer communication if the EIE bit is set. #### Bit 1 FE: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the LPUART_ICR register. When transmitting data in Smartcard mode, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE = 1 in the LPUART_CR1 register. 0: No Framing error is detected 1: Framing error or break character is detected ## Bit 0 PE: Parity error This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by software, writing 1 to the PECF in the LPUART ICR register. An interrupt is generated if PEIE = 1 in the LPUART_CR1 register. 0: No parity error1: Parity error ## 34.7.9 LPUART interrupt flag clear register (LPUART_ICR) Address offset: 0x20 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 |
21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|-------|------|------|------|------|--------|-------|------|------|------| | Res. WUCF | Res. | Res. | CMCF | Res. | | | | | | | | | | | | | w | | | w | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | Res. | CTSCF | Res. | Res. | TCCF | Res. | IDLECF | ORECF | NECF | FECF | PECF | | | | | | | | w | | | W | | w | W | W | W | w | Bits 31:21 Reserved, must be kept at reset value. ## Bit 20 WUCF: Wakeup from low-power mode clear flag Writing 1 to this bit clears the WUF flag in the LPUART_ISR register. Note: If the LPUART does not support the wakeup from Stop feature, this bit is reserved and kept at reset value. Refer to Section 33.4: USART implementation. Bits 19:18 Reserved, must be kept at reset value. #### Bit 17 CMCF: Character match clear flag Writing 1 to this bit clears the CMF flag in the LPUART ISR register. Bits 16:10 Reserved, must be kept at reset value. ## Bit 9 CTSCF: CTS clear flag Writing 1 to this bit clears the CTSIF flag in the LPUART_ISR register. Bits 8:7 Reserved, must be kept at reset value. Bit 6 TCCF: Transmission complete clear flag Writing 1 to this bit clears the TC flag in the LPUART_ISR register. Bit 5 Reserved, must be kept at reset value. Bit 4 IDLECF: Idle line detected clear flag Writing 1 to this bit clears the IDLE flag in the LPUART_ISR register. Bit 3 **ORECF**: Overrun error clear flag Writing 1 to this bit clears the ORE flag in the LPUART_ISR register. Bit 2 NECF: Noise detected clear flag Writing 1 to this bit clears the NE flag in the LPUART_ISR register. Bit 1 FECF: Framing error clear flag Writing 1 to this bit clears the FE flag in the LPUART ISR register. Bit 0 PECF: Parity error clear flag Writing 1 to this bit clears the PE flag in the LPUART ISR register. ## 34.7.10 LPUART receive data register (LPUART_RDR) Address offset: 0x24 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|----------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | | RDR[8:0] | Bits 31:9 Reserved, must be kept at reset value. Bits 8:0 RDR[8:0]: Receive data value Contains the received data character. The RDR register provides the parallel interface between the input shift register and the internal bus (see *Figure 341*). When receiving with the parity enabled, the value read in the MSB bit is the received parity bit. # 34.7.11 LPUART transmit data register (LPUART_TDR) Address offset: 0x28 Reset value: 0x0000 0000 | Res. rw | rw | rw | rw | TDR[8:0] | l
I rw | rw | rw | rw | |------|------|------|------|------|------|------|------|------|------|------|----------|-----------|------|------|------| | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | RM0444 Rev 5 1135/1390 Bits 31:9 Reserved, must be kept at reset value. Bits 8:0 TDR[8:0]: Transmit data value Contains the data character to be transmitted. The TDR register provides the parallel interface between the internal bus and the output shift register (see Figure 341). When transmitting with the parity enabled (PCE bit set to 1 in the LPUART CR1 register), the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because it is replaced by the parity. Note: This register must be written only when TXE/TXFNF = 1. #### 34.7.12 LPUART prescaler register (LPUART PRESC) This register can only be written when the LPUART is disabled (UE = 0). Address offset: 0x2C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|--------|----------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | PRESCA | LER[3:0] | | | | | | | | | | | | | | | rw | rw | rw | rw | Bits 31:4 Reserved, must be kept at reset value. ## Bits 3:0 PRESCALER[3:0]: Clock prescaler The LPUART input clock can be divided by a prescaler: 0000: input clock not divided 0001: input clock divided by 2 0010: input clock divided by 4 0011: input clock divided by 6 0100: input clock divided by 8 0101: input clock divided by 10 0110: input clock divided by 12 0111: input clock divided by 16 1000: input clock divided by 32 1001: input clock divided by 64 1010: input clock divided by 128 1011: input clock divided by 256 Remaining combinations: Reserved. Note: When PRESCALER is programmed with a value different of the allowed ones, programmed prescaler value is 1011 i.e. input clock divided by 256. RM0444 Rev 5 1136/1390 # 34.7.13 LPUART register map The table below gives the LPUART register map and reset values. Table 196. LPUART register map and reset values | | T | | | | | | | | | | | | | | _ | _ | þζ | | | | | | _ | | | | | | | | | _ | | |---------------|-------------------------------------|--------|--------------|--------|--------|-------|--------------|------|------|--------|-------|---------|-----------|----------|---------|-------|-------|------|------|------|--------|------|-------|-------|------|---------|------|---------|--------|-------|------|-------|------| | Offset | Register
name | 31 | 30 | 53 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 41 | 13 | 12 | 1 | 10 | 6 | 80 | 7 | 9 | 2 | 4 | 3 | 2 | - | 0 | | 0x00 | LPUART_CR1
FIFO mode
enabled | RXFFIE | TXFEIE | FIFOEN | M1 | Res. | Res. | | DE | AT[| 4:0] | | | DE | DT[| 4:0] | | Res. | CMIE | MME | MO | WAKE | PCE | PS | PEIE | TXFNFIE | TCIE | RXFNEIE | IDLEIE | TE | RE | UESM | UE | | | Reset value | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x00 | LPUART_CR1
FIFO mode
disabled | Res. | Res. | FIFOEN | M1 | Res. | Res. | | DE | AT[| 4:0] | | | DE | DT[| 4:0] | | Res. | CMIE | MME | 0W | WAKE | PCE | PS | PEIE | TXEIE | TCIE | RXNEIE | IDLEIE | ΞL | BE | n | NE | | | Reset value | | | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x04 | LPUART_CR2 | | | , | ADD |)[7:C |)] | | | Res. | Res. | Res. | Res. | MSBFIRST | DATAINV | 1XINV | RXINV | SWAP | Res. | ST(| | Res. ADDM7 | Res. | Res. | Res. | Res. | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | | | | | | | 0 | | | | | | 0x08 | LPUART_CR3 | | TXFTCFG[2:0] | | RXFTIE | | RXFTCFG[2:0] | | Res. | TXFTIE | WUFIE | W
[1 | US
:0] | Res. | Res. | Res. | Res. | DEP | DEM | DDRE | OVRDIS | Res. | CTSIE | CTSE | RTSE | DMAT | DMAR | Res. | Res. | HDSEL | Res. | Res. | EIE | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | | 0 | | | 0 | | 0x0C | LPUART_BRR | Res. | | | | | l | | | В | RR | [19:0 | 0] | | | | | | | l | | | | Reset value | | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x10-
0x14 | | | | | | | | | | | | | | R | Rese | erve | d | | | | | | | | | | | | | | | | | | 0x18 | LPUART_RQR | Res. | | | SBKRQ | Res. | | | Reset value | 0 | 0 | 0 | 0 | | | 0x1C | LPUART_ISR
FIFO mode
enabled | Res. | Res. | Res. | Res. | TXFT | RXFT | Res. | RXFF | TXFF | REACK | TEACK | WUF | RWU | SBKF | CMF | BUSY | Res. | Res. | Res. | Res. | Res. | CTS | CTSIF | Res. | TXFNF | TC | RXFNE | IDLE | BAO | ∃N | FE | ЬE | | | Reset value | | | | | 0 | 0 | | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 0 | 0 | | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x1C | LPUART_ISR
FIFO mode
disabled | Res. REACK | TEACK | | | SBKF | CMF | BUSY | Res. | Res. | Res. | Res. | Res. | CTS | CTSIF | Res. | TXE | TC | RXNE | IDLE |) | NE | 밆 | PE | | | Reset value | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | 0 | 0 | | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x20 | LPUART_ICR | Res. WUCF | Res. | Res. | CMCF | Res. CTSCF | Res. | Res. | TCCF | Res. | IDLECF | ORECF | NECF | FECF | PECF | | 1 | Reset value | | | | | | | | | | | | 0 | | | 0 | | | | | | | | 0 | | | 0 | | 0 | 0 | 0 | 0 | 0 | | 0x24 | LPUART_RDR | Res. | • | • | RI | DR[8 | 3:0] | | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x28 | LPUART_TDR | Res. | • | | TI | DR[8 | 3:0] | | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 1 | 1 | 1 | 1 | 1 | | | 1 | | | 1 | 1 | | | | | | | | | | | | | 1 | 1 | 1 | 1 | 1 | | | | | RM0444 Rev 5 1137/1390 Table 196. LPUART register map and reset values (continued) | Offset | Register
name | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 2 | 1 | 0 | |--------|------------------|---|----------------|---|---| | 0x2C | LPUART_
PRESC | Res. | PRESCALER[3:0] | | | | | Reset value | 0 | 0 | 0 | 0 | Refer to Section 2.2: Memory organization for the register boundary addresses. # 35 Serial peripheral interface / integrated interchip sound (SPI/I2S) ## 35.1 Introduction The SPI/I²S interface can be used to communicate with external devices using the SPI protocol or the I²S audio protocol. SPI or I²S mode is selectable by software. SPI Motorola mode is selected by default after a
device reset. The serial peripheral interface (SPI) protocol supports half-duplex, full-duplex and simplex synchronous, serial communication with external devices. The interface can be configured as master and in this case it provides the communication clock (SCK) to the external slave device. The interface is also capable of operating in multimaster configuration. The integrated interchip sound (I²S) protocol is also a synchronous serial communication interface. It can operate in slave or master mode with half-duplex communication. It can address four different audio standards including the Philips I²S standard, the MSB- and LSB-justified standards and the PCM standard. ## 35.2 SPI main features - Master or slave operation - Full-duplex synchronous transfers on three lines - Half-duplex synchronous transfer on two lines (with bidirectional data line) - Simplex synchronous transfers on two lines (with unidirectional data line) - 4 to 16-bit data size selection - Multimaster mode capability - 8 master mode baud rate prescalers up to f_{PCLK}/2 - Slave mode frequency up to f_{PCLK}/2. - NSS management by hardware or software for both master and slave: dynamic change of master/slave operations - Programmable clock polarity and phase - Programmable data order with MSB-first or LSB-first shifting - Dedicated transmission and reception flags with interrupt capability - SPI bus busy status flag - SPI Motorola support - Hardware CRC feature for reliable communication: - CRC value can be transmitted as last byte in Tx mode - Automatic CRC error checking for last received byte - Master mode fault, overrun flags with interrupt capability - CRC Error flag - Two 32-bit embedded Rx and Tx FIFOs with DMA capability - Enhanced TI and NSS pulse modes support #### 35.3 **I2S** main features - Half-duplex communication (only transmitter or receiver) - Master or slave operations - 8-bit programmable linear prescaler to reach accurate audio sample frequencies (from 8 kHz to 192 kHz) - Data format may be 16-bit, 24-bit or 32-bit - Packet frame is fixed to 16-bit (16-bit data frame) or 32-bit (16-bit, 24-bit, 32-bit data frame) by audio channel - Programmable clock polarity (steady state) - Underrun flag in slave transmission mode, overrun flag in reception mode (master and slave) and Frame Error Flag in reception and transmitter mode (slave only) - 16-bit register for transmission and reception with one data register for both channel - Supported I²S protocols: - I²S Philips standard - MSB-justified standard (left-justified) - LSB-justified standard (right-justified) - PCM standard (with short and long frame synchronization on 16-bit channel frame or 16-bit data frame extended to 32-bit channel frame) - Data direction is always MSB first - DMA capability for transmission and reception (16-bit wide) - Master clock can be output to drive an external audio component. Ratio is fixed at $256 \times F_S$ (where F_S is the audio sampling frequency) #### 35.4 **SPI/I2S** implementation The following table describes all the SPI instances and their features embedded in the devices. Table 197. STM32G0x1 SPI and SPI/I2S implementation | SPI Features | SPI1 / I2S1 | SPI2 / I2S2 ⁽¹⁾ | SPI3 ⁽¹⁾ | |--|------------------|----------------------------|---------------------| | Enhanced NSSP & TI modes | Yes | Yes | Yes | | I2S support | Yes | Yes ⁽¹⁾ / No | No | | Hardware CRC calculation | Yes | Yes | Yes | | Data size configuration | from 4 to 16-bit | from 4 to 16-bit | from 4 to 16-bit | | Rx/Tx FIFO size | 32-bit | 32-bit | 32-bit | | Wakeup capability from Low-power Sleep | Yes | Yes | Yes | ^{1.} Applies to STM32G0B1xx and STM32G0C1xx only. # 35.5 SPI functional description ## 35.5.1 General description The SPI allows synchronous, serial communication between the MCU and external devices. Application software can manage the communication by polling the status flag or using dedicated SPI interrupt. The main elements of SPI and their interactions are shown in the following block diagram *Figure 355*. Figure 355. SPI block diagram Four I/O pins are dedicated to SPI communication with external devices. - **MISO:** Master In / Slave Out data. In the general case, this pin is used to transmit data in slave mode and receive data in master mode. - **MOSI:** Master Out / Slave In data. In the general case, this pin is used to transmit data in master mode and receive data in slave mode. - SCK: Serial Clock output pin for SPI masters and input pin for SPI slaves. - **NSS:** Slave select pin. Depending on the SPI and NSS settings, this pin can be used to either: - select an individual slave device for communication - synchronize the data frame or - detect a conflict between multiple masters See Section 35.5.5: Slave select (NSS) pin management for details. The SPI bus allows the communication between one master device and one or more slave devices. The bus consists of at least two wires - one for the clock signal and the other for synchronous data transfer. Other signals can be added depending on the data exchange between SPI nodes and their slave select signal management. RM0444 Rev 5 1141/1390 #### 35.5.2 Communications between one master and one slave The SPI allows the MCU to communicate using different configurations, depending on the device targeted and the application requirements. These configurations use 2 or 3 wires (with software NSS management) or 3 or 4 wires (with hardware NSS management). Communication is always initiated by the master. ## **Full-duplex communication** By default, the SPI is configured for full-duplex communication. In this configuration, the shift registers of the master and slave are linked using two unidirectional lines between the MOSI and the MISO pins. During SPI communication, data is shifted synchronously on the SCK clock edges provided by the master. The master transmits the data to be sent to the slave via the MOSI line and receives data from the slave via the MISO line. When the data frame transfer is complete (all the bits are shifted) the information between the master and slave is exchanged. Figure 356. Full-duplex single master/ single slave application The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and slave. For more details see Section 35.5.5: Slave select (NSS) pin management. ## Half-duplex communication The SPI can communicate in half-duplex mode by setting the BIDIMODE bit in the SPIx CR1 register. In this configuration, one single cross connection line is used to link the shift registers of the master and slave together. During this communication, the data is synchronously shifted between the shift registers on the SCK clock edge in the transfer direction selected reciprocally by both master and slave with the BDIOE bit in their SPIx CR1 registers. In this configuration, the master's MISO pin and the slave's MOSI pin are free for other application uses and act as GPIOs. Figure 357. Half-duplex single master/ single slave application - The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and slave. For more details see Section 35.5.5: Slave select (NSS) pin management. - 2. In this configuration, the master's MISO pin and the slave's MOSI pin can be used as GPIOs. - 3. A critical situation can happen when communication direction is changed not synchronously between two nodes working at bidirectionnal mode and new transmitter accesses the common data line while former transmitter still keeps an opposite value on the line (the value depends on SPI configuration and communication data). Both nodes then fight while providing opposite output levels on the common line temporary till next node changes its direction settings correspondingly, too. It is suggested to insert a serial resistance between MISO and MOSI pins at this mode to protect the outputs and limit the current blowing between them at this situation. ## Simplex communications The SPI can communicate in simplex mode by setting the SPI in transmit-only or in receive-only using the RXONLY bit in the SPIx_CR2 register. In this configuration, only one line is used for the transfer between the shift registers of the master and slave. The remaining MISO and MOSI pins pair is not used for communication and can be used as standard GPIOs. - Transmit-only mode (RXONLY=0): The configuration settings are the same as for full-duplex. The application has to ignore the information captured on the unused input pin. This pin can be used as a standard GPIO. - Receive-only mode (RXONLY=1): The application can disable the SPI output function by setting the RXONLY bit. In slave configuration, the MISO output is disabled and the pin can be used as a GPIO. The slave continues to receive data from the MOSI pin while its slave select signal is active (see 35.5.5: Slave select (NSS) pin management). Received data events appear depending on the data buffer configuration. In the master configuration, the MOSI output is disabled and the pin can be used as a GPIO. The clock signal is generated continuously as long as the SPI is enabled. The only way to stop the clock is to clear the RXONLY bit or the SPE bit and wait until the incoming pattern from the MISO pin is finished and fills the data buffer structure, depending on its configuration. RM0444 Rev 5 1143/1390 Figure 358. Simplex single master/single slave application (master in transmit-only/slave in receive-only mode) - The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and slave. For more details see Section 35.5.5: Slave select
(NSS) pin management. - An accidental input information is captured at the input of transmitter Rx shift register. All the events associated with the transmitter receive flow must be ignored in standard transmit only mode (e.g. OVF flag). - 3. In this configuration, both the MISO pins can be used as GPIOs. Note: Any simplex communication can be alternatively replaced by a variant of the half-duplex communication with a constant setting of the transaction direction (bidirectional mode is enabled while BDIO bit is not changed). ## 35.5.3 Standard multi-slave communication In a configuration with two or more independent slaves, the master uses GPIO pins to manage the chip select lines for each slave (see *Figure 359*.). The master must select one of the slaves individually by pulling low the GPIO connected to the slave NSS input. When this is done, a standard master and dedicated slave communication is established. Ty/ Figure 359. Master and three independent slaves - NSS pin is not used on master side at this configuration. It has to be managed internally (SSM=1, SSI=1) to prevent any MODF error. - As MISO pins of the slaves are connected together, all slaves must have the GPIO configuration of their MISO pin set as alternate function open-drain (see I/O alternate function input/output section (GPIO)). ## 35.5.4 Multi-master communication Unless SPI bus is not designed for a multi-master capability primarily, the user can use build in feature which detects a potential conflict between two nodes trying to master the bus at the same time. For this detection, NSS pin is used configured at hardware input mode. The connection of more than two SPI nodes working at this mode is impossible as only one node can apply its output on a common data line at time. When nodes are non active, both stay at slave mode by default. Once one node wants to overtake control on the bus, it switches itself into master mode and applies active level on the slave select input of the other node via dedicated GPIO pin. After the session is completed, the active slave select signal is released and the node mastering the bus temporary returns back to passive slave mode waiting for next session start. RM0444 Rev 5 1145/1390 If potentially both nodes raised their mastering request at the same time a bus conflict event appears (see mode fault MODF event). Then the user can apply some simple arbitration process (e.g. to postpone next attempt by predefined different time-outs applied at both nodes). Figure 360. Multi-master application The NSS pin is configured at hardware input mode at both nodes. Its active level enables the MISO line output control as the passive node is configured as a slave. ## 35.5.5 Slave select (NSS) pin management In slave mode, the NSS works as a standard "chip select" input and lets the slave communicate with the master. In master mode, NSS can be used either as output or input. As an input it can prevent multimaster bus collision, and as an output it can drive a slave select signal of a single slave. Hardware or software slave select management can be set using the SSM bit in the SPIx CR1 register: - **Software NSS management (SSM = 1)**: in this configuration, slave select information is driven internally by the SSI bit value in register SPIx_CR1. The external NSS pin is free for other application uses. - Hardware NSS management (SSM = 0): in this case, there are two possible configurations. The configuration used depends on the NSS output configuration (SSOE bit in register SPIx_CR1). - NSS output enable (SSM=0,SSOE = 1): this configuration is only used when the MCU is set as master. The NSS pin is managed by the hardware. The NSS signal is driven low as soon as the SPI is enabled in master mode (SPE=1), and is kept low until the SPI is disabled (SPE =0). A pulse can be generated between continuous communications if NSS pulse mode is activated (NSSP=1). The SPI cannot work in multimaster configuration with this NSS setting. - NSS output disable (SSM=0, SSOE = 0): if the microcontroller is acting as the master on the bus, this configuration allows multimaster capability. If the NSS pin is pulled low in this mode, the SPI enters master mode fault state and the device is automatically reconfigured in slave mode. In slave mode, the NSS pin works as a standard "chip select" input and the slave is selected while NSS line is at low level. Figure 361. Hardware/software slave select management ## 35.5.6 Communication formats During SPI communication, receive and transmit operations are performed simultaneously. The serial clock (SCK) synchronizes the shifting and sampling of the information on the data lines. The communication format depends on the clock phase, the clock polarity and the data frame format. To be able to communicate together, the master and slaves devices must follow the same communication format. ## Clock phase and polarity controls Four possible timing relationships may be chosen by software, using the CPOL and CPHA bits in the SPIx_CR1 register. The CPOL (clock polarity) bit controls the idle state value of the clock when no data is being transferred. This bit affects both master and slave modes. If CPOL is reset, the SCK pin has a low-level idle state. If CPOL is set, the SCK pin has a high-level idle state. If the CPHA bit is set, the second edge on the SCK pin captures the first data bit transacted (falling edge if the CPOL bit is reset, rising edge if the CPOL bit is set). Data are latched on each occurrence of this clock transition type. If the CPHA bit is reset, the first edge on the SCK pin captures the first data bit transacted (falling edge if the CPOL bit is set, rising edge if the CPOL bit is reset). Data are latched on each occurrence of this clock transition type. The combination of CPOL (clock polarity) and CPHA (clock phase) bits selects the data capture clock edge. Figure 362, shows an SPI full-duplex transfer with the four combinations of the CPHA and CPOL bits. Note: Prior to changing the CPOL/CPHA bits the SPI must be disabled by resetting the SPE bit. The idle state of SCK must correspond to the polarity selected in the SPIx_CR1 register (by pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0). Figure 362. Data clock timing diagram 1. The order of data bits depends on LSBFIRST bit setting. ## **Data frame format** The SPI shift register can be set up to shift out MSB-first or LSB-first, depending on the value of the LSBFIRST bit. The data frame size is chosen by using the DS bits. It can be set from 4-bit up to 16-bit length and the setting applies for both transmission and reception. Whatever the selected data frame size, read access to the FIFO must be aligned with the FRXTH level. When the SPIx_DR register is accessed, data frames are always right-aligned into either a byte (if the data fits into a byte) or a half-word (see *Figure 363*). During communication, only bits within the data frame are clocked and transferred. DS <= 8 bits: data is right-aligned on byte DS > 8 bits: data is right-aligned on 16 bit Example: DS = 5 bit Example: DS = 14 bit 14 13 XXX Data frame XX Data frame ΤX TX 5 4 15 14 13 000 Data frame RX 00 Data frame RX MS19589V2 Figure 363. Data alignment when data length is not equal to 8-bit or 16-bit Note: The minimum data length is 4 bits. If a data length of less than 4 bits is selected, it is forced to an 8-bit data frame size. ## 35.5.7 Configuration of SPI The configuration procedure is almost the same for master and slave. For specific mode setups, follow the dedicated sections. When a standard communication is to be initialized, perform these steps: - 1. Write proper GPIO registers: Configure GPIO for MOSI, MISO and SCK pins. - 2. Write to the SPI CR1 register: - a) Configure the serial clock baud rate using the BR[2:0] bits (Note: 4). - b) Configure the CPOL and CPHA bits combination to define one of the four relationships between the data transfer and the serial clock (CPHA must be cleared in NSSP mode). (Note: 2 - except the case when CRC is enabled at TI mode). - c) Select simplex or half-duplex mode by configuring RXONLY or BIDIMODE and BIDIOE (RXONLY and BIDIMODE can't be set at the same time). - d) Configure the LSBFIRST bit to define the frame format (Note: 2). - e) Configure the CRCL and CRCEN bits if CRC is needed (while SCK clock signal is at idle state). - f) Configure SSM and SSI (Notes: 2 & 3). - g) Configure the MSTR bit (in multimaster NSS configuration, avoid conflict state on NSS if master is configured to prevent MODF error). - 3. Write to SPI CR2 register: - a) Configure the DS[3:0] bits to select the data length for the transfer. - b) Configure SSOE (Notes: 1 & 2 & 3). - c) Set the FRF bit if the TI protocol is required (keep NSSP bit cleared in TI mode). - d) Set the NSSP bit if the NSS pulse mode between two data units is required (keep CHPA and TI bits cleared in NSSP mode). - e) Configure the FRXTH bit. The RXFIFO threshold must be aligned to the read access size for the SPIx_DR register. - f) Initialize LDMA TX and LDMA RX bits if DMA is used in packed mode. - 4. Write to SPI_CRCPR register: Configure the CRC polynomial if needed. - 5. Write proper DMA registers: Configure DMA streams dedicated for SPI Tx and Rx in DMA registers if the DMA streams are used. RM0444 Rev 5 1149/1390 Note: - (1) Step is not required in slave mode. - (2) Step is not required in TI mode. - (3) Step is not required in NSSP mode. - (4) The step is not required in slave mode except slave working at TI mode ## 35.5.8 Procedure for enabling SPI It is recommended to enable the SPI slave before the master sends the clock. If not, undesired data transmission might occur. The data register of the slave must already contain data to be sent before starting communication with the master (either on the first edge of the communication clock, or before the end of the ongoing communication if the clock signal is continuous). The SCK signal must be settled at an idle
state level corresponding to the selected polarity before the SPI slave is enabled. The master at full-duplex (or in any transmit-only mode) starts to communicate when the SPI is enabled and TXFIFO is not empty, or with the next write to TXFIFO. In any master receive only mode (RXONLY=1 or BIDIMODE=1 & BIDIOE=0), master starts to communicate and the clock starts running immediately after SPI is enabled. For handling DMA, follow the dedicated section. ## 35.5.9 Data transmission and reception procedures #### **RXFIFO and TXFIFO** All SPI data transactions pass through the 32-bit embedded FIFOs. This enables the SPI to work in a continuous flow, and prevents overruns when the data frame size is short. Each direction has its own FIFO called TXFIFO and RXFIFO. These FIFOs are used in all SPI modes except for receiver-only mode (slave or master) with CRC calculation enabled (see Section 35.5.14: CRC calculation). The handling of FIFOs depends on the data exchange mode (duplex, simplex), data frame format (number of bits in the frame), access size performed on the FIFO data registers (8-bit or 16-bit), and whether or not data packing is used when accessing the FIFOs (see Section 35.5.13: TI mode). A read access to the SPIx_DR register returns the oldest value stored in RXFIFO that has not been read yet. A write access to the SPIx_DR stores the written data in the TXFIFO at the end of a send queue. The read access must be always aligned with the RXFIFO threshold configured by the FRXTH bit in SPIx_CR2 register. FTLVL[1:0] and FRLVL[1:0] bits indicate the current occupancy level of both FIFOs. A read access to the SPIx_DR register must be managed by the RXNE event. This event is triggered when data is stored in RXFIFO and the threshold (defined by FRXTH bit) is reached. When RXNE is cleared, RXFIFO is considered to be empty. In a similar way, write access of a data frame to be transmitted is managed by the TXE event. This event is triggered when the TXFIFO level is less than or equal to half of its capacity. Otherwise TXE is cleared and the TXFIFO is considered as full. In this way, RXFIFO can store up to four data frames, whereas TXFIFO can only store up to three when the data frame format is not greater than 8 bits. This difference prevents possible corruption of 3x 8-bit data frames already stored in the TXFIFO when software tries to write more data in 16-bit mode into TXFIFO. Both TXE and RXNE events can be polled or handled by interrupts. See Figure 365 through Figure 368. Another way to manage the data exchange is to use DMA (see Communication using DMA (direct memory addressing)). If the next data is received when the RXFIFO is full, an overrun event occurs (see description of OVR flag at *Section 35.5.10: SPI status flags*). An overrun event can be polled or handled by an interrupt. The BSY bit being set indicates ongoing transaction of a current data frame. When the clock signal runs continuously, the BSY flag stays set between data frames at master but becomes low for a minimum duration of one SPI clock at slave between each data frame transfer. ## Sequence handling A few data frames can be passed at single sequence to complete a message. When transmission is enabled, a sequence begins and continues while any data is present in the TXFIFO of the master. The clock signal is provided continuously by the master until TXFIFO becomes empty, then it stops waiting for additional data. In receive-only modes, half-duplex (BIDIMODE=1, BIDIOE=0) or simplex (BIDIMODE=0, RXONLY=1) the master starts the sequence immediately when both SPI is enabled and receive-only mode is activated. The clock signal is provided by the master and it does not stop until either SPI or receive-only mode is disabled by the master. The master receives data frames continuously up to this moment. While the master can provide all the transactions in continuous mode (SCK signal is continuous) it has to respect slave capability to handle data flow and its content at anytime. When necessary, the master must slow down the communication and provide either a slower clock or separate frames or data sessions with sufficient delays. Be aware there is no underflow error signal for master or slave in SPI mode, and data from the slave is always transacted and processed by the master even if the slave could not prepare it correctly in time. It is preferable for the slave to use DMA, especially when data frames are shorter and bus rate is high. Each sequence must be encased by the NSS pulse in parallel with the multislave system to select just one of the slaves for communication. In a single slave system it is not necessary to control the slave with NSS, but it is often better to provide the pulse here too, to synchronize the slave with the beginning of each data sequence. NSS can be managed by both software and hardware (see Section 35.5.5: Slave select (NSS) pin management). When the BSY bit is set it signifies an ongoing data frame transaction. When the dedicated frame transaction is finished, the RXNE flag is raised. The last bit is just sampled and the complete data frame is stored in the RXFIFO. ## Procedure for disabling the SPI When SPI is disabled, it is mandatory to follow the disable procedures described in this paragraph. It is important to do this before the system enters a low-power mode when the peripheral clock is stopped. Ongoing transactions can be corrupted in this case. In some modes the disable procedure is the only way to stop continuous communication running. Master in full-duplex or transmit only mode can finish any transaction when it stops providing data for transmission. In this case, the clock stops after the last data transaction. Special care must be taken in packing mode when an odd number of data frames are transacted to prevent some dummy byte exchange (refer to *Data packing* section). Before the SPI is disabled in these modes, the user must follow standard disable procedure. When RM0444 Rev 5 1151/1390 the SPI is disabled at the master transmitter while a frame transaction is ongoing or next data frame is stored in TXFIFO, the SPI behavior is not guaranteed. When the master is in any receive only mode, the only way to stop the continuous clock is to disable the peripheral by SPE=0. This must occur in specific time window within last data frame transaction just between the sampling time of its first bit and before its last bit transfer starts (in order to receive a complete number of expected data frames and to prevent any additional "dummy" data reading after the last valid data frame). Specific procedure must be followed when disabling SPI in this mode. Data received but not read remains stored in RXFIFO when the SPI is disabled, and must be processed the next time the SPI is enabled, before starting a new sequence. To prevent having unread data, ensure that RXFIFO is empty when disabling the SPI, by using the correct disabling procedure, or by initializing all the SPI registers with a software reset via the control of a specific register dedicated to peripheral reset (see the SPIiRST bits in the RCC APBiRSTR registers). Standard disable procedure is based on pulling BSY status together with FTLVL[1:0] to check if a transmission session is fully completed. This check can be done in specific cases, too, when it is necessary to identify the end of ongoing transactions, for example: - When NSS signal is managed by software and master has to provide proper end of NSS pulse for slave, or - When transactions' streams from DMA or FIFO are completed while the last data frame or CRC frame transaction is still ongoing in the peripheral bus. The correct disable procedure is (except when receive only mode is used): - 1. Wait until FTLVL[1:0] = 00 (no more data to transmit). - 2. Wait until BSY=0 (the last data frame is processed). - 3. Disable the SPI (SPE=0). - 4. Read data until FRLVL[1:0] = 00 (read all the received data). The correct disable procedure for certain receive only modes is: - Interrupt the receive flow by disabling SPI (SPE=0) in the specific time window while the last data frame is ongoing. - 2. Wait until BSY=0 (the last data frame is processed). - 3. Read data until FRLVL[1:0] = 00 (read all the received data). Note: If packing mode is used and an odd number of data frames with a format less than or equal to 8 bits (fitting into one byte) has to be received, FRXTH must be set when FRLVL[1:0] = 01, in order to generate the RXNE event to read the last odd data frame and to keep good FIFO pointer alignment. ## Data packing When the data frame size fits into one byte (less than or equal to 8 bits), data packing is used automatically when any read or write 16-bit access is performed on the SPIx_DR register. The double data frame pattern is handled in parallel in this case. At first, the SPI operates using the pattern stored in the LSB of the accessed word, then with the other half stored in the MSB. *Figure 364* provides an example of data packing mode sequence handling. Two data frames are sent after the single 16-bit access the SPIx_DR register of the transmitter. This sequence can generate just one RXNE event in the receiver if the RXFIFO threshold is set to 16 bits (FRXTH=0). The receiver then has to access both data frames by a single 16-bit read of SPIx_DR as a response to this single RXNE event. The RxFIFO threshold setting and the following read access must be always kept aligned at the receiver side, as data can be lost if it is not in line. A specific problem appears if an odd number of such "fit into one byte" data frames must be handled. On the transmitter side, writing the last data frame of any odd sequence with an 8-bit access to SPIx_DR is enough. The receiver has to change the Rx_FIFO threshold level for the last data frame received in the odd sequence of frames in order to generate the RXNE event. Figure 364. Packing data in FIFO for transmission and reception In this example: Data size DS[3:0] is 4-bit
configured, CPOL=0, CPHA=1 and LSBFIRST =0. The Data storage is always right aligned while the valid bits are performed on the bus only, the content of LSB byte goes first on the bus, the unused bits are not taken into account on the transmitter side and padded by zeros at the receiver side. # Communication using DMA (direct memory addressing) To operate at its maximum speed and to facilitate the data register read/write process required to avoid overrun, the SPI features a DMA capability, which implements a simple request/acknowledge protocol. A DMA access is requested when the TXE or RXNE enable bit in the SPIx_CR2 register is set. Separate requests must be issued to the Tx and Rx buffers. - In transmission, a DMA request is issued each time TXE is set to 1. The DMA then writes to the SPIx_DR register. - In reception, a DMA request is issued each time RXNE is set to 1. The DMA then reads the SPIx DR register. See Figure 365 through Figure 368. When the SPI is used only to transmit data, it is possible to enable only the SPI Tx DMA channel. In this case, the OVR flag is set because the data received is not read. When the SPI is used only to receive data, it is possible to enable only the SPI Rx DMA channel. In transmission mode, when the DMA has written all the data to be transmitted (the TCIF flag is set in the DMA_ISR register), the BSY flag can be monitored to ensure that the SPI communication is complete. This is required to avoid corrupting the last transmission before disabling the SPI or entering the Stop mode. The software must first wait until FTLVL[1:0]=00 and then until BSY=0. RM0444 Rev 5 1153/1390 When starting communication using DMA, to prevent DMA channel management raising error events, these steps must be followed in order: - Enable DMA Rx buffer in the RXDMAEN bit in the SPI_CR2 register, if DMA Rx is used. - 2. Enable DMA streams for Tx and Rx in DMA registers, if the streams are used. - 3. Enable DMA Tx buffer in the TXDMAEN bit in the SPI_CR2 register, if DMA Tx is used. - 4. Enable the SPI by setting the SPE bit. To close communication it is mandatory to follow these steps in order: - Disable DMA streams for Tx and Rx in the DMA registers, if the streams are used. - 2. Disable the SPI by following the SPI disable procedure. - 3. Disable DMA Tx and Rx buffers by clearing the TXDMAEN and RXDMAEN bits in the SPI CR2 register, if DMA Tx and/or DMA Rx are used. ### **Packing with DMA** If the transfers are managed by DMA (TXDMAEN and RXDMAEN set in the SPIx_CR2 register) packing mode is enabled/disabled automatically depending on the PSIZE value configured for SPI TX and the SPI RX DMA channel. If the DMA channel PSIZE value is equal to 16-bit and SPI data size is less than or equal to 8-bit, then packing mode is enabled. The DMA then automatically manages the write operations to the SPIx_DR register. If data packing mode is used and the number of data to transfer is not a multiple of two, the LDMA_TX/LDMA_RX bits must be set. The SPI then considers only one data for the transmission or reception to serve the last DMA transfer (for more details refer to *Data packing on page 1152*.) # **Communication diagrams** Some typical timing schemes are explained in this section. These schemes are valid no matter if the SPI events are handled by polling, interrupts or DMA. For simplicity, the LSBFIRST=0, CPOL=0 and CPHA=1 setting is used as a common assumption here. No complete configuration of DMA streams is provided. The following numbered notes are common for *Figure 365 on page 1156* through *Figure 368 on page 1159*: - The slave starts to control MISO line as NSS is active and SPI is enabled, and is disconnected from the line when one of them is released. Sufficient time must be provided for the slave to prepare data dedicated to the master in advance before its transaction starts. - At the master, the SPI peripheral takes control at MOSI and SCK signals (occasionally at NSS signal as well) only if SPI is enabled. If SPI is disabled the SPI peripheral is disconnected from GPIO logic, so the levels at these lines depends on GPIO setting exclusively. - At the master, BSY stays active between frames if the communication (clock signal) is continuous. At the slave, BSY signal always goes down for at least one clock cycle between data frames. - 3. The TXE signal is cleared only if TXFIFO is full. - 4. The DMA arbitration process starts just after the TXDMAEN bit is set. The TXE interrupt is generated just after the TXEIE is set. As the TXE signal is at an active level, data transfers to TxFIFO start, until TxFIFO becomes full or the DMA transfer completes. - 5. If all the data to be sent can fit into TxFIFO, the DMA Tx TCIF flag can be raised even before communication on the SPI bus starts. This flag always rises before the SPI transaction is completed. - 6. The CRC value for a package is calculated continuously frame by frame in the SPIx_TXCRCR and SPIx_RXCRCR registers. The CRC information is processed after the entire data package has completed, either automatically by DMA (Tx channel must be set to the number of data frames to be processed) or by SW (the user must handle CRCNEXT bit during the last data frame processing). While the CRC value calculated in SPIx_TXCRCR is simply sent out by transmitter, received CRC information is loaded into RxFIFO and then compared with the SPIx_RXCRCR register content (CRC error flag can be raised here if any difference). This is why the user must take care to flush this information from the FIFO, either by software reading out all the stored content of RxFIFO, or by DMA when the proper number of data frames is preset for Rx channel (number of data frames + number of CRC frames) (see the settings at the example assumption). - 7. In data packed mode, TxE and RxNE events are paired and each read/write access to the FIFO is 16 bits wide until the number of data frames are even. If the TxFIFO is ¾ full FTLVL status stays at FIFO full level. That is why the last odd data frame cannot be stored before the TxFIFO becomes ½ full. This frame is stored into TxFIFO with an 8-bit access either by software or automatically by DMA when LDMA_TX control is set. - 8. To receive the last odd data frame in packed mode, the Rx threshold must be changed to 8-bit when the last data frame is processed, either by software setting FRXTH=1 or automatically by a DMA internal signal when LDMA RX is set. RM0444 Rev 5 1155/1390 Figure 365. Master full-duplex communication Assumptions for master full-duplex communication example: Data size > 8 bit #### If DMA is used: - Number of Tx frames transacted by DMA is set to 3 - Number of Rx frames transacted by DMA is set to 3 See also : Communication diagrams on page 1155 for details about common assumptions and notes. Figure 366. Slave full-duplex communication Assumptions for slave full-duplex communication example: Data size > 8 bit #### If DMA is used: - Number of Tx frames transacted by DMA is set to 3 - Number of Rx frames transacted by DMA is set to 3 See also : Communication diagrams on page 1155 for details about common assumptions and notes. RM0444 Rev 5 1157/1390 Figure 367. Master full-duplex communication with CRC Assumptions for master full-duplex communication with CRC example: - Data size = 16 bit - CRC enabled #### If DMA is used: - Number of Tx frames transacted by DMA is set to 2 - Number of Rx frames transacted by DMA is set to 3 See also : Communication diagrams on page 1155 for details about common assumptions and notes. Figure 368. Master full-duplex communication in packed mode Assumptions for master full-duplex communication in packed mode example: - Data size = 5 bit - Read/write FIFO is performed mostly by 16-bit access - FRXTH=0 ### If DMA is used: - Number of Tx frames to be transacted by DMA is set to 3 - Number of Rx frames to be transacted by DMA is set to 3 - PSIZE for both Tx and Rx DMA channel is set to 16-bit - LDMA_TX=1 and LDMA_RX=1 See also : Communication diagrams on page 1155 for details about common assumptions and notes. RM0444 Rev 5 1159/1390 ### 35.5.10 SPI status flags Three status flags are provided for the application to completely monitor the state of the SPI bus. ### Tx buffer empty flag (TXE) The TXE flag is set when transmission TXFIFO has enough space to store data to send. TXE flag is linked to the TXFIFO level. The flag goes high and stays high until the TXFIFO level is lower or equal to 1/2 of the FIFO depth. An interrupt can be generated if the TXEIE bit in the SPIx_CR2 register is set. The bit is cleared automatically when the TXFIFO level becomes greater than 1/2. ### Rx buffer not empty (RXNE) The RXNE flag is set depending on the FRXTH bit value in the SPIx_CR2 register: - If FRXTH is set, RXNE goes high and stays high until the RXFIFO level is greater or equal to 1/4 (8-bit). - If FRXTH is cleared, RXNE goes high and stays high until the RXFIFO level is greater than or equal to 1/2 (16-bit). An interrupt can be generated if the RXNEIE bit in the SPIx_CR2 register is set. The RXNE is cleared by hardware automatically when the above conditions are no longer true. #### **Busy flag (BSY)** The BSY flag is set and cleared by hardware (writing to this flag has no effect). When BSY is set, it indicates that a data transfer is in progress on the SPI (the SPI bus is busy). The BSY flag can be used in certain modes to detect the end of a transfer so that the software can disable the SPI or its peripheral clock before entering a low-power mode which does not provide a clock for the peripheral. This avoids corrupting the last transfer. The BSY flag is also useful for preventing write collisions in a multimaster system. The BSY flag is cleared under any one of the following conditions: - When the SPI is correctly disabled - When a fault is detected in Master mode (MODF bit set to 1) - In Master mode, when it finishes a data transmission and no new data is ready to be sent - In Slave mode, when the BSY
flag is set to '0' for at least one SPI clock cycle between each data transfer. Note: When the next transmission can be handled immediately by the master (e.g. if the master is in Receive-only mode or its Transmit FIFO is not empty), communication is continuous and the BSY flag remains set to '1' between transfers on the master side. Although this is not the case with a slave, it is recommended to use always the TXE and RXNE flags (instead of the BSY flags) to handle data transmission or reception operations. ### 35.5.11 SPI error flags An SPI interrupt is generated if one of the following error flags is set and interrupt is enabled by setting the ERRIE bit. ### Overrun flag (OVR) An overrun condition occurs when data is received by a master or slave and the RXFIFO has not enough space to store this received data. This can happen if the software or the DMA did not have enough time to read the previously received data (stored in the RXFIFO) or when space for data storage is limited e.g. the RXFIFO is not available when CRC is enabled in receive only mode so in this case the reception buffer is limited into a single data frame buffer (see Section 35.5.14: CRC calculation). When an overrun condition occurs, the newly received value does not overwrite the previous one in the RXFIFO. The newly received value is discarded and all data transmitted subsequently is lost. Clearing the OVR bit is done by a read access to the SPI_DR register followed by a read access to the SPI_SR register. ### Mode fault (MODF) Mode fault occurs when the master device has its internal NSS signal (NSS pin in NSS hardware mode, or SSI bit in NSS software mode) pulled low. This automatically sets the MODF bit. Master mode fault affects the SPI interface in the following ways: - The MODF bit is set and an SPI interrupt is generated if the ERRIE bit is set. - The SPE bit is cleared. This blocks all output from the device and disables the SPI interface. - The MSTR bit is cleared, thus forcing the device into slave mode. Use the following software sequence to clear the MODF bit: - 1. Make a read or write access to the SPIx SR register while the MODF bit is set. - 2. Then write to the SPIx_CR1 register. To avoid any multiple slave conflicts in a system comprising several MCUs, the NSS pin must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits can be restored to their original state after this clearing sequence. As a security, hardware does not allow the SPE and MSTR bits to be set while the MODF bit is set. In a slave device the MODF bit cannot be set except as the result of a previous multimaster conflict. #### **CRC error (CRCERR)** This flag is used to verify the validity of the value received when the CRCEN bit in the SPIx_CR1 register is set. The CRCERR flag in the SPIx_SR register is set if the value received in the shift register does not match the receiver SPIx_RXCRCR value. The flag is cleared by the software. #### TI mode frame format error (FRE) A TI mode frame format error is detected when an NSS pulse occurs during an ongoing communication when the SPI is operating in slave mode and configured to conform to the TI mode protocol. When this error occurs, the FRE flag is set in the SPIx_SR register. The SPI is not disabled when an error occurs, the NSS pulse is ignored, and the SPI waits for the next NSS pulse before starting a new transfer. The data may be corrupted since the error detection may result in the loss of two data bytes. RM0444 Rev 5 1161/1390 The FRE flag is cleared when SPIx_SR register is read. If the ERRIE bit is set, an interrupt is generated on the NSS error detection. In this case, the SPI should be disabled because data consistency is no longer guaranteed and communications should be reinitiated by the master when the slave SPI is enabled again. ### 35.5.12 NSS pulse mode This mode is activated by the NSSP bit in the SPIx_CR2 register and it takes effect only if the SPI interface is configured as Motorola SPI master (FRF=0) with capture on the first edge (SPIx_CR1 CPHA = 0, CPOL setting is ignored). When activated, an NSS pulse is generated between two consecutive data frame transfers when NSS stays at high level for the duration of one clock period at least. This mode allows the slave to latch data. NSSP pulse mode is designed for applications with a single master-slave pair. Figure 369 illustrates NSS pin management when NSSP pulse mode is enabled. Figure 369. NSSP pulse generation in Motorola SPI master mode Note: Similar behavior is encountered when CPOL = 0. In this case the sampling edge is the *rising* edge of SCK, and NSS assertion and deassertion refer to this sampling edge. #### 35.5.13 TI mode ### TI protocol in master mode The SPI interface is compatible with the TI protocol. The FRF bit of the SPIx_CR2 register can be used to configure the SPI to be compliant with this protocol. The clock polarity and phase are forced to conform to the TI protocol requirements whatever the values set in the SPIx_CR1 register. NSS management is also specific to the TI protocol which makes the configuration of NSS management through the SPIx_CR1 and SPIx_CR2 registers (SSM, SSI, SSOE) impossible in this case. In slave mode, the SPI baud rate prescaler is used to control the moment when the MISO pin state changes to HiZ when the current transaction finishes (see *Figure 370*). Any baud rate can be used, making it possible to determine this moment with optimal flexibility. However, the baud rate is generally set to the external master clock baud rate. The delay for the MISO signal to become HiZ (t_{release}) depends on internal resynchronization and on the baud rate value set in through the BR[2:0] bits in the SPIx_CR1 register. It is given by the formula: $$\frac{t_{baud_rate}}{2} + 4 \times t_{pclk} < t_{release} < \frac{t_{baud_rate}}{2} + 6 \times t_{pclk}$$ If the slave detects a misplaced NSS pulse during a data frame transaction the TIFRE flag is set. If the data size is equal to 4-bits or 5-bits, the master in full-duplex mode or transmit-only mode uses a protocol with one more dummy data bit added after LSB. TI NSS pulse is generated above this dummy bit clock cycle instead of the LSB in each period. This feature is not available for Motorola SPI communications (FRF bit set to 0). Figure 370: TI mode transfer shows the SPI communication waveforms when TI mode is selected. Figure 370. TI mode transfer #### 35.5.14 CRC calculation Two separate CRC calculators are implemented in order to check the reliability of transmitted and received data. The SPI offers CRC8 or CRC16 calculation independently of the frame data length, which can be fixed to 8-bit or 16-bit. For all the other data frame lengths, no CRC is available. #### **CRC** principle CRC calculation is enabled by setting the CRCEN bit in the SPIx_CR1 register before the SPI is enabled (SPE = 1). The CRC value is calculated using an odd programmable polynomial on each bit. The calculation is processed on the sampling clock edge defined by the CPHA and CPOL bits in the SPIx_CR1 register. The calculated CRC value is checked automatically at the end of the data block as well as for transfer managed by CPU or by the DMA. When a mismatch is detected between the CRC calculated internally on the received data and the CRC sent by the transmitter, a CRCERR flag is set to indicate a data corruption error. The right procedure for handling the CRC calculation depends on the SPI configuration and the chosen transfer management. RM0444 Rev 5 1163/1390 Note: The polynomial value should only be odd. No even values are supported. #### CRC transfer managed by CPU Communication starts and continues normally until the last data frame has to be sent or received in the SPIx_DR register. Then CRCNEXT bit has to be set in the SPIx_CR1 register to indicate that the CRC frame transaction follows after the transaction of the currently processed data frame. The CRCNEXT bit must be set before the end of the last data frame transaction. CRC calculation is frozen during CRC transaction. The received CRC is stored in the RXFIFO like a data byte or word. That is why in CRC mode only, the reception buffer has to be considered as a single 16-bit buffer used to receive only one data frame at a time. A CRC-format transaction usually takes one more data frame to communicate at the end of data sequence. However, when setting an 8-bit data frame checked by 16-bit CRC, two more frames are necessary to send the complete CRC. When the last CRC data is received, an automatic check is performed comparing the received value and the value in the SPIx_RXCRC register. Software has to check the CRCERR flag in the SPIx_SR register to determine if the data transfers were corrupted or not. Software clears the CRCERR flag by writing '0' to it. After the CRC reception, the CRC value is stored in the RXFIFO and must be read in the SPIx DR register in order to clear the RXNE flag. ### CRC transfer managed by DMA When SPI communication is enabled with CRC communication and DMA mode, the transmission and reception of the CRC at the end of communication is automatic (with the exception of reading CRC data in receive only mode). The CRCNEXT bit does not have to be handled by the software. The counter for the SPI transmission DMA channel has to be set to the number of data frames to transmit excluding the CRC frame. On the receiver side, the received CRC value is handled automatically by DMA at the end of the transaction but user must take care to flush out received CRC information from RXFIFO as it is always loaded into it. In full-duplex mode, the counter of the reception DMA channel can be set to the number of data frames to receive including the CRC, which means, for example, in the specific case of an 8-bit data frame checked by 16-bit CRC: In receive only mode, the DMA reception channel counter should contain only the amount of data transferred, excluding the CRC calculation. Then based
on the complete transfer from DMA, all the CRC values must be read back by software from FIFO as it works as a single buffer in this mode. At the end of the data and CRC transfers, the CRCERR flag in the SPIx_SR register is set if corruption occurred during the transfer. If packing mode is used, the LDMA_RX bit needs managing if the number of data is odd. ### Resetting the SPIx_TXCRC and SPIx_RXCRC values The SPIx_TXCRC and SPIx_RXCRC values are cleared automatically when new data is sampled after a CRC phase. This allows the use of DMA circular mode (not available in receive-only mode) in order to transfer data without any interruption, (several data blocks covered by intermediate CRC checking phases). If the SPI is disabled during a communication the following sequence must be followed: - Disable the SPI - 2. Clear the CRCEN bit - 3. Enable the CRCEN bit - Enable the SPI Note: When the SPI interface is configured as a slave, the NSS internal signal needs to be kept low during transaction of the CRC phase once the CRCNEXT signal is released. That is why the CRC calculation cannot be used at NSS Pulse mode when NSS hardware mode should be applied at slave normally. At TI mode, despite the fact that clock phase and clock polarity setting is fixed and independent on SPIx_CR1 register, the corresponding setting CPOL=0 CPHA=1 has to be kept at the SPIx_CR1 register anyway if CRC is applied. In addition, the CRC calculation has to be reset between sessions by SPI disable sequence with re-enable the CRCEN bit described above at both master and slave side, else CRC calculation can be corrupted at this specific mode. # 35.6 SPI interrupts During SPI communication an interrupt can be generated by the following events: - Transmit TXFIFO ready to be loaded - Data received in Receive RXFIFO - Master mode fault - Overrun error - TI frame format error - CRC protocol error Interrupts can be enabled and disabled separately. Table 198. SPI interrupt requests | Interrupt event | Event flag | Enable Control bit | | | | | |------------------------------------|-------------|--------------------|--|--|--|--| | Transmit TXFIFO ready to be loaded | TXE | TXEIE | | | | | | Data received in RXFIFO | RXNE RXNEIE | | | | | | | Master Mode fault event | MODF | - ERRIE | | | | | | Overrun error | OVR | | | | | | | TI frame format error | FRE | | | | | | | CRC protocol error | CRCERR | | | | | | RM0444 Rev 5 # 35.7 I2S functional description # 35.7.1 I2S general description The block diagram of the I2S is shown in *Figure 371*. Address and data bus Tx buffer OVR MODE UDR TxE RXNE FRE 16-bit MOSI/SD Shift register MISO 📮 LSB first Communication 16-bit control Rx buffer NSS/WS I2SCFG [1:0] I2SSTD DATLEN [1:0] Master control logic Bidi CRC Rx SSI SPI LSB First SPE BR2 BR1 BR0 MSTR baud rate generator I2S clock generator 12S CK I2SMOD I2SxCLK -MCK [MCKOE ODD I2SDIV[7:0] MS32126V1 Figure 371. I2S block diagram 1. MCK is mapped on the MISO pin. The SPI can function as an audio I2S interface when the I2S capability is enabled (by setting the I2SMOD bit in the SPIx_I2SCFGR register). This interface mainly uses the same pins, flags and interrupts as the SPI. The I2S shares three common pins with the SPI: - SD: Serial Data (mapped on the MOSI pin) to transmit or receive the two time-multiplexed data channels (in half-duplex mode only). - WS: Word Select (mapped on the NSS pin) is the data control signal output in master mode and input in slave mode. - CK: Serial Clock (mapped on the SCK pin) is the serial clock output in master mode and serial clock input in slave mode. An additional pin can be used when a master clock output is needed for some external audio devices: MCK: Master Clock (mapped separately) is used, when the I2S is configured in master mode (and when the MCKOE bit in the SPIx_I2SPR register is set), to output this additional clock generated at a preconfigured frequency rate equal to 256 × f_S, where f_S is the audio sampling frequency. The I2S uses its own clock generator to produce the communication clock when it is set in master mode. This clock generator is also the source of the master clock output. Two additional registers are available in I²S mode. One is linked to the clock generator configuration SPIx_I2SPR and the other one is a generic I2S configuration register SPIx_I2SCFGR (audio standard, slave/master mode, data format, packet frame, clock polarity, etc.). The SPIx_CR1 register and all CRC registers are not used in the I²S mode. Likewise, the SSOE bit in the SPIx_CR2 register and the MODF and CRCERR bits in the SPIx_SR are not used. The I2S uses the same SPI register for data transfer (SPIx_DR) in 16-bit wide mode. # 35.7.2 Supported audio protocols The three-line bus has to handle only audio data generally time-multiplexed on two channels: the right channel and the left channel. However there is only one 16-bit register for transmission or reception. So, it is up to the software to write into the data register the appropriate value corresponding to each channel side, or to read the data from the data register and to identify the corresponding channel by checking the CHSIDE bit in the SPIx_SR register. Channel left is always sent first followed by the channel right (CHSIDE has no meaning for the PCM protocol). Four data and packet frames are available. Data may be sent with a format of: - 16-bit data packed in a 16-bit frame - 16-bit data packed in a 32-bit frame - 24-bit data packed in a 32-bit frame - 32-bit data packed in a 32-bit frame When using 16-bit data extended on 32-bit packet, the first 16 bits (MSB) are the significant bits, the 16-bit LSB is forced to 0 without any need for software action or DMA request (only one read/write operation). The 24-bit and 32-bit data frames need two CPU read or write operations to/from the SPIx_DR register or two DMA operations if the DMA is preferred for the application. For 24-bit data frame specifically, the 8 non-significant bits are extended to 32 bits with 0-bits (by hardware). RM0444 Rev 5 1167/1390 For all data formats and communication standards, the most significant bit is always sent first (MSB first). The I²S interface supports four audio standards, configurable using the I2SSTD[1:0] and PCMSYNC bits in the SPIx_I2SCFGR register. # I²S Philips standard For this standard, the WS signal is used to indicate which channel is being transmitted. It is activated one CK clock cycle before the first bit (MSB) is available. Figure 372. I²S Philips protocol waveforms (16/32-bit full accuracy) Data are latched on the falling edge of CK (for the transmitter) and are read on the rising edge (for the receiver). The WS signal is also latched on the falling edge of CK. Figure 373. I²S Philips standard waveforms (24-bit frame) This mode needs two write or read operations to/from the SPIx_DR register. In transmission mode: If 0x8EAA33 has to be sent (24-bit): Figure 374. Transmitting 0x8EAA33 In reception mode: If data 0x8EAA33 is received: Figure 375. Receiving 0x8EAA33 Figure 376. I²S Philips standard (16-bit extended to 32-bit packet frame) When 16-bit data frame extended to 32-bit channel frame is selected during the I2S configuration phase, only one access to the SPIx_DR register is required. The 16 remaining bits are forced by hardware to 0x0000 to extend the data to 32-bit format. If the data to transmit or the received data are 0x76A3 (0x76A30000 extended to 32-bit), the operation shown in *Figure* 377 is required. Figure 377. Example of 16-bit data frame extended to 32-bit channel frame RM0444 Rev 5 1169/1390 For transmission, each time an MSB is written to SPIx_DR, the TXE flag is set and its interrupt, if allowed, is generated to load the SPIx_DR register with the new value to send. This takes place even if 0x0000 have not yet been sent because it is done by hardware. For reception, the RXNE flag is set and its interrupt, if allowed, is generated when the first 16 MSB half-word is received. In this way, more time is provided between two write or read operations, which prevents underrun or overrun conditions (depending on the direction of the data transfer). ### MSB justified standard (for the receiver). For this standard, the WS signal is generated at the same time as the first data bit, which is the MSBit. Data are latched on the falling edge of CK (for transmitter) and are read on the rising edge Figure 379. MSB justified 24-bit frame length Figure 380. MSB justified 16-bit extended to 32-bit packet frame # LSB justified standard This standard is similar to the MSB justified standard (no difference for the 16-bit and 32-bit full-accuracy frame formats). The sampling of the input and output signals is the same as for the I²S Philips standard. Figure 381. LSB justified 16-bit or 32-bit full-accuracy In transmission mode: If data 0x3478AE have to be transmitted, two write operations to the SPIx_DR register are required by software or by DMA. The operations are shown below. RM0444 Rev 5 1171/1390 Figure 383. Operations required to transmit 0x3478AE • In reception mode: If data 0x3478AE are received, two successive read operations from the SPIx_DR register are required on each RXNE event. Figure 384. Operations required to receive 0x3478AE Figure 385. LSB justified 16-bit extended to 32-bit packet frame When 16-bit data frame extended to 32-bit channel frame is selected during the I2S configuration phase, Only one access to the SPIx_DR register is required. The 16 remaining bits are forced by hardware to 0x0000 to extend the data to 32-bit format. In this case it corresponds to the half-word MSB. If the data to transmit or the received data are 0x76A3 (0x0000 76A3 extended to 32-bit), the operation shown in *Figure 386* is required. Figure 386. Example of 16-bit data frame extended to 32-bit channel frame In transmission mode, when a TXE event occurs, the application has to write the data to be transmitted (in this case 0x76A3). The 0x000 field is transmitted first (extension
on 32-bit). The TXE flag is set again as soon as the effective data (0x76A3) is sent on SD. In reception mode, RXNE is asserted as soon as the significant half-word is received (and not the 0x0000 field). In this way, more time is provided between two write or read operations to prevent underrun or overrun conditions. #### **PCM** standard For the PCM standard, there is no need to use channel-side information. The two PCM modes (short and long frame) are available and configurable using the PCMSYNC bit in SPIx_I2SCFGR register. In PCM mode, the output signals (WS, SD) are sampled on the rising edge of CK signal. The input signals (WS, SD) are captured on the falling edge of CK. Note that CK and WS are configured as output in MASTER mode. Figure 387. PCM standard waveforms (16-bit) For long frame synchronization, the WS signal assertion time is fixed to 13 bits in master mode. For short frame synchronization, the WS synchronization signal is only one cycle long. Figure 388. PCM standard waveforms (16-bit extended to 32-bit packet frame) Note: 1174/1390 For both modes (master and slave) and for both synchronizations (short and long), the number of bits between two consecutive pieces of data (and so two synchronization signals) needs to be specified (DATLEN and CHLEN bits in the SPIx_I2SCFGR register) even in slave mode. # 35.7.3 Start-up description The Figure 389 shows how the serial interface is handled in MASTER mode, when the SPI/I2S is enabled (via I2SE bit). It shows as well the effect of CKPOL on the generated signals. Figure 389. Start sequence in master mode In slave mode, the way the frame synchronization is detected, depends on the value of ASTRTEN bit. If ASTRTEN = 0, when the audio interface is enabled (I2SE = 1), then the hardware waits for the appropriate transition on the incoming WS signal, using the CK signal. The appropriate transition is a falling edge on WS signal when I²S Philips Standard is used. or a rising edge for other standards. The falling edge is detected by sampling first WS to 1 and then to 0, and vice-versa for the rising edge detection. If ASTRTEN = 1, the user has to enable the audio interface before the WS becomes active. This means that the I2SE bit must be set to 1 when WS = 1 for I²S Philips standard, or when WS = 0 for other standards. #### 35.7.4 **Clock generator** The I²S bit rate determines the data flow on the I²S data line and the I²S clock signal frequency. I²S bit rate = number of bits per channel × number of channels × sampling audio frequency For a 16-bit audio, left and right channel, the I²S bit rate is calculated as follows: I^2S bit rate = $16 \times 2 \times f_S$ It is: I^2S bit rate = 32 x 2 x f_S if the packet length is 32-bit wide. Figure 390. Audio sampling frequency definition When the master mode is configured, a specific action needs to be taken to properly program the linear divider in order to communicate with the desired audio frequency. Figure 391. I²S clock generator architecture 1. Where x can be 2 or 3. Figure 391 presents the communication clock architecture. The I2SxCLK clock is provided by the reset and clock controller (RCC) of the product. The I2SxCLK clock can be asynchronous with respect to the SPI/I2S APB clock. Warning: In addition, it is mandatory to keep the I2SxCLK frequency higher or equal to the APB clock used by the SPI/I2S block. If this condition is not respected, the SPI/I2S does not work properly. The audio sampling frequency may be 192 kHz, 96 kHz, 48 kHz, 44.1 kHz, 32 kHz, 22.05 kHz, 16 kHz, 11.025 kHz or 8 kHz (or any other value within this range). In order to reach the desired frequency, the linear divider needs to be programmed according to the formulas below: ### For I²S modes: When the master clock is generated (MCKOE in the SPIx_I2SPR register is set): $$Fs = \frac{F_{12} s_{xCLK}}{256 \times ((2 \times I2SDIV) + ODD)}$$ When the master clock is disabled (MCKOE bit cleared): $$Fs = \frac{F_{12SxCLK}}{32 \times (CHLEN + 1) \times ((2 \times I2SDIV) + ODD)}$$ CHLEN = 0 when the channel frame is 16-bit wide and, CHLEN = 1 when the channel frame is 32-bit wide. #### For PCM modes: When the master clock is generated (MCKOE in the SPIx I2SPR register is set): $$Fs = \frac{F_{12}S_{x}CLK}{128 \times ((2 \times I2SDIV) + ODD)}$$ When the master clock is disabled (MCKOE bit cleared): $$Fs = \frac{F_{12SxCLK}}{16 \times (CHLEN + 1) \times ((2 \times I2SDIV) + ODD)}$$ CHLEN = 0 when the channel frame is 16-bit wide and. CHLEN = 1 when the channel frame is 32-bit wide. Where F_S is the audio sampling frequency, and $F_{I2SxCLK}$ is the frequency of the kernel clock provided to the SPI/I2S block. RM0444 Rev 5 1177/1390 Note: Note that I2SDIV must be strictly higher than 1. *Table 199* provides example precision values for different clock configurations. Note: Other configurations are possible that allow optimum clock precision. Table 199. Audio-frequency precision using standard 8 MHz HSE⁽¹⁾ | SYSCLK
(MHz) | Data
length | I2SDIV | I2SODD | MCLK | Target fs
(Hz) | Real fs (kHz) | Error | |-----------------|----------------|--------|--------|------|-------------------|---------------|---------| | 48 | 16 | 8 | 0 | No | 96000 | 93750 | 2.3438% | | 48 | 32 | 4 | 0 | No | 96000 | 93750 | 2.3438% | | 48 | 16 | 15 | 1 | No | 48000 | 48387.0968 | 0.8065% | | 48 | 32 | 8 | 0 | No | 48000 | 46875 | 2.3438% | | 48 | 16 | 17 | 0 | No | 44100 | 44117.647 | 0.0400% | | 48 | 32 | 8 | 1 | No | 44100 | 44117.647 | 0.0400% | | 48 | 16 | 23 | 1 | No | 32000 | 31914.8936 | 0.2660% | | 48 | 32 | 11 | 1 | No | 32000 | 32608.696 | 1.9022% | | 48 | 16 | 34 | 0 | No | 22050 | 22058.8235 | 0.0400% | | 48 | 32 | 17 | 0 | No | 22050 | 22058.8235 | 0.0400% | | 48 | 16 | 47 | 0 | No | 16000 | 15957.4468 | 0.2660% | | 48 | 32 | 23 | 1 | No | 16000 | 15957.447 | 0.2660% | | 48 | 16 | 68 | 0 | No | 11025 | 11029.4118 | 0.0400% | | 48 | 32 | 34 | 0 | No | 11025 | 11029.412 | 0.0400% | | 48 | 16 | 94 | 0 | No | 8000 | 7978.7234 | 0.2660% | | 48 | 32 | 47 | 0 | No | 8000 | 7978.7234 | 0.2660% | | 48 | 16 | 2 | 0 | Yes | 48000 | 46875 | 2.3430% | | 48 | 32 | 2 | 0 | Yes | 48000 | 46875 | 2.3430% | | 48 | 16 | 2 | 0 | Yes | 44100 | 46875 | 6.2925% | | 48 | 32 | 2 | 0 | Yes | 44100 | 46875 | 6.2925% | | 48 | 16 | 3 | 0 | Yes | 32000 | 31250 | 2.3438% | | 48 | 32 | 3 | 0 | Yes | 32000 | 31250 | 2.3438% | | 48 | 16 | 4 | 1 | Yes | 22050 | 20833.333 | 5.5178% | | 48 | 32 | 4 | 1 | Yes | 22050 | 20833.333 | 5.5178% | | 48 | 16 | 6 | 0 | Yes | 16000 | 15625 | 2.3438% | | 48 | 32 | 6 | 0 | Yes | 16000 | 15625 | 2.3438% | | 48 | 16 | 8 | 1 | Yes | 11025 | 11029.4118 | 0.0400% | | 48 | 32 | 8 | 1 | Yes | 11025 | 11029.4118 | 0.0400% | | 48 | 16 | 11 | 1 | Yes | 8000 | 8152.17391 | 1.9022% | | 48 | 32 | 11 | 1 | Yes | 8000 | 8152.17391 | 1.9022% | 1. This table gives only example values for different clock configurations. Other configurations allowing optimum clock precision are possible. # 35.7.5 I²S master mode The I2S can be configured in master mode. This means that the serial clock is generated on the CK pin as well as the Word Select signal WS. Master clock (MCK) may be output or not, controlled by the MCKOE bit in the SPIx_I2SPR register. ### **Procedure** - 1. Select the I2SDIV[7:0] bits in the SPIx_I2SPR register to define the serial clock baud rate to reach the proper audio sample frequency. The ODD bit in the SPIx_I2SPR register also has to be defined. - Select the CKPOL bit to define the steady level for the communication clock. Set the MCKOE bit in the SPIx_I2SPR register if the master clock MCK needs to be provided to the external DAC/ADC audio component (the I2SDIV and ODD values should be computed depending on the state of the MCK output, for more details refer to Section 35.7.4: Clock generator). - 3. Set the I2SMOD bit in the SPIx_I2SCFGR register to activate the I2S functions and choose the I²S standard through the I2SSTD[1:0] and PCMSYNC bits, the data length through the DATLEN[1:0] bits and the number of bits per channel by configuring the CHLEN bit. Select also the I²S master mode and direction (Transmitter or Receiver) through the I2SCFG[1:0] bits in the SPIx_I2SCFGR register. - 4. If needed, select all the potential interrupt sources and the DMA capabilities by writing the SPIx_CR2 register. - The I2SE bit in SPIx_I2SCFGR register must be set. WS and CK are configured in output mode. MCK is also an output, if the MCKOE bit in SPIx_I2SPR is set. ### Transmission sequence The transmission sequence begins when a half-word is written into the Tx buffer. Lets assume the first data written into the Tx buffer corresponds to the left channel data. When data are transferred from the Tx buffer to the shift register, TXE is set and data corresponding to the right channel have to be written into the Tx buffer. The CHSIDE flag indicates which channel is to be transmitted. It has a meaning when the TXE flag is set because the CHSIDE flag is updated when TXE goes high. A full frame has to be considered as a left channel data transmission followed by a right channel data transmission. It is not possible to have a partial frame where only the left channel is sent. The data half-word is parallel loaded into the 16-bit shift register during the first bit transmission, and then shifted out, serially, to the MOSI/SD pin, MSB first. The TXE flag is set after each transfer from the Tx buffer to the shift register and an interrupt is generated if the TXEIE bit in the SPIx CR2 register is set. For more details about the write operations depending on the I²S standard mode selected, refer to *Section 35.7.2: Supported audio protocols*). To ensure a continuous audio data transmission, it is mandatory to write the SPIx_DR register with the next data to transmit before the end of the current transmission. RM0444 Rev 5 1179/1390 To switch off the I2S, by clearing I2SE, it is mandatory to wait for TXE = 1 and BSY = 0. ### Reception sequence The operating mode is the
same as for transmission mode except for the point 3 (refer to the procedure described in *Section 35.7.5: l*²*S master mode*), where the configuration should set the master reception mode through the I2SCFG[1:0] bits. Whatever the data or channel length, the audio data are received by 16-bit packets. This means that each time the Rx buffer is full, the RXNE flag is set and an interrupt is generated if the RXNEIE bit is set in SPIx_CR2 register. Depending on the data and channel length configuration, the audio value received for a right or left channel may result from one or two receptions into the Rx buffer. Clearing the RXNE bit is performed by reading the SPIx DR register. CHSIDE is updated after each reception. It is sensitive to the WS signal generated by the I2S cell. For more details about the read operations depending on the I²S standard mode selected, refer to *Section 35.7.2: Supported audio protocols*. If data are received while the previously received data have not been read yet, an overrun is generated and the OVR flag is set. If the ERRIE bit is set in the SPIx_CR2 register, an interrupt is generated to indicate the error. To switch off the I2S, specific actions are required to ensure that the I2S completes the transfer cycle properly without initiating a new data transfer. The sequence depends on the configuration of the data and channel lengths, and on the audio protocol mode selected. In the case of: - 16-bit data length extended on 32-bit channel length (DATLEN = 00 and CHLEN = 1) using the LSB justified mode (I2SSTD = 10) - a) Wait for the second to last RXNE = 1 (n 1) - b) Then wait 17 I2S clock cycles (using a software loop) - c) Disable the I2S (I2SE = 0) - 16-bit data length extended on 32-bit channel length (DATLEN = 00 and CHLEN = 1) in MSB justified, I²S or PCM modes (I2SSTD = 00, I2SSTD = 01 or I2SSTD = 11, respectively) - a) Wait for the last RXNE - b) Then wait 1 I2S clock cycle (using a software loop) - c) Disable the I2S (I2SE = 0) - For all other combinations of DATLEN and CHLEN, whatever the audio mode selected through the I2SSTD bits, carry out the following sequence to switch off the I2S: - a) Wait for the second to last RXNE = 1 (n 1) - b) Then wait one I2S clock cycle (using a software loop) - c) Disable the I2S (I2SE = 0) Note: The BSY flag is kept low during transfers. # 35.7.6 I²S slave mode For the slave configuration, the I2S can be configured in transmission or reception mode. The operating mode is following mainly the same rules as described for the I²S master configuration. In slave mode, there is no clock to be generated by the I2S interface. The clock and WS signals are input from the external master connected to the I2S interface. There is then no need, for the user, to configure the clock. The configuration steps to follow are listed below: - 1. Set the I2SMOD bit in the SPIx_I2SCFGR register to select I²S mode and choose the I²S standard through the I2SSTD[1:0] bits, the data length through the DATLEN[1:0] bits and the number of bits per channel for the frame configuring the CHLEN bit. Select also the mode (transmission or reception) for the slave through the I2SCFG[1:0] bits in SPIx_I2SCFGR register. - 2. If needed, select all the potential interrupt sources and the DMA capabilities by writing the SPIx_CR2 register. - The I2SE bit in SPIx_I2SCFGR register must be set. #### **Transmission sequence** The transmission sequence begins when the external master device sends the clock and when the NSS_WS signal requests the transfer of data. The slave has to be enabled before the external master starts the communication. The I2S data register has to be loaded before the master initiates the communication. For the I2S, MSB justified and LSB justified modes, the first data item to be written into the data register corresponds to the data for the left channel. When the communication starts, the data are transferred from the Tx buffer to the shift register. The TXE flag is then set in order to request the right channel data to be written into the I2S data register. The CHSIDE flag indicates which channel is to be transmitted. Compared to the master transmission mode, in slave mode, CHSIDE is sensitive to the WS signal coming from the external master. This means that the slave needs to be ready to transmit the first data before the clock is generated by the master. WS assertion corresponds to left channel transmitted first. Note: The I2SE has to be written at least two PCLK cycles before the first clock of the master comes on the CK line. The data half-word is parallel-loaded into the 16-bit shift register (from the internal bus) during the first bit transmission, and then shifted out serially to the MOSI/SD pin MSB first. The TXE flag is set after each transfer from the Tx buffer to the shift register and an interrupt is generated if the TXEIE bit in the SPIx_CR2 register is set. Note that the TXE flag should be checked to be at 1 before attempting to write the Tx buffer. For more details about the write operations depending on the I²S standard mode selected, refer to *Section 35.7.2: Supported audio protocols*. To secure a continuous audio data transmission, it is mandatory to write the SPIx_DR register with the next data to transmit before the end of the current transmission. An underrun flag is set and an interrupt may be generated if the data are not written into the SPIx_DR register before the first clock edge of the next data communication. This indicates to the software that the transferred data are wrong. If the ERRIE bit is set into the SPIx_CR2 register, an interrupt is generated when the UDR flag in the SPIx_SR register goes high. In this case, it is mandatory to switch off the I2S and to restart a data transfer starting from the left channel. To switch off the I2S, by clearing the I2SE bit, it is mandatory to wait for TXE = 1 and BSY = 0. RM0444 Rev 5 1181/1390 ### Reception sequence The operating mode is the same as for the transmission mode except for the point 1 (refer to the procedure described in *Section 35.7.6: I²S slave mode*), where the configuration should set the master reception mode using the I2SCFG[1:0] bits in the SPIx_I2SCFGR register. Whatever the data length or the channel length, the audio data are received by 16-bit packets. This means that each time the RX buffer is full, the RXNE flag in the SPIx_SR register is set and an interrupt is generated if the RXNEIE bit is set in the SPIx_CR2 register. Depending on the data length and channel length configuration, the audio value received for a right or left channel may result from one or two receptions into the RX buffer. The CHSIDE flag is updated each time data are received to be read from the SPIx_DR register. It is sensitive to the external WS line managed by the external master component. Clearing the RXNE bit is performed by reading the SPIx_DR register. For more details about the read operations depending the I²S standard mode selected, refer to Section 35.7.2: Supported audio protocols. If data are received while the preceding received data have not yet been read, an overrun is generated and the OVR flag is set. If the bit ERRIE is set in the SPIx_CR2 register, an interrupt is generated to indicate the error. To switch off the I2S in reception mode, I2SE has to be cleared immediately after receiving the last RXNE = 1. Note: The external master components should have the capability of sending/receiving data in 16-bit or 32-bit packets via an audio channel. # 35.7.7 I2S status flags Three status flags are provided for the application to fully monitor the state of the I2S bus. #### **Busy flag (BSY)** The BSY flag is set and cleared by hardware (writing to this flag has no effect). It indicates the state of the communication layer of the I2S. When BSY is set, it indicates that the I2S is busy communicating. There is one exception in master receive mode (I2SCFG = 11) where the BSY flag is kept low during reception. The BSY flag is useful to detect the end of a transfer if the software needs to disable the I2S. This avoids corrupting the last transfer. For this, the procedure described below must be strictly respected. The BSY flag is set when a transfer starts, except when the I2S is in master receiver mode. The BSY flag is cleared: - When a transfer completes (except in master transmit mode, in which the communication is supposed to be continuous) - When the I2S is disabled When communication is continuous: - In master transmit mode, the BSY flag is kept high during all the transfers - In slave mode, the BSY flag goes low for one I2S clock cycle between each transfer Note: Do not use the BSY flag to handle each data transmission or reception. It is better to use the TXE and RXNE flags instead. # Tx buffer empty flag (TXE) When set, this flag indicates that the Tx buffer is empty and the next data to be transmitted can then be loaded into it. The TXE flag is reset when the Tx buffer already contains data to be transmitted. It is also reset when the I2S is disabled (I2SE bit is reset). #### RX buffer not empty (RXNE) When set, this flag indicates that there are valid received data in the RX Buffer. It is reset when SPIx DR register is read. #### Channel Side flag (CHSIDE) In transmission mode, this flag is refreshed when TXE goes high. It indicates the channel side to which the data to transfer on SD has to belong. In case of an underrun error event in slave transmission mode, this flag is not reliable and I2S needs to be switched off and switched on before resuming the communication. In reception mode, this flag is refreshed when data are received into SPIx_DR. It indicates from which channel side data have been received. Note that in case of error (like OVR) this flag becomes meaningless and the I2S should be reset by disabling and then enabling it (with configuration if it needs changing). This flag has no meaning in the PCM standard (for both Short and Long frame modes). When the OVR
or UDR flag in the SPIx_SR is set and the ERRIE bit in SPIx_CR2 is also set, an interrupt is generated. This interrupt can be cleared by reading the SPIx_SR status register (once the interrupt source has been cleared). # 35.7.8 I2S error flags There are three error flags for the I2S cell. #### **Underrun flag (UDR)** In slave transmission mode this flag is set when the first clock for data transmission appears while the software has not yet loaded any value into SPIx_DR. It is available when the I2SMOD bit in the SPIx_I2SCFGR register is set. An interrupt may be generated if the ERRIE bit in the SPIx_CR2 register is set. The UDR bit is cleared by a read operation on the SPIx_SR register. #### Overrun flag (OVR) This flag is set when data are received and the previous data have not yet been read from the SPIx_DR register. As a result, the incoming data are lost. An interrupt may be generated if the ERRIE bit is set in the SPIx_CR2 register. In this case, the receive buffer contents are not updated with the newly received data from the transmitter device. A read operation to the SPIx_DR register returns the previous correctly received data. All other subsequently transmitted half-words are lost. Clearing the OVR bit is done by a read operation on the SPIx_DR register followed by a read access to the SPIx_SR register. ### Frame error flag (FRE) This flag can be set by hardware only if the I2S is configured in Slave mode. It is set if the external master is changing the WS line while the slave is not expecting this change. If the RM0444 Rev 5 1183/1390 synchronization is lost, the following steps are required to recover from this state and resynchronize the external master device with the I2S slave device: - 1. Disable the I2S. - 2. Enable it again when the correct level is detected on the WS line (WS line is high in I²S mode or low for MSB- or LSB-justified or PCM modes. Desynchronization between master and slave devices may be due to noisy environment on the CK communication clock or on the WS frame synchronization line. An error interrupt can be generated if the ERRIE bit is set. The desynchronization flag (FRE) is cleared by software when the status register is read. # 35.7.9 DMA features In I²S mode, the DMA works in exactly the same way as it does in SPI mode. There is no difference except that the CRC feature is not available in I²S mode since there is no data transfer protection system. # 35.8 I2S interrupts Table 200 provides the list of I2S interrupts. Table 200. I2S interrupt requests | Interrupt event | Event flag | Enable control bit | | | | |-------------------------------|------------|--------------------|--|--|--| | Transmit buffer empty flag | TXE | TXEIE | | | | | Receive buffer not empty flag | RXNE | RXNEIE | | | | | Overrun error | OVR | | | | | | Underrun error | UDR | ERRIE | | | | | Frame error flag | FRE | | | | | # 35.9 SPI and I2S registers The peripheral registers can be accessed by half-words (16-bit) or words (32-bit). SPI_DR in addition can be accessed by 8-bit access. # 35.9.1 SPI control register 1 (SPIx_CR1) Address offset: 0x00 Reset value: 0x0000 | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|--------------|--------|-----------|-------------|------|------------|-----|-----|--------------|-----|----|---------|----|------|------|------| | Ī | BIDIM
ODE | BIDIOE | CRCE
N | CRCN
EXT | CRCL | RXONL
Y | SSM | SSI | LSBFIR
ST | SPE | | BR[2:0] | | MSTR | CPOL | СРНА | | | rw #### Bit 15 BIDIMODE: Bidirectional data mode enable. This bit enables half-duplex communication using common single bidirectional data line. Keep RXONLY bit clear when bidirectional mode is active. 0: 2-line unidirectional data mode selected 1: 1-line bidirectional data mode selected Note: This bit is not used in I²S mode. #### Bit 14 BIDIOE: Output enable in bidirectional mode This bit combined with the BIDIMODE bit selects the direction of transfer in bidirectional mode. - 0: Output disabled (receive-only mode) - 1: Output enabled (transmit-only mode) Note: In master mode, the MOSI pin is used and in slave mode, the MISO pin is used. This bit is not used in I^2S mode. # Bit 13 CRCEN: Hardware CRC calculation enable - 0: CRC calculation disabled - 1: CRC calculation enabled Note: This bit should be written only when SPI is disabled (SPE = '0') for correct operation. This bit is not used in I^2S mode. #### Bit 12 CRCNEXT: Transmit CRC next - 0: Next transmit value is from Tx buffer. - 1: Next transmit value is from Tx CRC register. Note: This bit has to be written as soon as the last data is written in the SPIx_DR register. This bit is not used in I^2 S mode. #### Bit 11 CRCL: CRC length This bit is set and cleared by software to select the CRC length. 0: 8-bit CRC length 1: 16-bit CRC length Note: This bit should be written only when SPI is disabled (SPE = '0') for correct operation. This bit is not used in I^2S mode. #### Bit 10 RXONLY: Receive only mode enabled. This bit enables simplex communication using a single unidirectional line to receive data exclusively. Keep BIDIMODE bit clear when receive only mode is active. This bit is also useful in a multislave system in which this particular slave is not accessed, the output from the accessed slave is not corrupted. - 0: Full-duplex (Transmit and receive) - 1: Output disabled (Receive-only mode) Note: This bit is not used in I²S mode. #### Bit 9 SSM: Software slave management When the SSM bit is set, the NSS pin input is replaced with the value from the SSI bit. - 0: Software slave management disabled - 1: Software slave management enabled Note: This bit is not used in I²S mode and SPI TI mode. #### Bit 8 SSI: Internal slave select This bit has an effect only when the SSM bit is set. The value of this bit is forced onto the NSS pin and the I/O value of the NSS pin is ignored. Note: This bit is not used in I²S mode and SPI TI mode. #### Bit 7 LSBFIRST: Frame format - 0: data is transmitted / received with the MSB first - 1: data is transmitted / received with the LSB first Note: 1. This bit should not be changed when communication is ongoing. 2. This bit is not used in I²S mode and SPI TI mode. #### Bit 6 SPE: SPI enable - 0: Peripheral disabled - 1: Peripheral enabled Note: When disabling the SPI, follow the procedure described in Procedure for disabling the SPI on page 1151. This bit is not used in I²S mode. #### Bits 5:3 BR[2:0]: Baud rate control 000: f_{PCLK}/2 001: f_{PCLK}/4 010: f_{PCLK}/8 011: f_{PCLK}/16 100: f_{PCLK}/32 101: f_{PCLK}/64 110: f_{PCLK}/128 111: f_{PCLK}/256 Note: These bits should not be changed when communication is ongoing. These bits are not used in I²S mode. #### Bit 2 MSTR: Master selection - 0: Slave configuration - 1: Master configuration Note: This bit should not be changed when communication is ongoing. This bit is not used in I^2S mode. Bit 1 CPOL: Clock polarity 0: CK to 0 when idle 1: CK to 1 when idle Note: This bit should not be changed when communication is ongoing. This bit is not used in I²S mode and SPI TI mode except the case when CRC is applied at TI mode. Bit 0 CPHA: Clock phase 0: The first clock transition is the first data capture edge 1: The second clock transition is the first data capture edge Note: This bit should not be changed when communication is ongoing. This bit is not used in I^2S mode and SPI TI mode except the case when CRC is applied at TI mode. ### 35.9.2 SPI control register 2 (SPIx CR2) Address offset: 0x04 Reset value: 0x0700 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-------------|-------------|-----------|----|-----|-------|----|-------|--------|-------|-----|------|------|---------|---------| | Res. | LDMA
_TX | LDMA
_RX | FRXT
H | | DS[| [3:0] | | TXEIE | RXNEIE | ERRIE | FRF | NSSP | SSOE | TXDMAEN | RXDMAEN | | | rw Bit 15 Reserved, must be kept at reset value. #### Bit 14 LDMA_TX: Last DMA transfer for transmission This bit is used in data packing mode, to define if the total number of data to transmit by DMA is odd or even. It has significance only if the TXDMAEN bit in the SPIx_CR2 register is set and if packing mode is used (data length =< 8-bit and write access to SPIx_DR is 16-bit wide). It has to be written when the SPI is disabled (SPE = 0 in the SPIx_CR1 register). - 0: Number of data to transfer is even - 1: Number of data to transfer is odd Note: Refer to Procedure for disabling the SPI on page 1151 if the CRCEN bit is set. This bit is not used in I²S mode. #### Bit 13 LDMA_RX: Last DMA transfer for reception This bit is used in data packing mode, to define if the total number of data to receive by DMA is odd or even. It has significance only if the RXDMAEN bit in the SPIx_CR2 register is set and if packing mode is used (data length =< 8-bit and write access to SPIx_DR is 16-bit wide). It has to be written when the SPI is disabled (SPE = 0 in the SPIx_CR1 register). - 0: Number of data to transfer is even - 1: Number of data to transfer is odd Note: Refer to Procedure for disabling the SPI on page 1151 if the CRCEN bit is set. This bit is not used in I²S mode. #### Bit 12 FRXTH: FIFO reception threshold This bit is used to set the threshold of the RXFIFO that triggers an RXNE event - 0: RXNE event is generated if the FIFO level is greater than or equal to 1/2 (16-bit) - 1: RXNE event is generated if the FIFO level is greater than or equal to 1/4 (8-bit) Note: This bit is not used in I²S mode. RM0444 Rev 5 1187/1390 ### Bits 11:8 DS[3:0]: Data size These bits configure the data length for SPI transfers. 0000: Not used 0001: Not used 0010: Not used 0011: 4-bit 0100: 5-bit 0101: 6-bit 0110: 7-bit 0111: 8-bit 1000: 9-bit 1000. 3-51 1001: 10-bit 1010: 11-bit 1011: 12-bit 1100: 13-bit 1101: 14-bit 1110: 15-bit 1111: 16-bit If software attempts to write one of the "Not used" values, they are forced to the value "0111" (8-bit) Note: These bits are not used in I²S mode. #### Bit 7
TXEIE: Tx buffer empty interrupt enable - 0: TXE interrupt masked - 1: TXE interrupt not masked. Used to generate an interrupt request when the TXE flag is set. #### Bit 6 RXNEIE: RX buffer not empty interrupt enable - 0: RXNE interrupt masked - 1: RXNE interrupt not masked. Used to generate an interrupt request when the RXNE flag is set #### Bit 5 ERRIE: Error interrupt enable This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode and UDR, OVR, and FRE in I²S mode). - 0: Error interrupt is masked - 1: Error interrupt is enabled #### Bit 4 FRF: Frame format 0: SPI Motorola mode 1 SPI TI mode Note: This bit must be written only when the SPI is disabled (SPE=0). This bit is not used in I^2S mode. ### Bit 3 NSSP: NSS pulse management This bit is used in master mode only. it allows the SPI to generate an NSS pulse between two consecutive data when doing continuous transfers. In the case of a single data transfer, it forces the NSS pin high level after the transfer. It has no meaning if CPHA = '1', or FRF = '1'. - 0: No NSS pulse - 1: NSS pulse generated Note: 1. This bit must be written only when the SPI is disabled (SPE=0). 2. This bit is not used in I²S mode and SPI TI mode. Bit 2 SSOE: SS output enable 0: SS output is disabled in master mode and the SPI interface can work in multimaster configuration 1: SS output is enabled in master mode and when the SPI interface is enabled. The SPI interface cannot work in a multimaster environment. Note: This bit is not used in I²S mode and SPI TI mode. #### Bit 1 **TXDMAEN:** Tx buffer DMA enable When this bit is set, a DMA request is generated whenever the TXE flag is set. 0: Tx buffer DMA disabled 1: Tx buffer DMA enabled #### Bit 0 RXDMAEN: Rx buffer DMA enable When this bit is set, a DMA request is generated whenever the RXNE flag is set. 0: Rx buffer DMA disabled1: Rx buffer DMA enabled # 35.9.3 SPI status register (SPIx_SR) Address offset: 0x08 Reset value: 0x0002 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|--------|------|---------|-----|-----|-----|------|------------|-----|--------|-----|------| | Res. | Res. | Res. | FTLV | L[1:0] | FRLV | 'L[1:0] | FRE | BSY | OVR | MODF | CRCE
RR | UDR | CHSIDE | TXE | RXNE | | | | | r | r | r | r | r | r | r | r | rc_w0 | r | r | r | r | #### Bits 15:13 Reserved, must be kept at reset value. ## Bits 12:11 FTLVL[1:0]: FIFO transmission level These bits are set and cleared by hardware. 00: FIFO empty 01: 1/4 FIFO 10: 1/2 FIFO 11: FIFO full (considered as FULL when the FIFO threshold is greater than 1/2) Note: This bit is not used in I^2S mode. #### Bits 10:9 FRLVL[1:0]: FIFO reception level These bits are set and cleared by hardware. 00: FIFO empty 01: 1/4 FIFO 10: 1/2 FIFO 11: FIFO full Note: These bits are not used in I²S mode and in SPI receive-only mode while CRC calculation is enabled. ## Bit 8 FRE: Frame format error This flag is used for SPI in TI slave mode and I²S slave mode. Refer to Section 35.5.11: SPI error flags and Section 35.7.8: I2S error flags. This flag is set by hardware and reset when SPIx_SR is read by software. 0: No frame format error 1: A frame format error occurred #### Bit 7 BSY: Busy flag 0: SPI (or I2S) not busy 1: SPI (or I2S) is busy in communication or Tx buffer is not empty This flag is set and cleared by hardware. Note: The BSY flag must be used with caution: refer to Section 35.5.10: SPI status flags and Procedure for disabling the SPI on page 1151. #### Bit 6 OVR: Overrun flag 0: No overrun occurred 1: Overrun occurred This flag is set by hardware and reset by a software sequence. Refer to *I2S error flags on page 1183* for the software sequence. #### Bit 5 MODF: Mode fault 0: No mode fault occurred 1: Mode fault occurred This flag is set by hardware and reset by a software sequence. Refer to *Section : Mode fault (MODF) on page 1161* for the software sequence. Note: This bit is not used in I²S mode. #### Bit 4 CRCERR: CRC error flag 0: CRC value received matches the SPIx RXCRCR value 1: CRC value received does not match the SPIx_RXCRCR value Note: This flag is set by hardware and cleared by software writing 0. This bit is not used in I^2S mode. #### Bit 3 UDR: Underrun flag 0: No underrun occurred 1: Underrun occurred This flag is set by hardware and reset by a software sequence. Refer to *I2S error flags on page 1183* for the software sequence. Note: This bit is not used in SPI mode. #### Bit 2 CHSIDE: Channel side 0: Channel Left has to be transmitted or has been received 1: Channel Right has to be transmitted or has been received Note: This bit is not used in SPI mode. It has no significance in PCM mode. ## Bit 1 TXE: Transmit buffer empty 0: Tx buffer not empty 1: Tx buffer empty # Bit 0 RXNE: Receive buffer not empty 0: Rx buffer empty 1: Rx buffer not empty ## 35.9.4 SPI data register (SPIx_DR) Address offset: 0x0C Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|-----|-------|----|----|----|----|----|----|----| | | | | | | | | DR[| 15:0] | | | | | | | | | rw #### Bits 15:0 DR[15:0]: Data register Data received or to be transmitted The data register serves as an interface between the Rx and Tx FIFOs. When the data register is read, RxFIFO is accessed while the write to data register accesses TxFIFO (See Section 35.5.9: Data transmission and reception procedures). Note: Data is always right-aligned. Unused bits are ignored when writing to the register, and read as zero when the register is read. The Rx threshold setting must always correspond with the read access currently used. # 35.9.5 SPI CRC polynomial register (SPIx_CRCPR) Address offset: 0x10 Reset value: 0x0007 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|----|-------|----------|----|----|----|----|----|----|----| | | | | | | | | CRCPO | LY[15:0] | | | | | | | | | rw #### Bits 15:0 CRCPOLY[15:0]: CRC polynomial register This register contains the polynomial for the CRC calculation. The CRC polynomial (0x0007) is the reset value of this register. Another polynomial can be configured as required. Note: The polynomial value should be odd only. No even value is supported. # 35.9.6 SPI Rx CRC register (SPIx_RXCRCR) Address offset: 0x14 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|---|------|---------|---|---|---|---|---|---|---| | | | | | _ | | | RXCR | C[15:0] | | | | _ | | _ | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | #### Bits 15:0 RXCRC[15:0]: Rx CRC register When CRC calculation is enabled, the RXCRC[15:0] bits contain the computed CRC value of the subsequently received bytes. This register is reset when the CRCEN bit in SPIx_CR1 register is written to 1. The CRC is calculated serially using the polynomial programmed in the SPIx_CRCPR register. Only the 8 LSB bits are considered when the CRC frame format is set to be 8-bit length (CRCL bit in the SPIx_CR1 is cleared). CRC calculation is done based on any CRC8 standard. The entire 16-bits of this register are considered when a 16-bit CRC frame format is selected (CRCL bit in the SPIx_CR1 register is set). CRC calculation is done based on any CRC16 standard. Note: A read to this register when the BSY Flag is set could return an incorrect value. These bits are not used in l^2S mode. # 35.9.7 SPI Tx CRC register (SPIx_TXCRCR) Address offset: 0x18 RM0444 Rev 5 1191/1390 Reset value: 0x0000 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|---|------|---------|---|---|---|---|---|---|---| | | | | | | | | TXCR | C[15:0] | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | #### Bits 15:0 TXCRC[15:0]: Tx CRC register When CRC calculation is enabled, the TXCRC[7:0] bits contain the computed CRC value of the subsequently transmitted bytes. This register is reset when the CRCEN bit of SPIx_CR1 is written to 1. The CRC is calculated serially using the polynomial programmed in the SPIx_CRCPR register. Only the 8 LSB bits are considered when the CRC frame format is set to be 8-bit length (CRCL bit in the SPIx_CR1 is cleared). CRC calculation is done based on any CRC8 standard. The entire 16-bits of this register are considered when a 16-bit CRC frame format is selected (CRCL bit in the SPIx_CR1 register is set). CRC calculation is done based on any CRC16 standard. Note: A read to this register when the BSY flag is set could return an incorrect value. These bits are not used in I^2S mode. # 35.9.8 SPIx_I2S configuration register (SPIx_I2SCFGR) Address offset: 0x1C Reset value: 0x0000 | 15 | 14 | 13 | . 12 | 11 | 10 | 9 | 8 | . 7 | 6 | 5 | 4 | . 3 | . 2 | 1 | . 0 | |------|------|------|-------------|--------|------|-------|--------|---------|------|-------|--------|-------|-------|---------|-------| | Res. | Res. | Res. | ASTR
TEN | I2SMOD | I2SE | I2SCF | G[1:0] | PCMSYNC | Res. | I2SST | D[1:0] | CKPOL | DATLE | EN[1:0] | CHLEN | | | | | rw | rw | rw | rw | rw | rw | | rw | rw | rw | rw | rw | rw | Bits 15:13 Reserved, must be kept at reset value. # Bit 12 **ASTRTEN**: Asynchronous start enable. 0: The Asynchronous start is disabled. When the I2S is enabled in slave mode, the hardware starts the transfer when the I2S clock is received and an appropriate transition is detected on the WS signal. 1: The Asynchronous start is enabled. When the I2S is enabled in slave mode, the hardware starts the transfer when the I2S clock is received and the appropriate level is detected on the WS signal. Note: The appropriate **transition** is a falling edge on WS signal when I²S Philips Standard is used, or a rising edge for other standards. The appropriate **level** is a low level on WS signal when I^2S Philips Standard is used, or a high level
for other standards. Please refer to Section 35.7.3: Start-up description for additional information. #### Bit 11 I2SMOD: I2S mode selection 0: SPI mode is selected1: I2S mode is selected Note: This bit should be configured when the SPI is disabled. Bit 10 I2SE: I2S enable 0: I2S peripheral is disabled 1: I2S peripheral is enabled Note: This bit is not used in SPI mode. #### Bits 9:8 I2SCFG[1:0]: I2S configuration mode 00: Slave - transmit 01: Slave - receive 10: Master - transmit 11: Master - receive Note: These bits should be configured when the I2S is disabled. They are not used in SPI mode. #### Bit 7 PCMSYNC: PCM frame synchronization 0: Short frame synchronization 1: Long frame synchronization Note: This bit has a meaning only if I2SSTD = 11 (PCM standard is used). It is not used in SPI mode. Bit 6 Reserved, must be kept at reset value. # Bits 5:4 I2SSTD[1:0]: I2S standard selection 00: I2S Philips standard 01: MSB justified standard (left justified) 10: LSB justified standard (right justified) 11: PCM standard For more details on I²S standards, refer to Section 35.7.2 on page 1167 Note: For correct operation, these bits should be configured when the I2S is disabled. They are not used in SPI mode. #### Bit 3 CKPOL: Inactive state clock polarity 0: I2S clock inactive state is low level 1: I2S clock inactive state is high level Note: For correct operation, this bit should be configured when the I2S is disabled. It is not used in SPI mode. The bit CKPOL does not affect the CK edge sensitivity used to receive or transmit the SD and WS signals. #### Bits 2:1 DATLEN[1:0]: Data length to be transferred 00: 16-bit data length 01: 24-bit data length 10: 32-bit data length 11: Not allowed Note: For correct operation, these bits should be configured when the I2S is disabled. They are not used in SPI mode. #### Bit 0 CHLEN: Channel length (number of bits per audio channel) 0: 16-bit wide 1: 32-bit wide The bit write operation has a meaning only if DATLEN = 00 otherwise the channel length is fixed to 32-bit by hardware whatever the value filled in. Note: For correct operation, this bit should be configured when the I2S is disabled. It is not used in SPI mode. RM0444 Rev 5 1193/1390 # 35.9.9 SPIx_I2S prescaler register (SPIx_I2SPR) Address offset: 0x20 Reset value: 0x0002 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|-------|-----|----|----|----|-------|--------|----|----|----| | Res. | Res. | Res. | Res. | Res. | Res. | MCKOE | ODD | | | | I2SDI | V[7:0] | | | | | | | | | | | rw Bits 15:10 Reserved, must be kept at reset value. Bit 9 MCKOE: Master clock output enable 0: Master clock output is disabled 1: Master clock output is enabled Note: This bit should be configured when the I2S is disabled. It is used only when the I2S is in master mode. It is not used in SPI mode. Bit 8 **ODD**: Odd factor for the prescaler 0: Real divider value is = I2SDIV *2 1: Real divider value is = (I2SDIV * 2) + 1 Refer to Section 35.7.3 on page 1174. Note: This bit should be configured when the I2S is disabled. It is used only when the I2S is in master mode. It is not used in SPI mode. Bits 7:0 I2SDIV[7:0]: I2S linear prescaler I2SDIV [7:0] = 0 or I2SDIV [7:0] = 1 are forbidden values. Refer to Section 35.7.3 on page 1174. Note: These bits should be configured when the I2S is disabled. They are used only when the I2S is in master mode. They are not used in SPI mode. # 35.9.10 SPI/I2S register map Table 201 shows the SPI/I2S register map and reset values. Table 201. SPI/I2S register map and reset values | | | | | lak | _ | _ | _ | _ | | | | <u> </u> | | | | Ρ, | aliv | | C3 | | vai | | _ | | | | | | —- | | | | _ | |--------|--------------|------|------|------|------|------|------|------|------|------|------|----------|------|------|------|------|---------------------------------------|---|---------|---------|--------------|------|--------|-------------|------|----------|--------|-------|--------|------|--------|---------|---------| | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 7 | 9 | 6 | 8 | 2 | 9 | 2 | 4 | က | 7 | 1 | 0 | | 0x00 | SPIx_CR1 | Res. BIDIMODE | BIDIOE | CRCEN | CRCNEXT | CRCL | RXONLY | SSM | SSI | LSBFIRST | SPE | BF | R [2: | 0] | MSTR | CPOL | CPHA | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x04 | SPIx_CR2 | Res. LDMA_TX | LDMA_RX | FRXTH | ı | DS[| 3:0] | | TXEIE | RXNEIE | ERRIE | FRF | NSSP | SSOE | TXDMAEN | RXDMAEN | | | Reset value | | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x08 | SPIx_SR | Res. FTI VI [1-0] | | [0.17] | וייין וייין | FRE | BSY | OVR | MODF | CRCERR | UDR | CHSIDE | TXE | RXNE | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | 0x0C | SPIx_DR | Res. | | | | | | | DR[1 | 15:0 |] | | | | | | | | UXUC . | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | SPIx_CRCPR | Res. | | | | | (| CRC | PO | LY[′ | 15:0 |] | | | | | | | 0x10 | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | | | SPIx_RXCRCR | Res. RXCRC[15:0] | | | | | | | | | | | | | | | | | 0x14 | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | SPIx_TXCRCR | Res. TXCRC[15:0] | | | | | | | | | | | | | | | | | 0x18 | Reset value | 0x1C | SPIx_I2SCFGR | Res. Res | | | | | | | | | | | | | | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | 0x20 | SPIx_I2SPR | Res. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | | | | | | | | | | | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | Refer to Section 2.2 on page 58 for the register boundary addresses. RM0444 Rev 5 1195/1390 # 36 FD controller area network (FDCAN) # 36.1 Introduction The controller area network (CAN) subsystem (see *Figure 392*) consists of one CAN module, a shared message RAM and a configuration block. Refer to the memory map for the base address of each of these parts. The modules (FDCAN) are compliant with ISO 11898-1: 2015 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0. A 0.8-Kbyte message RAM per FDCAN instance implements filters, receive FIFOs, transmit event FIFOs and transmit FIFOs. The CAN subsystem I/O signals and pins are detailed, respectively, in *Table 202* and *Figure 392*. Table 202. CAN subsystem I/O signals | Name | Туре | Description | |----------------|----------------------|---| | fdcan_ck | Digital input | CAN subsystem kernel clock input | | fdcan_pclk | Digital input | CAN subsystem APB interface clock input | | fdan_intr0_it | Digital autaut | FDCAN interrupt0 | | fdan_intr1_it | Digital output | FDCAN interrupt1 | | fdcan_ts[0:15] | - | External timestamp vector | | FDCAN_RX | Digital input | FDCAN receive pin | | FDCAN_TX | Digital output | FDCAN transmit pin | | APB interface | Digital input/output | Single APP with multiple psel for configuration, control and RAM access | Figure 392. CAN subsystem # 36.2 FDCAN main features - Conform with CAN protocol version 2.0 part A, B and ISO 11898-1: 2015, -4 - CAN FD with maximum 64 data bytes supported - CAN error logging - AUTOSAR and J1939 support - Improved acceptance filtering - Two Receive FIFOs of three payloads each (up to 64 Bytes per payload) - Separate signaling on reception of High priority messages - Configurable Transmit FIFO / queue of three payload (up to 64 Bytes per payload) -
Transmit Event FIFO - Programmable loop-back test mode - Maskable module interrupts - Two clock domains: APB bus interface and CAN core kernel clock - Power down support # 36.3 FDCAN functional description Figure 393. FDCAN block diagram ## **Dual interrupt lines** The FDCAN peripheral provides two interrupt lines, fdcan_intr0_it and fdcan_intr1_it. By programming EINT0 and EINT1 bits in FDCAN_ILE register, the interrupt lines can be separately enabled or disabled. ## **CAN** core The CAN core contains the Protocol Controller and receive / transmit shift registers. It handles all ISO 11898-1: 2015 protocol functions and supports both 11-bit and 29-bit identifiers. ## **Sync** The Sync block synchronizes signals from the APB clock domain to the CAN kernel clock domain and vice versa. RM0444 Rev 5 1199/1390 #### Tx handler Controls the message transfer from the essage RAM to the CAN core. A maximum of three Tx Buffers is available for transmission. Tx Buffer can be used as Tx FIFO or a Tx queue. Tx Event FIFO stores Tx timestamps together with the corresponding Message ID. Transmit cancellation is also supported. #### Rx handler Controls the transfer of received messages from the CAN core to the external Message RAM. The Rx Handler supports two Receive FIFOs, for storage of all messages that have passed acceptance filtering. An Rx timestamp is stored together with each message. Up to 28 filters can be defined for 11-bit IDs, up to 8 filters for 29-bit IDs. #### **APB** interface Connects the FDCAN to the APB bus for configuration registers, controller configuration and RAM access. ## Message RAM interface Connects the FDCAN access to an external 1 Kbyte Message RAM through a RAM controller / arbiter. # **36.3.1** Bit timing The bit timing logic monitors the serial bus-line and performs sampling and adjustment of the sample point by synchronizing on the start-bit edge and resynchronizing on the following edges. As shown in *Figure 394*, its operation may be explained simply by splitting the bit time in three segments, as follows: - Synchronization segment (SYNC_SEG): a bit change is expected to occur within this time segment, having a fixed length of one time quantum (1 x tq). - Bit segment 1 (BS1): defines the location of the sample point. It includes the PROP_SEG and PHASE_SEG1 of the CAN standard. Its duration is programmable between 1 and 16 time quanta, but may be automatically lengthened to compensate for positive phase drifts due to differences in the frequency of various nodes of the network. - Bit segment 2 (BS2): defines the location of the transmit point. It represents the PHASE_SEG2 of the CAN standard, its duration is programmable between one and eight time quanta, but may also be automatically shortened to compensate for negative phase drifts. SyncSeg Bit segment 1 (BS1) Bit segment 2 (BS2) t_{SyncSeg} t_{BS1} t_{BS2} Sample Transmit point point Figure 394. Bit timing The baud rate is the inverse of bit time (baud rate = 1 / bit time), which, in turn, is the sum of three components. *Figure 394* indicates that bit time = $t_{SyncSeg} + t_{BS1} + t_{BS2}$, where: - for the nominal bit time - tq = (FDCAN_NBTP.NBRP[8:0] + 1) * $t_{fdcan ta clk}$ - t_{SyncSeg} = 1 tq - $t_{BS1} = tq * (FDCAN_NBTP.NTSEG1[7:0] + 1)$ - t_{BS2} = tq * (FDCAN_NBTP.NTSEG2[6:0] + 1) - for the data bit time - tq = (FDCAN_DBTP.DBRP[4:0] + 1) * $t_{fdcan \ tq \ clk}$ - t_{SyncSeq} = 1 tq - t_{BS1} = tq * (FDCAN_DBTP.DTSEG1[4:0] + 1) - $t_{BS2} = tq * (FDCAN_DBTP.DTSEG2[3:0] + 1)$ The (Re)Synchronization Jump Width (SJW) defines an upper bound for the amount of lengthening or shortening of the bit segments. It is programmable between one and four time quanta. A valid edge is defined as the first transition in a bit time from dominant to recessive bus level, provided the controller itself does not send a recessive bit. If a valid edge is detected in BS1 instead of SYNC_SEG, BS1 is extended by up to SJW so that the sample point is delayed. Conversely, if a valid edge is detected in BS2 instead of SYNC_SEG, BS2 is shortened by up to SJW so that the transmit point is moved earlier. As a safeguard against programming errors, the configuration of the Bit Timing register is only possible while the device is in Standby mode. Registers FDCAN_DBTP and FDCAN_NBTP (dedicated, respectively, to data and nominal bit timing) are only accessible when CCCR.CCE and CCCR.INIT are set. Note: For a detailed description of the CAN bit timing and resynchronization mechanism, refer to the ISO 11898-1 standard. ## 36.3.2 Operating modes ## Configuration Access to IP version, hardware and input clock divider configuration. When the clock divider is set to 0, the primary input clock is used as it is. 477 RM0444 Rev 5 1201/1390 #### Software initialization Software initialization is started by setting INIT bit in FDCAN_CCCR register, either by software or by a hardware reset, or by going Bus_Off. While INIT bit in FDCAN_CCCR register is set, message transfer from and to the CAN bus is stopped, the status of the CAN bus output FDCAN_TX is recessive (high). The counters of the Error Management Logic (EML) are unchanged. Setting INIT bit in FDCAN_CCCR does not change any configuration register. Clearing INIT bit in FDCAN_CCCR finishes the software initialization. Afterwards the Bit Stream Processor (BSP) synchronizes itself to the data transfer on the CAN bus by waiting for the occurrence of a sequence of 11 consecutive recessive bits (Bus_Idle) before it can take part in bus activities and start the message transfer. Access to the FDCAN configuration registers is only enabled when both INIT bit in FDCAN CCCR register and CCE bit in FDCAN CCCR register are set. CCE bit in FDCAN_CCCR register can only be set/cleared while INIT bit in FDCAN_CCCR is set. CCE bit in FDCAN_CCCR register is automatically cleared when INIT bit in FDCAN_CCCR is cleared. The following registers are reset when CCE bit in FDCAN CCCR register is set: - FDCAN HPMS High Priority Message Status - FDCAN RXF0S Rx FIFO 0 Status - FDCAN RXF1S Rx FIFO 1 Status - FDCAN_TXFQS Tx FIFO/Queue Status - FDCAN_TXBRP Tx Buffer Request Pending - FDCAN TXBTO Tx Buffer Transmission Occurred - FDCAN TXBCF Tx Buffer Cancellation Finished - FDCAN TXEFS Tx Event FIFO Status The Timeout Counter value TOC bit in FDCAN_TOCV register is preset to the value configured by TOP bit in FDCAN_TOCC register when CCE bit in FDCAN_CCCR is set. In addition the state machines of the Tx Handler and Rx Handler are held in idle state while CCE bit in FDCAN_CCCR is set. The following registers can be written only when CCE bit in FDCAN_CCCR register is cleared: - TXBAR Tx Buffer Add Request - TXBCR Tx Buffer Cancellation Request TEST bit in FDCAN_CCCR and MON bit in FDCAN_CCCR can only be set by software while both INIT bit in CCCR and CCE bit in CCCR register are set. Both bits may be reset at any time. DAR bit in FDCAN_CCCR can only be set/cleared while both INIT bit in FDCAN_CCCR and CCE bit in FDCAN_CCCR are set. #### **Normal operation** The FDCAN default operating mode after hardware reset is event-driven CAN communication. TT Operation Mode is not supported. Once the FDCAN is initialized and INIT bit in FDCAN_CCCR register is cleared, the FDCAN synchronizes itself to the CAN bus and is ready for communication. After passing the acceptance filtering, received messages including Message ID and DLC are stored into the Rx FIFO 0 or Rx FIFO 1. For messages to be transmitted, Tx FIFO or Tx queue can be initialized or updated. Automated transmission on reception of remote frames is not supported. ## **CAN FD operation** There are two variants in the FDCAN protocol: - 1. Long Frame Mode (LFM), where the data field of a CAN frame may be longer that eight bytes - 2. Fast Frame Mode (FFM), where control field, data field, and CRC field of a CAN frame are transmitted with a higher bit rate compared to the beginning and to the end of the frame Fast Frame Mode can be used in combination with Long Frame Mode. The previously reserved bit in CAN frames with 11-bit identifiers and the first previously reserved bit in CAN frames with 29-bit identifiers are decoded as FDF bit: FDF recessive signifies a CAN FD frame, while FDF dominant signifies a classic CAN frame. In a CAN FD frame, the two bits following FDF, res and BRS, decide whether the bit rate inside this CAN FD frame is switched. A CAN FD bit rate switch is signified by res dominant and BRS recessive. The coding of res recessive is reserved for future expansion of the protocol. In case the FDCAN receives a frame with FDF recessive and res recessive, it signals a Protocol Exception Event by setting bit PSR.PXE. When Protocol Exception Handling is enabled (CCCR.PXHD = 0), this causes the operation state to change from Receiver (PSR.ACT = 10) to Integrating (PSR.ACT = 00) at the next sample point. In case Protocol Exception Handling is disabled (CCCR.PXHD = 1), the FDCAN treats a recessive res bit as a form error and responds with an error frame. CAN FD operation is enabled by programming CCCR.FDOE. In case CCCR.FDOE = 1, transmission and reception of CAN FD frames is enabled. Transmission and reception of Classic CAN frames is always possible. Whether a CAN FD frame or a classic CAN frame is transmitted can be configured via bit FDF in the respective Tx Buffer element. With CCCR.FDOE = 0, received frames are interpreted as classic CAN frames, which leads to the transmission of an error frame when receiving a CAN FD frame. When CAN FD operation is disabled, no CAN FD frames are transmitted even if bit FDF of a Tx Buffer element is set. CCCR.FDOE and CCCR.BRSE can only be changed while CCCR.INIT and CCCR.CCE are both set. With CCCR.FDOE = 0, the setting of bits FDF and BRS is ignored and frames are transmitted in Classic CAN format. With CCCR.FDOE = 1 and CCCR.BRSE = 0, only bit FDF of a Tx Buffer element is evaluated. With CCCR.FDOE = 1 and CCCR.BRSE = 1, transmission of CAN FD frames
with bit rate switching is enabled. All Tx Buffer elements with bits FDF and BRS set are transmitted in CAN FD format with bit rate switching. RM0444 Rev 5 1203/1390 A mode change during CAN operation is recommended only under the following conditions: - The failure rate in the CAN FD data phase is significant higher than in the CAN FD arbitration phase. In this case disable the CAN FD bit rate switching option for transmissions. - During system startup all nodes are transmitting Classic CAN messages until it is verified that they are able to communicate in CAN FD format. If this is true, all nodes switch to CAN FD operation. - Wake-up messages in CAN Partial Networking have to be transmitted in Classic CAN format. - End-of-line programming in case not all nodes are CAN FD capable. Non CAN FD nodes are held in Silent mode until programming is completed. Then all nodes switch back to Classic CAN communication. In the FDCAN format, the coding of the DLC differs from the one of the standard CAN format. The DLC codes 0 to 8 have the same coding as in standard CAN, the codes 9 to 15 (that in standard CAN all code a data field of 8 bytes) are coded according to *Table 203*. Table 203. DLC coding in FDCAN | DLC | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |----------------------|----|----|----|----|----|----|----| | Number of data bytes | 12 | 16 | 20 | 24 | 32 | 48 | 64 | In CAN FD Fast Frames, the bit timing is switched inside the frame, after the BRS (Bit Rate Switch) bit, if this bit is recessive. Before the BRS bit, in the FDCAN arbitration phase, the standard CAN bit timing is used as defined by the Bit Timing and Prescaler register BTP. In the following FDCAN data phase, the fast CAN bit timing is used as defined by the Fast Bit Timing and Prescaler register FBTP. The bit timing is switched back from the fast timing at the CRC delimiter or when an error is detected, whichever occurs first. The maximum configurable bit rate in the CAN FD data phase depends on the FDCAN kernel clock frequency. For example, with a FDCAN kernel clock frequency of 20 MHz and the shortest configurable bit time of four time quanta (tq), the bit rate in the data phase is 5 Mbit/s. In both data frame formats, CAN FD Long Frames and CAN FD Fast Frames, the value of the bit ESI (Error Status Indicator) is determined by the transmitter error state at the start of the transmission. If the transmitter is error passive, ESI is transmitted recessive, else it is transmitted dominant. In CAN FD remote frames the ESI bit is always transmitted dominant, independent of the transmitter error state. The data length code of CAN FD remote frames is transmitted as 0. In case a FDCAN Tx Buffer is configured for FDCAN transmission with DLC > 8, the first 8 bytes are transmitted as configured in the Tx Buffer while the remaining part of the data field is padded with 0xCC. When the FDCAN receives a FDCAN frame with DLC > 8, the first 8 bytes of that frame are stored into the matching Rx FIFO. The remaining bytes are discarded. #### Transceiver delay compensation During the data phase of a FDCAN transmission only one node is transmitting, all others are receivers. The length of the bus line has no impact. When transmitting via pin FDCAN_TX the protocol controller receives the transmitted data from its local CAN transceiver via pin FDCAN_RX. The received data is delayed by the CAN transceiver loop delay. In case this delay is greater than TSEG1 (time segment before sample point), a bit error is detected. Without transceiver delay compensation, the bit rate in the data phase of a FDCAN frame is limited by the transceivers loop delay. The FDCAN implements a delay compensation mechanism to compensate the CAN transceiver loop delay, thereby enabling transmission with higher bit rates during the FDCAN data phase independent of the delay of a specific CAN transceiver. To check for bit errors during the data phase of transmitting nodes, the delayed transmit data is compared against the received data at the Secondary Sample Point SSP. If a bit error is detected, the transmitter reacts on this bit error at the next following regular sample point. During arbitration phase the delay compensation is always disabled. The transmitter delay compensation enables configurations where the data bit time is shorter than the transmitter delay, it is described in detail in the new ISO11898-1. It is enabled by setting bit DBTP.TDC. The received bit is compared against the transmitted bit at the SSP. The SSP position is defined as the sum of the measured delay from the FDCAN transmit output pin FDCAN_TX through the transceiver to the receive input pin FDCAN_RX plus the transmitter delay compensation offset as configured by TDCR.TDCO. The transmitter delay compensation offset is used to adjust the position of the SSP inside the received bit (e.g. half of the bit time in the data phase). The position of the secondary sample point is rounded down to the next integer number of mtq (minimum time quantum, that is one period of fdcan_tq_ck clock). PSR.TDCV shows the actual transmitter delay compensation value. PSR.TDCV is cleared when CCCR.INIT is set and is updated at each transmission of an FD frame while DBTP.TDC is set. The following boundary conditions have to be considered for the transmitter delay compensation implemented in the FDCAN: - The sum of the measured delay from FDCAN_Tx to FDCAN_Rx and the configured transmitter delay compensation offset TDCR.TDCO has to be less than 6 bit times in the data phase. - The sum of the measured delay from FDCAN_TX to FDCAN_RX and the configured transmitter delay compensation offset TDCR.TDCO has to be less or equal 127 mtq. If the sum exceeds this value, the maximum value (127 mtq) is used for transmitter delay compensation. - The data phase ends at the sample point of the CRC delimiter, that stops checking received bits at the SSPs If transmitter delay compensation is enabled by programming DBTP.TDC = 1, the measurement is started within each transmitted CAN FD frame at the falling edge of bit FDF to bit res. The measurement is stopped when this edge is seen at the receive input pin FDCAN TX of the transmitter. The resolution of this measurement is one mtq. RM0444 Rev 5 1205/1390 Figure 395. Transceiver delay measurement To avoid that a dominant glitch inside the received FDF bit ends the delay compensation measurement before the falling edge of the received res bit (resulting in a to early SSP position), the use of a transmitter delay compensation filter window can be enabled by programming TDCR.TDCF. This defines a minimum value for the SSP position. Dominant edges on FDCAN_RX, that would result in an earlier SSP position are ignored for transmitter delay measurement. The measurement is stopped when the SSP position is at least TDCR.TDCF and FDCAN_RX is low. #### **Restricted Operation mode** In Restricted Operation mode the node is able to receive data and remote frames and to give acknowledge to valid frames, but it does not send data frames, remote frames, active error frames, or overload frames. In case of an error condition or overload condition, it does not send dominant bits, instead it waits for the occurrence of bus idle condition to resynchronize itself to the CAN communication. The error counters (ECR.REC, ECR.TEC) are frozen while Error Logging (ECR.CEL) is active. The software can set the FDCAN into Restricted Operation mode by setting bit CCCR.ASM. The bit can only be set by software when both CCCR.CCE and CCCR.INIT are set to 1. The bit can be cleared by software at any time. Restricted Operation mode is automatically entered when the Tx Handler was not able to read data from the Message RAM in time. To leave Restricted Operation Mode, the software has to reset CCCR.ASM. The Restricted Operation mode can be used in applications that adapt themselves to different CAN bit rates. In this case the application tests different bit rates and leaves the Restricted Operation mode after it has received a valid frame. Note: The Restricted Operation mode must not be combined with the Loop Back mode (internal or external). # **Bus Monitoring mode** The FDCAN is set in Bus Monitoring mode by setting CCCR.MON bit. In Bus Monitoring mode (for more details refer to ISO11898-1, 10.12 Bus monitoring), the FDCAN is able to receive valid data frames and valid remote frames, but cannot start a transmission. In this mode, it sends only recessive bits on the CAN bus. If the FDCAN is required to send a dominant bit (ACK bit, overload flag, active error flag), the bit is rerouted internally so that the FDCAN can monitor it, even if the CAN bus remains in recessive state. In Bus Monitoring Mode the TXBRP register is held in reset state. The Bus Monitoring mode can be used to analyze the traffic on a CAN bus without affecting it by the transmission of dominant bits. *Figure 396* shows the connection of FDCAN_TX and FDCAN_RX signals to the FDCAN in Bus Monitoring mode. Figure 396. Pin control in Bus Monitoring mode #### Disabled Automatic Retransmission (DAR) mode According to the CAN Specification (see ISO11898-1, 6.3.3 Recovery Management), the FDCAN provides means for automatic retransmission of frames that have lost arbitration or that have been disturbed by errors during transmission. By default automatic retransmission is enabled. # Frame transmission in Disabled Automatic Retransmission (DAR) mode In DAR mode all transmissions are automatically canceled after they have been started on the CAN bus. A Tx Buffer Tx Request Pending bit TXBRP.TRPx is reset after successful transmission, when a transmission has not yet been started at the point of cancellation, or has been aborted due to lost arbitration, or when an error has occurred during frame transmission. RM0444 Rev 5 1207/1390 - Successful transmission - Corresponding Tx Buffer Transmission Occurred bit TXBTO[TOx] set - Corresponding Tx Buffer Cancellation Finished bit TXBCF[CFx] not set - Successful
transmission in spite of cancellation - Corresponding Tx Buffer Transmission Occurred bit TXBTO[TOx] set - Corresponding Tx Buffer Cancellation Finished bit TXBCF[CFx] set - Arbitration loss or frame transmission disturbed - Corresponding Tx Buffer Transmission Occurred bit TXBTO[TOx] not set - Corresponding Tx Buffer Cancellation Finished bit TXBCF[CFx] set In case of a successful frame transmission, and if storage of Tx events is enabled, a Tx Event FIFO element is written with Event Type ET = 10 (transmission in spite of cancellation). ## Power down (Sleep mode) The FDCAN can be set into power down mode controlled by clock stop request input via CC control register CCCR[CSR]. As long as the clock stop request is active, bit CCCR[CSR] is read as 1. When all pending transmission requests have completed, the FDCAN waits until bus idle state is detected. Then the FDCAN sets then CCCR[INIT] to 1 to prevent any further CAN transfers. Now the FDCAN acknowledges that it is ready for power down by setting CCCR[CSA] to 1. In this state, before the clocks are switched off, further register accesses can be made. A write access to CCCR[INIT] has no effect. Now the module clock inputs may be switched off. To leave power down mode, the application has to turn on the module clocks before resetting CC control register flag CCCR.CSR. The FDCAN acknowledges this by resetting CCCR[CSA]. Afterwards, the application can restart CAN communication by resetting bit CCCR[INIT]. #### **Test modes** To enable write access to *FDCAN test register (FDCAN_TEST)*, bit CCCR.TEST must be set to 1, thus enabling the configuration of test modes and functions. Four output functions are available for the CAN transmit pin FDCAN_TX by programming TEST.TX. In addition to its default function (the serial data output) it can drive the CAN Sample Point signal to monitor the FDCAN bit timing and it can drive constant dominant or recessive values. The actual value at pin FDCAN_RX can be read from TEST.RX. Both functions can be used to check the CAN bus physical layer. Due to the synchronization mechanism between CAN kernel clock and APB clock domain, there may be a delay of several APB clock periods between writing to TEST.TX until the new configuration is visible at FDCAN_TX output pin. This applies also when reading FDCAN_RX input pin via TEST.RX. Note: Test modes must be used for production tests or self test only. The software control for FDCAN_TX pin interferes with all CAN protocol functions. It is not recommended to use test modes for application. # **External Loop Back mode** The FDCAN can be set in External Loop Back mode by programming TEST.LBCK to 1. In Loop Back mode, the FDCAN treats its own transmitted messages as received messages and stores them (if they pass acceptance filtering) into Rx FIFOs. *Figure 397* shows the connection of transmit and receive signals FDCAN_TX and FDCAN_RX to the FDCAN in External Loop Back mode. This mode is provided for hardware self-test. To be independent from external stimulation, the FDCAN ignores acknowledge errors (recessive bit sampled in the acknowledge slot of a data / remote frame) in Loop Back mode. In this mode the FDCAN performs an internal feedback from its transmit output to its receive input. The actual value of the FDCAN_RX input pin is disregarded by the FDCAN. The transmitted messages can be monitored at the FDCAN_TX transmit pin. ## **Internal Loop Back mode** Internal Loop Back mode is entered by programming bits TEST.LBCK and CCCR.MON to 1. This mode can be used for a "Hot Selftest", meaning the FDCAN can be tested without affecting a running CAN system connected to the FDCAN_TX and FDCAN_RX pins. In this mode, FDCAN_RX pin is disconnected from the FDCAN and FDCAN_TX pin is held recessive. *Figure 397* shows the connection of FDCAN_TX and FDCAN_RX pins to the FDCAN in case of Internal Loop Back mode. FDCANx_Tx FDCAN_Rx FDCANx_Tx FDCAN_Rx FDCANx_Tx FDCAN_Rx Tx Rx FDCAN External Loop Back mode MS41463V1 Figure 397. Pin control in Loop Back mode # Timestamp generation For timestamp generation the FDCAN supplies a 16-bit wrap-around counter. A prescaler TSCC.TCP can be configured to clock the counter in multiples of CAN bit times (1 ... 16). The counter is readable via TSCV[TCV]. A write access to register TSCV resets the counter to 0. When the timestamp counter wraps around interrupt flag IR[TSW] is set. On start of frame reception/transmission the counter value is captured and stored into the timestamp section of a Rx FIFO (RXTS[15:0]) or Tx Event FIFO (TXTS[15:0]) element. By programming bit TSCC.TSS, a 16-bit timestamp can be used. RM0444 Rev 5 1209/1390 # Debug mode behavior in debug mode the set / reset on read feature is automatically disabled during the debugger register access and enabled during normal MCU operation # **Timeout counter** To signal timeout conditions for Rx FIFO 0, Rx FIFO 1, and the Tx Event FIFO the FDCAN supplies a 16-bit Timeout Counter. It operates as downcounter and uses the same prescaler controlled by TSCC[TCP] as the Timestamp Counter. The Timeout Counter is configured via register TOCC. The actual counter value can be read from TOCV[TOC]. The Timeout Counter can only be started while CCCR[INIT] = 0. It is stopped when CCCR[INIT] = 1, e.g. when the FDCAN enters Bus Off state. The operation mode is selected by TOCC[TOS]. When operating in Continuous mode, the counter starts when CCCR[INIT] is reset. A write to TOCV presets the counter to the value configured by TOCC[TOP] and continues downcounting. When the Timeout Counter is controlled by one of the FIFOs, an empty FIFO presets the counter to the value configured by TOCC[TOP]. Downcounting is started when the first FIFO element is stored. Writing to TOCV has no effect. When the counter reaches 0, interrupt flag IR[TOO] is set. In Continuous mode, the counter is immediately restarted at TOCC[TOP]. Note: The clock signal for the Timeout Counter is derived from the CAN core sample point signal. Therefore the point in time where the Timeout Counter is decremented may vary due to the synchronization / re-synchronization mechanism of the CAN core. If the baud rate switch feature in FDCAN is used, the timeout counter is clocked differently in arbitration and data fields. # 36.3.3 Message RAM The Message RAM has a width of 32 bits, and the FDCAN module is configured to allocate up to 212 words in it. It is not necessary to configure each of the sections shown in *Figure* 398. Figure 398. Message RAM configuration When the FDCAN addresses the Message RAM, it addresses 32-bit words (aligned), not a single byte. The RAM address are 32-bit words, i.e. only bits 15 to 2 are evaluated, the two least significant bits are ignored. ## Rx handling The Rx Handler controls the acceptance filtering, the transfer of received messages to Rx to one of the two Rx FIFOs, as well as the Rx FIFO Put and Get Indexes. #### **Acceptance filter** The FDCAN offers the possibility to configure two sets of acceptance filters, one for standard identifiers and another for extended identifiers. These filters can be assigned to Rx FIFO 0 or Rx FIFO 1. For acceptance filtering each list of filters is executed from element #0 until the first matching element. Acceptance filtering stops at the first matching element. Following filter elements are not evaluated for this message. The main features are: - Each filter element can be configured as - range filter (from to) - filter for one or two dedicated IDs - classic bit mask filter - Each filter element is configurable for acceptance or rejection filtering - Each filter element can be enabled/disabled individually - Filters are checked sequentially, execution stops with the first matching filter element RM0444 Rev 5 1211/1390 Related configuration registers are: - Global Filter Configuration (RXGFC) - Extended ID AND Mask (XIDAM) Depending on the configuration of the filter element (SFEC/EFEC) a match triggers one of the following actions: - Store received frame in FIFO 0 or FIFO 1 - Reject received frame - Set High Priority Message interrupt flag IR[HPM] - Set High Priority Message interrupt flag IR[HPM] and store received frame in FIFO 0 or FIFO 1. Acceptance filtering is started after the complete identifier has been received. After acceptance filtering has completed, and if a matching Rx FIFO has been found, the Message Handler starts writing the received message data in 32-bit portions to the matching Rx FIFO. If the CAN protocol controller has detected an error condition (e.g. CRC error), this message is discarded with the following impact: #### Rx FIFO Put index of matching Rx FIFO is not updated, but related Rx FIFO element (partly) overwritten with received data. For error type see PSR.LEC and PSR.DLEC. In case the matching Rx FIFO is operated in overwrite mode, the boundary conditions described in *Rx FIFO Overwrite Mode* have to be considered. Note: When an accepted message is written to one of the two Rx FIFOs, the unmodified received identifier is stored independently from the used filter(s). The result of the acceptance filter process is strongly depending on the sequence of configured filter elements. #### Range filter The filter matches for all received frames with Message IDs in the range defined by SF1ID/SF2ID and EF1ID/EF2ID. There are two possibilities when range filtering is used together with extended frames: - EFT = 00: The Message ID of received frames is AND-ed with the Extended ID AND Mask (XIDAM) before the range filter is applied - EFT = 11: The Extended ID AND Mask (XIDAM) is not used for range filtering ## Filter for dedicated IDs A filter element can be configured to filter for one or two specific Message IDs. To filter for one specific Message ID, the filter element has to be configured with SF1ID = SF2ID and EF1ID = EF2ID. #### Classic bit mask filter Classic bit mask filtering is intended to filter groups of Message IDs by masking single bits of a received Message
ID. With classic bit mask filtering SF1ID/EF1ID is used as Message ID filter, while SF2ID/EF2ID is used as filter mask. A 0 bit at the filter mask masks out the corresponding bit position of the configured ID filter, e.g. the value of the received Message ID at that bit position is not relevant for acceptance filtering. Only those bits of the received Message ID where the corresponding mask bits are one are relevant for acceptance filtering. In case all mask bits are one, a match occurs only when the received Message ID and the Message ID filter are identical. If all mask bits are 0, all Message IDs match. # Standard message ID filtering Figure 399 shows the flow for standard Message ID (11-bit Identifier) filtering. The Standard Message ID filter element is described in Section 36.3.8. Controlled by the Global Filter Configuration (RXGFC) Message ID, Remote Transmission Request bit (RTR), and the Identifier Extension bit (IDE) of received frames are compared against the list of configured filter elements. Figure 399. Standard Message ID filter path # **Extended message ID filtering** *Figure 400* shows the flow for extended Message ID (29-bit Identifier) filtering. The Extended Message ID filter element is described in *Section 36.3.9*. Controlled by the Global Filter Configuration RXGFC and the Extended ID Filter Configuration RXGFC Message ID, Remote Transmission Request bit (RTR), and the Identifier Extension bit (IDE) of received frames are compared against the list of configured filter elements. Figure 400. Extended Message ID filter path The Extended ID AND Mask (XIDAM) is AND-ed with the received identifier before the filter list is executed. 4 RM0444 Rev 5 1215/1390 #### **Rx FIFOs** Rx FIFO 0 and Rx FIFO 1 can hold up to three elements each. Received messages that passed acceptance filtering are transferred to the Rx FIFO as configured by the matching filter element. For a description of the filter mechanisms available for Rx FIFO 0 and Rx FIFO 1, see *Acceptance filter*. The Rx FIFO element is described in *Section 36.3.5*. When an Rx FIFO full condition is signaled by IR[RFnF], no further messages are written to the corresponding Rx FIFO until at least one message has been read out and the Rx FIFO Get Index has been incremented. In case a message is received while the corresponding Rx FIFO is full, this message is discarded and interrupt flag IR[RFnL] is set. When reading from an Rx FIFO, Rx FIFO Get Index RXFnS[FnGI] + FIFO Element Size has to be added to the corresponding Rx FIFO start address [FnSA]. ## **Rx FIFO Blocking Mode** The Rx FIFO blocking mode is configured by RXGFC.FnOM = 0. This is the default operation mode for the Rx FIFOs. When an Rx FIFO full condition is reached (RXFnS.FnPI = RXFnS.FnGI), no further messages are written to the corresponding Rx FIFO until at least one message has been read out and the Rx FIFO Get Index has been incremented. An Rx FIFO full condition is signaled by RXFnS.FnF = 1. In addition interrupt flag IR.RFnF is set. In case a message is received while the corresponding Rx FIFO is full, this message is discarded and the message lost condition is signaled by RXFnS.RFnL = 1. In addition interrupt flag IR.RFnL is set. #### **Rx FIFO Overwrite Mode** The Rx FIFO overwrite mode is configured by RXGFC.FnOM = 1. When an Rx FIFO full condition (RXFnS.FnPI = RXFnS.FnGI) is signaled by RXFnS.FnF = 1, the next message accepted for the FIFO overwrites the oldest FIFO message. Put and get index are both incremented by one. When an Rx FIFO is operated in overwrite mode and an Rx FIFO full condition is signaled, reading of the Rx FIFO elements must start at least at get index + 1. This is because it can happen that a received message is written to the Message RAM (put index) while the CPU is reading from the Message RAM (get index). In this case inconsistent data may be read from the respective Rx FIFO element. Adding an offset to the get index when reading from the Rx FIFO avoids this problem. The offset depends on how fast the CPU accesses the Rx FIFO. After reading from the Rx FIFO, the number of the last element read has to be written to the Rx FIFO Acknowledge Index RXFnA.FnA. This increments the get index to that element number. In case the put index has not been incremented to this Rx FIFO element, the Rx FIFO full condition is reset (RXFnS.FnF = 0). #### Tx handling The Tx Handler handles transmission requests for the Tx FIFO, and the Tx Queue. It controls the transfer of transmit messages to the CAN core, the Put and Get Indices, and the Tx Event FIFO.Up to three Tx Buffers can be set up for message transmission. The CAN message data field is configured to 64 bytes, Tx FIFO allocates eighteen 32-bit words for storage of a Tx element. | cc | CR | Tx Buffe | r element | Frame transmission | |---------|------|----------|-----------|-------------------------------| | BRSE | FDOE | FDF | BRS | Frame transmission | | Ignored | 0 | Ignored | Ignored | Classic CAN | | 0 | 1 | 0 | Ignored | Classic CAN | | 0 | 1 | 1 | Ignored | FD without bit rate switching | | 1 | 1 | 0 | Ignored | Classic CAN | | 1 | 1 | 1 | 0 | FD without bit rate switching | | 1 | 1 | 1 | 1 | FD with bit rate switching | Table 204. Possible configurations for Frame transmission Note: AUTOSAR requires at least three Tx Queue Buffers and support of transmit cancellation. The Tx Handler starts a Tx scan to check for the highest priority pending Tx request (Tx Buffer with lowest Message ID) when the Tx Buffer Request Pending register TXBRP is updated, or when a transmission has been started. #### **Transmit Pause** The transmit pause feature is intended for use in CAN systems where the CAN message identifiers are (permanently) specified to specific values and cannot easily be changed. These message identifiers may have a higher CAN arbitration priority than other defined messages, while in a specific application their relative arbitration priority must be inverse. This may lead to a case where one ECU sends a burst of CAN messages that cause another ECU CAN messages to be delayed because that other messages have a lower CAN arbitration priority. If, as an example, CAN ECU-1 has the feature enabled and is requested by its application software to transmit four messages, it waits, after the first successful message transmission, for two CAN bit times of bus idle before it is allowed to start the next requested message. If there are other ECUs with pending messages, those messages are started in the idle time, they would not need to arbitrate with the next message of ECU-1. After having received a message, ECU-1 is allowed to start its next transmission as soon as the received message releases the CAN bus. The feature is controlled by TXP bit in CCCR register. If the bit is set, the FDCAN, each time it has successfully transmitted a message, pauses for two CAN bit times before starting the next transmission. This enables other CAN nodes in the network to transmit messages even if their messages have lower prior identifiers. Default is disabled (CCCR.TXP = 0). This feature looses up burst transmissions coming from a single node and it protects against "babbling idiot" scenarios where the application program erroneously requests too many transmissions. #### Tx FIFO Tx FIFO operation is configured by programming TXBC[TFQM] to 0. Messages stored in the Tx FIFO are transmitted starting with the message referenced by the Get Index TXFQS[TFGI]. After each transmission the Get Index is incremented cyclically until the Tx RM0444 Rev 5 1217/1390 FIFO is empty. The Tx FIFO enables transmission of messages with the same Message ID from different Tx Buffers in the order these messages have been written to the Tx FIFO. The FDCAN calculates the Tx FIFO Free Level TXFQS[TFFL] as difference between Get and Put Index. It indicates the number of available (free) Tx FIFO elements. New transmit messages have to be written to the Tx FIFO starting with the Tx Buffer referenced by the Put Index TXFQS[TFQPI]. An Add Request increments the Put Index to the next free Tx FIFO element. When the Put Index reaches the Get Index, Tx FIFO Full (TXFQS[TFQF]= 1) is signaled. In this case no further messages must be written to the Tx FIFO until the next message has been transmitted and the Get Index has been incremented. When a single message is added to the Tx FIFO, the transmission is requested by writing 1 to the TXBAR bit related to the Tx Buffer referenced by the Tx FIFO Put Index. When multiple (n) messages are added to the Tx FIFO, they are written to n consecutive Tx Buffers starting with the Put Index. The transmissions are then requested via TXBAR. The Put Index is then cyclically incremented by n. The number of requested Tx buffers must not exceed the number of free Tx Buffers as indicated by the Tx FIFO Free Level. When a transmission request for the Tx Buffer referenced by the Get Index is canceled, the Get Index is incremented to the next Tx Buffer with pending transmission request and the Tx FIFO Free Level is recalculated. When transmission cancellation is applied to any other Tx Buffer, the Get Index and the FIFO Free Level remain unchanged. A Tx FIFO element allocates eighteen 32-bit words in the Message RAM. Therefore the start address of the next available (free) Tx FIFO Buffer is calculated by adding four times the Put Index TXFQS[TFQPI] (0 ... 2) to the Tx Buffer Start Address TBSA. #### **Tx Queue** Tx Queue operation is configured by programming TXBC[TFQM] to 1. Messages stored in the Tx Queue are transmitted starting with the message with the lowest Message ID (highest priority). In case of mixing of standard and extended Message IDs, the standard Message IDs are compared to bits [28:18] of extended Message IDs. In case that multiple Queue Buffers are configured with the same Message ID, the Queue Buffer with the lowest buffer number is transmitted first. New messages have to be written to the Tx Buffer referenced by
the Put Index TXFQS[TFQPI]. An Add Request cyclically increments the Put Index to the next free Tx Buffer. In case that the Tx Queue is full (TXFQS[TFQF] = 1), the Put Index is not valid and no further message must be written to the Tx Queue until at least one of the requested messages has been sent out or a pending transmission request has been canceled. The application may use register TXBRP instead of the Put Index and may place messages to any Tx Buffer without pending transmission request. A Tx Queue Buffer allocates eighteen 32-bit words in the Message RAM. Therefore the start address of the next available (free) Tx Queue Buffer is calculated by adding four times the Tx Queue Put Index TXFQS[TFQPI] (0 ... 2) to the Tx Buffer Start Address TBSA. #### Transmit cancellation The FDCAN supports transmit cancellation. To cancel a requested transmission from a Tx Queue Buffer the Host has to write a 1 to the corresponding bit position (= number of Tx Buffer) of register TXBCR. Transmit cancellation is not intended for Tx FIFO operation. Successful cancellation is signaled by setting the corresponding bit of register TXBCF to 1. In case a transmit cancellation is requested while a transmission from a Tx Buffer is already ongoing, the corresponding TXBRP bit remains set as long as the transmission is in progress. If the transmission was successful, the corresponding TXBTO and TXBCF bits are set. If the transmission was not successful, it is not repeated and only the corresponding TXBCF bit is set. Note: In case a pending transmission is canceled immediately before it could have been started, there is a short time window where no transmission is started even if another message is pending in the node. This may enable another node to transmit a message that may have a priority lower than that of the second message in the node. ## Tx Event handling To support Tx event handling the FDCAN has implemented a Tx Event FIFO. After the FDCAN has transmitted a message on the CAN bus, Message ID and timestamp are stored in a Tx Event FIFO element. To link a Tx event to a Tx Event FIFO element, the Message Marker from the transmitted Tx Buffer is copied into the Tx Event FIFO element. The Tx Event FIFO is configured to three elements. The Tx Event FIFO element is described in *Tx FIFO*. The purpose of the Tx Event FIFO is to decouple handling transmit status information from transmit message handling i.e. a Tx Buffer holds only the message to be transmitted, while the transmit status is stored separately in the Tx Event FIFO. This has the advantage, especially when operating a dynamically managed transmit queue, that a Tx Buffer can be used for a new message immediately after successful transmission. There is no need to save transmit status information from a Tx Buffer before overwriting that Tx Buffer. When a Tx Event FIFO full condition is signaled by IR[TEFF], no further elements are written to the Tx Event FIFO until at least one element has been read out and the Tx Event FIFO Get Index has been incremented. In case a Tx event occurs while the Tx Event FIFO is full, this event is discarded and interrupt flag IR[TEFL] is set. When reading from the Tx Event FIFO, two times the Tx Event FIFO Get Index TXEFS[EFGI] has to be added to the Tx Event FIFO start address EFSA. # 36.3.4 FIFO acknowledge handling The Get Indices of Rx FIFO 0, Rx FIFO 1, and the Tx Event FIFO are controlled by writing to the corresponding FIFO Acknowledge Index, see Section 36.4.23 and Section 36.4.25. Writing to the FIFO acknowledge index sets the FIFO Get Index to the FIFO Acknowledge Index plus one and thereby updates the FIFO Fill Level. There are two use cases: - 1. When only a single element has been read from the FIFO (the one being pointed to by the Get Index), this Get Index value is written to the FIFO Acknowledge Index. - 2. When a sequence of elements has been read from the FIFO, it is sufficient to write the FIFO Acknowledge Index only once at the end of that read sequence (value: Index of the last element read), to update the FIFO Get Index. RM0444 Rev 5 1219/1390 Due to the fact that the CPU has free access to the FDCAN Message RAM, special care has to be taken when reading FIFO elements in an arbitrary order (Get Index not considered). This might be useful when reading a High Priority Message from one of the two Rx FIFOs. In this case the FIFO Acknowledge Index must not be written because this would set the Get Index to a wrong position and also alters the FIFO Fill Level. In this case some of the older FIFO elements would be lost. Note: The application has to ensure that a valid value is written to the FIFO Acknowledge Index. The FDCAN does not check for erroneous values. ## 36.3.5 FDCAN Rx FIFO element Two Rx FIFOs are configured in the Message RAM. Each Rx FIFO section can be configured to store up to three received messages. The structure of an Rx FIFO element is described in *Table 205*, the description is provided in *Table 206*. Bit 31 24 23 16 15 8 7 0 R0 **ESI** XTD **RTR** ID[28:0] R1 **ANMF** FIDX[6:0] Res. **FDF** BRS DLC[3:0] RXTS[15:0] R2 DB3[7:0] DB2[7:0] DB1[7:0] D[7:0] R3 DB7[7:0] DB6[7:0] DB5[7:0] DB4[7:0] : Rn DBm[7:0] DBm-1[7:0] DBm-2[7:0] DBm-3[7:0] Table 205. Rx FIFO element The element size configured for storage of CAN FD messages is set to 64 bytes data field. | Field | Description | |--------------------------|---| | R0 Bit 31
ESI | Error state indicator - 0: Transmitting node is error active - 1: Transmitting node is error passive | | R0 Bit 30
XTD | Extended identifier Signals to the Host whether the received frame has a standard or extended identifier. – 0: 11-bit standard identifier – 1: 29-bit extended identifier | | R0 Bit 29
RTR | Remote transmission request Signals to the Host whether the received frame is a data frame or a remote frame. – 0: Received frame is a data frame – 1: Received frame is a remote frame | | R0 Bits 28:0
ID[28:0] | Identifier Standard or extended identifier depending on bit XTD. A standard identifier is stored into ID[28:18]. | Table 206. Rx FIFO element description Table 206. Rx FIFO element description (continued) | Field | Description | |----------------------------|--| | R1 Bit 31
ANMF | Accepted non-matching frame Acceptance of non-matching frames may be enabled via RXGFC[ANFS] and RXGFC[ANFE]. – 0: Received frame matching filter index FIDX – 1: Received frame did not match any Rx filter element | | R1 Bits 30:24
FIDX[6:0] | Filter index 0-27=Index of matching Rx acceptance filter element (invalid if ANMF = 1). Range is 0 to RXGFC[LSS] - 1 or RXGFC[LSE] - 1. | | R1 Bit 21
FDF | FD format – 0: Standard frame format – 1: FDCAN frame format (new DLC-coding and CRC) | | R1 Bit 20
BRS | Bit rate switch – 0: Frame received without bit rate switching – 1: Frame received with bit rate switching | | R1 Bits 19:16
DLC[3:0] | Data length code - 0-8: Classic CAN + CAN FD: received frame has 0-8 data bytes - 9-15: Classic CAN: received frame has 8 data bytes - 9-15: CAN FD: received frame has 12/16/20/24/32/48/64 data bytes | | R1 Bits 15:0
RXTS[15:0] | Rx timestamp Timestamp Counter value captured on start of frame reception. Resolution depending on configuration of the Timestamp Counter Prescaler TSCC[TCP]. | | R2 Bits 31:24
DB3[7:0] | Data Byte 3 | | R2 Bits 23:16
DB2[7:0] | Data Byte 2 | | R2 Bits 15:8
DB1[7:0] | Data Byte 1 | | R2 Bits 7:0
D[7:0] | Data Byte 0 | | R3 Bits 31:24
DB7[7:0] | Data Byte 7 | | R3 Bits 23:16
DB6[7:0] | Data Byte 6 | | R3 Bits 15:8
DB5[7:0] | Data Byte 5 | | R3 Bits 7:0
DB4[7:0] | Data Byte 4 | | : | | | Rn Bits 31:24
DBm[7:0] | Data Byte m | RM0444 Rev 5 1221/1390 Table 206. Rx FIFO element description (continued) | Field | Description | |-----------------------------|---------------| | Rn Bits 23:16
DBm-1[7:0] | Data Byte m-1 | | Rn Bits 15:8
DBm-2[7:0] | Data Byte m-2 | | Rn Bits 7:0
DBm-3[7:0] | Data Byte m-3 | # 36.3.6 FDCAN Tx Buffer element The Tx Buffers section (three elements) can be configured to hold Tx FIFO or Tx Queue. The Tx Handler distinguishes between Tx FIFO and Tx Queue using the Tx Buffer configuration FDCAN_TXBC.TFQM . The element size is configured for storage of CAN FD messages with up to 64 bytes data. Table 207. Tx Buffer and FIFO element | Bit | 31 24 | | | | 23 | 23 16 | | | | 15 8 | 7 0 | |-----|----------|-----|-----|------------|----------|-------|------------|------------|----------|--------|-----| | T0 | ESI | XTD | RTR | | ID[28:0] | | | | | | | | T1 | MM[7:0] | | | | EFC | Res. | FDF | BPS | DLC[3:0] | R | es. | | T2 | DB3[7:0] | | | | DB2[7:0] | | | | DB1[7:0] | D[7:0] | | | Т3 | DB7[7:0] | | | DB6[7:0] | | | DB5[7:0] | DB4[7:0] | | | | | : | : | | | : | | | | : | | | | | Tn | DBm[7:0] | | | DBm-1[7:0] | | | DBm-2[7:0] | DBm-3[7:0] | | | | Table 208. Tx Buffer element description | Field | Description | |---------------------------------|--| | T0 Bit 31
ESI ⁽¹⁾ | Error state indicator – 0: ESI bit in CAN FD format depends only on error passive flag – 1: ESI bit in CAN FD format transmitted recessive | | T0 Bit 30
XTD | Extended identifier - 0: 11-bit standard identifier - 1: 29-bit extended identifier | | T0 Bit 29
RTR ⁽²⁾ | Remote transmission request – 0: Transmit data frame – 1: Transmit remote frame | | T0 Bits 28:0
ID[28:0] | Identifier Standard or extended identifier depending on bit XTD. A standard identifier
has to be written to ID[28:18]. | | T1 Bits 31:24
MM[7:0] | Message marker Written by CPU during Tx Buffer configuration. Copied into Tx Event FIFO element for identification of Tx message status. | Table 208. Tx Buffer element description (continued) | Field | Description | |---------------------------------|--| | T1 Bit 23
EFC | Event FIFO control – 0: Don't store Tx events – 1: Store Tx events | | T1 Bit 21
FDF | FD format - 0: Frame transmitted in Classic CAN format - 1: Frame transmitted in CAN FD format | | T1 Bit 20
BRS ⁽³⁾ | Bit rate switching – 0: CAN FD frames transmitted without bit rate switching – 1: CAN FD frames transmitted with bit rate switching | | T1 Bits 19:16
DLC[3:0] | Data length code - 0 - 8: Classic CAN + CAN FD: received frame has 0-8 data bytes - 9 - 15: Classic CAN: received frame has 8 data bytes - 9 - 15: CAN FD: received frame has 12/16/20/24/32/48/64 data bytes | | T2 Bits 31:24
DB3[7:0] | Data Byte 3 | | T2 Bits 23:16
DB2[7:0] | Data Byte 2 | | T2 Bits 15:8
DB1[7:0] | Data Byte 1 | | T2 Bits 7:0
D[7:0] | Data Byte 0 | | T3 Bits 31:24
DB7[7:0] | Data Byte 7 | | T3 Bits 23:16
DB6[7:0] | Data Byte 6 | | T3 Bits 15:8
DB5[7:0] | Data Byte 5 | | T3 Bits 7:0
DB4[7:0] | Data Byte 4 | | : | : | | Tn Bits 31:24
DBm[7:0] | Data Byte m | | Tn Bits 23:16
DBm-1[7:0] | Data Byte m-1 | | Tn Bits 15:8
DBm-2[7:0] | Data Byte m-2 | | Tn Bits 7:0
DBm-3[7:0] | Data Byte m-3 | The ESI bit of the transmit buffer is OR-ed with the error passive flag to decide the value of the ESI bit in the transmitted FD frame. As required by the CAN FD protocol specification, an error active node may optionally transmit the ESI bit recessive, but an error passive node always transmits the ESI bit recessive. RM0444 Rev 5 1223/1390 - When RTR = 1, the FDCAN transmits a remote frame according to ISO11898-1, even if CCCR.FDOE enables the transmission in CAN FD format. - 3. Bits ESI, FDF, and BRS are only evaluated when CAN FD operation is enabled CCCR.FDOE = 1. Bit BRS is only evaluated when in addition CCCR.BRSE = 1. ## 36.3.7 FDCAN Tx Event FIFO element Each element stores information about transmitted messages. By reading the Tx Event FIFO the Host CPU gets this information in the order the messages were transmitted. Status information about the Tx Event FIFO can be obtained from register TXEFS. Table 209. Tx Event FIFO element | Bit | 31 24 | | | 23 16 | | | | 15 | 8 | 7 | 0 | |-----|---------|-----|-----|---------|----------|-----|----------|----|------|--------|---| | E0 | ESI | XTD | RTR | | ID[28:0] | | | | | | | | E1 | MM[7:0] | | | ET[1:0] | EDL | BRS | DLC[3:0] | | TXTS | [15:0] | | Table 210. Tx Event FIFO element description | Field | Description | |--------------------------|--| | E0 Bit 31
ESI | Error state indicator – 0: Transmitting node is error active – 1: Transmitting node is error passive | | E0 Bit 30
XTD | Extended identifier - 0: 11-bit standard identifier - 1: 29-bit extended identifier | | E0 Bit 29
RTR | Remote transmission request – 0: Transmit data frame – 1: Transmit remote frame | | E0 Bits 28:0
ID[28:0] | Identifier Standard or extended identifier depending on bit XTD. A standard identifier has to be written to ID[28:18]. | | E1 Bits 31:24
MM[7:0] | Message marker Copied from Tx Buffer into Tx Event FIFO element for identification of Tx message status. | | E1 Bits 23:22
EFC | Event type - 00: Reserved - 01: Tx event - 10: Transmission in spite of cancellation (always set for transmissions in DAR mode) - 11: Reserved | | E1 Bit 21
EDL | Extended data length – 0: Standard frame format – 1: FDCAN frame format (new DLC-coding and CRC) | | E1 Bit 20
BRS | Bit rate switching – 0: Frame transmitted without bit rate switching – 1: Frame transmitted with bit rate switching | Table 210. Tx Event FIFO element description (continued) | Field | Description | |----------------------------|---| | T1 Bits 19:16
DLC[3:0] | Data length code 0 - 8: Frame with 0-8 data bytes transmitted 9 - 15: Frame with 8 data bytes transmitted | | E1 Bits 15:0
TXTS[15:0] | Tx Timestamp Timestamp counter value captured on start of frame transmission. Resolution depending on configuration of the Timestamp Counter Prescaler TSCC[TCP]. | # 36.3.8 FDCAN Standard message ID Filter element Up to 28 filter elements can be configured for 11-bit standard IDs. When accessing a Standard Message ID Filter element, its address is the Filter List Standard Start Address FLSSA plus the index of the filter element (0 ... 27). Table 211. Standard Message ID Filter element | Bit | 31 | | 24 | 23 | 16 | 15 | 8 | 7 | 0 | |-----|----------|-----------|----|-------------|----|------|----|------------|---| | S0 | SFT[1:0] | SFEC[2:0] | | SFID1[10:0] | | Res. | SF | FID2[10:0] | | Table 212. Standard Message ID Filter element Field description | Field | Description | |--------------------------------------|--| | Bit 31:30
SFT[1:0] ⁽¹⁾ | Standard filter type - 00: Range filter from SFID1 to SFID2 - 01: Dual ID filter for SFID1 or SFID2 - 10: Classic filter: SFID1 = filter, SFID2 = mask - 11: Filter element disabled | | Bit 29:27
SFEC[2:0] | Standard filter element configuration All enabled filter elements are used for acceptance filtering of standard frames. Acceptance filtering stops at the first matching enabled filter element or when the end of the filter list is reached. If SFEC = 100, 101 or 110 a match sets interrupt flag IR.HPM and, if enabled, an interrupt is generated. In this case register HPMS is updated with the status of the priority match. - 000: Disable filter element - 001: Store in Rx FIFO 0 if filter matches - 010: Store in Rx FIFO 1 if filter matches - 011: Reject ID if filter matches - 100: Set priority if filter matches - 101: Set priority and store in FIFO 0 if filter matches - 110: Set priority and store in FIFO 1 if filter matches | | Bits 26:16
SFID1[10:0] | Standard filter ID 1 First ID of standard ID filter element. | | Bits 10:0
SFID2[10:0] | Standard filter ID 2 Second ID of standard ID filter element. | RM0444 Rev 5 1225/1390 With SFT = 11 the filter element is disabled and the acceptance filtering continues (same behavior as with SFEC = 000). Note: In case a reserved value is configured, the filter element is considered disabled. # 36.3.9 FDCAN Extended message ID filter element Up to 8 filters element can be configured for 29-bit extended IDs. When accessing an Extended Message ID Filter element, its address is the Filter List Extended Start Address FLESA plus two times the index of the filter element (0 ... 7). Table 213. Extended Message ID Filter element | Bit | 31 | | 24 | 23 | 16 | 15 8 | 7 | 0 | |-----|-----------|------|----|----|-------------|------|---|---| | F0 | EFEC[2:0] | | | | EFID1[28:0] | | | | | F1 | EFTI[1:0] | Res. | | | EFID2[28:0] | | | | Table 214. Extended Message ID Filter element field description | Field | Description | |-----------------------------|---| | F0 Bits 31:29
EFEC[2:0] | Extended filter element configuration All enabled filter elements are used for acceptance filtering of extended frames. Acceptance filtering stops at the first matching enabled filter element or when the end of the filter list is reached. If EFEC = 100, 101 or 110 a match sets interrupt flag IR[HPM] and, if enabled, an interrupt is generated. In this case register HPMS is updated with the status of the priority match. - 000: Disable filter element - 001: Store in Rx FIFO 0 if filter matches - 010: Store in Rx FIFO 1 if filter matches - 011: Reject ID if filter matches - 100: Set priority if filter matches - 101: Set priority and store in FIFO 0 if filter matches - 110: Set priority and store in FIFO 1 if filter matches | | F0 Bits 28:0
EFID1[28:0] | Extended filter ID 1 First ID of extended ID filter element. When filtering for Rx FIFO, this field defines the ID of an extended message to be stored. The received identifiers must match exactly, only XIDAM masking
mechanism. | | F1 Bits 31:30
EFT[1:0] | Extended filter type - 00: Range filter from EF1ID to EF2ID (EF2ID >= EF1ID) - 01: Dual ID filter for EF1ID or EF2ID - 10: Classic filter: EF1ID = filter, EF2ID = mask - 11: Range filter from EF1ID to EF2ID (EF2ID >= EF1ID), XIDAM mask not applied | | F1 Bit 29 | Not used | | F1 Bits 28:0
EFID2[28:0] | Extended filter ID 2 Second ID of extended ID filter element. | # 36.4 FDCAN registers # 36.4.1 FDCAN core release register (FDCAN_CREL) Address offset: 0x0000 Reset value: 0x3214 1218 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|-----|-------|-----|--------|-----|--------|----|----------|-------|---------|----|----|------|--------|----| | | REL | [3:0] | | | STE | P[3:0] | | | SUBST | EP[3:0] | | | YEAF | R[3:0] | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | MON | N[7:0] | | | | DAY[7:0] | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | Bits 31:28 REL[3:0]: 3 Bits 27:24 STEP[3:0]: 2 Bits 23:20 SUBSTEP[3:0]: 1 Bits 19:16 YEAR[3:0]: 4 Bits 15:8 MON[7:0]: 12 Bits 7:0 **DAY[7:0]**: 18 # 36.4.2 FDCAN endian register (FDCAN_ENDN) Address offset: 0x0004 Reset value: 0x8765 4321 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|----|----|----|----|----|------|--------|----|----|----|----|----|----|----| | | | | | | | | ETV[| 31:16] | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | ETV[| [15:0] | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | Bits 31:0 ETV[31:0]: Endianness test value The endianness test value is 0x8765 4321. Note: The register read must give the reset value to ensure no endiandess issue. RM0444 Rev 5 1227/1390 # 36.4.3 FDCAN data bit timing and prescaler register (FDCAN_DBTP) Address offset: 0x000C Reset value: 0x0000 0A33 This register is only writable if bits CCCR.CCE and CCCR.INIT are set. The CAN time quantum may be programmed in the range of 1 to 32 FDCAN clock periods. tq = (DBRP + 1) FDCAN clock period. DTSEG1 is the sum of Prop_Seg and Phase_Seg1. DTSEG2 is Phase_Seg2. Therefore the length of the bit time is (programmed values) [DTSEG1 + DTSEG2 + 3] tq or (functional values) [Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] tq. The Information Processing Time (IPT) is 0, meaning the data for the next bit is available at the first clock edge after the sample point. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|---------|------|------|-----------------------|------|------|----|----|----------|----|----| | Res. TDC | Res. | Res. | | I | OBRP[4:0 |)] | | | | | | | | | | | rw | | | rw | rw | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | | D | TSEG1[4 | :0] | | DTSEG2[3:0] DSJW[3:0] | | | | | | | | | | | | rw Bits 31:24 Reserved, must be kept at reset value. Bit 23 TDC: Transceiver delay compensation 0: Transceiver delay compensation disabled 1: Transceiver delay compensation enabled Bits 22:21 Reserved, must be kept at reset value. Bits 20:16 **DBRP[4:0]**: Data bit rate prescaler The value by which the oscillator frequency is divided to generate the bit time quanta. The bit time is built up from a multiple of this quanta. Valid values for the Baud Rate Prescaler are 0 to 31. The hardware interpreters this value as the value programmed plus 1. Bits 15:13 Reserved, must be kept at reset value. Bits 12:8 DTSEG1[4:0]: Data time segment before sample point Valid values are 0 to 31. The value used by the hardware is the one programmed, incremented by 1, i.e. t_{BS1} = (DTSEG1 + 1) x tq. Bits 7:4 DTSEG2[3:0]: Data time segment after sample point Valid values are 0 to 15. The value used by the hardware is the one programmed, incremented by 1, i.e. t_{BS2} = (DTSEG2 + 1) x tq. Bits 3:0 DSJW[3:0]: Synchronization jump width Must always be smaller than DTSEG2, valid values are 0 to 15. The value used by the hardware is the one programmed, incremented by 1: t_{SJW} = (DSJW + 1) x tq. Note: With a FDCAN clock of 8 MHz, the value of 0x00300A33 configures the FDCAN for a fast bit rate of 500 kbit/s. # 36.4.4 FDCAN test register (FDCAN_TEST) Write access to the Test register has to be enabled by setting bit CCCR[TEST] to 1. All Test register functions are set to their reset values when bit CCCR[TEST] is reset. Loop Back mode and software control of Tx pin FDCANx_TX are hardware test modes. Programming TX differently from 00 may disturb the message transfer on the CAN bus. Address offset: 0x0010 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|-------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. RX | TX | [1:0] | LBCK | Res. | Res. | Res. | Res. | | | | | | | | | | r | rw | rw | rw | | | | | Bits 31:8 Reserved, must be kept at reset value. Bit 7 RX: Receive pin Monitors the actual value of pin FDCANx_RX 0: The CAN bus is dominant (FDCANx RX = 0) 1: The CAN bus is recessive (FDCANx RX = 1) Bits 6:5 TX[1:0]: Control of transmit pin 00: Reset value, FDCANx_TX TX is controlled by the CAN core, updated at the end of the CAN bit time 01: Sample point can be monitored at pin FDCANx TX 10: Dominant (0) level at pin FDCANx_TX 11: Recessive (1) at pin FDCANx_TX Bit 4 LBCK: Loop back mode 0: Reset value, Loop Back mode is disabled 1: Loop Back mode is enabled (see Power down (Sleep mode)) Bits 3:0 Reserved, must be kept at reset value. # 36.4.5 FDCAN RAM watchdog register (FDCAN_RWD) The RAM Watchdog monitors the READY output of the Message RAM. A Message RAM access starts the Message RAM Watchdog Counter with the value configured by the RWD[WDC] bits. The counter is reloaded with RWD[WDC] bits when the Message RAM signals successful completion by activating its READY output. In case there is no response from the Message RM0444 Rev 5 1229/1390 RAM until the counter has counted down to 0, the counter stops and interrupt flag IR[WDI] bit is set. The RAM Watchdog Counter is clocked by the fdcan_pclk clock. Address offset: 0x0014 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|--------|------|------|------|------|------|------|------|--------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | WDV | /[7:0] | | | | | | | WDO | C[7:0] | | | | | r | r | r | r | r | r | r | r | rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:8 WDV[7:0]: Watchdog value Actual message RAM watchdog counter value. Bits 7:0 WDC[7:0]: Watchdog configuration Start value of the message RAM watchdog counter. With the reset value of 00, the counter is disabled. These are protected write (P) bits, write access is possible only when the bit 1 [CCE] and bit 0 [INIT] of FDCAN_CCCR register are set to 1. # 36.4.6 FDCAN CC control register (FDCAN_CCCR) Address offset: 0x0018 Reset value: 0x0000 0001 For details about setting and resetting of single bits, see *Software initialization*. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | NISO | TXP | EFBI | PXHD | Res. | Res. | BRSE | FDOE | TEST | DAR | MON | CSR | CSA | ASM | CCE | INIT | | rw | rw | rw | rw | | | rw | rw | rw | rw | rw | rw | r | rw | rw | rw | - Bits 31:16 Reserved, must be kept at reset value. - Bit 15 NISO: Non ISO operation If this bit is set, the FDCAN uses the CAN FD frame format as specified by the Bosch CAN FD Specification V1.0. - 0: CAN FD frame format according to ISO11898-1 - 1: CAN FD frame format according to Bosch CAN FD Specification V1.0 #### Bit 14 **TXP**: If this bit is set, the FDCAN pauses for two CAN bit times before starting the next transmission after successfully transmitting a frame. - 0: disabled - 1: enabled - Bit 13 EFBI: Edge filtering during bus integration - 0: Edge filtering disabled - 1: Two consecutive dominant tq required to detect an edge for hard synchronization - Bit 12 PXHD: Protocol exception handling disable - 0: Protocol exception handling enabled - 1: Protocol exception handling disabled - Bits 11:10 Reserved, must be kept at reset value. - Bit 9 BRSE: FDCAN bit rate switching - 0: Bit rate switching for transmissions disabled - 1: Bit rate switching for transmissions enabled - Bit 8 FDOE: FD operation enable - 0: FD operation disabled - 1: FD operation enabled - Bit 7 TEST: Test mode enable - 0: Normal operation, register TEST holds reset values - 1: Test Mode, write access to register TEST enabled - Bit 6 DAR: Disable automatic retransmission - 0: Automatic retransmission of messages not transmitted successfully enabled - 1: Automatic retransmission disabled - Bit 5 MON: Bus monitoring mode Bit MON can only be set by software when both CCE and INIT are set to 1. The bit can be reset by the Host at any time. - 0: Bus monitoring mode disabled - 1: Bus monitoring mode enabled - Bit 4 CSR: Clock stop request - 0: No clock stop requested - 1: Clock stop requested. When clock stop is requested, first INIT and then CSA is set after all pending transfer requests have been completed and the CAN bus reached idle. - Bit 3 CSA: Clock stop acknowledge - 0: No clock stop acknowledged - 1: FDCAN may be set in power down by stopping APB
clock and kernel clock. RM0444 Rev 5 1231/1390 #### Bit 2 ASM: ASM restricted operation mode The restricted operation mode is intended for applications that adapt themselves to different CAN bit rates. The application tests different bit rates and leaves the Restricted Operation Mode after it has received a valid frame. In the optional Restricted Operation Mode the node is able to transmit and receive data and remote frames and it gives acknowledge to valid frames, but it does not send active error frames or overload frames. In case of an error condition or overload condition, it does not send dominant bits, instead it waits for the occurrence of bus idle condition to resynchronize itself to the CAN communication. The error counters are not incremented. Bit ASM can only be set by software when both CCE and INIT are set to 1. The bit can be reset by the software at any time. 0: Normal CAN operation 1: Restricted Operation Mode active Bit 1 CCE: Configuration change enable 0: The CPU has no write access to the protected configuration registers. 1: The CPU has write access to the protected configuration registers (while CCCR.INIT = 1). Bit 0 INIT: Initialization 0: Normal operation1: Initialization started Note: Due to the synchronization mechanism between the two clock domains, there may be a delay until the value written to INIT can be read back. Therefore the programmer has to assure that the previous value written to INIT has been accepted by reading INIT before setting INIT to a new value. # 36.4.7 FDCAN nominal bit timing and prescaler register (FDCAN_NBTP) Address offset: 0x001C Reset value: 0x0600 0A03 This register is only writable if bits CCCR[CCE] and CCCR[INIT] are set. The CAN bit time may be programed in the range of 4 to 81 tq. The CAN time quantum may be programmed in the range of [1 ... 1024] FDCAN kernel clock periods. tq = (BRP + 1) FDCAN clock period fdcan_clk NTSEG1 is the sum of Prop_Seg and Phase_Seg1. NTSEG2 is Phase_Seg2. Therefore the length of the bit time is (programmed values) [NTSEG1 + NTSEG2 + 3] tq or (functional values) [Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] tq. The Information Processing Time (IPT) is 0, meaning the data for the next bit is available at the first clock edge after the sample point. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|----|-------------|----------|----|----|----|----|----|----|----|----------|----------|-----|----|----| | | | 1 | NSJW[6:0 |] | | | | | | 1 | NBRP[8:0 |] | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | NTSEG1[7:0] | | | | | | | | | N. | TSEG2[6: | :0] | | | | rw | rw #### Bits 31:25 NSJW[6:0]: Nominal (re)synchronization jump width Valid values are 0 to 127. The actual interpretation by the hardware of this value is such that the used value is the one programmed incremented by one. These are protected write (P) bits, write access is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. #### Bits 24:16 NBRP[8:0]: Bit rate prescaler Value by which the oscillator frequency is divided for generating the bit time quanta. The bit time is built up from a multiple of this quanta. Valid values are 0 to 511. The actual interpretation by the hardware of this value is such that one more than the value programmed here is used. These are protected write (P) bits, write access is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. #### Bits 15:8 NTSEG1[7:0]: Nominal time segment before sample point Valid values are 0 to 255. The actual interpretation by the hardware of this value is such that one more than the programmed value is used. These are protected write (P) bits, write access is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. Bit 7 Reserved, must be kept at reset value. #### Bits 6:0 NTSEG2[6:0]: Nominal time segment after sample point Valid values are 0 to 127. The actual interpretation by the hardware of this value is such that one more than the programmed value is used. Note: With a CAN kernel clock of 48 MHz, the reset value of 0x06000A03 configures the FDCAN for a bit rate of 3 MBit/s. # 36.4.8 FDCAN timestamp counter configuration register (FDCAN_TSCC) Address offset: 0x0020 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|--------| | Res. | TCP | [3:0] | | | | | | | | | | | | | | | rw | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. TSS | 5[1:0] | | | | | | | | | | | | | | | | rw | rw | RM0444 Rev 5 1233/1390 Bits 31:20 Reserved, must be kept at reset value. Bits 19:16 TCP[3:0]: Timestamp counter prescaler Configures the timestamp and timeout counters time unit in multiples of CAN bit times $[1 \dots 16]$. The actual interpretation by the hardware of this value is such that one more than the value programmed here is used. In CAN FD mode the internal timestamp counter TCP does not provide a constant time base due to the different CAN bit times between arbitration phase and data phase. Thus CAN FD requires an external counter for timestamp generation (TSS = 10). These are protected write (P) bits, write access is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. Bits 15:2 Reserved, must be kept at reset value. Bits 1:0 TSS[1:0]: Timestamp select 00: Timestamp counter value always 0x0000 01: Timestamp counter value incremented according to TCP 10: External timestamp counter from TIM3 value (tim3 cnt[0:15]) 11: Same as 00 These are protected write (P) bits, write access is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. # 36.4.9 FDCAN timestamp counter value register (FDCAN_TSCV) Address offset: 0x0024 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|--------|------|------|------|------|------|------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | TSC | [15:0] | | | | | | | | | rc_w Bits 31:16 Reserved, must be kept at reset value. ## Bits 15:0 TSC[15:0]: Timestamp counter The internal/external timestamp counter value is captured on start of frame (both Rx and Tx). When TSCC[TSS] = 01, the timestamp counter is incremented in multiples of CAN bit times $[1 \dots 16]$ depending on the configuration of TSCC[TCP]. A wrap around sets interrupt flag IR[TSW]. Write access resets the counter to 0. When TSCC.TSS = 10, TSC reflects the external timestamp counter value. A write access has no impact. Note: A "wrap around" is a change of the Timestamp Counter value from non-0 to 0 that is not caused by write access to TSCV. # 36.4.10 FDCAN timeout counter configuration register (FDCAN_TOCC) Address offset: 0x0028 Reset value: 0xFFFF 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|--------|------|------|------|------|-----|--------|------| | | | | | | | | TOP | [15:0] | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. TOS | 5[1:0] | ETOC | | | | | | | | | | | | | | | rw | rw | rw | Bits 31:16 TOP[15:0]: Timeout period Start value of the timeout counter (down-counter). Configures the timeout period. Bits 15:3 Reserved, must be kept at reset value. #### Bits 2:1 TOS[1:0]: Timeout select When operating in Continuous mode, a write to TOCV presets the counter to the value configured by TOCC[TOP] and continues down-counting. When the timeout counter is controlled by one of the FIFOs, an empty FIFO presets the counter to the value configured by TOCC[TOP]. Down-counting is started when the first FIFO element is stored. 00: Continuous operation 01: Timeout controlled by Tx Event FIFO 10: Timeout controlled by Rx FIFO 0 11: Timeout controlled by Rx FIFO 1 These are protected write (P) bits, write access is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. #### Bit 0 ETOC: Timeout counter enable 0: Timeout counter disabled 1: Timeout counter enabled This is a protected write (P) bit, write access is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. For more details see *Timeout counter*. # 36.4.11 FDCAN timeout counter value register (FDCAN_TOCV) Address offset: 0x002C Reset value: 0x0000 FFFF | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|--------|------|------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | TOC | [15:0] | | | | | | | | | rc_w | rc w | rc w | rc w | rc_w | rc_w | rc_w | rc_w | rc_w | rc_w | rc w | rc_w | rc_w | rc w | rc w | rc_w | RM0444 Rev 5 1235/1390 Bits 31:16 Reserved, must be kept at reset value. #### Bits 15:0 TOC[15:0]: Timeout counter The timeout counter is decremented in multiples of CAN bit times [1 ... 16] depending on the configuration of TSCC.TCP. When decremented to 0, interrupt flag IR.TOO is set and the Timeout Counter is stopped. Start and reset/restart conditions are configured via TOCC.TOS. ## 36.4.12 FDCAN error counter register (FDCAN ECR) Address offset: 0x0040 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|----------|------|------|------|----------|------|------|------|--------|------|------|------| | Res. | | | CEL | .[7:0] | | | | | | | | | | | | | rc_r | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | RP | | | | REC[6:0] | l | | | TEC[7:0] | | | | | | | | | r | r | r | ŗ
| r | r | r | r | r | r | r | r | r | ŗ | r | r | Bits 31:24 Reserved, must be kept at reset value. #### Bits 23:16 CEL[7:0]: CAN error logging The counter is incremented each time when a CAN protocol error causes the transmit error counter or the receive error counter to be incremented. It is reset by read access to CEL. The counter stops at 0xFF; the next increment of TEC or REC sets interrupt flag IR[ELO]. Access type is RX: reset on read. #### Bit 15 RP: Receive error passive 0: The receive error counter is below the error passive level of 128. 1: The receive error counter has reached the error passive level of 128. ## Bits 14:8 REC[6:0]: Receive error counter Actual state of the receive error counter, values between 0 and 127. #### Bits 7:0 TEC[7:0]: Transmit error counter Actual state of the transmit error counter, values between 0 and 255. When CCCR.ASM is set, the CAN protocol controller does not increment TEC and REC when a CAN protocol error is detected, but CEL is still incremented. # 36.4.13 FDCAN protocol status register (FDCAN_PSR) Address offset: 0x0044 Reset value: 0x0000 0707 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|----------|------|------|----|----|-----|----------|----|----------|----| | Res. | | | TDCV[6:0 |] | | | | | | | | | | | | | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | PXE | REDL | RBRS | RESI | | DLEC[2:0 |] | во | EW | EP | ACT | [1:0] | | LEC[2:0] | | | | rc_r | rc_r | rc_r | rc_r | rs | rs | rs | r | r | r | r | r | rs | rs | rs | - Bits 31:23 Reserved, must be kept at reset value. - Bits 22:16 TDCV[6:0]: Transmitter delay compensation value Position of the secondary sample point, defined by the sum of the measured delay from FDCAN_TX to FDCAN_RX and TDCR.TDCO. The SSP position is, in the data phase, the number of minimum time quanta (mtq) between the start of the transmitted bit and the secondary sample point. Valid values are 0 to 127 mtq. - Bit 15 Reserved, must be kept at reset value. - Bit 14 PXE: Protocol exception event - 0: No protocol exception event occurred since last read access - 1: Protocol exception event occurred - Bit 13 REDL: Received FDCAN message This bit is set independent of acceptance filtering. - 0: Since this bit was reset by the CPU, no FDCAN message has been received. - 1: Message in FDCAN format with EDL flag set has been received. Access type is RX: reset on read. #### Bit 12 RBRS: BRS flag of last received FDCAN message This bit is set together with REDL, independent of acceptance filtering. - 0: Last received FDCAN message did not have its BRS flag set. - 1: Last received FDCAN message had its BRS flag set. Access type is RX: reset on read. #### Bit 11 RESI: ESI flag of last received FDCAN message This bit is set together with REDL, independent of acceptance filtering. - 0: Last received FDCAN message did not have its ESI flag set. - 1: Last received FDCAN message had its ESI flag set. Access type is RX: reset on read. #### Bits 10:8 DLEC[2:0]: Data last error code Type of last error that occurred in the data phase of a FDCAN format frame with its BRS flag set. Coding is the same as for LEC. This field is cleared to 0 when a FDCAN format frame with its BRS flag set has been transferred (reception or transmission) without error. Access type is RS: set on read. - Bit 7 BO: Bus_Off status - 0: The FDCAN is not Bus Off. - 1: The FDCAN is in Bus_Off state. - Bit 6 EW: Warning Sstatus - 0: Both error counters are below the Error_Warning limit of 96. - 1: At least one of error counter has reached the Error_Warning limit of 96. RM0444 Rev 5 1237/1390 #### Bit 5 EP: Error passive 0: The FDCAN is in the Error_Active state. It normally takes part in bus communication and sends an active error flag when an error has been detected. 1: The FDCAN is in the Error Passive state. #### Bits 4:3 ACT[1:0]: Activity Monitors the module's CAN communication state. 00: Synchronizing: node is synchronizing on CAN communication. 01: Idle: node is neither receiver nor transmitter. 10: Receiver: node is operating as receiver. 11: Transmitter: node is operating as transmitter. #### Bits 2:0 LEC[2:0]: Last error code The LEC indicates the type of the last error to occur on the CAN bus. This field is cleared to 0 when a message has been transferred (reception or transmission) without error. 000: No Error: No error occurred since LEC has been reset by successful reception or transmission. 001: Stuff Error: More than 5 equal bits in a sequence have occurred in a part of a received message where this is not allowed. 010: Form Error: A fixed format part of a received frame has the wrong format. 011: AckError: The message transmitted by the FDCAN was not acknowledged by another node. 100: Bit1Error: During the transmission of a message (with the exception of the arbitration field), the device wanted to send a recessive level (bit of logical value 1), but the monitored bus value was dominant. 101: Bit0Error: During the transmission of a message (or acknowledge bit, or active error flag, or overload flag), the device wanted to send a dominant level (data or identifier bit logical value 0), but the monitored bus value was recessive. During Bus_Off recovery this status is set each time a sequence of 11 recessive bits has been monitored. This enables the CPU to monitor the proceeding of the Bus_Off recovery sequence (indicating the bus is not stuck at dominant or continuously disturbed). 110: CRCError: The CRC check sum of a received message was incorrect. The CRC of an incoming message does not match with the CRC calculated from the received data. 111: NoChange: Any read access to the Protocol status register re-initializes the LEC to '7'. When the LEC shows the value '7', no CAN bus event was detected since the last CPU read access to the Protocol status register. Access type is RS: set on read. Note: When a frame in FDCAN format has reached the data phase with BRS flag set, the next CAN event (error or valid frame) is shown in FLEC instead of LEC. An error in a fixed stuff bit of a FDCAN CRC sequence is shown as a Form Error, not Stuff Error. Note: The Bus_Off recovery sequence (see CAN Specification Rev. 2.0 or ISO11898-1) cannot be shortened by setting or resetting CCCR[INIT]. If the device goes Bus_Off, it sets CCCR.INIT of its own, stopping all bus activities. Once CCCR[INIT] has been cleared by the CPU, the device then waits for 129 occurrences of Bus Idle (129 × 11 consecutive recessive bits) before resuming normal operation. At the end of the Bus_Off recovery sequence, the Error Management Counters are reset. During the waiting time after the reset of CCCR[INIT], each time a sequence of 11 recessive bits has been monitored, a Bit0 Error code is written to PSR[LEC], enabling the CPU to readily check up whether the CAN bus is stuck at dominant or continuously disturbed and to monitor the Bus_Off recovery sequence. ECR[REC] is used to count these sequences. # 36.4.14 FDCAN transmitter delay compensation register (FDCAN_TDCR) Address offset: 0x0048 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|----------|------|------|------|------|------|------|------|----------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | 7 | TDCO[6:0 |)] | | | Res. | | | | TDCF[6:0 |] | | | | | rw | rw Bits 31:15 Reserved, must be kept at reset value. ### Bits 14:8 TDCO[6:0]: Transmitter delay compensation offset Offset value defining the distance between the measured delay from FDCAN_TX to FDCAN_RX and the secondary sample point. Valid values are 0 to 127 mtq. These are protected write (P) bits, which means that write access by the bits is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. Bit 7 Reserved, must be kept at reset value. #### Bits 6:0 TDCF[6:0]: Transmitter delay compensation filter window length Defines the minimum value for the SSP position, dominant edges on FDCAN_RX that would result in an earlier SSP position are ignored for transmitter delay measurements. These are protected write (P) bits, which means that write access by the bits is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. # 36.4.15 FDCAN interrupt register (FDCAN_IR) The flags are set when one of the listed conditions is detected (edge-sensitive). The flags remain set until the Host clears them. A flag is cleared by writing a 1 to the corresponding bit position. Writing a 0 has no effect. A hard reset clears the register. The configuration of IE controls whether an interrupt is generated. The configuration of ILS controls on which interrupt line an interrupt is signaled. Address offset: 0x0050 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-----------|------------|-----------|------------|------------|------------|----------|----------|---------|----------|-----------|-----------|-----------|-----------|-----------|-----------| | Res. ARA | PED | PEA | WDI | во | EW | EP | ELO | | | | | | | | | | rc_w1 | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
TOO | 14
MRAF | 13
TSW | 12
TEFL | 11
TEFF | 10
TEFN | 9
TFE | 8
TCF | 7
TC | 6
HPM | 5
RF1L | 4
RF1F | 3
RF1N | 2
RF0L | 1
RF0F | 0
RF0N | RM0444 Rev 5 1239/1390 - Bits 31:24 Reserved, must be kept at reset value. - Bit 23 ARA: Access to reserved address - 0: No access to reserved address occurred - 1: Access to reserved address occurred - Bit 22 **PED**: Protocol error in data phase (data bit time is used) - 0: No protocol error in data phase - 1: Protocol error in data phase detected (PSR.DLEC different from
0,7) - Bit 21 **PEA**: Protocol error in arbitration phase (nominal bit time is used) - 0: No protocol error in arbitration phase - 1: Protocol error in arbitration phase detected (PSR.LEC different from 0,7) - Bit 20 WDI: Watchdog interrupt - 0: No message RAM watchdog event occurred - 1: Message RAM watchdog event due to missing READY - Bit 19 BO: Bus Off status - 0: Bus_Off status unchanged - 1: Bus Off status changed - Bit 18 EW: Warning status - 0: Error_Warning status unchanged - 1: Error_Warning status changed - Bit 17 EP: Error passive - 0: Error_Passive status unchanged - 1: Error_Passive status changed - Bit 16 **ELO**: Error logging overflow - 0: CAN error logging counter did not overflow. - 1: Overflow of CAN error logging counter occurred. - Bit 15 TOO: Timeout occurred - 0: No timeout - 1: Timeout reached - Bit 14 MRAF: Message RAM access failure The flag is set when the Rx handler: - has not completed acceptance filtering or storage of an accepted message until the arbitration field of the following message has been received. In this case acceptance filtering or message storage is aborted and the Rx Handler starts processing of the following message. - I was unable to write a message to the message RAM. In this case message storage is aborted. In both cases the FIFO put index is not updated. The partly stored message is overwritten when the next message is stored to this location. The flag is also set when the Tx Handler was not able to read a message from the Message RAM in time. In this case message transmission is aborted. In case of a Tx Handler access failure the FDCAN is switched into Restricted Operation Mode (see *Restricted Operation mode*). To leave Restricted Operation Mode, the Host CPU has to reset CCCR.ASM. - 0: No Message RAM access failure occurred - 1: Message RAM access failure occurred - Bit 13 TSW: Timestamp wraparound - 0: No timestamp counter wrap-around - 1: Timestamp counter wrapped around - Bit 12 TEFL: Tx event FIFO element lost - 0: No Tx event FIFO element lost - 1: Tx event FIFO element lost - Bit 11 TEFF: Tx event FIFO full - 0: Tx event FIFO Not full - 1: Tx event FIFO full - Bit 10 TEFN: Tx event FIFO New Entry - 0: Tx event FIFO unchanged - 1: Tx handler wrote Tx event FIFO element. - Bit 9 TFE: Tx FIFO empty - 0: Tx FIFO non-empty - 1: Tx FIFO empty - Bit 8 TCF: Transmission cancellation finished - 0: No transmission cancellation finished - 1: Transmission cancellation finished - Bit 7 TC: Transmission completed - 0: No transmission completed - 1: Transmission completed - Bit 6 HPM: High-priority message - 0: No high-priority message received - 1: High-priority message received - Bit 5 RF1L: Rx FIFO 1 message lost - 0: No Rx FIFO 1 message lost - 1: Rx FIFO 1 message lost - Bit 4 RF1F: Rx FIFO 1 full - 0: Rx FIFO 1 not full - 1: Rx FIFO 1 full - Bit 3 RF1N: Rx FIFO 1 new message - 0: No new message written to Rx FIFO 1 - 1: New message written to Rx FIFO 1 - Bit 2 RF0L: Rx FIFO 0 message lost - 0: No Rx FIFO 0 message lost - 1: Rx FIFO 0 message lost - Bit 1 RF0F: Rx FIFO 0 full - 0: Rx FIFO 0 not full - 1: Rx FIFO 0 full - Bit 0 RF0N: Rx FIFO 0 new message - 0: No new message written to Rx FIFO 0 - 1: New message written to Rx FIFO 0 1241/1390 # 36.4.16 FDCAN interrupt enable register (FDCAN_IE) The settings in the interrupt enable register determine which status changes in the interrupt register are signaled on an interrupt line. Address offset: 0x0054 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|-------|------|-------|-------|-------|------|------|------|------|-------|-------|-------|-------|-------|-------| | Res. ARAE | PEDE | PEAE | WDIE | BOE | EWE | EPE | ELOE | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | TOOE | MRAFE | TSWE | TEFLE | TEFFE | TEFNE | TFEE | TCFE | TCE | НРМЕ | RF1LE | RF1FE | RF1NE | RF0LE | RF0FE | RF0NE | | | | | | | | | | | | | | | | | | Bits 31:24 Reserved, must be kept at reset value. Bit 23 ARAE: Access to reserved address enable Bit 22 **PEDE**: Protocol error in data phase enable Bit 21 PEAE: Protocol error in arbitration phase enable Bit 20 WDIE: Watchdog interrupt enable 0: Interrupt disabled1: Interrupt enabled Bit 19 BOE: Bus_Off status 0: Interrupt disabled1: Interrupt enabled Bit 18 EWE: Warning status interrupt enable 0: Interrupt disabled1: Interrupt enabled Bit 17 EPE: Error passive interrupt enable 0: Interrupt disabled1: Interrupt enabled Bit 16 **ELOE**: Error logging overflow interrupt enable 0: Interrupt disabled1: Interrupt enabled Bit 15 TOOE: Timeout occurred interrupt enable 0: Interrupt disabled1: Interrupt enabled Bit 14 MRAFE: Message RAM access failure interrupt enable 0: Interrupt disabled1: Interrupt enabled Bit 13 **TSWE**: Timestamp wraparound interrupt enable 0: Interrupt disabled1: Interrupt enabled #### Bit 12 TEFLE: Tx event FIFO element lost interrupt enable 0: Interrupt disabled 1: Interrupt enabled #### Bit 11 TEFFE: Tx event FIFO full interrupt enable 0: Interrupt disabled 1: Interrupt enabled #### Bit 10 **TEFNE**: Tx event FIFO new entry interrupt enable 0: Interrupt disabled 1: Interrupt enabled #### Bit 9 TFEE: Tx FIFO empty interrupt enable 0: Interrupt disabled 1: Interrupt enabled #### Bit 8 TCFE: Transmission cancellation finished interrupt enable 0: Interrupt disabled 1: Interrupt enabled #### Bit 7 TCE: Transmission completed interrupt enable 0: Interrupt disabled 1: Interrupt enabled #### Bit 6 **HPME**: High-priority message interrupt enable 0: Interrupt disabled 1: Interrupt enabled #### Bit 5 RF1LE: Rx FIFO 1 message lost interrupt enable 0: Interrupt disabled 1: Interrupt enabled #### Bit 4 RF1FE: Rx FIFO 1 full interrupt enable 0: Interrupt disabled 1: Interrupt enabled ### Bit 3 RF1NE: Rx FIFO 1 new message interrupt enable 0: Interrupt disabled 1: Interrupt enabled #### Bit 2 RF0LE: Rx FIFO 0 message lost interrupt enable 0: Interrupt disabled 1: Interrupt enabled ## Bit 1 RF0FE: Rx FIFO 0 full interrupt enable 0: Interrupt disabled 1: Interrupt enabled #### Bit 0 RF0NE: Rx FIFO 0 new message interrupt enable 0: Interrupt disabled 1: Interrupt enabled # 36.4.17 FDCAN interrupt line select register (FDCAN_ILS) This register assigns an interrupt generated by a specific group of interrupt flag from the Interrupt register to one of the two module interrupt lines. For interrupt generation the respective interrupt line has to be enabled via ILE[EINT0] and ILE[EINT1]. Address offset: 0x0058 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|-------|------|---------|---------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. PERR | BERR | MISC | TFERR | SMSG | RxFIFO1 | RxFIFO0 | | | | | | | | | | | rw Bits 31:7 Reserved, must be kept at reset value. Bit 6 PERR: Protocol error grouping the following interruption ARAL: Access to reserved address line PEDL: Protocol error in data phase line PEAL: Protocol error in arbitration phase line WDIL: Watchdog interrupt line BOL: Bus Off status EWL: Warning status interrupt line Bit 5 :BERR: Bit and line error grouping the following interruption EPL Error passive interrupt line ELOL: Error logging overflow interrupt line Bit 4 MISC: Interrupt regrouping the following interruption TOOL: Timeout occurred interrupt line MRAFL: Message RAM access failure interrupt line TSWL: Timestamp wraparound interrupt line Bit 3 **TFERR:** Tx FIFO ERROR grouping the following interruption TEFLL: Tx event FIFO element lost interrupt line TEFFL: Tx event FIFO full interrupt line TEFNL: Tx event FIFO new entry interrupt line TFEL: Tx FIFO empty interrupt line Bit 2 SMSG: Status message bit grouping the following interruption TCFL: Transmission cancellation finished interrupt line TCL: Transmission completed interrupt line HPML: High-priority message interrupt line Bit 1 RxFIFO1: RX FIFO bit grouping the following interruption RF1LL: Rx FIFO 1 message lost interrupt line RF1FL: Rx FIFO 1 full Interrupt line RF1NL: Rx FIFO 1 new message interrupt line Bit 0 RxFIFO0: RX FIFO bit grouping the following interruption RF0LL: Rx FIFO 0 message lost interrupt line RF0FL: Rx FIFO 0 full interrupt line RF0NL: Rx FIFO 0 new message interrupt line # 36.4.18 FDCAN interrupt line enable register (FDCAN ILE) Each of the two interrupt lines to the CPU can be enabled/disabled separately by programming bits EINT0 and EINT1. Address offset: 0x005C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | | | | | | | | | | | Res. EINT1 | EINT0 | Bits 31:2 Reserved, must be kept at reset value. Bit 1 EINT1: Enable interrupt line 1 0: Interrupt line fdcan_intr0_it disabled1: Interrupt line fdcan_intr0_it enabled Bit 0 EINT0: Enable interrupt line 0 0: Interrupt line fdcan_intr1_it disabled1: Interrupt line fdcan_intr1_it enabled ## 36.4.19 FDCAN global filter configuration register (FDCAN RXGFC) Global settings for Message ID filtering. The Global Filter Configuration controls the filter path for standard and extended messages as described in *Figure 399* and *Figure 400*. Address offset: 0x0080 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|-------|------|------|------|------|--------|-----|----------------|------|------| | Res. | Res. | Res. | Res. | | LSE | [3:0] | | Res. | Res. | Res. | | | LSS[4:0] | | | | | | | | rw | rw | rw | rw | | | | rw | rw | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 |
8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | Res. | F0OM | F1OM | Res. | Res. | ANF | S[1:0] | ANF | Ξ [1:0] | RRFS | RRFE | | | | | | | | rw | rw | | | rw | rw | rw | rw | rw | rw | RM0444 Rev 5 1245/1390 Bits 31:28 Reserved, must be kept at reset value. Bits 27:24 LSE[3:0]: List size extended 0: No extended message ID filter 1 to 8: Number of extended message ID filter elements >8: Values greater than 8 are interpreted as 8. These are protected write (P) bits, which means that write access by the bits is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. Bits 23:21 Reserved, must be kept at reset value. Bits 20:16 LSS[4:0]: List size standard 0: No standard message ID filter 1 to 28: Number of standard message ID filter elements >28: Values greater than 28 are interpreted as 28. These are protected write (P) bits, which means that write access by the bits is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. Bits 15:10 Reserved, must be kept at reset value. Bit 9 **F00M**: FIFO 0 operation mode (overwrite or blocking) This is protected write (P) bits, which means that write access by the bits is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. Bit 8 F10M: FIFO 1 operation mode (overwrite or blocking) This is a protected write (P) bits, which means that write access by the bits is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. Bits 7:6 Reserved, must be kept at reset value. Bits 5:4 ANFS[1:0]: Accept Non-matching frames standard Defines how received messages with 11-bit IDs that do not match any element of the filter list are treated. 00: Accept in Rx FIFO 0 01: Accept in Rx FIFO 1 10: Reject 11: Reject These are protected write (P) bits, which means that write access by the bits is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. Bits 3:2 ANFE[1:0]: Accept non-matching frames extended Defines how received messages with 29-bit IDs that do not match any element of the filter list are treated. 00: Accept in Rx FIFO 0 01: Accept in Rx FIFO 1 10: Reject 11: Reject These are protected write (P) bits, which means that write access by the bits is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. #### Bit 1 RRFS: Reject remote frames standard - 0: Filter remote frames with 11-bit standard IDs - 1: Reject all remote frames with 11-bit standard IDs These are protected write (P) bits, which means that write access by the bits is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. #### Bit 0 RRFE: Reject remote frames extended - 0: Filter remote frames with 29-bit standard IDs - 1: Reject all remote frames with 29-bit standard IDs These are protected write (P) bits, which means that write access by the bits is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. ## 36.4.20 FDCAN extended ID and mask register (FDCAN XIDAM) Address offset: 0x0084 Reset value: 0x1FFF FFFF | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|----|----|----|----|------|--------|----------|----|----|----|----|----|----| | Res. | Res. | Res. | | | | | | Е | IDM[28:1 | 6] | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | _ | _ | _ | | | _ | EIDM | [15:0] | | | | | | | _ | | rw Bits 31:29 Reserved, must be kept at reset value. #### Bits 28:0 EIDM[28:0]: Extended ID mask For acceptance filtering of extended frames the Extended ID AND Mask is AND-ed with the Message ID of a received frame. Intended for masking of 29-bit IDs in SAE J1939. With the reset value of all bits set to 1 the mask is not active. These are protected write (P) bits, which means that write access by the bits is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. # 36.4.21 FDCAN high-priority message status register (FDCAN HPMS) This register is updated every time a Message ID filter element configured to generate a priority event match. This can be used to monitor the status of incoming high priority messages and to enable fast access to these messages. Address offset: 0x0088 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|-----------|------|------|------|-------|------|------|------|------|-----------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | FLST | Res. | Res. | | | FIDX[4:0] | I | | MSI | [1:0] | Res. | Res. | Res. | | BIDX[2:0] |] | | r | | | r | r | r | r | r | r | r | | | | r | r | r | RM0444 Rev 5 1247/1390 Bits 31:16 Reserved, must be kept at reset value. Bit 15 FLST: Filter list Indicates the filter list of the matching filter element. 0: Standard filter list 1: Extended filter list Bits 14:13 Reserved, must be kept at reset value. Bits 12:8 FIDX[4:0]: Filter index Index of matching filter element. Range is 0 to RXGFC[LSS] - 1 or RXGFC[LSE] - 1. Bits 7:6 MSI[1:0]: Message storage indicator 00: No FIFO selected 01: FIFO overrun 10: Message stored in FIFO 0 11: Message stored in FIFO 1 Bits 5:3 Reserved, must be kept at reset value. Bits 2:0 BIDX[2:0]: Buffer index Index of Rx FIFO element to which the message was stored. Only valid when MSI[1] = 1. # 36.4.22 FDCAN Rx FIFO 0 status register (FDCAN_RXF0S) Address offset: 0x0090 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|--------|------|------|------|------|------|------|--------|--------| | Res. | Res. | Res. | Res. | Res. | Res. | RF0L | F0F | Res. | Res. | Res. | Res. | Res. | Res. | F0P | I[1:0] | | | | | | | | r | r | | | | | | | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | Res. | F0G | I[1:0] | Res. | Res. | Res. | Res. | | F0FL | _[3:0] | | | | | | | | | r | r | | | | | r | r | ŗ | r | Bits 31:26 Reserved, must be kept at reset value. Bit 25 RF0L: Rx FIFO 0 message lost This bit is a copy of interrupt flag IR[RF0L]. When IR[RF0L] is reset, this bit is also reset. 0: No Rx FIFO 0 message lost 1: Rx FIFO 0 message lost, also set after write attempt to Rx FIFO 0 of size 0 Bit 24 F0F: Rx FIFO 0 full 0: Rx FIFO 0 not full 1: Rx FIFO 0 full Bits 23:18 Reserved, must be kept at reset value. Bits 17:16 F0PI[1:0]: Rx FIFO 0 put index Rx FIFO 0 write index pointer, range 0 to 2. Bits 15:10 Reserved, must be kept at reset value. Bits 9:8 F0GI[1:0]: Rx FIFO 0 get index Rx FIFO 0 read index pointer, range 0 to 2. Bits 7:4 Reserved, must be kept at reset value. Bits 3:0 F0FL[3:0]: Rx FIFO 0 fill level Number of elements stored in Rx FIFO 0, range 0 to 3. # 36.4.23 CAN Rx FIFO 0 acknowledge register (FDCAN_RXF0A) Address offset: 0x0094 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | F0AI[2:0] | | | | | | | | | | | | | | | | rw | rw | rw | Bits 31:3 Reserved, must be kept at reset value. Bits 2:0 F0AI[2:0]: Rx FIFO 0 acknowledge index After the Host has read a message or a sequence of messages from Rx FIFO 0 it has to write the buffer index of the last element read from Rx FIFO 0 to F0AI. This sets the Rx FIFO 0 get index RXF0S[F0GI] to F0AI + 1 and update the FIFO 0 fill level RXF0S[F0FL]. # 36.4.24 FDCAN Rx FIFO 1 status register (FDCAN_RXF1S) Address offset: 0x0098 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|--------|------|------|------|------|------|------|--------|--------| | Res. | Res. | Res. | Res. | Res. | Res. | RF1L | F1F | Res. | Res. | Res. | Res. | Res. | Res. | F1P | I[1:0] | | | | | | | | r | r | | | | | | | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | Res. | F1G | I[1:0] | Res. | Res. | Res. | Res. | | F1FL | _[3:0] | | | | | | | | | r | r | | | | | r | r | r | r | Bits 31:26 Reserved, must be kept at reset value. Bit 25 RF1L: Rx FIFO 1 message lost This bit is a copy of interrupt flag IR[RF1L]. When IR[RF1L] is reset, this bit is also reset. 0: No Rx FIFO 1 message lost 1: Rx FIFO 1 message lost, also set after write attempt to Rx FIFO 1 of size 0 Bit 24 F1F: Rx FIFO 1 full 0: Rx FIFO 1 not full 1: Rx FIFO 1 full Bits 23:18 Reserved, must be kept at reset value. 47/ RM0444 Rev 5 1249/1390 Bits 17:16 F1PI[1:0]: Rx FIFO 1 put index Rx FIFO 1 write index pointer, range 0 to 2. Bits 15:10 Reserved, must be kept at reset value. Bits 9:8 F1GI[1:0]: Rx FIFO 1 get index Rx FIFO 1 read index pointer, range 0 to 2. Bits 7:4 Reserved, must be kept at reset value. Bits 3:0 F1FL[3:0]: Rx FIFO 1 fill level Number of elements stored in Rx FIFO 1, range 0 to 3. # 36.4.25 FDCAN Rx FIFO 1 acknowledge register (FDCAN_RXF1A) Address offset: 0x009C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | F1AI[2:0] | | | | | | | | | | | | | | | | rw | rw | rw | Bits 31:3 Reserved, must be kept at reset value. Bits 2:0 F1AI[2:0]: Rx FIFO 1 acknowledge index After the Host has read a message or a sequence of messages from Rx FIFO 1 it has to write the buffer index of the last element read from Rx
FIFO 1 to F1AI. This sets the Rx FIFO 1 get index RXF1S[F1GI] to F1AI + 1 and update the FIFO 1 Fill Level RXF1S[F1FL]. # 36.4.26 FDCAN Tx buffer configuration register (FDCAN_TXBC) Address offset: 0x00C0 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------|------------|------------|------------|-----------|-----------|-----------|------|-----------|-----------|------|-----------|-----------|-----------| | Res. TFQM | Res. | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 1 | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | | 5
Res. | 4
Res. | Res. | 2
Res. | 1
Res. | 0
Res. | Bits 31:25 Reserved, must be kept at reset value. Bit 24 TFQM: Tx FIFO/queue mode 0: Tx FIFO operation1: Tx queue operation. This is a protected write (P) bit, which means that write access by the bits is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. Bits 23:0 Reserved, must be kept at reset value. # 36.4.27 FDCAN Tx FIFO/queue status register (FDCAN_TXFQS) The Tx FIFO/Queue status is related to the pending Tx requests listed in register TXBRP. Therefore the effect of Add/Cancellation requests may be delayed due to a running Tx scan (TXBRP not yet updated). Address offset: 0x00C4 Reset value: 0x0000 0003 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|--------|------|------|------|------|------|------|-----------|---------| | Res. TFQF | Res. | Res. | Res. | TFQF | PI[1:0] | | | | | | | | | | | | r | | | | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | D | 0 | TE0 | | | | | | | | | | | 100. | Res. | Res. | Res. | Res. | Res. | IFG | I[1:0] | Res. | Res. | Res. | Res. | Res. | | TFFL[2:0] | | Bits 31:22 Reserved, must be kept at reset value. Bit 21 TFQF: Tx FIFO/queue full 0: Tx FIFO/queue not full 1: Tx FIFO/queue full Bits 20:18 Reserved, must be kept at reset value. Bits 17:16 TFQPI[1:0]: Tx FIFO/queue put index Tx FIFO/queue write index pointer, range 0 to 3 Bits 15:10 Reserved, must be kept at reset value. Bits 9:8 TFGI[1:0]: Tx FIFO get index Tx FIFO read index pointer, range 0 to 3. Read as 0 when Tx queue operation is configured (TXBC.TFQM = 1) Bits 7:3 Reserved, must be kept at reset value. Bits 2:0 TFFL[2:0]: Tx FIFO free level Number of consecutive free Tx FIFO elements starting from TFGI, range 0 to 3. Read as 0 when Tx queue operation is configured (TXBC[TFQM] = 1). 4 RM0444 Rev 5 1251/1390 #### 36.4.28 FDCAN Tx buffer request pending register (FDCAN_TXBRP) Address offset: 0x00C8 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 44 | 40 | _ | | - | _ | | | | | | | | 13 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 1 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. 2 | 1
TRP[2:0] | 0 | Bits 31:3 Reserved, must be kept at reset value. Bits 2:0 TRP[2:0]: Transmission request pending Each Tx Buffer has its own transmission request pending bit. The bits are set via register TXBAR. The bits are reset after a requested transmission has completed or has been canceled via register TXBCR. After a TXBRP bit has been set, a Tx scan is started to check for the pending Tx request with the highest priority (Tx Buffer with lowest Message ID). A cancellation request resets the corresponding transmission request pending bit of register TXBRP. In case a transmission has already been started when a cancellation is requested, this is done at the end of the transmission, regardless whether the transmission was successful or not. The cancellation request bits are reset directly after the corresponding TXBRP bit has been reset. After a cancellation has been requested, a finished cancellation is signaled via TXBCF after successful transmission together with the corresponding TXBTO bit when the transmission has not yet been started at the point of cancellation when the transmission has been aborted due to lost arbitration when an error occurred during frame transmission In DAR mode all transmissions are automatically canceled if they are not successful. The corresponding TXBCF bit is set for all unsuccessful transmissions. - 0: No transmission request pending - 1: Transmission request pending Note: TXBRP bits set while a Tx scan is in progress are not considered during this particular Tx scan. In case a cancellation is requested for such a Tx Buffer, this Add Request is canceled immediately, the corresponding TXBRP bit is reset. RM0444 Rev 5 1252/1390 # 36.4.29 FDCAN Tx buffer add request register (FDCAN_TXBAR) Address offset: 0x00CC Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | U | Ü | , | U | Ü | • | U | _ | • | Ü | | Res. | AR[2:0] | | Bits 31:3 Reserved, must be kept at reset value. #### Bits 2:0 AR[2:0]: Add request Each Tx buffer has its own add request bit. Writing a 1 sets the corresponding add request bit; writing a 0 has no impact. This enables the Host to set transmission requests for multiple Tx buffers with one write to TXBAR. When no Tx scan is running, the bits are reset immediately, else the bits remain set until the Tx scan process has completed. 0: No transmission request added 1: Transmission requested added. Note: If an add request is applied for a Tx buffer with pending transmission request (corresponding TXBRP bit already set), the request is ignored. # 36.4.30 FDCAN Tx buffer cancellation request register (FDCAN TXBCR) Address offset: 0x00D0 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------|------|--------------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | Res. | 2 | 1
CR[2:0] | 0 | Bits 31:3 Reserved, must be kept at reset value. #### Bits 2:0 CR[2:0]: Cancellation request Each Tx buffer has its own cancellation request bit. Writing a 1 sets the corresponding CR bit; writing a 0 has no impact. This enables the Host to set cancellation requests for multiple Tx buffers with one write to TXBCR. The bits remain set until the corresponding TXBRP bit is reset. 0: No cancellation pending 1: Cancellation pending RM0444 Rev 5 1253/1390 # 36.4.31 FDCAN Tx buffer transmission occurred register (FDCAN_TXBTO) Address offset: 0x00D4 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|------|------|------|------|--------------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | Res. | Res. | Res. | 2 | 1
TO[2:0] | 0 | Bits 31:3 Reserved, must be kept at reset value. Bits 2:0 TO[2:0]: Transmission occurred. Each Tx buffer has its own TO bit. The bits are set when the corresponding TXBRP bit is cleared after a successful transmission. The bits are reset when a new transmission is requested by writing a 1 to the corresponding bit of register TXBAR. 0: No transmission occurred 1: Transmission occurred # 36.4.32 FDCAN Tx buffer cancellation finished register (FDCAN_TXBCF) Address offset: 0x00D8 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | CF[2:0] | | | | | | | | | | | | | | | | r | r | r | Bits 31:3 Reserved, must be kept at reset value. #### Bits 2:0 CF[2:0]: Cancellation finished Each Tx buffer has its own CF bit. The bits are set when the corresponding TXBRP bit is cleared after a cancellation was requested via TXBCR. In case the corresponding TXBRP bit was not set at the point of cancellation, CF is set immediately. The bits are reset when a new transmission is requested by writing a 1 to the corresponding bit of register TXBAR. 0: No transmit buffer cancellation 1: Transmit buffer cancellation finished # 36.4.33 FDCAN Tx buffer transmission interrupt enable register (FDCAN_TXBTIE) Address offset: 0x00DC Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|----------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | | | 0 | | | | 10 | 12 | 11 | 10 | 9 | 0 | 1 | O | 3 | 4 | 3 | 2 | 1 | U | | Res. 2 | TIE[2:0] | U | Bits 31:3 Reserved, must be kept at reset value. Bits 2:0 TIE[2:0]: Transmission interrupt enable Each
Tx buffer has its own TIE bit. 0: Transmission interrupt disabled 1: Transmission interrupt enable # 36.4.34 FDCAN Tx buffer cancellation finished interrupt enable register (FDCAN_ TXBCIE) Address offset: 0x00E0 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------|------|----------------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | 8
Res. | 7
Res. | 6
Res. | 5
Res. | 4
Res. | Res. |
 | 1
CFIE[2:0] | 0 | Bits 31:3 Reserved, must be kept at reset value. Bits 2:0 **CFIE[2:0]**: Cancellation finished interrupt enable. Each Tx buffer has its own CFIE bit. 0: Cancellation finished interrupt disabled 1: Cancellation finished interrupt enabled RM0444 Rev 5 1255/1390 # 36.4.35 FDCAN Tx event FIFO status register (FDCAN_TXEFS) Address offset: 0x00E4 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------------------|-----|------|------|------|------|------|------|-----------|--------| | Res. | Res. | Res. | Res. | Res. | Res. | TEFL | EFF | Res. | Res. | Res. | Res. | Res. | Res. | EFP | I[1:0] | | | | | | | | r | r | | | | | | | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | Res. | 9 8
EFGI[1:0] | | Res. | Res. | Res. | Res. | Res. | 1 | EFFL[2:0] |] | | | I | I | | | | | | | | | | | | | | Bits 31:26 Reserved, must be kept at reset value. Bit 25 TEFL: Tx Event FIFO element lost This bit is a copy of interrupt flag IR[TEFL]. When IR[TEFL] is reset, this bit is also reset. 0 No Tx event FIFO element lost 1 Tx event FIFO element lost, also set after write attempt to Tx Event FIFO of size 0. Bit 24 EFF: Event FIFO full 0: Tx event FIFO not full 1: Tx event FIFO full Bits 23:18 Reserved, must be kept at reset value. Bits 17:16 EFPI[1:0]: Event FIFO put index Tx Event FIFO write index pointer, range 0 to 3. Bits 15:10 Reserved, must be kept at reset value. Bits 9:8 EFGI[1:0]: Event FIFO get index Tx Event FIFO read index pointer, range 0 to 3. Bits 7:3 Reserved, must be kept at reset value. Bits 2:0 EFFL[2:0]: Event FIFO fill level Number of elements stored in Tx event FIFO, range 0 to 3. # 36.4.36 FDCAN Tx event FIFO acknowledge register (FDCAN TXEFA) Address offset: 0x00E8 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. EFA | I[1:0] | | | | | | | | | | | | | | | | rw | rw | Bits 31:2 Reserved, must be kept at reset value. #### Bits 1:0 **EFAI[1:0]**: Event FIFO acknowledge index After the Host has read an element or a sequence of elements from the Tx event FIFO, it has to write the index of the last element read from Tx event FIFO to EFAI. This sets the Tx event FIFO get index TXEFS[EFGI] to EFAI + 1 and updates the FIFO 0 fill level TXEFS[EFFL]. # 36.4.37 FDCAN CFG clock divider register (FDCAN CKDIV) Address offset: 0x0100 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|-----------|------|------|------|-----------|------|------|-----------|-------------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 0 | | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9
Res. | Res. | Res. | Res. | 5
Res. | Res. | 3 | 2
PDI\ | 1
/[3:0] | 0 | Bits 31:4 Reserved, must be kept at reset value. #### Bits 3:0 PDIV[3:0]: input clock divider The APB clock could be divided prior to be used by the CAN sub system. The rate must be computed using the divider output clock. 0000: Divide by 1 0001: Divide by 2 0010: Divide by 4 0011: Divide by 6 0100: Divide by 8 0101: Divide by 10 0110: Divide by 12 0111: Divide by 14 1000: Divide by 16 1001: Divide by 18 1010: Divide by 20 1011: Divide by 22 1100: Divide by 24 1101: Divide by 26 1110: Divide by 28 1111: Divide by 30 These are protected write (P) bits, which means that write access by the bits is possible only when the bit 1 [CCE] and bit 0 [INIT] of CCCR register are set to 1. 4 RM0444 Rev 5 1257/1390 # 36.4.38 FDCAN register map Table 215. FDCAN register map and reset values⁽¹⁾ | | | | | | ~ | _ | | | | | • • • | <u> 9</u> | - | · · | | ָץ | anı | <u> </u> | - | <u> </u> | - | | _ | | | | | | | | | | | |--------------|-------------|------|------|-------|------|------|------|-------|------|-------|------------|-----------|------|------|------|-------|------|----------|------|----------|----------|-------|------|-------|------|-------|-----------|------------|------|------|-----------|-----------|------| | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 7 | 7 | 0 | | 0x0000 | FDCAN_CREL | ı | REL | .[3:0 |] | S | TEF | P[3:0 | 0] | S | UB9
[3: | | Р | Υ | EAF | R[3:0 | 0] | | | ٨ | MON | I[7:C |)] | | | | | | DAY | [7:0 | ·] | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | | 0x0004 | FDCAN_ENDN | | | | | | | | | | | | | | | E | TV[| 31:0 | 0] | | | | | | | | | | | | | | | | 0x0004 | Reset value | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | | 0x0008 | Reserved | Res. | | Reset value | 0x000C | FDCAN_DBTP | Res. TDC | Res. | Res. | | DBI | RP[| 4:0] | | Res. | Res | Res. | С | TSI | EG′ | 1[4:0 |)] | [| OTS
[3 | EG:
:0] | 2 | D | SJV | V[3:0 |)] | | | Reset value | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | | 0x0010 | FDCAN_TEST | Res. X | T
[1 | :0] | LBCK | Res. | Res. | Res. | Res. | | | Reset value | 0 | 0 | 0 | 0 | | | | | | 0x0014 | FDCAN_RWD | Res. | | ٧ | VDV[7:0] | | | | | | | ٧ | NDC | (7:0 |)] | | | | 0,0011 | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x0018 | FDCAN_CCCR | Res. OSIN | TXP | EFBI | PXHD | Res. | Res. | BRSE | FDOE | TEST | DAR | MON | CSR | CSA | ASM | CCE | INT | | | Reset value | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 0x001C | FDCAN_NBTP | | | NS. | JW[| 6:0] | | | | | | NBI | RP[| 8:0] | | | | | | NT | SEC | 31[7 | ':0] | | | Res. | | 1 | NTSI | EG | 2[6:0 |)] | | | 0,0010 | Reset value | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | | 0x0020 | FDCAN_TSCC | Res. ٦ | ГСР | [3:0 |] | Res. TS
[1: | | | | Reset value | 0 | | 0x0024 | FDCAN_TSCV | Res. | | | | | | Т | SC | [15:0 | 0] | | | | | | | | | Reset value | 0 | | 0x0028 | FDCAN_TOCC | | | | | | | Т | OP | [15:0 | 0] | | | | | | | Res. TC
[1: | OS
:0] | ETOC | | | Reset value | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x002C | FDCAN_TOCV | Res. | | | | | | Т | OC | [15: | 0] | | | | | | | | | Reset value | | | | | | | | | | | | | | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 0x0030
to | Reserved | Res. | 0x003C | Reset value | 0x0040 | FDCAN_ECR | Res. | | (| CEL | [7:0 |] | | | RP | | | RE | :C[6 | :0] | | | | | | TEC | [7:0 |)] | | | | | Reset value | | | | | | | | | 0 | Table 215. FDCAN register map and reset values⁽¹⁾ (continued) | | | | | | | | | | | | | | | | nu
 | | | | | | | | | | | | | | | | | | \neg | |--------------|-----------------|------|------|------|------|------|------|-------|------|------|------|------|------|------|--------|-----------|------|------|-------|------|------------------|-------|-------|-----------|-----------|-----------|------|-----------|-------------|----------|-------------|---------------|---------| | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | ဝ | 8 | 7 | 9 | 5 | 4 | 3 | 2 | 1 | 0 | | 0x0044 | FDCAN_PSR | Res. | | TD | CV[6 | 6:0] | | | Res. | ΒXΕ | REDL | RBRSRES11 | RESI | | DLEC[2:0] | | ВО | EW | EP | 10- 11LJV | [o:-] | | LEC[2;0] | | | | Reset value | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | | 0x0048 | FDCAN_TDCR | Res. | | TDO | 00[| 6:0] | | | Res. | | | TD | CF[| 6:0] | | | | | Reset value | | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x004C | Reserved | Res. | | Reset value | 0x0050 | FDCAN_IR | Res. ARA | PED | PEA | WDI | ВО | EW | EP |
ELO | T00 | MRAF | TSW | TEFL | TEFF | TEFN | TFE | TCF | TC | HPM | RF1L | RF1F | RF1N | RF0L | RF0F | RF0N | | | Reset value | | | | | | | | | 0 | | 0x0054 | FDCAN_IE | Res. ARAE | PEDE | PEAE | WDIE | BOE | EWE | EPE | ELOE | TOOE | MRAFE | TSWE | TEFLE | TEFFE | TEFNE | TFEE | TCFE | TCE | HPME | RF1LE | RF1FE | RF1NE | RF0LE | RF0FE | RFONE | | | Reset value | | | | | | | | | 0 | | 0x0058 | FDCAN_ILS | Res. PERR | BERR | MISC | TFERR | SMSG | RxFIF01 | RxFIF00 | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x005C | FDCAN_ILE | Res. EINT1 | EINTO | | | Reset value | 0 | 0 | | 0x0060
to | Reserved | Res. | 0x007C | Reset value | 0x0080 | FDCAN
_RXGFC | Res. | Res. | Res. | Res. | L | .SE | [3:0] |]. | Res. | Res. | Res. | | LS | SS[4 | :0] | | Res. | Res. | Res. | Res. | Res. | Res. | F00M | F10M | Res. | Res. | ANECI4-01 | [0.1] O IND | O. PIEER | AINFE[I:U] | RRFS | RRFE | | | Reset value | | | | | 0 | 0 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0 | | | | | | | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | | 0x0084 | FDCAN
_XIDAM | Res. | Res. | Res. | | | | | | | | | | | | | | EID | M[2 | 8:0] | | | | | | | | | | | | | | | | Reset value | | | | 1 | | 0x0088 | FDCAN_HPMS | Res. FLS | Res. | Res. | | FIE |)X[4 | 1:0] | | M:
[1: | | Res. | Res. | Res. | | 3IDX
[2:0] | | | | Reset value | | | | | | | | | | | | | | | | | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 0 | 0 | 0 | | 0x0090 | FDCAN
_RXF0S | Res. | Res. | Res. | Res. | Res. | Res. | RF0 | FOF | Res. | Res. | Res. | Res. | Res. | Res. | F0
[1: | | Res. | Res. | Res. | Res. | Res. | Res. | F0
[1 | GI
:0] | Res. | Res. | Res. | Res. | F | 0FL | [3:0 | l | | | Reset value | | | | | | | 0 | 0 | | | | | | | 0 | 0 | | | | | | | 0 | 0 | | | | | 0 | 0 | 0 | 0 | | 0x0094 | FDCAN
_RXF0A | Res. F0 | AI[2 | 0] | | | Reset value | 0 | 0 | 0 | | 0x0098 | FDCAN
_RXF1S | Res. | Res. | Res. | Res. | Res. | Res. | RF1 | F1F | Res. | Res. | Res. | Res. | Res. | Res. | F1
[1: | | Res. | Res. | Res. | Res. | Res. | Res. | F1
[1 | GI
:0] | Res. | Res. | Res. | Res. | F | 1FL | .[3:0 | l | | | Reset value | | | | | | | 0 | 0 | | | | | | | 0 | 0 | | | | | | | 0 | 0 | | | | | 0 | 0 | 0 | 0 | RM0444 Rev 5 1259/1390 Table 215. FDCAN register map and reset values⁽¹⁾ (continued) | - | | | | | ٠. | | <u> </u> | | | 9. | ,,,, | | ıuı | , u | IIG | | se | | uii | u 0 1 | _ | ,,, | | | | , | | | 1 | | _ | _ | _ | |--------------|------------------|------|------|------|------|------|----------|------|------|------|------|------|------|------|------|----------|-----------|------|------|-------|------|------|------|--------|-----------|------|------|------|------|------|-------|-------------|------------| | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 41 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | | 7. | 4 | 3 | 2 | 1 | 0 | | 0x009C | FDCAN
_RXF1A | Res. F1 | 1AI[2 | 2:0] | | | Reset value | 0 | 0 | 0 | | 0x00A0
to | Reserved | Res. | Res. | Res. | | Res. | 0x00BC | Reset value | 0x00C0 | FDCAN
_TXBC | Res. TFQM | Res. | | Reset value | | | | | | | | 0 | 0 | 0x00C4 | FDCAN
_TXFQS | Res. | Res. | Res. | | Res. | Res. | Res. | Res. | Res. | Res. | TFQF | Res. | Res. | Res. | TO DITA. | FQP T:0 | Res. | Res. | Res. | Res. | Res. | Res. | 10.114 | FG [1:0] | Res. | Res. | Res. | Res. | Res. | | TFFL[2:0] | | | | Reset value | | | | | | | | | | | 0 | | | | 0 | 0 | | | | | | | 0 | 0 | | | | | | 0 | 1 | 1 | | 0x00C8 | FDCAN
_TXBRP | Res. TRP2 | TRP1 | TRP0 | | | Reset value | 0 | 0 | 0 | | 0x00CC | FDCAN
_TXBAR | Res. AR2 | AR1 | AR0 | | | Reset value | 0 | 0 | 0 | | 0x00D0 | FDCAN
_TXBCR | Res. CR2 | CR. | CR0 | | | Reset value | 0 | 0 | 0 | | 0x00D4 | FDCAN
_TXBTO | Res. T02 | 107 | 100 | | | Reset value | 0 | 0 | 0 | | 0x00D8 | FDCAN
_TXBCF | Res. CF2 | CF1 | CF0 | | | Reset value | 0 | 0 | 0 | | 0x00DC | FDCAN
_TXBTIE | Res. TIE2 | TE1 | TIE0 | | | Reset value | 0 | 0 | 0 | | 0x00E0 | FDCAN
_TXBCIE | Res. | Res. | Res. | | Res. CFIE2 | CFIE1 | CFIE0 | | | Reset value | 0 | 0 | 0 | | 0x00E4 | FDCAN
_TXEFS | Res. | Res. | Res. | Res. | Res. | Res. | TEF | EFF | Res. | Res. | Res. | Res. | Res. | Res. | | PI
:0] | Res. | Res. | Res. | Res. | Res. | Res. | | FG
:0] | Res. | Res. | Res. | Res. | Res. | | EFF
[2:0 | | | | Reset value | | | | | | | 0 | 0 | | | | | | | 0 | 0 | | | | | | | 0 | 0 | | | | | | 0 | 0 | 0 | | 0x00E8 | FDCAN
_TXEFA | Res. | FAI
:0] | | | Reset value | 0 | 0 | | 0x0100 | FDCAN
_CKDIV | Res. ı | PDI\ | V[3:0 | 0] | | | Reset value | 0 | 0 | 0 | 0 | ^{1.} R = Read, S = Set on read, X = Reset on read, W = Write, P = Protected write, p = Protected set, C = Clear/preset on write. Refer to Section 2.2 on page 58 for the register boundary addresses. # Universal serial bus full-speed host/device interface (USB) # 37.1 Introduction The USB peripheral implements an interface between a full-speed USB 2.0 bus and the APB1 bus. USB suspend/resume are supported, which permits to stop the device clocks for low-power consumption. # 37.2 USB main features - USB specification version 2.0 full-speed compliant - Supports both Host and Device modes - Configurable number of endpoints from 1 to 8 - Dedicated packet buffer memory (SRAM) of 2048 bytes - Cyclic redundancy check (CRC) generation/checking, Non-return-to-zero Inverted (NRZI) encoding/decoding and bit-stuffing - Isochronous transfers support - Double-buffered bulk/isochronous endpoint/channel support - USB Suspend/Resume operations - Frame locked clock pulse generation - USB 2.0 Link Power Management support (Device mode only) - Battery Charging Specification Revision 1.2 support (Device mode only) - USB connect / disconnect capability (controllable embedded pull-up resistor on USB_DP line) # 37.3 USB implementation *Table 216* describes the USB implementation in the devices. Table 216. STM32G0x1 USB implementation | USB features ⁽¹⁾ | USB | |---|------------| | Host mode | X | | Number of endpoints | 8 | | Size of dedicated packet buffer memory SRAM | 2048 bytes | | Dedicated packet buffer memory SRAM access scheme | 32 bits | | USB 2.0 Link Power Management (LPM) support in device | X | | Battery Charging Detection (BCD) support for device | X | | Embedded pull-up resistor on USB_DP line | X | 1. X= supported #### 37.4 **USB** functional description Figure 401 shows the block diagram of the USB peripheral. Figure 401. USB peripheral block diagram # General description and Device mode functionality The USB peripheral provides a USB-compliant connection between the function implemented by the microcontroller and an external USB function which could be a host PC but also a USB Device. Data transfer between the external USB host or device and the system memory occurs through a dedicated packet buffer memory accessed directly by the USB peripheral. This dedicated memory size is 2048 bytes, and up to 16 mono-directional or 8 bidirectional endpoints can be used. The USB peripheral interfaces with the external USB Host or Device, detecting token packets, handling data transmission/reception, and processing handshake packets as required by the USB standard. Transaction formatting is performed by the hardware, including CRC generation and checking. RM0444 Rev 5 1263/1390 Each endpoint/channel is associated with a buffer description block indicating where the endpoint/channel-related memory area is located, how large it is or how many bytes must be transmitted. When a token for a valid function/endpoint pair is recognized by the USB peripheral, the related data transfer (if required and if the endpoint/channel is configured) takes place. The data buffered by the USB peripheral are loaded in an internal 16-bit register and memory access to the dedicated buffer is performed. When all the data have been transferred, if needed, the proper handshake packet over the USB is generated or expected according to the direction of the transfer. At the end of the transaction, an endpoint/channel-specific interrupt is generated, reading status registers and/or using different interrupt response routines. The microcontroller can determine: - which endpoint/channel has to be served, - which type of transaction took place, if errors occurred (bit stuffing, format, CRC, protocol, missing ACK, over/underrun, etc.). Special support is offered to isochronous transfers and high throughput bulk transfers, implementing a double buffer usage, which permits to always have an available buffer for the USB peripheral while the microcontroller uses the other one. A special bit THR512 in register USB_ISTR allows notification of 512 bytes being received in (or transmitted from) the buffer.
This bit must be used for long ISO packets (from 512 to 1023 bytes) as it facilitates early start or read/write of data. In this way, the first 512 bytes can be handled by software while avoiding use of double buffer mode. This bit works when only one ISO endpoint is configured. The unit can be placed in low-power mode (SUSPEND mode), by writing in the control register, whenever required. At this time, all static power dissipation is avoided, and the USB clock can be slowed down or stopped. The detection of activity at the USB inputs, while in low-power mode, wakes the device up asynchronously. A special interrupt source can be connected directly to a wakeup line to permit the system to immediately restart the normal clock generation and/or support direct clock start/stop. # Host mode and specific functionality A single bit, HOST, in register USB_CNTR permits Host mode to be activated. Host mode functionality permits the USB to talk to a remote peripheral. Supported functionality is aligned to Device mode and uses the same register structures to manage the buffers. The same number of endpoints can be supported in Host mode, however in Host mode the terminology "channel" is preferred, as each channel is in reality a combination of the connected device and the endpoint on that device. The basic mechanisms for packet transmission and reception are the same as those supported in Device mode. When operating in Host mode, the USB is in charge of the bus and in order to do this must issue transaction requests corresponding to active periodic and non-periodic endpoints. A host frame scheduler assures efficient use of the frame. Connection to hubs is supported. Connection to low speed devices is supported, both with a direct connection and through a hub. Double-buffered mode, as previously described in Device mode, is also supported in Host mode, in both bulk and isochronous channels. The THR512 functionality is also supported (but as in Device mode) only for ISO traffic. Unlike in Device mode, where there is a detection of battery charging capability (in order to facilitate fast charging), there is no integrated support in Host mode to present battery 1264/1390 RM0444 Rev 5 Note: charging capability (CDP or DCP cases in the standard), the host port is always presented as a default standard data port (SDP). Note: For LPM (link power management) this feature is not supported in Host mode. # 37.4.1 Description of USB blocks used in both Device and Host modes The USB peripheral implements all the features related to USB interfacing, which include the following blocks: - USB physical interface (USB PHY): this block is maintaining the electrical interface to an external USB host. It contains the differential analog transceiver itself, controllable embedded pull-up resistor (connected to USB_DP line) and support for battery charging detection (BCD), multiplexed on same USB_DP and USB_DM lines. The output enable control signal of the analog transceiver (active low) is provided externally on USB_NOE. It can be used to drive some activity LED or to provide information about the actual communication direction to some other circuitry. - Serial interface engine (SIE): the functions of this block include: synchronization pattern recognition, bit-stuffing, CRC generation and checking, PID verification/generation, and handshake evaluation. It must interface with the USB transceivers and uses the virtual buffers provided by the packet buffer interface for local data storage. This unit also generates signals according to USB peripheral events, such as start of frame (SOF), USB_Reset, data errors etc. and to endpoint related events like end of transmission or correct reception of a packet; these signals are then used to generate interrupts. - Timer: this block generates a start-of-frame locked clock pulse and detects a global suspend (from the host) when no traffic has been received for 3 ms. - Packet buffer interface: this block manages the local memory implementing a set of buffers in a flexible way, both for transmission and reception. It can choose the proper buffer according to requests coming from the SIE and locate them in the memory addresses pointed by the endpoint/channel registers. It increments the address after each exchanged byte until the end of packet, keeping track of the number of exchanged bytes and preventing the buffer to overrun the maximum capacity. - Endpoint/channel-related registers: each endpoint/channel has an associated register containing the endpoint/channel type and its current status. For monodirectional/single-buffer endpoints, a single register can be used to implement two distinct endpoints. The number of registers is 8, allowing up to 16 monodirectional/single-buffer or up to 7 double-buffer endpoints in any combination. For example the USB peripheral can be programmed to have 4 double buffer endpoints and 8 single-buffer/mono-directional endpoints. - Control registers: these are the registers containing information about the status of the whole USB peripheral and used to force some USB events, such as resume and power-down. - Interrupt registers: these contain the interrupt masks and a record of the events. They can be used to inquire an interrupt reason, the interrupt status or to clear the status of a pending interrupt. Note: * Endpoint/channel 0 is always used for control transfer in single-buffer mode. The USB peripheral is connected to the APB1 bus through an APB1 interface, containing the following blocks: Packet memory: this is the local memory that physically contains the packet buffers. It can be used by the packet buffer interface, which creates the data structure and can be RM0444 Rev 5 1265/1390 - accessed directly by the application software. The size of the packet memory is 2048 bytes, structured as 512 words of 32 bits. - Arbiter: this block accepts memory requests coming from the APB1 bus and from the USB interface. It resolves the conflicts by giving priority to APB1 accesses, while always reserving half of the memory bandwidth to complete all USB transfers. This time-duplex scheme implements a virtual dual-port SRAM that allows memory access, while an USB transaction is happening. Multiword APB1 transfers of any length are also allowed by this scheme. - Register mapper: this block collects the various byte-wide and bit-wide registers of the USB peripheral in a structured 32-bit wide word set addressed by the APB1. - APB1 wrapper: this provides an interface to the APB1 for the memory and register. It also maps the whole USB peripheral in the APB1 address space. - Interrupt mapper: this block is used to select how the possible USB events can generate interrupts and map them to the NVIC. # 37.4.2 Description of host frame scheduler (HFS) specific to Host mode The host frame scheduler is the hardware machine in charge to submit host channel requests on the bus according to the USB priority order and bandwidth access rules. Host channels are divided in two categories: - Periodic channels: isochronous and interrupt traffic types. With guaranteed bandwith access. - Non-periodic channels: bulk and control traffic types. With best effort service. The host frame scheduler organizes the full-speed frame in 3 sequential windows - Periodic service window - Non-periodic service window - Black security window At the start of a new frame the host scheduler: - First considers all periodic channels which were active (STAT bits VALID) at the start of frame - Executes single round of service of periodic channels, the periodic service window, in hardware priority order from CH#1 to CH#8. For bidirectional channels it executes the OUT direction first - When the periodic round is finished, HFS closes the periodic service window and stops servicing periodic traffic even if some periodic channel was re-enabled or some new channel was enabled after the SOF. - 4. Starts servicing all non-periodic channels which are currently active (STAT bits VALID) in hardware priority order from CH#1 to CH#8. For bidirectional channels it executes the OUT direction first. - 5. Executes multiple round-robin service cycles of non-periodic channels until almost the end of frame - 6. Non periodic traffic can be requested at any time and is serviced by HFS with best effort latency, with the exception of a black security window at the end of the frame where new injected requests are directly postponed to the next frame to avoid babbles. This is also true for pending transactions which have not been serviced ahead of the security window. # 37.5 Programming considerations for Device and Host modes In the following sections, the expected interactions between the USB peripheral and the application program are described, in order to ease application software development. # 37.5.1 Generic USB Device programming This part describes the main tasks required of the application software in order to obtain USB compliant behavior. The actions related to the most general USB events are taken into account and paragraphs are dedicated to the special cases of double-buffered endpoints and isochronous transfers. Apart from system reset, an action is always initiated by the USB peripheral, driven by one of the USB events described below. # 37.5.2 System and power-on reset Upon system and power-on reset, the first operation the application software should perform is to provide all required clock signals to the USB peripheral and subsequently de-assert its reset signal so to be able to access its registers. The whole initialization sequence is hereafter described. As a first step application software needs to activate register macrocell clock and de-assert macrocell specific reset signal using related control bits provided by device clock management logic. After that, the analog part of the device related to the USB transceiver must be switched on using the PDWN bit in CNTR register, which requires a special handling. This bit is intended to
switch on the internal voltage references that supply the port transceiver. This circuit has a defined startup time (t_{STARTUP} specified in the datasheet) during which the behavior of the USB transceiver is not defined. It is thus necessary to wait this time, after setting the PDWN bit in the CNTR register, before removing the reset condition on the USB part (by clearing the USBRST bit in the CNTR register). Clearing the ISTR register removes any spurious pending interrupt before any other macrocell operation is enabled. At system reset, the microcontroller must initialize all required registers and the packet buffer description table, to make the USB peripheral able to properly generate interrupts and data transfers. All registers not specific to any endpoint/channel must be initialized according to the needs of application software (choice of enabled interrupts, chosen address of packet buffers, etc.). Then the process continues as for the USB reset case (see further paragraph). #### USB bus reset (RST DCON interrupt) in Device mode When this event occurs, the USB peripheral is put in the same conditions it is left by the system reset after the initialization described in the previous paragraph: communication is disabled in all endpoint registers (the USB peripheral does not respond to any packet). As a response to the USB reset event, the USB function must be enabled, having as USB address 0, implementing only the default control endpoint (endpoint address is 0 too). This is accomplished by setting the enable function (EF) bit of the USB_DADDR register and initializing the CHEP0R register and its related packet buffers accordingly. During USB enumeration process, the host assigns a unique address to this device, which must be written in the ADD[6:0] bits of the USB_DADDR register, and configures any other necessary endpoint. RM0444 Rev 5 1267/1390 When a RST_DCON interrupt is received, the application software is responsible to enable again the default endpoint of USB function 0 within 10 ms from the end of the reset sequence which triggered the interrupt. #### **USB** bus reset in Host mode In Host mode a bus reset is activated by setting the USBRST bit of the USB_CNTR register. It should subsequently be cleared by software once the minimum active reset time from the standard has been respected. # Structure and usage of packet buffers Each bidirectional endpoint may receive or transmit data over the bus. The received data is stored in a dedicated memory buffer reserved for that endpoint, while another memory buffer contains the data to be transmitted by the endpoint. Access to this memory is performed by the packet buffer interface block, which delivers a memory access request and waits for its acknowledgment. Since the packet buffer memory has also to be accessed by the microcontroller, an arbitration logic takes care of the access conflicts, using half APB1 cycle for microcontroller access and the remaining half for the USB peripheral access. In this way, both agents can operate as if the packet memory would be a dual-port SRAM, without being aware of any conflict even when the microcontroller is performing back-to-back accesses. The USB peripheral logic uses a dedicated clock. The frequency of this dedicated clock is fixed by the requirements of the USB standard at 48 MHz, and this can be different from the clock used for the interface to the APB1 bus. Different clock configurations are possible where the APB1 clock frequency can be higher or lower than the USB peripheral one. Note: Due to USB data rate and packet memory interface requirements, the APB1 clock must have a minimum frequency of 12 MHz to avoid data overrun/underrun problems. Each endpoint is associated with two packet buffers (usually one for transmission and the other one for reception). Buffers can be placed anywhere inside the packet memory because their location and size is specified in a buffer description table, which is also located in the packet memory. Each table entry is associated to an endpoint register and it is composed of two 32-bit words so that table start address must always be aligned to an 8-byte boundary. Buffer descriptor table entries are described in Section 37.6.2: Buffer descriptor table. If an endpoint is unidirectional and it is neither an isochronous nor a double-buffered bulk, only one packet buffer is required (the one related to the supported transfer direction). Other table locations related to unsupported transfer directions or unused endpoints, are available to the user. Isochronous and double-buffered bulk endpoints have special handling of packet buffers (Refer to Section 37.5.5: Isochronous transfers in Device mode and Section 37.5.3: Double-buffered endpoints and usage in Device mode respectively). The relationship between buffer description table entries and packet buffer areas is depicted in Figure 402. For Host mode different sections explain the buffer usage model, notably Section 37.5.6: Isochronous transfers in Host mode and Section 37.5.4: Double buffered channels: usage in Host mode. Figure 402. Packet buffer areas with examples of buffer description table locations Each packet buffer is used either during reception or transmission starting from the bottom. The USB peripheral never changes the contents of memory locations adjacent to the allocated memory buffers; if a packet bigger than the allocated buffer length is received (buffer overrun condition) the data is copied to the memory only up to the last available location. # **Endpoint initialization** The first step to initialize an endpoint is to write appropriate values to the ADDRn_TX/ADDRn_RX fields in the CHEP_TXBD_n and CHEP_RXBD_n registers (in SRAM) so that the USB peripheral finds the data to be transmitted already available and the data to be received can be buffered. The UTYPE bits in the USB_CHEPnR register must be set according to the endpoint type, eventually using the EPKIND bit to enable any special required feature. On the transmit side, the endpoint must be enabled using the STATTX bits in the USB_CHEPnR register and COUNTn_TX must be initialized. For reception, STATRX bits must be set to enable reception and COUNTn_RX must be written with the allocated buffer size using the BLSIZE and NUM_BLOCK fields. Unidirectional endpoints, except isochronous and double-buffered bulk endpoints, need to initialize only bits and registers related to the supported direction. Once the transmission and/or reception are enabled, register USB_CHEPnR and locations ADDRn_TX/ADDRn_RX, COUNTn_TX/COUNTn_RX (respectively), should not be modified by the application software, as the hardware can RM0444 Rev 5 1269/1390 change their value on the fly. When the data transfer operation is completed, notified by a CTR interrupt event, they can be accessed again to re-enable a new operation. # **Data transmission in Device mode (IN packets)** When receiving an IN token packet, if the received address matches a configured and valid endpoint, the USB peripheral accesses the contents of CHEP_TXBD_n (fields ADDRn_TX and COUNTn_TX) inside the buffer descriptor table entry related to the addressed endpoint. The content of these locations is stored in its internal 16-bit registers ADDR and COUNT (not accessible by software). The packet memory is accessed again to read the first byte to be transmitted (refer to *Structure and usage of packet buffers on page 1268*) and the USB peripheral starts sending a DATA0 or DATA1 PID according to USB_CHEPnR bit DTOGTX. When the PID is completed, the first byte, read from buffer memory, is loaded into the output shift register to be transmitted on the USB bus. After the last data byte is transmitted, the computed CRC is sent. If the addressed endpoint is not valid, a NAK or STALL handshake packet is sent instead of the data packet, according to STATTX bits in the USB_CHEPnR register. The ADDRn_TX field in the internal register CHEP_TXBD_n is used as a pointer to the current buffer memory location while COUNT is used to count the number of remaining bytes to be transmitted. Each half-word read from the packet buffer memory is transmitted over the USB bus starting from the least significant byte. Transmission buffer memory is read starting from the address pointed by ADDRn_TX for COUNTn_TX/4 words. If a transmitted packet is composed of an odd number of bytes, only the lower half of the last half-word accessed is used. On receiving the ACK receipt by the host, the USB_CHEPnR register is updated in the following way: DTOGTX bit is toggled, the endpoint is made invalid by setting STATTX = 10 (NAK) and bit VTTX is set. The application software must first identify the endpoint, which is requesting microcontroller attention by examining the IDN and DIR bits in the USB_ISTR register. Servicing of the VTTX event starts, clearing the interrupt bit; the application software then prepares another buffer full of data to be sent, updates the COUNTn_TX table location with the number of byte to be transmitted during the next transfer, and finally sets STATTX to 11 (VALID) to re-enable transmission. While the STATTX bits are equal to 10 (NAK), any IN request addressed to that endpoint is NAKed, indicating a flow control condition: the USB host retries the transaction until it succeeds. It is mandatory to execute the sequence of operations in the above mentioned order to avoid losing the notification of a second IN transaction addressed to the same endpoint immediately following the one which triggered the CTR interrupt. # Data transmission in Host mode (OUT packets) Data transmission in Host mode follows the same general principles as Device mode. The main differences are due to the protocol. For example the host initiates the transmission whereas the device responds to the incoming token. ADDRn_TX should be set to the location in the packet memory reserved for the packet for transmission. The contents of an OUT packet are then written to
that address in the packet memory and COUNTn_TX should be updated (when necessary) to indicate the number of bytes in the packet. DEVADDR should be written for the correct endpoint and then STATTX should be set to 11 (VALID) in order to trigger the transmit. The transmission is then scheduled by the HFS. After a successful transmission the CTR interrupt (correct transfer) is triggered. By examining IDN and DIR bits, the corresponding channel and direction is understood. On the indicated channel, the STATTX field now has transitioned to DISABLE. In the case of a NAK being received (when the peripheral is not ready) STATTX is now in NAK. In the case of a STALL response, STATTX is in STALL. In this last case, the bus should be reset. On receiving the ACK receipt by the device, the USB_CHEPnR register is updated in the following way: DTOGTX bit is toggled. An error condition is signaled via the bits VTTX and ERR_TX in the case of: - No handshake being received in time - False EOP - Bit stuffing error - Invalid handshake PID # Data reception in Device mode (OUT and SETUP packets) These two tokens are handled by the USB peripheral more or less in the same way; the differences in the handling of SETUP packets are detailed in the following paragraph about control transfers. When receiving an OUT/SETUP PID, if the address matches a valid endpoint, the USB peripheral accesses the contents of the ADDRn RX and COUNTn RX fields inside the buffer descriptor table entry related to the addressed endpoint. The content of the ADDRn RX field is stored directly in its internal register ADDR. Internal register COUNT is now reset and the values of BLSIZE and NUM BLOCK bit fields, which are read within USB_CHEP_RXBD_n content, are used to initialize BUF_COUNT, an internal 16-bit counter, which is used to check the buffer overrun condition (all these internal registers are not accessible by software). Data bytes subsequently received by the USB peripheral are packed in half-words (the first byte received is stored as least significant byte) and then transferred to the packet buffer starting from the address contained in the internal ADDR register while BUF COUNT is decremented and COUNT is incremented at each byte transfer. When the end of DATA packet is detected, the correctness of the received CRC is tested and only if no errors occurred during the reception, an ACK handshake packet is sent back to the transmitting host. In case of wrong CRC or other kinds of errors (bit-stuff violations, frame errors, etc.), data bytes are still copied in the packet memory buffer, at least until the error detection point, but the ACK packet is not sent and the ERR bit in USB_ISTR register is set. However, there is usually no software action required in this case: the USB peripheral recovers from reception errors and remains ready for the next transaction to come. If the addressed endpoint is not valid, a NAK or STALL handshake packet is sent instead of the ACK, according to bits STATRX in the USB_CHEPnR register, and no data is written in the reception memory buffers. Reception memory buffer locations are written starting from the address contained in the ADDRn_RX for a number of bytes corresponding to the received data packet length, or up to the last allocated memory location, as defined by BLSIZE and NUM_BLOCK, whichever comes first. In this way, the USB peripheral never writes beyond the end of the allocated reception memory buffer area. If the length of the data packet payload (actual number of bytes used by the application) is greater than the allocated buffer, the USB peripheral detects a buffer overrun condition. In this case, a STALL handshake is sent instead of the usual ACK to notify the problem to the host, no interrupt is generated and the transaction is considered failed. When the transaction is completed correctly, by sending the ACK handshake packet, the internal COUNT register is copied back in the COUNTn_RX location inside the buffer description table entry, leaving unaffected BLSIZE and NUM BLOCK fields, which normally RM0444 Rev 5 1271/1390 do not require to be re-written, and the USB CHEPnR register is updated in the following way: DTOGRX bit is toggled, the endpoint is made invalid by setting STATRX = 10 (NAK) and bit VTRX is set. If the transaction has failed due to errors or buffer overrun condition, none of the previously listed actions take place. The application software must first identify the endpoint, which is requesting microcontroller attention by examining the IDN and DIR bits in the USB_ISTR register. The VTRX event is serviced by first determining the transaction type (SETUP bit in the USB_CHEPnR register); the application software must clear the interrupt flag bit and get the number of received bytes reading the COUNTN RX location inside the buffer description table entry related to the endpoint being processed. After the received data is processed, the application software should set the STATRX bits to 11 (VALID) in the USB CHEPnR, enabling further transactions. While the STATRX bits are equal to 10 (NAK), any OUT request addressed to that endpoint is NAKed, indicating a flow control condition: the USB host retries the transaction until it succeeds. It is mandatory to execute the sequence of operations in the above mentioned order to avoid losing the notification of a second OUT transaction addressed to the same endpoint following immediately the one which triggered the CTR interrupt. # Data reception in Host mode (IN packets) Data reception in Host mode follows the same general principles as Device mode. The main differences are again due to the protocol. In the device, data can be received or not, depending on readiness after previous operations, whereas the host only requests receive data when it is ready and able to store them. ADDRn_TX should be set to the location in the packet memory reserved for the packet for transmission. The contents received in the data phase response to the IN token packet are then written to that address in the packet memory and COUNTn_TX gets updated by hardware during this process to indicate the number of bytes in the packet. DEVADDR should be written for the correct endpoint and then STATRX should be set to VALID in order to trigger the reception. The reception is then scheduled by the HFS. After a successful reception the interrupt CTR (correct transfer) is triggered. By examining IDN and DIR bits, the corresponding channel and direction is understood. On the indicated channel, the STATRX field now has transitioned to DISABLE. In the case of a NAK being received (when the peripheral is not ready) STATRX now is in NAK. In the case of a STALL response, STATRX is in STALL. In this last case, the bus should be reset. During an IN packet an error condition is signaled via the bits VTRX and ERR_RX in case of: - False EOP - Bit stuffing error - Wrong CRC # Control transfers in Device mode Control transfers are made of a SETUP transaction, followed by zero or more data stages, all of the same direction, followed by a status stage (a zero-byte transfer in the opposite direction). SETUP transactions are handled by control endpoints only and are very similar to OUT ones (data reception) except that the values of DTOGTX and DTOGRX bits of the addressed endpoint registers are set to 1 and 0 respectively, to initialize the control transfer, and both STATTX and STATRX are set to 10 (NAK) to let software decide if subsequent transactions must be IN or OUT depending on the SETUP contents. A control endpoint must check SETUP bit in the USB_CHEPnR register at each VTRX event to distinguish normal OUT transactions from SETUP ones. A USB Device can determine the number and direction of data stages by interpreting the data transferred in the SETUP stage, and is required to STALL the transaction in the case of errors. To do so, at all data stages before the last, the unused direction should be set to STALL, so that, if the host reverses the transfer direction too soon, it gets a STALL as a status stage. While enabling the last data stage, the opposite direction should be set to NAK, so that, if the host reverses the transfer direction (to perform the status stage) immediately, it is kept waiting for the completion of the control operation. If the control operation completes successfully, the software changes NAK to VALID, otherwise to STALL. At the same time, if the status stage is an OUT, the STATUS_OUT (EPKIND in the USB_CHEPnR register) bit should be set, so that an error is generated if a status transaction is performed with non-zero data. When the status transaction is serviced, the application clears the STATUS_OUT bit and sets STATRX to VALID (to accept a new command) and STATTX to NAK (to delay a possible status stage immediately following the next setup). Since the USB specification states that a SETUP packet cannot be answered with a handshake different from ACK, eventually aborting a previously issued command to start the new one, the USB logic does not permit a control endpoint to answer with a NAK or STALL packet to a SETUP token received from the host. When the STATRX bits are set to 01 (STALL) or 10 (NAK) and a SETUP token is received, the USB accepts the data, performing the required data transfers and sends back an ACK handshake. If that endpoint has a previously issued VTRX request not yet acknowledged by the application (for example VTRX bit is still set from a previously completed reception), the USB discards the SETUP transaction and does not answer with any handshake packet regardless of its state, simulating a reception error and forcing the host to send the SETUP token again. This is done to avoid losing the notification of a SETUP transaction addressed to the same endpoint immediately following the transaction, which triggered the VTRX interrupt. # Control transfers in Host mode Control transfers are made of a SETUP transaction, followed by zero or more data stages, all
of the same direction, followed by a status stage (a zero-byte transfer in the opposite direction). SETUP transactions are handled by control endpoints only. A control endpoint must set the SETUP bit in the USB_CHEPnR register. The values of DTOGTX and DTOGRX bits of the addressed endpoint registers are set to 0. Depending on whether it is a control write or control read then STATTX or STATRX are set to 11 (ACTIVE) in order to trigger the control transfer via the host frame scheduler. On receiving a CTR interrupt the channel (device address and endpoint) can be determined by examining IDN and DIR bits. Devices are expected to NAK every control unless the packet is corrupted in which case they do not acknowledge. The situation is reflected in the value of STATTX. In the case of an error condition the ERR bit gets set. One possible case is where a CRC error is seen at the device, in this case no ACK is returned to the host. The host sees no ACK and after an appropriate delay this generates a timeout error with ERR_TX set (which can generate an interrupt). RM0444 Rev 5 1273/1390 # 37.5.3 Double-buffered endpoints and usage in Device mode All different endpoint types defined by the USB standard represent different traffic models, and describe the typical requirements of different kind of data transfer operations. When large portions of data are to be transferred between the host PC and the USB function, the bulk endpoint type is the most suited model. This is because the host schedules bulk transactions so as to fill all the available bandwidth in the frame, maximizing the actual transfer rate as long as the USB function is ready to handle a bulk transaction addressed to it. If the USB function is still busy with the previous transaction when the next one arrives, it answers with a NAK handshake and the host PC issues the same transaction again until the USB function is ready to handle it, reducing the actual transfer rate due to the bandwidth occupied by re-transmissions. For this reason, a dedicated feature called 'double-buffering' can be used with bulk endpoints. When 'double-buffering' is activated, data toggle sequencing is used to select, which buffer is to be used by the USB peripheral to perform the required data transfers, using both 'transmission' and 'reception' packet memory areas to manage buffer swapping on each successful transaction in order to always have a complete buffer to be used by the application, while the USB peripheral fills the other one. For example, during an OUT transaction directed to a 'reception' double-buffered bulk endpoint, while one buffer is being filled with new data coming from the USB host, the other one is available for the microcontroller software usage (the same would happen with a 'transmission' double-buffered bulk endpoint and an IN transaction). Since the swapped buffer management requires the usage of all 4 buffer description table locations hosting the address pointer and the length of the allocated memory buffers, the USB_CHEPnR registers used to implement double-buffered bulk endpoints are forced to be used as unidirectional ones. Therefore, only one STAT bit pair must be set at a value different from 00 (DISABLED): STATRX if the double-buffered bulk endpoint is enabled for reception, STATTX if the double-buffered bulk endpoint is enabled for transmission. In case it is required to have double-buffered bulk endpoints enabled both for reception and transmission, two USB_CHEPnR registers must be used. To exploit the double-buffering feature and reach the highest possible transfer rate, the endpoint flow control structure, described in previous chapters, has to be modified, in order to switch the endpoint status to NAK only when a buffer conflict occurs between the USB peripheral and application software, instead of doing it at the end of each successful transaction. The memory buffer which is currently being used by the USB peripheral is defined by the DTOG bit related to the endpoint direction: DTOGRX (bit 14 of USB CHEPnR register) for 'reception' double-buffered bulk endpoints or DTOGTX (bit 6 of USB CHEPnR register) for 'transmission' double-buffered bulk endpoints. To implement the new flow control scheme, the USB peripheral should know which packet buffer is currently in use by the application software, so to be aware of any conflict. Since in the USB CHEPnR register, there are two DTOG bits but only one is used by USB peripheral for data and buffer sequencing (due to the unidirectional constraint required by double-buffering feature) the other one can be used by the application software to show which buffer it is currently using. This new buffer flag is called SW_BUF. In the following table the correspondence between USB CHEPnR register bits and DTOG/SW BUF definition is explained, for the cases of 'transmission' and 'reception' double-buffered bulk endpoints. Table 217. Double-buffering buffer flag definition | Buffer flag | 'Transmission' endpoint | 'Reception' endpoint | | | | | |-------------|---------------------------|----------------------------|--|--|--|--| | DTOG | DTOGTX (USB_CHEPnR bit 6) | DTOGRX (USB_CHEPnR bit 14) | | | | | | SW_BUF | USB_CHEPnR bit 14 | USB_CHEPnR bit 6 | | | | | The memory buffer which is currently being used by the USB peripheral is defined by DTOG buffer flag, while the buffer currently in use by application software is identified by SW_BUF buffer flag. The relationship between the buffer flag value and the used packet buffer is the same in both cases, and it is listed in the following table. Table 218. Bulk double-buffering memory buffers usage (Device mode) | Endpoint type | | SW_BUF | Packet buffer used by
USB peripheral | Packet buffer used by Application Software | |---------------|---|--------|--|--| | | 0 | 1 | USB_CHEP_TXRXBD_0 (ADDRn_TX_0 / COUNTn_TX_0) Buffer description table locations. | USB_CHEP_RXTXBD_0 (ADDRn_TX_1 / COUNTn_TX_1) Buffer description table locations | | Transmit | 1 | 0 | USB_CHEP_RXTXBD_0 (ADDRn_TX_0 / COUNTn_TX_0) Buffer description table locations | USB_CHEP_TXRXBD_0 (ADDRn_TX_0 / COUNTn_TX_0) Buffer description table locations. | | (IN) | 0 | 0 | None ⁽¹⁾ | USB_CHEP_TXRXBD_0 (ADDRn_TX_0 / COUNTn_TX_0) Buffer description table locations. | | | 1 | 1 | None ⁽¹⁾ | USB_CHEP_RXTXBD_0 (ADDRn_TX_0 / COUNTn_TX_0) Buffer description table locations. | | | 0 | 1 | USB_CHEP_RXTXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations. | USB_CHEP_TXRXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations. | | Receive | 1 | 0 | USB_CHEP_TXRXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations | USB_CHEP_RXTXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations. | | (OUT) | 0 | 0 | None ⁽¹⁾ | USB_CHEP_RXTXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations. | | | 1 | 1 | None ⁽¹⁾ | USB_CHEP_TXRXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations. | ^{1.} Endpoint in NAK Status. Double-buffering feature for a bulk endpoint is activated by: - Writing UTYPE bit field at 00 in its USB_CHEPnR register, to define the endpoint as a bulk, and - Setting EPKIND bit at 1 (DBL BUF), in the same register. The application software is responsible for DTOG and SW_BUF bits initialization according to the first buffer to be used; this has to be done considering the special toggle-only property that these two bits have. The end of the first transaction occurring after having set DBL_BUF, triggers the special flow control of double-buffered bulk endpoints, which is used for all other transactions addressed to this endpoint until DBL BUF remain set. At the end of each transaction the VTRX or VTTX bit of the addressed endpoint USB CHEPnR register is set, depending on the enabled direction. At the same time, the affected DTOG bit in the USB CHEPnR register is hardware toggled making the USB peripheral buffer swapping completely software independent. Unlike common transactions, and the first one after DBL BUF setting, STAT bit pair is not affected by the transaction termination and its value remains 11 (VALID). However, as the token packet of a new transaction is received, the actual endpoint status is masked as 10 (NAK) when a buffer conflict between the USB peripheral and the application software is detected (this condition is identified by DTOG and SW BUF having the same value, see Table 218 on page 1275). The application software responds to the CTR event notification by clearing the interrupt flag and starting any required handling of the completed transaction. When the application packet buffer usage is over, the software toggles the SW BUF bit, writing 1 to it, to notify the USB peripheral about the availability of that buffer. In this way, the number of NAKed transactions is limited only by the application elaboration time of a transaction data: if the elaboration time is shorter than the time required to complete a transaction on the USB bus, no re-transmissions due to flow control takes place and the actual transfer rate is limited only by the host PC. The application software can always override the special flow control implemented for double-buffered bulk endpoints, writing an explicit status different from 11 (VALID) into the STAT bit pair of the related USB_CHEPnR register. In this case, the USB peripheral always uses the programmed endpoint status, regardless of the buffer usage condition. # 37.5.4 Double buffered channels: usage in Host mode In Host mode the underlying transmit and receive methods for double buffered channels are the same as those described for Device mode. Similar to the Device mode table, a new table below *Table 219: Bulk double-buffering memory buffers usage (Host mode)* shows the programming settings for OUT and IN tokens. | Endpoint type | DTOG |
SW_BUF | Packet buffer used by
USB peripheral | Packet buffer used by
Application Software | | | | | | |---------------|------|--------|--|---|--|--|--|--|--| | | 0 | 1 | USB_CHEP_TXRXBD_0 (ADDRn_TX_0 / COUNTn_TX_0) Buffer description table locations. | USB_CHEP_RXTXBD_0 (ADDRn_TX_1 / COUNTn_TX_1) Buffer description table locations | | | | | | | Transmit | 1 | 0 | USB_CHEP_RXTXBD_0 (ADDRn_TX_0 / COUNTn_TX_0) Buffer description table locations | USB_CHEP_TXRXBD_0 (ADDRn_TX_0 / COUNTn_TX_0) Buffer description table locations. | | | | | | | (OUT) | 0 | 0 | None ⁽¹⁾ | USB_CHEP_TXRXBD_0 (ADDRn_TX_0 / COUNTn_TX_0) Buffer description table locations. | | | | | | | | 1 | 1 | None ⁽¹⁾ | USB_CHEP_RXTXBD_0 (ADDRn_TX_0 / COUNTn_TX_0) Buffer description table locations. | | | | | | | | 0 | 1 | USB_CHEP_RXTXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations. | USB_CHEP_TXRXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations. | | | | | | | Receive | 1 | 0 | USB_CHEP_TXRXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations | USB_CHEP_RXTXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations. | | | | | | | (IN) | 0 | 0 | None ⁽¹⁾ | USB_CHEP_RXTXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations. | | | | | | | | 1 | 1 | None ⁽¹⁾ | USB_CHEP_TXRXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations. | | | | | | Table 219. Bulk double-buffering memory buffers usage (Host mode) # 37.5.5 Isochronous transfers in Device mode The USB standard supports full speed peripherals requiring a fixed and accurate data production/consume frequency, defining this kind of traffic as 'isochronous'. Typical examples of this data are: audio samples, compressed video streams, and in general any sort of sampled data having strict requirements for the accuracy of delivered frequency. When an endpoint is defined to be 'isochronous' during the enumeration phase, the host allocates in the frame the required bandwidth and delivers exactly one IN or OUT packet each frame, depending on endpoint direction. To limit the bandwidth requirements, no retransmission of failed transactions is possible for isochronous traffic; this leads to the fact that an isochronous transaction does not have a handshake phase and no ACK packet is expected or sent after the data packet. For the same reason, isochronous transfers do not support data toggle sequencing and always use DATAO PID to start any data packet. RM0444 Rev 5 1277/1390 ^{1.} Endpoint in NAK Status. The isochronous behavior for an endpoint is selected by setting the UTYPE bits at 10 in its USB CHEPnR register; since there is no handshake phase the only legal values for the STATRX/STATTX bit pairs are 00 (DISABLED) and 11 (VALID), any other value produces results not compliant to USB standard. Isochronous endpoints implement double-buffering to ease application software development, using both 'transmission' and 'reception' packet memory areas to manage buffer swapping on each successful transaction in order to have always a complete buffer to be used by the application, while the USB peripheral fills the The memory buffer which is currently used by the USB peripheral is defined by the DTOG bit related to the endpoint direction (DTOGRX for 'reception' isochronous endpoints, DTOGTX for 'transmission' isochronous endpoints, both in the related USB CHEPnR register) according to Table 220. | Endpoint
Type | DTOG bit value | Packet buffer used by the
USB peripheral | Packet buffer used by the application software | |------------------|----------------|--|--| | Transmit | 0 | USB_CHEP_TXRXBD_0 (ADDRn_TX_0 / COUNTn_TX_0) Buffer description table locations. | USB_CHEP_RXTXBD_0 (ADDRn_TX_1 / COUNTn_TX_1) Buffer description table locations | | (IN) | 1 | USB_CHEP_RXTXBD_0 (ADDRn_TX_0 / COUNTn_TX_0) Buffer description table locations | USB_CHEP_TXRXBD_0 (ADDRn_TX_0 / COUNTn_TX_0) Buffer description table locations. | | Receive | 0 | USB_CHEP_RXTXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations. | USB_CHEP_TXRXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations. | | (OUT) | 1 | USB_CHEP_TXRXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations | USB_CHEP_RXTXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations. | Table 220. Isochronous memory buffers usage As it happens with double-buffered bulk endpoints, the USB CHEPnR registers used to implement isochronous endpoints are forced to be used as unidirectional ones. In case it is required to have isochronous endpoints enabled both for reception and transmission, two USB CHEPnR registers must be used. The application software is responsible for the DTOG bit initialization according to the first buffer to be used; this has to be done considering the special toggle-only property that these two bits have. At the end of each transaction, the VTRX or VTTX bit of the addressed endpoint USB CHEPnR register is set, depending on the enabled direction. At the same time, the affected DTOG bit in the USB_CHEPnR register is hardware toggled making buffer swapping completely software independent. STAT bit pair is not affected by transaction completion; since no flow control is possible for isochronous transfers due to the lack of handshake phase, the endpoint remains always 11 (VALID). CRC errors or buffer-overrun conditions occurring during isochronous OUT transfers are anyway considered as correct transactions and they always trigger a VTRX event. However, CRC errors set the ERR bit in the USB ISTR register anyway, in order to notify the software of the possible data corruption. #### 37.5.6 Isochronous transfers in Host mode From the host point of view isochronous packets are issued or requested one by frame by the host frame scheduler. There is no NAK/ACK protocol and no resend of data or token. The mechanism is based on a table very similar to that for Device mode. See *Table 221* below to understand the relationship between the DTOG bit buffers and the buffer usage. | Endpoint
Type | DTOG bit value | Packet buffer used by the
USB peripheral | Packet buffer used by the application software | | | | | | |------------------|----------------|--|--|--|--|--|--|--| | Transmit | 0 | USB_CHEP_TXRXBD_0 (ADDRn_TX_0 / COUNTn_TX_0) Buffer description table locations. | USB_CHEP_RXTXBD_0 (ADDRn_TX_1 / COUNTn_TX_1) Buffer description table locations | | | | | | | (OUT) | 1 | USB_CHEP_RXTXBD_0 (ADDRn_TX_0 / COUNTn_TX_0) Buffer description table locations | USB_CHEP_TXRXBD_0 (ADDRn_TX_0 / COUNTn_TX_0) Buffer description table locations. | | | | | | | Receive | 0 | USB_CHEP_RXTXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations. | USB_CHEP_TXRXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations. | | | | | | | (IN) | 1 | USB_CHEP_TXRXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations | USB_CHEP_RXTXBD_0 (ADDRn_RX_0 / COUNTn_RX_0) Buffer description table locations. | | | | | | Table 221. Isochronous memory buffers usage The isochronous behavior for an endpoint is selected by setting the UTYPE bits at 10 in its USB_CHEPnR register; since there is no handshake phase the only legal values for the STATRX/STATTX bit pairs are 00 (DISABLED) and 11 (VALID), Just as in Device mode, the mechanism allows automatic toggle of the DTOG bit. Note that in Host mode, at the same time as this toggle, the STATTX or STATRX of the completed buffer is automatically set to DISABLED, permitting the future buffer to be accessed before re-enabling it by setting it to 11 (VALID). # 37.5.7 Suspend/resume events The USB standard defines a special peripheral state, called SUSPEND, in which the average current drawn from the USB bus must not be greater than 2.5 mA. This requirement is of fundamental importance for bus-powered devices, while self-powered devices are not required to comply to this strict power consumption constraint. In suspend mode, the host PC sends the notification by not sending any traffic on the USB bus for more than 3 ms: since a SOF packet must be sent every 1 ms during normal operations, the USB peripheral detects the lack of 3 consecutive SOF packets as a suspend request from the host PC and set the SUSP bit to 1 in USB_ISTR register, causing an interrupt if enabled. Once the device is suspended, its normal operation can be restored by a so called RESUME sequence, which can be started from the host PC or directly from the peripheral itself, but it is always terminated by the host PC. The suspended USB peripheral must be anyway able to detect a RESET sequence, reacting to this event as a normal USB reset event. The actual procedure used to suspend the USB peripheral is device dependent since according to the device composition, different actions may be required to reduce the total consumption. A brief description of a typical suspend procedure is provided below, focused on the USB-related aspects of the application software routine responding to the SUSP notification of the USB peripheral: - Set the SUSPEN bit in the USB_CNTR register to 1. This action activates the suspend mode within the USB peripheral. As soon as the suspend mode is activated, the check on SOF reception is disabled to avoid any further SUSP interrupts being issued while the USB is suspended. - 2. Remove or reduce any static power consumption in blocks different from the USB peripheral. - 3. Set SUSPRDY bit in USB_CNTR register to 1 to remove static power
consumption in the analog USB transceivers but keeping them able to detect resume activity. - Optionally turn off external oscillator and device PLL to stop any activity inside the device. When an USB event occurs while the device is in SUSPEND mode, the RESUME procedure must be invoked to restore nominal clocks and regain normal USB behavior. Particular care must be taken to insure that this process does not take more than 10 ms when the wakening event is an USB reset sequence (see "Universal Serial Bus Specification" for more details). The start of a resume or reset sequence, while the USB peripheral is suspended, clears the SUSPRDY bit in USB_CNTR register asynchronously. Even if this event can trigger a WKUP interrupt if enabled, the use of an interrupt response routine must be carefully evaluated because of the long latency due to system clock restart; to have the shorter latency before re-activating the nominal clock it is suggested to put the resume procedure just after the end of the suspend one, so its code is immediately executed as soon as the system clock restarts. To prevent ESD discharges or any other kind of noise from waking-up the system (the exit from suspend mode is an asynchronous event), a suitable analog filter on data line status is activated during suspend; the filter width is about 70 ns. The following is a list of actions a resume procedure should address: - 1. Optionally turn on external oscillator and/or device PLL. - Clear SUSPEN bit of USB_CNTR register. - 3. If the resume triggering event has to be identified, bits RXDP and RXDM in the USB_FNR register can be used according to *Table 222*, which also lists the intended software action in all the cases. If required, the end of resume or reset sequence can be detected monitoring the status of the above mentioned bits by checking when they reach the "10" configuration, which represent the idle bus state; moreover at the end of a reset sequence the RST_DCON bit in USB_ISTR register is set to 1, issuing an interrupt if enabled, which should be handled as usual. | [RXDP,RXDM] status | Wakeup event | Required resume software action | | | | | | |--------------------|----------------------------|---------------------------------|--|--|--|--|--| | "00" | Root reset | None | | | | | | | "10" | None (noise on bus) | Go back in Suspend mode | | | | | | | "01" | Root resume | None | | | | | | | "11" | Not allowed (noise on bus) | Go back in Suspend mode | | | | | | Table 222. Resume event detection A device may require to exit from suspend mode as an answer to particular events not directly related to the USB protocol (for example a mouse movement wakes up the whole system). In this case, the resume sequence can be started by setting the L2RES bit in the USB_CNTR register to 1 and resetting it to 0 after an interval between 1 ms and 15 ms (this interval can be timed using ESOF interrupts, occurring with a 1 ms period when the system clock is running at nominal frequency). Once the L2RES bit is clear, the resume sequence is completed by the host PC and its end can be monitored again using the RXDP and RXDM bits in the USB_FNR register. Note: The L2RES bit must be anyway used only after the USB peripheral has been put in suspend mode, setting the SUSPEN bit in USB_CNTR register to 1. # Suspend and resume in Host mode The basics of the suspend and resume mechanism has been described in the previous section. From the host stand-point, suspend is entered by writing the SUSPEN bit in USB_CNTR. When suspend entry is confirmed, SUSPRDY (also in USB_CNTR) is set. Once in suspend, and when the application want to resume the bus, this can be done by setting the L2RES bit in USB CNTR to 1. Below in *Table 223*, the different actions recommended after a wakeup event are indicated. According to the different line states after a wakeup event, the interpretation of the event and the suggested behavior are shown. Note that, this table here is somewhat expanded when compared to the previously shown device table, as the host may encounter both full speed and low speed devices which use different line states for both suspend and resume. RM0444 Rev 5 1281/1390 Table 223. Resume event detection for host | [RXDP,RXDM] status | Wakeup event | Required resume software action | | | | | |--------------------|--|---------------------------------|--|--|--|--| | "00" | Not allowed (noise on bus) | Go back in Suspend mode | | | | | | "10" | Full speed capable device:
Not allowed (noise on bus) | None | | | | | | | Low speed device: Device remote wakeup resume | | | | | | | "01" | Full speed capable device:
Device remote wakeup
resume | None | | | | | | | Low speed device:
Not allowed (noise on bus) | | | | | | | "11" | Not allowed (noise on bus) | Go back in Suspend mode | | | | | # 37.6 USB and USB SRAM registers The USB peripheral registers can be divided into the following groups: - Common registers: interrupt and control registers - endpoint/channel registers: endpoint/channel configuration and status The USB SRAM registers cover: Buffer descriptor table: location of packet memory used to locate data buffers (see Section 2.2: Memory organization to find USB SRAM base address). All register addresses are expressed as offsets with respect to the USB peripheral registers base address, except the buffer descriptor table locations, which starts at the USB SRAM base address. Refer to Section 1.2 on page 53 for a list of abbreviations used in register descriptions. The peripheral registers can be accessed by words (32-bit). # 37.6.1 Common registers These registers affect the general behavior of the USB peripheral defining operating mode, interrupt handling, device address and giving access to the current frame number updated by the host PC. # USB control register (USB_CNTR) Address offset: 0x40 Reset value: 0x0000 0003 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|-------------------|------------|-----------------|-----------------|---------------------|-----------|----------------|-----------------|-----------|----------------|----------------|-----------------|------------------|-----------|-----------------| | HOST | Res. THR
512M | | rw | | | | | | | | | | | | | | | rw | | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
CTRM | 14
PMA
OVRM | 13
ERRM | 12
WKUP
M | 11
SUSP
M | 10
RST_D
CONM | 9
SOFM | 8
ESOF
M | 7
L1REQ
M | 6
Res. | 5
L1RE
S | 4
L2RE
S | 3
SUS
PEN | 2
SUSP
RDY | 1
PDWN | 0
USB
RST | # Bit 31 HOST: HOST mode HOST bit selects betweens host or device USB mode of operation. It must be set before enabling the USB peripheral by the function enable bit. 0: USB Device function1: USB host function Bits 30:17 Reserved, must be kept at reset value. Bit 16 THR512M: 512 byte threshold interrupt mask 0: 512 byte threshold interrupt disabled 1: 512 byte threshold interrupt enabled Bit 15 CTRM: Correct transfer interrupt mask 0: Correct transfer (CTR) interrupt disabled. 1: CTR interrupt enabled, an interrupt request is generated when the corresponding bit in the USB ISTR register is set. RM0444 Rev 5 1283/1390 - Bit 14 PMAOVRM: Packet memory area over / underrun interrupt mask - 0: PMAOVR interrupt disabled. - 1: PMAOVR interrupt enabled, an interrupt request is generated when the corresponding bit in the USB_ISTR register is set. - Bit 13 ERRM: Error interrupt mask - 0: ERR interrupt disabled. - 1: ERR interrupt enabled, an interrupt request is generated when the corresponding bit in the USB_ISTR register is set. - Bit 12 WKUPM: Wakeup interrupt mask - 0: WKUP interrupt disabled. - 1: WKUP interrupt enabled, an interrupt request is generated when the corresponding bit in the USB_ISTR register is set. - Bit 11 SUSPM: Suspend mode interrupt mask - 0: Suspend mode request (SUSP) interrupt disabled. - 1: SUSP interrupt enabled, an interrupt request is generated when the corresponding bit in the USB_ISTR register is set. - Bit 10 RST_DCONM: USB reset request (Device mode) or device connect/disconnect (Host mode) interrupt mask - 0: RESET interrupt disabled. - 1: RESET interrupt enabled, an interrupt request is generated when the corresponding bit in the USB_ISTR register is set. - Bit 9 SOFM: Start of frame interrupt mask - 0: SOF interrupt disabled. - 1: SOF interrupt enabled, an interrupt request is generated when the corresponding bit in the USB ISTR register is set. - Bit 8 ESOFM: Expected start of frame interrupt mask - 0: Expected start of frame (ESOF) interrupt disabled. - 1: ESOF interrupt enabled, an interrupt request is generated when the corresponding bit in the USB_ISTR register is set. - Bit 7 L1REQM: LPM L1 state request interrupt mask - 0: LPM L1 state request (L1REQ) interrupt disabled. - 1: L1REQ interrupt enabled, an interrupt request is generated when the corresponding bit in the USB_ISTR register is set. - Bit 6 Reserved, must be kept at reset value. - Bit 5 L1RES: L1 remote wakeup / resume driver - Device mode Software sets this bit to send a LPM L1 50 μ s remote wakeup signaling to the host. After the signaling ends, this bit is cleared by hardware. - 0: No effect - 1: Send 50 µs remote-wakeup signaling to host #### Bit 4 L2RES: L2 remote wakeup / resume driver - Device mode The microcontroller can set this bit to send remote wake-up signaling to the host. It must be activated, according to USB specifications, for no less than 1 ms and no more than 15 ms after which the host PC is ready to drive the resume sequence up to its end. - Host mode Software sets this bit to send resume signaling to the device. Software clears this bit to send end of resume to device and restart SOF generation. In the context of remote wake up, this bit is to be set following the WAKEUP interrupt. 0: No effect
1: Send L2 resume signaling to device ## Bit 3 SUSPEN: Suspend state enable - Condition: Device mode Software can set this bit when the SUSP interrupt is received, which is issued when no traffic is received by the USB peripheral for 3 ms. Software can also set this bit when the L1REQ interrupt is received with positive acknowledge sent. As soon as the suspend state is propagated internally all device activity is stopped, USB clock is gated, USB transceiver is set into low power mode and the SUSPRDY bit is set by hardware. In the case that device application wants to pursue more aggressive power saving by stopping the USB clock source and by moving the microcontroller to stop mode, as in the case of bus powered device application, it must first wait few cycles to see the SUSPRDY = 1 acknowledge the suspend request. This bit is cleared by hardware simultaneous with the WAKEUP flag set. 0: No effect. 1: Enter L1/L2 suspend - Condition: Host mode Software can set this bit when host application has nothing scheduled for the next frames and wants to enter long term power saving. When set, it stops immediately SOF generation and any other host activity, gates the USB clock and sets the transceiver in low power mode. If any USB transaction is on-going at the time SUSPEN is set, suspend is entered at the end of the current transaction. As soon as suspend state is propagated internally and gets effective the SUSPRDY bit is set. In the case that host application wants to pursue more aggressive power saving by stopping the USB clock source and by moving the micro-controller to STOP mode, it must first wait few cycles to see SUSPRDY=1 acknowledge to the suspend request. This bit is cleared by hardware simultaneous with the WAKEUP flag set. 0: No effect. 1: Enter L1/L2 suspend #### Bit 2 SUSPRDY: Suspend state effective This bit is set by hardware as soon as the suspend state entered through the SUSPEN control gets internally effective. In this state USB activity is suspended, USB clock is gated, transceiver is set in low power mode by disabling the differential receiver. Only asynchronous wakeup logic and single ended receiver is kept alive to detect remote wakeup or resume events. Software must poll this bit to confirm it to be set before any STOP mode entry. This bit is cleared by hardware simultaneously to the WAKEUP flag being set. 0: Normal operation 1: Suspend state RM0444 Rev 5 1285/1390 #### Bit 1 PDWN: Power down This bit is used to completely switch off all USB-related analog parts if it is required to completely disable the USB peripheral for any reason. When this bit is set, the USB peripheral is disconnected from the transceivers and it cannot be used. 0: Exit power down. 1: Enter power down mode. #### Bit 0 USBRST: USB Reset Condition: Device mode Software can set this bit to reset the USB core, exactly as it happens when receiving a RESET signaling on the USB. The USB peripheral, in response to a RESET, resets its internal protocol state machine. Reception and transmission are disabled until the RST_DCON bit is cleared. All configuration registers do not reset: the microcontroller must explicitly clear these registers (this is to ensure that the RST_DCON interrupt can be safely delivered, and any transaction immediately followed by a RESET can be completed). The function address and endpoint registers are reset by an USB reset event. 0: No effect 1: USB core is under reset - Condition: Host mode Software sets this bit to drive USB reset state on the bus and initialize the device. USB reset terminates as soon as this bit is cleared by software. 0: No effect 1: USB reset driven # USB interrupt status register (USB_ISTR) Address offset: 0x44 Reset value: 0x0000 0000 This register contains the status of all the interrupt sources permitting application software to determine which events caused an interrupt request. The upper part of this register contains single bits, each of them representing a specific event. These bits are set by the hardware when the related event occurs; if the corresponding bit in the USB_CNTR register is set, a generic interrupt request is generated. The interrupt routine, examining each bit, performs all necessary actions, and finally it clears the serviced bits. If any of them is not cleared, the interrupt is considered to be still pending, and the interrupt line is kept high again. If several bits are set simultaneously, only a single interrupt is generated. Endpoint/channel transaction completion can be handled in a different way to reduce interrupt response latency. The CTR bit is set by the hardware as soon as an endpoint/channel successfully completes a transaction, generating a generic interrupt request if the corresponding bit in USB_CNTR is set. An endpoint/channel dedicated interrupt condition is activated independently from the CTRM bit in the USB_CNTR register. Both interrupt conditions remain active until software clears the pending bit in the corresponding USB_CHEPnR register (the CTR bit is actually a read only bit). For endpoint/channel-related interrupts, the software can use the direction of transaction (DIR) and IDN read-only bits to identify which endpoint/channel made the last interrupt request and called the corresponding interrupt service routine. The user can choose the relative priority of simultaneously pending USB_ISTR events by specifying the order in which software checks USB_ISTR bits in an interrupt service routine. Only the bits related to events, which are serviced, are cleared. At the end of the service routine, another interrupt is requested, to service the remaining conditions. To avoid spurious clearing of some bits, it is recommended to clear them with a load instruction where all bits which must not be altered are written with 1, and all bits to be cleared are written with 0 (these bits can only be cleared by software). Read-modify-write cycles should be avoided because between the read and the write operations another bit could be set by the hardware and the next write clears it before the microprocessor has the time to service the event. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|-------------|---------------|------|------|--------------|------|------|-------|------|------|------|------|------|-------|------------| | Res. | LS_
DCON | DCON_
STAT | Res. THR
512 | | | r | r | | | | | | | | | | | | | rc_w0 | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | | | | | | | | | | | CTR | PMA
OVR | ERR | WKUP | SUSP | RST_
DCON | SOF | ESOF | L1REQ | Res. | Res. | DIR | | IDN | [3:0] | | Bit 31 Reserved, must be kept at reset value. #### Bit 30 LS_DCON: Low speed device connected - Host mode: This bit is set by hardware when an LS device connection is detected. Device connection is signaled after LS J-state is sampled for 22 consecutive cycles of the USB clock (48 MHz) from the unconnected state. #### Bit 29 DCON_STAT: Device connection status - Host mode: This bit contains information about device connection status. It is set by hardware when a LS/FS device is attached to the host while it is reset when the device is disconnected. - 0: No device connected - 1: FS or LS device connected to the host #### Bits 28:17 Reserved, must be kept at reset value. #### Bit 16 THR512: 512 byte threshold interrupt This bit is set to 1 by the hardware when 512 bytes have been transmitted or received during isochronous transfers. This bit is read/write but only 0 can be written and writing 1 has no effect. Note that no information is available to indicate the associated channel/endpoint, however in practice only one ISO endpoint/channel with such large packets can be supported, so that channel. ## Bit 15 CTR: Completed transfer in host mode This bit is set by the hardware to indicate that an endpoint/channel has successfully completed a transaction; using DIR and IDN bits software can determine which endpoint/channel requested the interrupt. This bit is read-only. # Bit 14 PMAOVR: Packet memory area over / underrun This bit is set if the microcontroller has not been able to respond in time to an USB memory request. The USB peripheral handles this event in the following way: During reception an ACK handshake packet is not sent, during transmission a bit-stuff error is forced on the transmitted stream; in both cases the host retries the transaction. The PMAOVR interrupt should never occur during normal operations. Since the failed transaction is retried by the host, the application software has the chance to speed-up device operations during this interrupt handling, to be ready for the next transaction retry; however this does not happen during isochronous transfers (no isochronous transaction is anyway retried) leading to a loss of data in this case. This bit is read/write but only 0 can be written and writing 1 has no effect. RM0444 Rev 5 1287/1390 #### Bit 13 ERR: Error This flag is set whenever one of the errors listed below has occurred: NANS: No ANSwer. The timeout for a host response has expired. CRC: Cyclic redundancy check error. One of the received CRCs, either in the token or in the data, was wrong. BST: Bit stuffing error. A bit stuffing error was detected anywhere in the PID, data, and/or CRC FVIO: Framing format violation. A non-standard frame was received (EOP not in the right place, wrong token sequence, etc.). The USB software can usually ignore errors, since the USB peripheral and the PC host manage retransmission in case of errors in a fully transparent way. This interrupt can be useful during the software development phase, or to monitor the quality of transmission over the USB bus, to flag possible problems to the user (for example loose connector, too noisy environment, broken conductor in the USB cable and so on). This bit is read/write but only 0 can be written and writing 1 has no effect. # Bit 12 WKUP: Wakeup This bit is set to 1 by the hardware
when, during suspend mode, activity is detected that wakes up the USB peripheral. This event asynchronously clears the SUSPRDY bit in the CTLR register and activates the USB_WAKEUP line, which can be used to notify the rest of the device (for example wakeup unit) about the start of the resume process. This bit is read/write but only 0 can be written and writing 1 has no effect. #### Bit 11 SUSP: Suspend mode request - Device mode This bit is set by the hardware when no traffic has been received for 3 ms, indicating a suspend mode request from the USB bus. The suspend condition check is enabled immediately after any USB reset and it is disabled by the hardware when the suspend mode is active (SUSPEN=1) until the end of resume sequence. This bit is read/write but only 0 can be written and writing 1 has no effect. #### Bit 10 RST_DCON: USB reset request (Device mode) or device connect/disconnect (Host mode) - Device mode This bit is set by hardware when an USB reset is released by the host and the bus returns to idle. USB reset state is internally detected after the sampling of 60 consecutive SE0 cycles. Host mode This bit is set by hardware when device connection or device disconnection is detected. Device connection is signaled after J state is sampled for 22 cycles consecutively from unconnected state. Device disconnection is signaled after SE0 state is seen for 22 bit times consecutively from connected state. # Bit 9 SOF: Start of frame This bit signals the beginning of a new USB frame and it is set when a SOF packet arrives through the USB bus. The interrupt service routine may monitor the SOF events to have a 1 ms synchronization event to the USB host and to safely read the USB_FNR register which is updated at the SOF packet reception (this could be useful for isochronous applications). This bit is read/write but only 0 can be written and writing 1 has no effect. #### Bit 8 ESOF: Expected start of frame - Device mode This bit is set by the hardware when an SOF packet is expected but not received. The host sends an SOF packet each 1 ms, but if the device does not receive it properly, the suspend timer issues this interrupt. If three consecutive ESOF interrupts are generated (for example three SOF packets are lost) without any traffic occurring in between, a SUSP interrupt is generated. This bit is set even when the missing SOF packets occur while the suspend timer is not yet locked. This bit is read/write but only 0 can be written and writing 1 has no effect. #### Bit 7 L1REQ: LPM L1 state request - Device mode This bit is set by the hardware when LPM command to enter the L1 state is successfully received and acknowledged. This bit is read/write but only 0 can be written and writing 1 has no effect. #### Bits 6:5 Reserved, must be kept at reset value. #### Bit 4 DIR: Direction of transaction This bit is written by the hardware according to the direction of the successful transaction, which generated the interrupt request. If DIR bit = 0, VTTX bit is set in the USB_CHEPnR register related to the interrupting endpoint. The interrupting transaction is of IN type (data transmitted by the USB peripheral to the host PC). If DIR bit = 1, VTRX bit or both VTTX/VTRX are set in the USB_CHEPnR register related to the interrupting endpoint. The interrupting transaction is of OUT type (data received by the USB peripheral from the host PC) or two pending transactions are waiting to be processed. This information can be used by the application software to access the USB_CHEPnR bits related to the triggering transaction since it represents the direction having the interrupt pending. This bit is read-only. #### Bits 3:0 IDN[3:0]: Device Endpoint / host channel identification number These bits are written by the hardware according to the host channel or device endpoint number, which generated the interrupt request. If several endpoint/channel transactions are pending, the hardware writes the identification number related to the endpoint/channel having the highest priority defined in the following way: two levels are defined, in order of priority: isochronous and double-buffered bulk channels/endpoints are considered first and then the others are examined. If more than one endpoint/channel from the same set is requesting an interrupt, the IDN bits in USB_ISTR register are assigned according to the lowest requesting register, CHEP0R having the highest priority followed by CHEP1R and so on. The application software can assign a register to each endpoint/channel according to this priority scheme, so as to order the concurring endpoint/channel requests in a suitable way. These bits are read only. # **USB frame number register (USB_FNR)** Address offset: 0x48 Reset value: 0x0000 0XXX (where X is undefined) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|--------|------|------|------|------|------|----------|------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | RXDP | RXDM | LCK | LSOF | =[1:0] | | | | | | FN[10:0] | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | Bits 31:16 Reserved, must be kept at reset value. # Bit 15 RXDP: Receive data + line status This bit can be used to observe the status of received data plus upstream port data line. It can be used during end-of-suspend routines to help determining the wakeup event. #### Bit 14 RXDM: Receive data - line status This bit can be used to observe the status of received data minus upstream port data line. It can be used during end-of-suspend routines to help determining the wakeup event. RM0444 Rev 5 1289/1390 #### Bit 13 LCK: Locked #### - Device mode This bit is set by the hardware when at least two consecutive SOF packets have been received after the end of an USB reset condition or after the end of an USB resume sequence. Once locked, the frame timer remains in this state until an USB reset or USB suspend event occurs. #### Bits 12:11 LSOF[1:0]: Lost SOF #### - Device mode These bits are written by the hardware when an ESOF interrupt is generated, counting the number of consecutive SOF packets lost. At the reception of an SOF packet, these bits are cleared. #### Bits 10:0 FN[10:0]: Frame number This bit field contains the 11-bits frame number contained in the last received SOF packet. The frame number is incremented for every frame sent by the host and it is useful for isochronous transfers. This bit field is updated on the generation of an SOF interrupt. # **USB Device address (USB_DADDR)** Address offset: 0x4C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|----------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. EF | | | | ADD[6:0] | | | | | | | | | | | | | rw Bits 31:8 Reserved, must be kept at reset value. #### Bit 7 EF: Enable function This bit is set by the software to enable the USB Device. The address of this device is contained in the following ADD[6:0] bits. If this bit is at 0 no transactions are handled, irrespective of the settings of USB_CHEPnR registers. #### Bits 6:0 ADD[6:0]: Device address - Device mode These bits contain the USB function address assigned by the host PC during the enumeration process. Both this field and the endpoint/channel address (EA) field in the associated USB_CHEPnR register must match with the information contained in a USB token in order to handle a transaction to the required endpoint. Host mode These bits contain the address transmitted with the LPM transaction # LPM control and status register (USB_LPMCSR) Address offset: 0x54 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|--------|------|-------------|------|------------|-----------| | Res. | 45 | 44 | 10 | 40 | | 40 | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | / | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | BES | L[3:0] | | REM
WAKE | Res. | LPM
ACK | LPM
EN | | | | | | | | | | | | | | | | | | Bits 31:8 Reserved, must be kept at reset value. Bits 7:4 BESL[3:0]: BESL value - Device mode These bits contain the BESL value received with last ACKed LPM Token Bit 3 REMWAKE: bRemoteWake value - Device mode This bit contains the bRemoteWake value received with last ACKed LPM Token Bit 2 Reserved, must be kept at reset value. Bit 1 LPMACK: LPM token acknowledge enable - Condition: Device mode: 0: the valid LPM token is NYET. 1: the valid LPM token is ACK. The NYET/ACK is returned only on a successful LPM transaction: No errors in both the EXT token and the LPM token (else ERROR) A valid bLinkState = 0001B (L1) is received (else STALL) Bit 0 LPMEN: LPM support enable - Device mode This bit is set by the software to enable the LPM support within the USB Device. If this bit is at 0 no LPM transactions are handled. # Battery charging detector (USB_BCDR) Address offset: 0x58 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |--------------|------|------|------|------|------|------|------|------------|------|------|-----------|------|------|-----------|-----------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | DPPU_
DPD | Res. PS2
DET | SDET | PDET | DC
DET | SDEN | PDEN | DCD
EN | BCD
EN | | rw | | | | | | | | r | r | r | r | rw | rw | rw | rw | RM0444 Rev 5 1291/1390 Bits 31:16 Reserved, must be kept at reset value. #### Bit 15 DPPU_DPD: DP pull-up / DPDM pull-down - Device mode This bit is set by software to enable the embedded pull-up on DP line. Clearing it to 0 can be used to
signal disconnect to the host when needed by the user software. - Host mode This bit is set by software to enable the embedded pull-down on DP and DM lines. #### Bits 14:8 Reserved, must be kept at reset value. #### Bit 7 PS2DET: DM pull-up detection status - Device mode This bit is active only during PD and gives the result of comparison between DM voltage level and V_{LGC} threshold. In normal situation, the DM level should be below this threshold. If it is above, it means that the DM is externally pulled high. This can be caused by connection to a PS2 port (which pulls-up both DP and DM lines) or to some proprietary charger not following the BCD specification. - 0: Normal port detected (connected to SDP, ACA, CDP or DCP). - 1: PS2 port or proprietary charger detected. #### Bit 6 SDET: Secondary detection (SD) status - Device mode This bit gives the result of SD. - 0: CDP detected. - 1: DCP detected. #### Bit 5 PDET: Primary detection (PD) status Device mode This bit gives the result of PD. 0: no BCD support detected (connected to SDP or proprietary device). 1: BCD support detected (connected to ACA, CDP or DCP). # Bit 4 DCDET: Data contact detection (DCD) status - Device mode This bit gives the result of DCD. - 0: data lines contact not detected. - 1: data lines contact detected. # Bit 3 SDEN: Secondary detection (SD) mode enable Device mode This bit is set by the software to put the BCD into SD mode. Only one detection mode (DCD, PD, SD or OFF) should be selected to work correctly. # Bit 2 PDEN: Primary detection (PD) mode enable - Device mode This bit is set by the software to put the BCD into PD mode. Only one detection mode (DCD, PD, SD or OFF) should be selected to work correctly. #### Bit 1 DCDEN: Data contact detection (DCD) mode enable - Device mode This bit is set by the software to put the BCD into DCD mode. Only one detection mode (DCD, PD, SD or OFF) should be selected to work correctly. #### Bit 0 BCDEN: Battery charging detector (BCD) enable - Device mode This bit is set by the software to enable the BCD support within the USB Device. When enabled, the USB PHY is fully controlled by BCD and cannot be used for normal communication. Once the BCD discovery is finished, the BCD should be placed in OFF mode by clearing this bit to 0 in order to allow the normal USB operation. # Host channel-specific/device endpoint-specific registers The number of these registers varies according to the number of endpoints or host channels that the USB peripheral is designed to handle. The USB peripheral supports up to 8 bidirectional endpoints or host channels. Each USB Device must support a control endpoint/channel whose address (EA bits) must be set to 0. The USB peripheral behaves in an undefined way if multiple endpoints are enabled having the same endpoint/channel number value. For each endpoint, an USB_CHEPnR register is available to store the endpoint/channel specific information. # USB endpoint/channel n register (USB_CHEPnR) Address offset: 0x00 + 0x4 * n, (n = 0 to 7) Reset value: 0x0000 0000 They are also reset when an USB reset is received from the USB bus or forced through bit USBRST in the CTLR register, except the VTRX and VTTX bits, which are kept unchanged to avoid missing a correct packet notification immediately followed by an USB reset event. Each endpoint/channel has its USB_CHEPnR register where n is the endpoint/channel identifier. Read-modify-write cycles on these registers should be avoided because between the read and the write operations some bits could be set by the hardware and the next write would modify them before the CPU has the time to detect the change. For this purpose, all bits affected by this problem have an 'invariant' value that must be used whenever their modification is not required. It is recommended to modify these registers with a load instruction where all the bits, which can be modified only by the hardware, are written with their 'invariant' value. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------|------------|-------------|------|-------|------------|------------|------------|-------|--------------|-------------|----|---------|----|----|----| | Res. | Res. | Res. | Res. | Res. | ERR_R
X | ERR_T
X | LS_EP | NAK | DEVADDR[6:0] | | | | | | | | | | | | | rc_w0 | rc_w0 | rw | rc_w0 | rw | rw rw rw | | | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | VTRX | DTOG
RX | STATRX[1:0] | | SETUP | UTYPE[1:0] | | EP
KIND | VTTX | DTOG
TX | STATTX[1:0] | | EA[3:0] | | | | | rc_w0 | t | t | t | r | rw | rw | rw | rc_w0 | t | t | t | rw | rw | rw | rw | RM0444 Rev 5 1293/1390 Bits 31:27 Reserved, must be kept at reset value. #### Bit 26 ERR_RX: Received error for an IN transaction - Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an IN transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated. #### Bit 25 ERR_TX: Received error for an OUT/SETUP transaction - Host mode This bit is set by the hardware when an error (for example no answer by the device, CRC error, bit stuffing error, framing format violation, etc.) has occurred during an OUT or SETUP transaction on this channel. The software can only clear this bit. If the ERRM bit in USB_CNTR register is set, a generic interrupt condition is generated together with the channel related flag, which is always activated. ### Bit 24 LS_EP: Low speed endpoint – host with HUB only - Host mode This bit is set by the software to send an LS transaction to the corresponding endpoint. 0: Full speed endpoint 1: Low speed endpoint #### Bit 23 NAK: - Host mode This bit is set by the hardware when a device responds with a NAK. Software can use this bit to monitor the number of NAKs received from a device. # Bits 22:16 **DEVADDR[6:0]:** - Host mode Device address assigned to the endpoint during the enumeration process. #### Bit 15 VTRX: USB valid transaction received - Device mode This bit is set by the hardware when an OUT/SETUP transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. The type of occurred transaction, OUT or SETUP, can be determined from the SETUP bit described below. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written, writing 1 has no effect. - Host mode This bit is set by the hardware when an IN transaction is successfully completed on this channel. The software can only clear this bit. If the CTRM bit in USB_CNTR register is set a generic interrupt condition is generated together with the channel related flag, which is always activated. - A transaction ended with a NAK sets this bit and NAK answer is reported to application reading the NAK state from the STATRX field of this register. One NAKed transaction keeps pending and is automatically retried by the host at the next frame, or the host can immediately retry by resetting STATRX state to VALID. - A transaction ended by STALL handshake sets this bit and the STALL answer is reported to application reading the STALL state from the STATRX field of this register. Host application should consequently disable the channel and re-enumerate. - A transaction ended with ACK handshake sets this bit If double buffering is disabled, ACK answer is reported by application reading the DISABLE state from the STATRX field of this register. Host application should read received data from USBRAM and re-arm the channel by writing VALID to the STATRX field of this register. If double buffering is enabled, ACK answer is reported by application reading VALID state from the STATRX field of this register. Host application should read received data from USBRAM and toggle the DTOGTX bit of this register. - A transaction ended with error sets this bit This bit is read/write but only 0 can be written, writing 1 has no effect. RM0444 Rev 5 1295/1390 #### Bit 14 DTOGRX: Data Toggle, for reception transfers If the endpoint/channel is not isochronous, this bit contains the expected value of the data toggle bit (0 = DATA0, 1 = DATA1) for the next data packet to be received. Hardware toggles this bit, when the ACK handshake is sent following a data packet reception having a matching data PID value; if the endpoint is defined as a control one, hardware clears this bit at the reception of a SETUP PID received from host (in device) or acknowledged by device (in host). If the endpoint/channel is using the double-buffering feature this bit is used to support packet buffer swapping too (Refer to Section 37.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint/channel is isochronous, this bit is used only to support packet buffer swapping for data transmission since no data toggling is used for this kind of channels/endpoints and only DATA0 packet are transmitted (Refer to Section 37.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet reception, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint is not a control one) or to force specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGRX remains unchanged, while writing 1 makes the bit value toggle. This bit is read/write but it can be only toggled by writing 1. #### Bits 13:12 STATRX[1:0]:
Status bits, for reception transfers #### - Device mode These bits contain information about the endpoint status, which are listed in *Table 224: Reception status encoding on page 1300.* These bits can be toggled by software to initialize their value. When the application software writes 0, the value remains unchanged, while writing 1 makes the bit value to toggle. Hardware sets the STATRX bits to NAK when a correct transfer has occurred (VTRX = 1) corresponding to a OUT or SETUP (control only) transaction addressed to this endpoint, so the software has the time to elaborate the received data before it acknowledges a new transaction. Double-buffered bulk endpoints implement a special transaction flow control, which control the status based upon buffer availability condition (Refer to Section 37.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint is defined as isochronous, its status can be only "VALID" or "DISABLED", so that the hardware cannot change the status of the endpoint after a successful transaction. If the software sets the STATRX bits to 'STALL' or 'NAK' for an isochronous endpoint, the USB peripheral behavior is not defined. These bits are read/write but they can be only toggled by writing 1. #### - Host mode These bits are the host application controls to start, retry, or abort host transactions driven by the channel. These bits also contain information about the device answer to the last IN channel transaction and report the current status of the channel according to the following STATRX table of states: #### - DISABLE DISABLE value is reported in case of ACK acknowledge is received on a single-buffer channel. When in DISABLE state the channel is unused or not active waiting for application to restart it by writing VALID. Application can reset a VALID channel to DISABLE to abort a transaction. In this case the transaction is immediately removed from the host execution list. If the aborted transaction was already under execution it is regularly terminated on the USB but the relative VTRX interrupt is not generated. #### - VALID A host channel is actively trying to submit USB transaction to device only when in VALID state.VALID state can be set by software or automatically by hardware on a NAKED channel at the start of a new frame. When set to VALID, an host channel enters the host execution queue and waits permission from the host frame scheduler to submit its configured transaction. VALID value is also reported in case of ACK acknowledge is received on a double-buffered channel. In this case the channel remains active on the alternate buffer while application needs to read the current buffer and toggle DTOGTX. In case software is late in reading and the alternate buffer is not ready, the host channel is automatically suspended transparently to the application. The suspended double buffered channel is re-activated as soon as delay is recovered and DTOGTX is toggled. #### - NAK NAK value is reported in case of NAK acknowledge received. When in NAK state the channel is suspended and does not try to transmit. NAK state is moved to VALID by hardware at the start of the next frame, or software can change it to immediately retry transmission by writing it to VALID, or can disable it and abort the transaction by writing DISABLE #### - STALL STALL value is reported in case of STALL acknowledge received. When in STALL state the channel behaves as disabled. Application should not retry transmission but reset the USB and re-enumerate. RM0444 Rev 5 1297/1390 #### Bit 11 **SETUP:** Setup transaction completed - Device mode This bit is read-only and it is set by the hardware when the last completed transaction is a SETUP. This bit changes its value only for control endpoints. It must be examined, in the case of a successful receive transaction (VTRX event), to determine the type of transaction occurred. To protect the interrupt service routine from the changes in SETUP bits due to next incoming tokens, this bit is kept frozen while VTRX bit is at 1; its state changes when VTRX is at 0. This bit is read-only. - Host mode This bit is set by the software to send a SETUP transaction on a control endpoint. This bit changes its value only for control endpoints. It is cleared by hardware when the SETUP transaction is acknowledged and VTTX interrupt generated. #### Bits 10:9 UTYPE[1:0]: USB type of transaction These bits configure the behavior of this endpoint/channel as described in *Table 225: Endpoint/channel type encoding*. Channel0/Endpoint0 must always be a control endpoint/channel and each USB function must have at least one control endpoint/channel which has address 0, but there may be other control channels/endpoints if required. Only control channels/endpoints handle SETUP transactions, which are ignored by endpoints of other kinds. SETUP transactions cannot be answered with NAK or STALL. If a control endpoint/channel is defined as NAK, the USB peripheral does not answer, simulating a receive error, in the receive direction when a SETUP transaction is received. If the control endpoint/channel is defined as STALL in the receive direction, then the SETUP packet is accepted anyway, transferring data and issuing the CTR interrupt. The reception of OUT transactions is handled in the normal way, even if the endpoint/channel is a control one. Bulk and interrupt endpoints have very similar behavior and they differ only in the special feature available using the EPKIND configuration bit. The usage of isochronous channels/endpoints is explained in *Section 37.5.5: Isochronous transfers in Device mode* #### Bit 8 EPKIND: endpoint/channel kind The meaning of this bit depends on the endpoint/channel type configured by the UTYPE bits. *Table* 226 summarizes the different meanings. DBL_BUF: This bit is set by the software to enable the double-buffering feature for this bulk endpoint. The usage of double-buffered bulk endpoints is explained in Section 37.5.3: Double-buffered endpoints and usage in Device mode. STATUS_OUT: This bit is set by the software to indicate that a status out transaction is expected: in this case all OUT transactions containing more than zero data bytes are answered 'STALL' instead of 'ACK'. This bit may be used to improve the robustness of the application to protocol errors during control transfers and its usage is intended for control endpoints only. When STATUS_OUT is reset, OUT transactions can have any number of bytes, as required. #### Bit 7 VTTX: Valid USB transaction transmitted - Device mode This bit is set by the hardware when an IN transaction is successfully completed on this endpoint; the software can only clear this bit. If the CTRM bit in the USB_CNTR register is set accordingly, a generic interrupt condition is generated together with the endpoint related interrupt condition, which is always activated. A transaction ended with a NAK or STALL handshake does not set this bit, since no data is actually transferred, as in the case of protocol errors or data toggle mismatches. This bit is read/write but only 0 can be written. - Host mode Same as VTRX behavior but for USB OUT and SETUP transactions. #### Bit 6 DTOGTX: Data toggle, for transmission transfers If the endpoint/channel is non-isochronous, this bit contains the required value of the data toggle bit (0 = DATA0, 1 = DATA1) for the next data packet to be transmitted. Hardware toggles this bit when the ACK handshake is received from the USB host, following a data packet transmission. If the endpoint/channel is defined as a control one, hardware sets this bit to 1 at the reception of a SETUP PID addressed to this endpoint. If the endpoint/channel is using the double buffer feature, this bit is used to support packet buffer swapping too (Refer to Section 37.5.3: Double-buffered endpoints and usage in Device mode) If the endpoint/channel is isochronous, this bit is used to support packet buffer swapping since no data toggling is used for this sort of endpoints and only DATA0 packet are transmitted (refer to Section 37.5.5: Isochronous transfers in Device mode). Hardware toggles this bit just after the end of data packet transmission, since no handshake is used for isochronous transfers. This bit can also be toggled by the software to initialize its value (mandatory when the endpoint/channel is not a control one) or to force a specific data toggle/packet buffer usage. When the application software writes 0, the value of DTOGTX remains unchanged, while writing 1 makes the bit value to toggle. This bit is read/write but it can only be toggled by writing 1. #### Bits 5:4 **STATTX[1:0]:** Status bits, for transmission transfers - Device mode These bits contain the information about the endpoint status, listed in *Table 227*. These bits can be toggled by the software to initialize their value. When the application software writes 0, the value remains unchanged, while writing 1 makes the bit value to toggle. Hardware sets the STATTX bits to NAK, when a correct transfer has occurred (VTTX = 1) corresponding to a IN or SETUP (control only) transaction addressed to this channel/endpoint. It then waits for the software to prepare the next set of data to be transmitted. Double-buffered bulk endpoints implement a special transaction flow control, which controls the status based on buffer availability condition (Refer to Section 37.5.3: Double-buffered endpoints and usage in Device mode). If the endpoint is defined as isochronous, its status can only be "VALID" or "DISABLED". Therefore, the hardware cannot change the status of the channel/endpoint/channel after a successful transaction. If the software sets the STATTX bits to 'STALL' or 'NAK' for an isochronous channel/endpoint, the USB peripheral behavior is not defined. These bits are read/write but they can be only toggled by writing 1. - Host mode The STATTX bits contain the information about the channel status. Refer to *Table 227* for the full descriptions ("Host mode"
descriptions). Whereas in Device mode, these bits contain the status that are given out on the following transaction, in Host mode they capture the status last received from the device. If a NAK is received, STATTX contains the value indicating NAK. #### Bits 3:0 **EA[3:0]:** endpoint/channel address Device mode Software must write in this field the 4-bit address used to identify the transactions directed to this endpoint. A value must be written before enabling the corresponding endpoint. - Host mode Software must write in this field the 4-bit address used to identify the channel addressed by the host transaction. RM0444 Rev 5 1299/1390 Table 224. Reception status encoding | STATRX[1:0] | Meaning | |-------------|--| | 00 | DISABLED: all reception requests addressed to this endpoint/channel are ignored. | | 01 | STALL: Device mode: the endpoint is stalled and all reception requests result in a STALL handshake. Host mode: this indicates that the device has STALLed the channel. | | 10 | NAK: Device mode: the endpoint is NAKed and all reception requests result in a NAK handshake. Host mode: this indicates that the device has NAKed the reception request. | | 11 | VALID: this endpoint/channel is enabled for reception. | ## Table 225. Endpoint/channel type encoding | UTYPE[1:0] | Meaning | |------------|-----------| | 00 | BULK | | 01 | CONTROL | | 10 | ISO | | 11 | INTERRUPT | ## Table 226. Endpoint/channel kind meaning | UTYP | E[1:0] | EPKIND meaning | |------|-----------|---| | 00 | BULK | DBL_BUF | | 01 | CONTROL | STATUS_OUT | | 10 | ISO | SBUF_ISO: This bit is set by the software to enable the single-buffering feature for isochronous endpoint | | 11 | INTERRUPT | Not used | ## Table 227. Transmission status encoding | STATTX[1:0] | Meaning | |-------------|---| | 00 | DISABLED: all transmission requests addressed to this endpoint/channel are ignored. | | 01 | STALL: Device mode: the endpoint is stalled and all transmission requests result in a STALL handshake. Host mode: this indicates that the device has STALLed the channel. | Table 227. Transmission status encoding (continued) | STATTX[1:0] | Meaning | |-------------|--| | 10 | NAK: Device mode: the endpoint is NAKed and all transmission requests result in a NAK handshake. Host mode: this indicates that the device has NAKed the transmission request. | | 11 | VALID: this endpoint/channel is enabled for transmission. | ## 37.6.2 Buffer descriptor table Note: The buffer descriptor table is located inside the packet buffer memory in the separate "USB SRAM" address space. Although the buffer descriptor table is located inside the packet buffer memory ("USB SRAM" area), its entries can be considered as additional registers used to configure the location and size of the packet buffers used to exchange data between the USB macro cell and the device. The first packet memory location is located at USB SRAM base address. The buffer descriptor table entry associated with the USB_CHEPnR registers is described below. The memory should be addressed using Word (32-bit) accesses. A thorough explanation of packet buffers and the buffer descriptor table usage can be found in *Structure and usage of packet buffers on page 1268*. ## Channel/endpoint transmit buffer descriptor n (USB_CHEP_TXRXBD_n) Address offset: n*8 This register description applies when corresponding CHEPnR register does not program the use of double buffering (otherwise refer to following register description) | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|----|--------|----------|----|--------|-----------|----|----|----|----| | Res. | Res. | Res. | Res. | Res. | Res. | | | | | COUNTr | n_TX[9:0] | | | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | ADDRn_ | TX[15:0] | | | | | | | | | rw Bits 31:26 Reserved, must be kept at reset value. #### Bits 25:16 COUNTn_TX[9:0]: Transmission byte count These bits contain the number of bytes to be transmitted by the endpoint/channel associated with the USB CHEPnR register at the next IN token addressed to it. ## Bits 15:0 ADDRn_TX[15:0]: Transmission buffer address These bits point to the starting address of the packet buffer containing data to be transmitted by the endpoint/channel associated with the USB_CHEPnR register at the next IN token addressed to it. Bits 1 and 0 must always be written as "00" since packet memory is word wide and all packet buffers must be word aligned. # Channel/endpoint receive buffer descriptor n [alternate] (USB_CHEP_TXRXBD_n) Address offset: n*8 This register description applies when corresponding CHEPnR register programs the use of double buffering and activates receive buffers (otherwise refer to previous register description). This table location is used to store two different values, both required during packet reception. The most significant bits contains the definition of allocated buffer size, to allow buffer overflow detection, while the least significant part of this location is written back by the USB peripheral at the end of reception to give the actual number of received bytes. Due to the restrictions on the number of available bits, buffer size is represented using the number of allocated memory blocks, where block size can be selected to choose the trade-off between fine-granularity/small-buffer and coarse-granularity/large-buffer. The size of allocated buffer is a part of the endpoint/channel descriptor and it is normally defined during the enumeration process according to its maxPacketSize parameter value (see "Universal Serial Bus Specification"). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | | | | |--------|----|-------------|--------|-------|----|----|----------------|----------|----|----|----|----|----|----|----|--|--|--| | BLSIZE | | NUN | _BLOCK | [4:0] | | | COUNTn_RX[9:0] | | | | | | | | | | | | | rw | rw | rw | rw | rw | rw | r | r | r | r | r | r | r | r | r | r | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | | | | ADDRn_ | RX[15:0] | | | | | | | | | | | | rw | rw | rw rw rw rw | | rw | | | | #### Bit 31 BLSIZE: Block size This bit selects the size of memory block used to define the allocated buffer area. - If BLSIZE = 0, the memory block is 2-byte large, which is the minimum block allowed in a half-word wide memory. With this block size the allocated buffer size ranges from 2 to 62 bytes. - If BLSIZE = 1, the memory block is 32-byte large, which permits to reach the maximum packet length defined by USB specifications. With this block size the allocated buffer size theoretically ranges from 32 to 1024 bytes, which is the longest packet size allowed by USB standard specifications. However, the applicable size is limited by the available buffer memory. #### Bits 30:26 NUM_BLOCK[4:0]: Number of blocks These bits define the number of memory blocks allocated to this packet buffer. The actual amount of allocated memory depends on the BLSIZE value as illustrated in *Table 228*. #### Bits 25:16 COUNTn_RX[9:0]: Reception byte count These bits contain the number of bytes received by the endpoint/channel associated with the USB_CHEPnR register during the last OUT/SETUP transaction addressed to it. #### Bits 15:0 ADDRn_RX[15:0]: Reception buffer address These bits point to the starting address of the packet buffer, which contains the data received by the endpoint/channel associated with the USB_CHEPnR register at the next OUT/SETUP token addressed to it. Bits 1 and 0 must always be written as "00" since packet memory is word wide and all packet buffers must be word aligned. Table 228. Definition of allocated buffer memory | Value of
NUM_BLOCK[4:0] | Memory allocated when BLSIZE=0 | Memory allocated when BLSIZE=1 | |----------------------------|--------------------------------|--------------------------------| | 0 (00000) | Not allowed | 32 bytes | | 1 (00001) | 2 bytes | 64 bytes | | 2 (00010) | 4 bytes | 96 bytes | | 3 (00011) | 6 bytes | 128 bytes | | | | | | 14 (01110) | 28 bytes | 480 bytes | | 15 (01111) | 30 bytes | | | Value of
NUM_BLOCK[4:0] | Memory allocated when BLSIZE=0 | Memory allocated when BLSIZE=1 | |----------------------------|--------------------------------|--------------------------------| | 16 (10000) | 32 bytes | | | | | | | 29 (11101) | 58 bytes | | | 30 (11110) | 60 bytes | 992 bytes | | 31 (11111) | 62 bytes | 1023 bytes | Table 228. Definition of allocated buffer memory (continued) # Channel/endpoint receive buffer descriptor n (USB_CHEP_RXTXBD_n) Address offset: n*8 + 4 This register description applies when corresponding CHEPnR register does not program use of double buffering (otherwise refer to following register description). This table location is used to store two different values, both required during packet reception. The most significant bits contains the definition of allocated buffer size, to allow buffer overflow detection, while the least significant part of this location is written back by the USB peripheral at the end of reception to give the actual number of received bytes. Due to the restrictions on the number of available bits, buffer size is represented using the number of allocated memory blocks, where block size can be selected to choose
the trade-off between fine-granularity/small-buffer and coarse-granularity/large-buffer. The size of allocated buffer is a part of the endpoint/channel descriptor and it is normally defined during the enumeration process according to its maxPacketSize parameter value (see "Universal Serial Bus Specification"). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | | | | | |--------|----|-----|--------|-------|----|----|----------------|----------|----|----|----|----|----|----|----|--|--|--|--| | BLSIZE | | NUM | _BLOCK | [4:0] | | | COUNTn_RX[9:0] | | | | | | | | | | | | | | rw | rw | rw | rw | rw | rw | r | r | r | r | r | r | r | r | r | r | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | | | | | ADDRn_ | RX[15:0] | | | | | | | | | | | | | rw | | | | Bit 31 BLSIZE: Block size This bit selects the size of memory block used to define the allocated buffer area. - If BLSIZE = 0, the memory block is 2-byte large, which is the minimum block allowed in a half-word wide memory. With this block size the allocated buffer size ranges from 2 to 62 bytes. - If BLSIZE = 1, the memory block is 32-byte large, which permits to reach the maximum packet length defined by USB specifications. With this block size the allocated buffer size theoretically ranges from 32 to 1024 bytes, which is the longest packet size allowed by USB standard specifications. However, the applicable size is limited by the available buffer memory. ## Bits 30:26 NUM_BLOCK[4:0]: Number of blocks These bits define the number of memory blocks allocated to this packet buffer. The actual amount of allocated memory depends on the BLSIZE value as illustrated in *Table 228*. #### Bits 25:16 COUNTn_RX[9:0]: Reception byte count These bits contain the number of bytes received by the endpoint/channel associated with the USB CHEPnR register during the last OUT/SETUP transaction addressed to it. #### Bits 15:0 ADDRn_RX[15:0]: Reception buffer address These bits point to the starting address of the packet buffer, which contains the data received by the endpoint/channel associated with the USB_CHEPnR register at the next OUT/SETUP token addressed to it. Bits 1 and 0 must always be written as "00" since packet memory is word wide and all packet buffers must be word aligned. # Channel/endpoint transmit buffer descriptor n [alternate] (USB_CHEP_RXTXBD_n) Address offset: n*8 + 4 This register description applies when corresponding CHEPnR register programs use of double buffering and activates transmit buffers (otherwise refer to previous register description). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|----|--------|----------|----|-------|-----------|----|----|----|----| | Res. | Res. | Res. | Res. | Res. | Res. | | | | | COUNT | n_TX[9:0] | | | | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | ADDRn_ | TX[15:0] | | | | | | | | | rw Bits 31:26 Reserved, must be kept at reset value. ## Bits 25:16 COUNTn_TX[9:0]: Transmission byte count These bits contain the number of bytes to be transmitted by the endpoint/channel associated with the USB CHEPnR register at the next IN token addressed to it. #### Bits 15:0 ADDRn_TX[15:0]: Transmission buffer address These bits point to the starting address of the packet buffer containing data to be transmitted by the endpoint/channel associated with the USB_CHEPnR register at the next IN token addressed to it. Bits 1 and 0 must always be written as "00" since packet memory is word wide and all packet buffers must be word aligned. RM0444 Rev 5 1305/1390 # 37.6.3 USB register map The table below provides the USB register map and reset values. Table 229. USB register map and reset values | | Table 229. OSB register map | | | | | | | | | - | 1 | | 1 | 1 | | | | | | 1 | | 1 | 1 | | | | | | | | | | |---------------|-----------------------------|----------|----------|-----------|------|------|--------|--------|-------|------|------|--------------|------|------|------|------|------------------------|--------|---------------|---|----------------|--------|-----------------|-----------------|--------|-----------------|--------|-------|-----------------|---------|--------|--------| | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 22 | 24 | 23 | 22 | 21 | 70 | 19 | 18 | 4٤ | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 7 | - 0 | | 0x00 | USB_CHEP0R | Res. | Res. | Res. | Res. | Res. | ERR_RX | ERR_TX | LS_EP | NAK | | DI | EVA | DD | R[6: | 0] | | VTRX | DTOGRX | R | AT
X
:0] | SETUP | UT
E
[1: | YP
E
:0] | EPKIND | VTTX | ртостх | 1 | ATT
X
:0] | E | :A[3: | 0] | | | Reset value | | | | | | 0 0 0 0 | | | | 0x04 | USB_CHEP1R | Res. | Res. | Res. | Res. | Res. | ERR_RX | ERR_TX | LS_EP | NAK | | | | | | | | VTRX | DTOGRX | STAT UTYP Q X STAT | | | Χ | EA[3:0] | | | | | | | | | | | Reset value | | | | | | 0 (| 0 0 | | 0x08 | USB_CHEP2R | Res. | Res. | Res. | Res. | Res. | ERR_RX | ERR | LS_EP | NAK | | | | | | | | VTRX | DTOGRX | [1 | | SETUP | UT
E
[1: | <u>=</u>
:0] | EPKIND | VTTX | DTOGTX | [1 | ATT
X
:0] | | A[3: | | | | Reset value | | | | | | 0 (| 0 | | 0x0C | USB_CHEP3R | Res. | Res. | Res. | Res. | Res. | ERR_RX | ERR_TX | LS_EP | NAK | | DI | EVA | DD | R[6: | 0] | | VTRX | DTOGRX | | AT
X
:0] | SETUP | UT
E
[1: | Ξ | EPKIND | VTTX | ртостх | 2 | ATT
X
:0] | E | :A[3: | 0] | | | Reset value | | | | | | 0 (| 0 | | 0x10 | USB_CHEP4R | Res. | Res. | Res. | Res. | Res. | ERR_RX | ERR | LS_EP | NAK | | DI | EVA | DD | R[6: | 0] | | VTRX | DTOGRX | ST
R
[1 | AT
X
:0] | SETUP | UT
E
[1: | Ξ | EPKIND | VTTX | ртостх | 1 | ATT
X
:0] | Е | :A[3: | 0] | | | Reset value | | | | | | 0 (| 0 | | 0x14 | USB_CHEP5R | Res. | Res. | Res. | Res. | Res. | ERR_RX | ERR_TX | LS_EP | NAK | | DEVADDR[6:0] | | | | | | VTRX | DTOGRX | STAT A UTYP RX E [1:0] B [1:0] | | | VTTX | ртостх | 2 | ATT
X
:0] | E | :A[3: | 0] | | | | | | Reset value | | | | | | 0 | | | | 0 | | | 0x18 | USB_CHEP6R | Res. | Res. | Res. | Res. | Res. | ERR_RX | ERR_TX | _ | NAK | | | | | R[6: | | XX STAT RX [1:0] SETUP | | | UT
E
[1: | :
:0] | EPKIND | VTTX | DTOGTX | [1 | ATT
X
:0] | | :A[3: | | | | | | | Reset value | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 0 0 0 0 | | | 0 | 0 | 0 | 0 | 0 | 0 (| 0 | | | | 0x1C | USB_CHEP7R | Res. | Res. | Res. | Res. | Res. | ERR_RX | ERR_TX | LS_EP | NAK | | | | | R[6: | | | VTRX | DTOGRX | R
[1 | | SETUP | UT
E
[1: | <u>[</u>
:0] | EPKIND | VTTX | ртостх | [1 | ATT
X
:0] | | :A[3: | | | | Reset value | | | | | | 0 (| 0 (| | 0x20-
0x3F | 0x40 | USB_CNTR | HOST | Res. THR512M | CTRM | PMAOVRM | ERRM | WKUPM | SUSPM | RS ⁻ | SOFM | ESOFM | L1REQM | Res. | L1RES | L2RES | SUSPEN | PDIMIN | USBRST | | | Reset value | 0 | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 ′ | 1 | | 0x44 | USB_ISTR | Res. | LS_DCON | DCON_STAT | Res. THR512 | CTR | PMAOVR | ERR | WKUP | SUSP | RST_DCON | SOF | ESOF | L1REQ | Res. | Res. | DIR | IC
)N[3 | :0] | | | Reset value | | 0 | 0 | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 0 | 0 0 | | 0x48 | USB_FNR | Res. o RXDP | ORXDM | > LCK | LS: | 0] | V | | | | | N[10 | | | | , | | | Reset value | <u> </u> | | | | | | | | | | | | | | | | U | U | 0 | 0 | 0 | Х | Х | Х | Х | Х | Х | Х | Х | X 2 | X | | 0x4C | USB_DADDR | Res. EF | | | | D[6:0 | | 110 | | | Reset value | <u> </u> | <u> </u> | | | | | | | | | | | | | | | |] | | | | | | | 0 | 0 | 0 | 0 | 0 | U (| 0 | ## Table 229. USB register map and reset values (continued) | Offset | Register | 31 | 30 | 29 | 28 | 27 | 56 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 2 | 9 | 2 | 4 | 3 | 2 | 1 | 0 | |--------|-------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----------|------|------|------|------|------|------|------|--------|------|-------|-------|---------|------|--------|-------| | 0x54 | USB_LPMCSR | Res. E | ESI | _[3:0 | [[| REMWAKE | Res. | LPMACK | LPMEN | | | Reset value | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 0x58 | USB_BCDR | Res. DPPU_DPD | Res. PS2DET | SDET | PDET | DCDET | SDEN | PDEN | DCDEN | BCDEN | | | Reset value | | | | | | | | | | | | | | | | | 0 | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Refer to Section 2.2 on page 58 for the register boundary addresses. RM0444 Rev 5 1307/1390 # 38 USB Type-C™ / USB Power Delivery interface (UCPD) ## 38.1 Introduction The USB Type-C / USB Power Delivery interface complies with: - Universal Serial Bus Type-C Cable and Connector Specification: release 2.0, August, 2019 - Universal Serial Bus Power Delivery specifications: - revision 2.0, version 1.3, January 12, 2017 - revision 3.0, version 2.0, August 29, 2019 It integrates the physical layer of the Power Delivery (PD) specification, with CC signaling method (no VBUS), for operation with Type-C cables. ## 38.2 UCPD main features - Compliance with USB Type-C specification release 2.0 - Compliance with USB Power Delivery specifications revision 2.0 and 3.0 - Enabling advanced applications such as PPS (programmable power supply) - Stop mode low-power operation support - Built-in analog PHY - USB Type-C pull-up (Rp, all values) and pull-down (Rd) resistors - "Dead battery" Rd support - USB Power Delivery message transmission and reception - FRS (fast role swap) Rx support - Digital controller - BMC (bi-phase mark coding) encode and decode - 4b5b encode and decode - USB Type-C level detection with de-bounce, generating interrupts - FRS detection, generating an interrupt - DMA-compatible byte-level interface for USB Power Delivery payload, generating interrupts - USB Power Delivery clock pre-scaler / dividers - CRC generation/checking - Support of ordered sets, with a programmable ordered set mask at receive - Clock recovery from incoming Rx stream # 38.3 UCPD implementation The devices have two UCPD controllers to support two USB Type-C ports. | UCPD feature | UCPD1 | UCPD2 | |---|-------|-------| | Dead battery support via UCPDx_DBCC1 and UCPDx_DBCC2 external signals | Х | Х | | UCPDx_FRSTX as alternate function pin | X | X | | Fully automatic trimming (no SW override necessary) | X | Х | | Discrete-component PHY support | - | - | Table 230. UCPD implementation⁽¹⁾ # 38.4 UCPD functional description The UCPD peripheral provides hardware support for the USB Power Delivery control interface specification, using I/Os specifically designed for that purpose. The built-in PHY directly detects Type-C voltage levels, supports Power Delivery BIST carrier mode 2 (Tx only), BIST test data (Tx and Rx), and Power Delivery Rx FRS signaling. For Power Delivery FRS Tx signaling, the device can be configured to control, through UCPD_FRSTX pin (alternate function), external NMOS transistors that ensure low-resistance pull-down on CC lines. The UCPD transmitter BMC (bi-phase mark) encodes and transmits data: preamble, SOP, payload data from protocol layer (after 4b5b-encoding), CRC, and EOP on the Type-C connector CC lines. It automatically inserts inter-frame gap and executes "Hard Reset". The UCPD receiver detects SOP, BMC-decodes the incoming stream, recovers the preamble, 4b5b-decodes payload data, detects EOP, and checks CRC. It automatically detects five K-code SOP and two Reset ordered sets, plus two software-defined patterns (allows for only three out of four K-codes being correctly received, as defined by the standard). In Stop mode, the peripheral maintains the ability to detect incoming USB Power Delivery messages and FRS signaling, which allows low-power operation. ^{1. &}quot;X" = supported, "-" = not supported ## 38.4.1 UCPD block diagram UCPD Registers Power Delivery Tx (CC1 or CC2) Control register Ch.1 UCPDx_FRSTX Ch.2 To/from RCC: ucpd_ker_ck Tx ordered set register clk_rq Analog ucpd pclk PHY 4b5b encode BMC encode Tx byte CRC add set insert UCPDx DBCC1 UCPDx_CC1 Ordered Rx byte register 4b5b BMC et detect filter 32-bit APB Rx ordered ВМС set registe UCPDx DBCC2 frequency estimate CŘC Ch. 2 Power Delivery Rx (CC1 or CC2) UCPDx_CC2 To NVIC: check ucpd_it FRS Status register (interrupts/ (detect) Alternate or ucpd_wkup additional I/O function Type-C controller (CC1 and CC2) events) To/from DMA: Type-C control CC1 + CC2 ucpd_tx_dma ucpd rx dma MSv45535V2 Figure 403. UCPD block diagram The following table lists external signals (alternate or additional I/O functions). Pin name Signal type Description USB Type-C fast role swap (FRS) signaling control, applicable to DRPs only. The signal (active high) drives an external NMOS transistor that pulls down the active CC line. A typical application has two such transistors (one per CC line) and reserves a separate I/O to drive either NMOS. Initially, the I/Os UCPDx FRSTX Output are configured as low-driving GPIOs. Upon detecting, through the Type-C state machine, the orientation of the cable attached, which determines the active CC line, the I/O of the active CC line must be set to its UCPDx_FRSTX alternate function and the I/O of the inactive CC line as low-driving GPIO. USB Type-C configuration control line 1, to be routed to the UCPDx_CC1 Input/output USB Type-C connector CC1 terminal. USB Type-C configuration control line 2, to be routed to the USB Type-C connector CC2 terminal. battery support is required. battery support is required. USB Type-C configuration control line 1 dead battery signal, to USB Type-C configuration control line 2 dead battery signal, to be routed to the USB Type-C connector CC2 terminal if dead be routed to the USB Type-C connector CC1 terminal if dead Table 231. UCPD signals on pins 1310/1390 RM0444 Rev 5 Input/output Input Input UCPDx_CC2 UCPDx DBCC1 UCPDx_DBCC2 The following table lists key internal signals. Internal signal name Signal type Description ucpd pclk Input APB clock for registers ucpd ker ck Input Kernel clock ucpd_tx_dma Input/Output Rx DMA acknowledge / request ucpd rx dma Input/Output Tx DMA acknowledge / request ucpd it Output Interrupt request (all interrupts OR-ed) connected to NVIC ucpd wkup Output Wakeup request connected to EXTI clk rq Output Clock request connected to RCC Table 232. UCPD internal signals ## 38.4.2 UCPD reset and clocks The peripheral has a single reset signal (APB bus reset). The register section is clocked with the APB clock (ucpd pclk). The main functional part of the transmitter is clocked with ucpd_clk clock, pre-scaled from the ucpd_ker_ck (HSI16) clock according to the PSC_USBPDCLK[2:0] bitfield of the UCPD_CFGR1 register. The main functional part of the receiver is clocked with the ucpd_rx_clk recovered from the incoming bitstream. The receiver is designed to work in the clock frequency range from 6 to 18 MHz. However, the optimum performance is ensured in the range from 9 to 18 MHz. The following diagram shows the clocking and timing elements of the UCPD peripheral. Figure 404. Clock division and timing elements Refer to the USB PD specification in order to set appropriate delays. For *tTransitionWindow* and especially for *tInterFrameGap*, the clock frequency uncertainty must be taken into account so as to respect specified timings in all cases. 5 RM0444 Rev 5 1311/1390 ## 38.4.3 Physical layer protocol The physical layer covers the signaling underlying the USB Power Delivery specification. On the transmitter side its main function is to form packets according to the defined packet format including generally: - preamble - start of packet (SOP, ordered set) - payload header - · payload data - cyclic redundancy check (CRC) information - end of packet (EOP) Before going on the CC line, the data stream is BMC-encoded, respecting specified timing restrictions. On the receive side, the principle task is to: - extract start of packet (SOP, ordered set) information - extract payload header - extract payload data - · receive and check CRC - receive end of packet (EOP) The receive is basically a reverse of the transmit process, thus starting with BMC data stream decoding. ## Symbol encoding Apart from the preamble all symbols are encoded with a 4b5b scheme according to the specification shown in the following table. Table 233. 4b5b Symbol Encoding Table | Name | 4b | 5b | Symbol description | |------|------|-------|--------------------| | 0 | 0000 | 11110 | hex data 0 | | 1 | 0001 | 01001 | hex data 1 | | 2 | 0010 | 10100 | hex data 2 | | 3 | 0011 | 10101 | hex data 3 | | 4 | 0100 | 01010 | hex data 4 | | 5 | 0101 | 01011 | hex data 5 | | 6 | 0110 | 01110 | hex data 6 | | 7 | 0111 | 01111 | hex data 7 | | 8 | 1000 | 10010 | hex data 8 | | 9 | 1001 | 10011 | hex data 9 | | Α | 1010 | 10110 | hex data A | | В | 1011 | 10111 | hex data B | | С | 1100 | 11010 | hex data C | Table 233. 4b5b Symbol Encoding Table (continued) | Name | 4b | 5b | Symbol description | |----------|--------
-------|--------------------| | D | 1101 | 11011 | hex data D | | E | 1110 | 11100 | hex data E | | F | 1111 | 11101 | hex data F | | Sync-1 | K-code | 11000 | Startsynch #1 | | Sync-2 | K-code | 10001 | Startsynch #2 | | RST-1 | K-code | 00111 | Hard Reset #1 | | RST-2 | K-code | 11001 | Hard Reset #2 | | EOP | K-code | 01101 | EOP | | Reserved | Error | 00000 | Do Not Use | | Reserved | Error | 00001 | Do Not Use | | Reserved | Error | 00010 | Do Not Use | | Reserved | Error | 00011 | Do Not Use | | Reserved | Error | 00100 | Do Not Use | | Reserved | Error | 00101 | Do Not Use | | Sync-3 | K-code | 00110 | Startsynch #3 | | Reserved | Error | 01000 | Do Not Use | | Reserved | Error | 01100 | Do Not Use | | Reserved | Error | 10000 | Do Not Use | | Reserved | Error | 11111 | Do Not Use | #### **Ordered sets** An ordered set consists of four K-codes as shown in the following figure. Transmit first Transmit last K-code 4 K-code 3 K-code 2 K-code 1 b4 b0 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Transmit last Transmit first MSv45537V1 Figure 405. K-code transmission The following table lists the defined ordered sets, including all possible SOP* sequences. At the physical layer, the Hard Reset has higher priority than the other ordered sets so it can interrupt an on-going Tx message. | Ordered set name | K-code #1 | K-code #2 | K-code #3 | K-code #4 | |------------------|-----------|-----------|-----------|-----------| | SOP | Sync-1 | Sync-1 | Sync-1 | Sync-2 | | SOP' | Sync-1 | Sync-1 | Sync-3 | Sync-3 | | SOP" | Sync-1 | Sync-3 | Sync-1 | Sync-3 | | Hard Reset | RST-1 | RST-1 | RST-1 | RST-2 | | Cable Reset | RST-1 | Sync-1 | RST-1 | Sync-3 | | SOP'_Debug | Sync-1 | RST-2 | RST-2 | Sync-3 | | SOP"_Debug | Sync-1 | RST-2 | Sync-3 | Sync-2 | Table 234. Ordered sets On reception, the physical layer must accept ordered sets with any combination of three correct K-codes out of four, as shown in the following table: Table 235. Validation of ordered sets | Status | 1st code | 2nd code | 3rd code | 4th code | |--------|----------|----------|----------|----------| | Valid | Corrupt | K-code | K-code | K-code | | Valid | K-code | Corrupt | K-code | K-code | | | | | (, | | |---------------------|----------|----------|----------|----------| | Status | 1st code | 2nd code | 3rd code | 4th code | | Valid | K-code | K-code | Corrupt | K-code | | Valid | K-code | K-code | K-code | Corrupt | | Valid (perfect) | K-code | K-code | K-code | K-code | | Not valid (example) | K-code | Corrupt | K-code | Corrupt | Table 235. Validation of ordered sets (continued) ## Bit ordering at transmission Allowed transmission data units / data sizes are in the following table. Table 236. Data size | Data unit | Non-encoded | Encoded | |-----------|-------------|---------| | Byte | 8-bits | 10-bits | | Word | 16-bits | 20-bits | | DWord | 32-bits | 40-bits | The bit transmission order is shown in the following figure. b31 b0 Transmit first b0 b31 Transmit last b16 b15 b8 b7 b0 b3 b0 4b5b bit4 bit0 Bit 1 Bit 0 Transmit first Transmit last MSv45538V1 Figure 406. Transmit order for various sizes of data #### Packet format ## Messages other than Hard Reset and Cable Reset The packet format is shown in the following figure, with information on 4b5b encode and data source. Figure 407. Packet format #### **Hard Reset** The physical layer handles the Hard Reset signaling differently than the other types of message as it has higher priority to be able to interrupt an on-going transfer. The physical layer specification implies the following sequence in the case of an ongoing Tx message: - 1. Terminate the message by sending an EOP K-code and discard the rest of the message. - 2. Wait for tInterFrameGap time. - 3. If the CC line is not idle, wait until it goes idle. - 4. Send the preamble followed by the four K-codes of Hard Reset signaling. - 5. Disable the CC channel (stop sending and receiving), reset the physical layer and inform the protocol layer that the physical layer is reset. - 6. Re-enable the channel when requested by the protocol layer. Figure 408. Line format of Hard Reset #### Cable Reset Cable Reset shown in the following figure is similar in format to Hard Reset, but unlike Hard Reset it does not require a specific high-priority treatment. Figure 409. Line format of Cable Reset ## Collision avoidance The physical layer respects the *tInterFrameGap* delay between end of last-transmitted bit of a Tx message, and the first bit of a following message. It also checks the idle state of the CC line before starting transmission. The CC line is considered idle if it shows less than three (nTransitionCount) transitions within tTransitionWindow (12 to 20 μ s). The Power Delivery specification revision 3.0 also requires to manage the Rd value (source) and monitor Type-C voltage level for these Rp modifications (at the sink). ## Physical layer signaling schemes The bit are signaled with bi-phase mark coding (BMC). #### **BIST** Depending on the BIST action required by the protocol layer, either of the following can be run: - a Tx BIST pattern test, achieved by writing TXMODE and TXSEND - an Rx BIST pattern test, achieved by writing RXMODE to the correct value for RXBIST. The two possible patterns supported in UCPD (corresponding to "BMC" mode) are: - BIST Test Data (192 bit pattern), applies to Tx and Rx. In the case of Rx, the message is received (but discarded rather than passing to the protocol layer, which must nevertheless still generate a GoodCRC Tx message in acknowledgment). - BIST Carrier Mode 2 (single pattern, infinite length message), applies to Tx only. As opposed to Tx, the receiver in this mode simply ignores the CC line during this state. #### BIST test data pattern The test data pattern is not viewed as a special case in UCPD. RM0444 Rev 5 1317/1390 The BIST test data packet frame format is shown in the following figure. Figure 410. BIST test data frame This is a fixed length test data pattern. In reality the only aspect that marks its difference from the general packet format already shown in *Figure 407: Packet format* is the contents of the Header. As UCPD receives the Tx Header contents via programming (it is simply viewed as part of the payload), it is only this programming (and not the block's behaviour) that differentiates the general packet from the BIST Test Data packet. #### **BIST Carrier Mode 2** When required, this BIST test mode sends an alternating pattern of 1010 that is continually repeated. As this mode is intended for signal analysis it is stable condition with (in V1.0 of the USB PD specification) no defined length. Starting from V1.1 of the USB PD specification, the protocol layer defines a counter that indicates when to exit this mode. The way to quit the infinite 1010 sequence (according to requirements of the USB PD specification) is to disable the UCPD peripheral via the UCPDEN bit. Figure 411. BIST Carrier Mode 2 frame #### 38.4.4 UCPD BMC transmitter The BMC transmitter comprises 4b5b encoding, CRC generation, and BMC encode, as shown in the following figure. Its output goes to the analog PHY through a channel switch. Figure 412. UCPD BMC transmitter architecture #### **BMC** encoder The bi-phase mark coding method is defined in the *IEC 60958-1 Digital Audio Interface Part:1 General Edition 3.0 2008-09 www.iec.ch* specification. The half-bit clock hbit_clk is derived from ucpd_clk through a simple divider controlled by the HBITCLKDIV[5:0] bitfield of the UCPD_CFGR1 register. This ensures the same duration of high and low half-bit periods (if neglecting a small difference due to different rising and falling edge duration and due to jitter), and the same bit duration (if neglecting jitter). #### Transmitter timing and collision avoidance Hardware support of collision avoidance is made as a function of the half bit time for the transmitter. Two counters are implemented: - tInterFrameGap: via IFRGAP (pre-defined value, can be altered) - tTransitionWindow: via TRANSWIN (pre-defined value, can be altered) These two counters once set correctly generates the interframe gap. #### Hard Reset in transmitter In order to facilitate generation of a Hard Reset, a special code of TXMODE field is used. No other fields need to be written. On writing the correct code, the hardware forces Hard Reset Tx under the correct (optimal) timings with respect to an on-going Tx message, which (if still in progress) is cleanly terminated by truncating the current sequence and directly appending an EOP K-code sequence. No specific interrupt is generated relating to this truncation event. RM0444 Rev 5 1319/1390 #### Transmitter behavior in the case of errors The under-run condition (TXUND interrupt) may happen by accident and in this case, the UCPD is starved of (the correct) Tx payload and is not able to complete the Tx message correctly. This is a serious error (for this to happen the software fails to respond in time). As a result the hardware ensures the CRC is incorrect at the end of the message, thus guaranteeing the message to be discarded at the receiver. #### 38.4.5 UCPD BMC receiver The UCPD BMC receiver performs: - Clock recovery - Preamble detection / timing derivation - BMC decoding - 4b5b decoding - K-code ordered set recognition - · CRC checking - SOP detection - EOP detection The receiver is activated as soon as the UCPD peripheral is enabled (via UCPDEN), but it waits for an idle CC line state before attempting to receive a message. The following figure shows the UCPD BMC receiver high-level architecture. Figure 413. UCPD BMC receiver architecture #### **CRC** checker The received bits are fed into a CRC checker which evolves a 32-bit state during the received the payload bitstream. At the end the 32 bits of the CRC also fed into the logic The EOP detection (5 bits) halts the process and a check is performed for the fixed residual state which confirms correct reception of the payload (in fact the residual is 0xC704DD78). At
this point the UCPD raises interrupt RXMSGEND. If the CRC was not correct then RXERR is set true and the receive data must be discarded. Under normal operation, this interrupt would previously have been acknowledged and thus cleared. If this is not the case, a different interrupt RXOVR is generated in place of RXMSGEND. #### Ordered set detection This function detects the different ordered sets each consisting of four 5-bit K-codes. Once we are in the preamble we opens a sliding window detection of the ordered set (4 words of 5 bits). The ordered sets detected include all SOP* codes (SOP, SOP', and SOP"), but also Hard Reset, Cable Reset, SOP'_Debug, SOP"_Debug, and two extensions defined by registers USBPD1 RX ORDEXT1 and USBPD1 RX ORDEXT2. #### **EOP detection and Hard Reset exception handling** EOP is a fixed 5-bit K-code marking the end of a message. The way in which a transmitter is required to send a Hard Reset (if a previous message transmit is still in progress) is that this previous message is truncated early with an EOP. If Hard Reset were ignored, then the EOP detection could be done only at the expected time. However, due to the Hard Reset issue, the EOP detector must be active while an Rx message is arriving. When an "early EOP" is detected, the truncated Rx message is immediately discarded. ### Truncated or corrupted message exception Once the ordered set has been detected, depending on the message, there may be data bytes to be received which is completed with a CRC and EOP. If at any point during these phases an error condition happens: - the line becomes static for a time significantly longer than one "UI" period (the exact threshold for this condition is not critical but the exception must occur before three UIs), or - the message goes to the end but it is not recognized (for example EOP is corrupted). In both cases, the receiver quits the current message, raising RXMSGEND and RXERR flags. #### Short preamble or incomplete ordered set exception In the exceptional case of the receiver seeing less that half of the expected preamble, the frequency estimation allowing correct BMC-decode becomes impossible. Even if the full preamble is seen, allowing frequency estimation, but the ordered set is not fully received before the line becomes static, the receiver state machine does not start. In both of these cases, the clock-recovery/BMC decoder re-starts, checking initially for an IDLE condition, followed by a preamble, and then estimating frequency. RM0444 Rev 5 1321/1390 ## 38.4.6 UCPD Type-C pull-ups (Rp) and pull-downs (Rd) UCPD offers simple control of these resistors via ANAMODE and ANASUBMODE[1:0]. In case only one of the CC lines is to be used, it is possible to optimize power consumption by disabling control on one the other line, through the CCENABLE[1:0] bitfield. When the MCU is unpowered, it still presents the "dead battery" Rd, provided that UCPDx_DBCC1 and UCPDx_DBCC2 pins are each connected to UCPDx_CC1 and UCPDx_CC2 pins respectively. If dead battery behavior is not required (for example for source only products), then UCPDx_DBCC1 and UCPDx_DBCC2 pins must both be tied to ground. After power arrives and the MCU boots, the desired behavior (for example source) must be programmed into ANAMODE and ANASUBMODE[1:0] before setting the UCPDx_STROBE bits of the SYSCFG1_CFGR1 register to activate this behavior. Use of Standby low-power mode is possible for sinks in the unattached state. ## 38.4.7 UCPD Type-C voltage monitoring and de-bouncing For correct operation of the Type-C state machine and for detecting the cable orientation, the CC1/2 lines must be monitored for voltage level, while ignoring fast events such as peaks. Thresholds between voltage levels on the CC1/2 lines are determined through PHY threshold detector settings. The TYPEC_VSTATE_CC1/2[1:0] bitfields reflect the CC1/2 line levels processed with a hardware de-bouncing filter that suppresses high-speed line events such as peaks. The PHYCCSEL bit selects the line, CC1 or CC2, to be used for Power Delivery signaling. For minimizing the power consumption, it is recommended to use the polling method, with the Type-C detectors only turned on for the instant of polling, rather than keeping the Type-C detectors permanently on and wake the device up from Stop mode upon CC1/2 line events. #### 38.4.8 UCPD fast role swap (FRS) signaling and detection #### FRS signaling The FRS condition (a pulse of a specific length), is generated upon setting the FRSTX bit. For the duration of FRS condition, the I/O configured as UCPD_FRSTX (alternate function) controls, with high level, the gate of an external NMOS transistor that pulls the active CC line down. #### **FRS** detection FRS monitoring is enabled by setting the bit FRSRXEN, after writing PHYCCSEL that selects the active CC line depending on the cable orientation detected. #### 38.4.9 UCPD DMA Interface DMA is implemented in the UCPD and when it is enabled the byte-level interrupts to handle USBPD1_TXDR and USBPD1_RXDR registers (Tx and Rx data register, each one byte) are no longer needed. By enabling bits TXDMAEN and/or RXDMAEN, DMA can be activated independently for Tx and/or Rx functionality. ## 38.4.10 Wakeup from Stop mode For power consumption optimization, it is useful to use Stop mode and wait for events on CC lines to wake the MCU up. In order for this to work, it must be first enabled by writing a 1 to WUPEN. The events causing the wakeup can be: - Events on the BMC receiver (RXORDDET, RXHRSTDET), hardware enable PHYRXEN - Event on the FRS detector (FRSEVT), hardware enable FRSRXEN - Events on the Type-C detectors (TYPECEVT1, TYPECEVT2), hardware enables CC1TCDIS, CC2TCDIS ## 38.4.11 UCPD programming sequences The normal sequence of use of the UCPD unit is: - Configure UCPD. - 2. Enable UCPD. - 3. Concurrently: - On demand from protocol layer, send Tx message - Intercept (poll or wait for interrupt) relevant Rx messages and recover detail to hand off to protocol layer Repeat the last point infinitely. ## Initialization phase Use the following sequence for a clean startup: - 1. Prepare all initial clock divider values, by writing the UCPD CFG register. - 2. Enable the unit, by setting the UCPDEN bit. ## Type-C state machine handling For the general application cases of source, sink, or dual-role port (the last alternating the source and the sink), the software must implement a corresponding USB Type-C state machine. The basic coding is in the following table. Table 237. Coding for ANAMODE, ANASUBMODE and link with TYPEC VSTATE CCx | ANAMODE | ANASUBMODE[1:0] | Notes | TYPEC_VSTATE_CCx[1:0] | | | | | | | | | |-----------|--------------------|----------|-----------------------|----------|------------|---------|--|--|--|--|--| | ANAMODE | ANASOBNIODE[1.0] | Notes | 00 | 01 | 10 | 11 | | | | | | | | 00: Disabled | Disabled | N/A | | | | | | | | | | 0: Source | 01: Default USB Rp | - | vRa[Def] | vRd[Def] | vOPEN[Def] | | | | | | | | 0. Source | 10: 1.5A Rp | - | vRa[1.5] | vRd[1.5] | vOPEN[1.5] | N/A | | | | | | | | 11: 3.0A Rp | - | vRa[3.0] | vRd[3.0] | vOPEN[3.0] | | | | | | | | 1: Sink | XX | - | vRa | vRd-USB | vRd-1.5 | vRd-3.0 | | | | | | RM0444 Rev 5 1323/1390 The CCENABLE[1:0] bitfield can disable pull-up/pull-downs on one of the CC lines. Note: The Type-C state machine depends not only on CC line levels, but also on VBUS presence detection (sink mode) and when in source mode determines VCONN generation and VBUS state (ON/OFF/+voltage level); discharge). UCPD does not directly control VBUS generation circuitry nor VCONN load switch (enabling VCONN supply generator to be connected to the CC line), but the application needs these inputs and controls to function correctly. General programming sequence (with UCPD configured then enabled) - Set ANAMODE and ANASUBMODE[1:0] based on the current position in USB Type-C state machine (and also the current advertisement in the case of a source). This turns on the appropriate pull-ups/pull-downs on the CC lines, and define the voltage levels that the TYPEC_VSTATE fields represent. Note that before programming the PHY is effectively off - 2. Read TYPEC_VSTATE_CC1/2 to determine the initial Type-C state (for example whether the local source is connected to a remote sink) - In the case of no connection then wait for a connection event - 4. Assuming a connection is detected and assuming a local Power Delivery functionality is implemented, start sending/receiving Power Delivery messages - 5. When a new interrupt/event occurs on PHYEVT1/2 indicating a change in stable voltage, re-evaluate the implications and give this input to the Type-C state machine Case of a source that needs to change between one of the three possible Rp values (Default-USB / 1.5A / 3.0A) and the sink connected to it: - [Source] Simply reprogram ANASUBMODE[1:0] - [Sink behaviour from that time] PHYEVT1/2 occurs and the TYPEC_VSTATE1/2 changes accordingly Programming for a dual-role port (DRP) toggling from source to sink: • Simply re-program ANAMODE and ANASUBMODE[1:0] to start the new behavior Detailed programming sequence (example): Table 238. Type-C sequence (source: 3A); cable/sink connected (Rd on CC1; Ra on CC2) | Type-C state | ANAMODE;
ANASUBMO
DE[1:0] | CCENABL
E | PHYCCSE
L | RDCH | CC[x]
VCONN
EN | Event =>
go to
next line | Comments | |------------------------------|-------------------------------------|-----------------------------------|--------------------|-----------------------|----------------------|--|--| | Unattached.
SRC | 0:Source; | 11:both | 0 (don't
care) | | 00: | PHYEVT
1: [VRd-
3A0] | Wait for sink attach
detect; seen on CC1
[EVT1] | | Attachwait.
SRC | 11:Rp3A0 | enabled | | | [neither] | PHYEVT
2: [VRa] | Attachwait
started (100-
200ms); now also see
the Ra => requesting
VCONN | | | 0:Source;
11:Rp3A0
[SinkTxOK] | 01: CC2
disable | 0 | 0:
[Norm
al] | | Timer
(100 ms)
and no
PHYEVT
x | Local CC2 disconnected
from PHY (VCONN
switch connects VCONN
source to CC2
externally;
Continue to monitor
PHYEVT1 | | Attached. SRC [VCONN => CC2] | 0:Source;
10:Rp1A5
[SinkTxNG] | (possible and recommend ed due to | [Rd on
CC1] | | 10: [CC2
active] | SW
timers | Source wants to initiate message sequence (SinkTxNG condition set first) | | 002] | | external
VCONN
switch) | | | | (SinkTxN
G) | Source finished
message sequence
(SinkTxOK condition
afterwards) | | | 0:Source;
11:Rp3A0
[SinkTxOK] | | | | | PHYEVT
1:
[VOpen-
3A0] | Wait for Sink
disconnected (Vopen on
CC1) | | Unattached
wait.
SRC | CHINTACK | 11:both
enabled | 0 (do not
care) | 1:
[discha
rge] | 00:
[neither] | >0.8V
detection
(or
timer?) | Special Source
w/VCONN state (ECR
Apr 2016):
Discharge VCONN
[CC2] actively [Rdch]; to
< 0.8V | | Unattached.
SRC | 0:Source;
11:Rp3A0 | | | 0:
[Norm
al] | | | [Details as first line of table] | #### **USB PD transmit** On reception of a message from the protocol layer (that is, to be sent), prepare Tx message contents by writing the UCPD_TX_ORDSET and UCPD_TX_PAYSZ registers. The message transmission is triggered by setting the TXSEND bit, with an appropriate value of the TXMODE bitfield. When the data byte is transmitted, the TXIS flag is raised to request a new data write to the UCPD_TXDR register. RM0444 Rev 5 1325/1390 This re-iterates until the entire payload of data is transmitted. Upon sending the CRC packet, the TXMSGSENT flag is set to indicate the completion of the message transmission. #### Hard Reset transmission As soon as it is known that a Hard Reset needs to be transmitted, setting the TXHRST bit of the UCPD CR register forces the internal state machine to generate the correct sequence. The value of UCPD TX ORDSET does not require update in this precise case (the correct code for Hard Reset is sent by UCPD). The USB Power Delivery specification requires that in the case of an ongoing message transmission, the Hard Reset takes precedence. In this case, for example, UCPD truncates the payload of the current message, appending EOP to the end. No notification is available via the registers (for example through the TXMSGSEND flag). This is justified by the fact that the Hard Reset takes precedence over any previous activity (for which it is therefore no longer important to know if it is completed). #### Use of DMA for transmission DMA (Direct Memory Access) can be enabled for transmission by setting the TXDMAEN bit in the UCPD CR register. For each message: - Prepare the whole message in memory (starting with two header bytes) - Program the DMA operation with a length corresponding to the two header bytes plus a number of data bytes corresponding to the number of data words multiplied by four - Write TXSEND to initiate the message transfer - If TXMSGDISC then go back to previous line (TXSEND) - Wait for DMA transfer complete interrupt (that is, when last Tx byte written to UCPD) - Double-check subsequent TXMSGSENT interrupt appears ## **USB PD receive** Notification of start of the receive message sequence is triggered by an interrupt on UCPD SR (bit RXORDDET). The information is recovered by reading: - UCPD RX SOP (on interrupt RXORDDET) - UCPD RXDR (on interrupt RXNE, repeats for each byte) - UCPD RXPAYSZ (on interrupt RXMSGEND) The data previously read from UCPD RXDR above must be discarded at this point if the RXERR flag is set. If the CRC is valid, the received data is transferred to the protocol layer. For debug purposes, it may be desirable to track statistics of the number of incorrect K-codes received (this is done only when 3/4 K-codes were valid as defined in the specification). This is facilitated through: - RXSOP3OF4 bit indicating the presence of at least one invalid K-code - RXSOPKINVALID bitfield identifying the order of invalid K-code in the ordered set #### Use of DMA for reception DMA (Direct Memory Access) can be enabled for reception by setting the RXDMAEN bit in the UCPD_CR register. Whenever a Rx message is expected: - Program a DMA receive operation (and spare buffer) a little longer than the maximum possible message (length depends on extended message support). - After receiving RXORDDET, DMA operation starts working in the background. - On reception of RXMSGEND interrupt, read RXPAYSZ. - Double-check RXPAYSZ vs. the number of DMA Rx bytes (must correspond but DMA read of RXDR is slightly after RXDR gets last byte). - Process the DMA Rx buffer. - Prepare next Rx DMA buffer as soon as possible in order to be ready. ## 38.5 UCPD low-power modes A summary of low-power modes is shown below in *Table 239*. Mode Description Sleep No effect Stop Detection of events (Type-C, BMC Rx, FRS detection) remains operational and can wake up the MCU. Standby UCPD is not operating, and cannot wake up the MCU. Pull-downs remain active if configured. Unpowered Dead battery pull-downs remain active. Table 239. Effect of low power modes on the UCPD The UCPD is able to wakeup the MCU from Stop mode when it recognizes a relevant event, either: - Type-C event relating to a change in the voltage range seen on either of the CC lines, visible in TYPEC_VSTATE_CCx - Power delivery receive message with an ordered set matching those filtered according to RXORDSETEN[8:0], visible by reading RXORDSET Wakeup from Stop mode is enabled by setting the WUPEN bit in the UCPD CFG2 register. At UCPD level three types of event requiring kernel clock activity may occur during Stop mode: - Activity on the analog PHY voltage threshold detectors which could later be confirmed to be a stable change between voltage ranges defined in the Type-C specification - Activity on Power Delivery BMC receiver (coming from the selected CC line) which could potentially generate an Rx message event (that is, RXORDSET) later - Activity on Power Delivery FRS detector which could potentially generate an FRS signaling detection event (that is, FRSEVT) later It order to function correctly with the RCC, the clock request signal is activated (conditional on WUPEN) when there is asynchronous activity on: - Type-C voltage threshold detectors (coming from either CC line) - Power Delivery receiver signal (from the selected CC line) - FRS detection signal (from the selected CC line) #### 38.6 **UCPD** interrupts The table below lists the UCPD event flags, with the associated flag clear bits and interrupt enable bits. Table 240. UCPD interrupt requests | Interrupt event | Event flag | Event flag/Interrupt clearing method | Interrupt enable control bit | |-------------------------------------|------------|--------------------------------------|------------------------------| | FRS detection | FRSEVT | Set FRSEVTCF | FRSEVTIE | | Type C voltage level change on CC2 | TYPECEVT2 | Set TYPECEVT2CF | TYPECEVT2IE | | Type C voltage level change on CC1 | TYPECEVT1 | Set TYPECEVT1CF | TYPECEVT1IE | | Rx message received | RXMSGEND | Set RXMSGENDCF | RXMSGENDIE | | Rx data overflow | RXOVR | Set RXOVRCF | RXOVR | | Rx Hard Reset detected | RXHRSTDET | Set RXHRSTDETCF | RXHRSTDETIE | | Rx ordered set (4 K-codes) detected | RXORDDET | Set RXORDDETCF | RXORDDETIE | | Receive data register not empty | RXNE | Read data in UCPD_RXDR | RXNEIE | | Tx data underrun | TXUND | Set TXUNDCF | TXUNDIE | | Hard Reset sent | HRSTSENT | Set HRSTSENTCF | HRSTSENTIE | | Hard Reset discarded | HRSTDISC | Set HRSTDISCCF | HRSTDISCIE | | Transmit message aborted | TXMSGABT | Set TXMSGABTCF | TXMSGABTIE | | Transmit message sent | TXMSGSENT | Set TXMSGSENTCF | TXMSGSENTIE | | Transmit message discarded | TXMSGDISC | Set TXMSGDISCCF | TXMSGDISCIE | | Transmit data required | TXIS | Write data to the UCPD_TXDR register | TXISIE | When an interrupt from the UCPD is received, then the software has to check what is the source of the interrupt by reading the UCPD_SR register. Depending on which bit is at 1, the ISR must handle that condition and clear the bit by a write to the appropriate bit of the UCPD_ICR register. RM0444 Rev 5 1328/1390 ## 38.7 UCPD registers # 38.7.1 UCPD configuration register 1 (UCPD_CFGR1) Address offset: 0x000 Reset value: 0x0000 0000 General configuration of the peripheral. Writing to this register is only effective when UCPD is disabled (UCPDEN = 0). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |--------|---------|---------|------|-----------------------------------|----|----|---------|----|----|----|----|--------|-----------|------|----| | UCPDEN | RXDMAEN | TXDMAEN | | RXORDSETEN[8:0] PSC_USBPDCLK[2:0] | | | | | | | | | | Res. | | | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | TR | ANSWIN[| 4:0] | | | IF | RGAP[4: | 0] | | | | HBITCL | KDIV[5:0] | | | | rw ### Bit 31 UCPDEN: UCPD peripheral enable General enable of the UCPD peripheral. 0: Disable 1: Enable Upon disabling, the peripheral instantly quits any ongoing activity and all control bits and bitfields default to their reset values. They must be set to their desired values each time the peripheral transits from disabled to enabled state. #### Bit 30 RXDMAEN: Reception DMA mode enable When set, the bit enables DMA mode for reception. 0: Disable 1: Enable #### Bit 29 TXDMAEN: Transmission DMA mode enable When set, the bit enables DMA mode for transmission. 0: Disable 1: Enable ## Bits 28:20 RXORDSETEN[8:0]: Receiver ordered set enable The bitfield determines the types of ordered sets that the receiver must detect. When set/cleared, each bit enables/disables a specific function: Obxxxxxxxx1: SOP detect enabled Obxxxxxxx1x: SOP' detect enabled Obxxxxxx1xx: SOP" detect enabled Obxxxxx1xxx: Hard Reset
detect enabled Obxxxx1xxxx: Cable Detect reset enabled Obxxxx1xxxxx: SOP'_Debug enabled Obxx1xxxxxx: SOP"_Debug enabled Obx1xxxxxxx: SOP extension#1 enabled 0b1xxxxxxxxx: SOP extension#2 enabled #### Bits 19:17 PSC_USBPDCLK[2:0]: Pre-scaler division ratio for generating ucpd_clk The bitfield determines the division ratio of a kernel clock pre-scaler producing UCPD peripheral clock (ucpd_clk). 0x0: 1 (bypass) 0x1: 2 0x2: 4 0x3: 8 0x4: 16 It is recommended to use the pre-scaler so as to set the ucpd_clk frequency in the range from 6 to 9 MHz. Bit 16 Reserved, must be kept at reset value. #### Bits 15:11 TRANSWIN[4:0]: Transition window duration The bitfield determines the division ratio (the bitfield value minus one) of a hbit_clk divider producing *tTransitionWindow* interval. 0x00: Not supported 0x01: 2 0x09: 10 (recommended) 0x1F: 32 Set a value that produces an interval of 12 to 20 us, taking into account the ucpd_clk frequency and the HBITCLKDIV[5:0] bitfield setting. #### Bits 10:6 IFRGAP[4:0]: Division ratio for producing inter-frame gap timer clock The bitfield determines the division ratio (the bitfield value minus one) of a ucpd_clk divider producing inter-frame gap timer clock (*tInterFrameGap*). 0x00: Not supported 0x01: 2 0x0D: 14 0x0E: 15 0x0F: 16 0x1F: 32 The division ratio 15 is to apply for Tx clock at the USB PD 2.0 specification nominal value. The division ratios below 15 are to apply for Tx clock below nominal, and the division ratios above 15 for Tx clock above nominal. ## Bits 5:0 HBITCLKDIV[5:0]: Division ratio for producing half-bit clock The bitfield determines the division ratio (the bitfield value plus one) of a ucpd_clk divider producing half-bit clock (hbit_clk). 0x00: 1 (bypass) 0x1A: 27 0x3F: 64 ## 38.7.2 UCPD configuration register 2 (UCPD_CFGR2) Address offset: 0x004 Reset value: 0x0000 0000 Configuration of the UCPD Rx signal filtering. Writing to this register is only effective when UCPD is disabled (UCPDEN = 0). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|-------|----------|-----------|-----------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. WUPEN | FORCECLK | RXFILT2N3 | RXFILTDIS | | | | | | | | | | | | | | rw | rw | rw | rw | Bits 31:4 Reserved, must be kept at reset value. Bit 3 WUPEN: Wakeup from Stop mode enable Setting the bit enables the UCPD_ASYNC_INT signal. 0: Disable 1: Enable Bit 2 FORCECLK: Force ClkReq clock request 0: Do not force clock request 1: Force clock request Bit 1 RXFILT2N3: BMC decoder Rx pre-filter sampling method Number of consistent consecutive samples before confirming a new value. 0: 3 samples 1: 2 samples Bit 0 RXFILTDIS: BMC decoder Rx pre-filter enable 0: Enable 1: Disable The sampling clock is that of the receiver (that is, after pre-scaler). # 38.7.3 UCPD configuration register 3 (UCPD_CFGR3) Address offset: 0x008 Reset value: 0x0000 0000 Configuration of UCPD analog PHY trimming. Writing to this register is only effective when UCPD is disabled (UCPDEN = 0). The trim values of all resistors are determined by hardware until the first software write into the register is performed. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|---------------------|----|----|----|---------------------|--------|--------|---------|---------------------|---------------------|----|----|----| | Res. | Res. | Res. | TRIM2_NG_CC3A0[3:0] | | | | | TRIM2_ | NG_CC1 | A5[4:0] | TRIM2_NG_CCRPD[3:0] | | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | TRIM1_NG_CC3A0[3:0] | | | | TRIM1_NG_CC1A5[4:0] | | | | | TRIM1_NG_CCRPD[3:0] | | | | | | | | rw RM0444 Rev 5 1331/1390 Bits 31:29 Reserved, must be kept at reset value. Bits 28:25 TRIM2_NG_CC3A0[3:0]: SW trim value for RP3A0 resistors on the CC2 line Bits 24:20 TRIM2_NG_CC1A5[4:0]: SW trim value for RP1A5 resistors on the CC2 line Bits 19:16 TRIM2_NG_CCRPD[3:0]: SW trim value for RPD resistors on the CC2 line Bits 15:13 Reserved, must be kept at reset value. Bits 12:9 TRIM1_NG_CC3A0[3:0]: SW trim value for RP3A0 resistors on the CC1 line Bits 8:4 TRIM1_NG_CC1A5[4:0]: SW trim value for RP1A5 resistors on the CC1 line Bits 3:0 TRIM1_NG_CCRPD[3:0]: SW trim value for RPD resistors on the CC1 line ## 38.7.4 UCPD control register (UCPD_CR) Address offset: 0x00C Reset value: 0x0000 0000 Writing to this register is only effective when the peripheral is enabled (UCPDEN = 1). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |---------|------------|------------|------|---------------|------|---------|-----------------------|------------------|----------|----------|----------|--------|--------|-------|---------| | Res. CC2TCDIS | CC1TCDIS | Res. | RDCH | FRSTX | FRSRXEN | | | | | | | | | | | | rw | rw | | rw | rs | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | DBATTEN | CC2VCONNEN | CC1VCONNEN | Res. | CCENABLE[1:0] | | ANAMODE | 10. PTE COMBI 19 AINA | ANASOBINODE[1:0] | PHYCCSEL | PHYRXEN | RXMODE | TXHRST | TXSEND | TXMOI | DE[1:0] | | rw | rw | rw | | rw rs | rs | rw | rw | Bits 31:22 Reserved, must be kept at reset value. ## Bit 21 CC2TCDIS:CC2 Type-C detector disable The bit disables the Type-C detector on the CC2 line. 0: Enable 1: Disable When enabled, the Type-C detector for CC2 is configured through ANAMODE and ANASUBMODE[1:0]. ## Bit 20 CC1TCDIS: CC1 Type-C detector disable The bit disables the Type-C detector on the CC1 line. 0: Enable 1: Disable When enabled, the Type-C detector for CC1 is configured through ANAMODE and ANASUBMODE[1:0]. Bit 19 Reserved, must be kept at reset value. #### Bit 18 RDCH: Rdch condition drive The bit drives Rdch condition on the CC line selected through the PHYCCSEL bit (thus associated with VCONN), by remaining set during the source-only *UnattachedWait.SRC* state, to respect the Type-C state. Refer to "USB Type-C ECN for Source VCONN Discharge". The CCENABLE[1:0] bitfield must be set accordingly, too. 0: No effect 1: Rdch condition drive Changing the bit value only takes effect upon setting the UCPDx_STROBE bit of the SYSCFG_CFGR1 register. #### Bit 17 FRSTX: FRS Tx signaling enable. Setting the bit enables FRS Tx signaling. 0: No effect 1: Enable The bit is cleared by hardware after a delay respecting the USB Power Delivery specification Revision 3.0. #### Bit 16 FRSRXEN: FRS event detection enable Setting the bit enables FRS Rx event (FRSEVT) detection on the CC line selected through the PHYCCSEL bit. 0: Disable 1: Enable Clear the bit when the device is attached to an FRS-incapable source/sink. ### Bit 15 DBATTEN: Dead battery function enable The bit takes effect upon setting the USBPDstrobe bit of the SYS_CONFIG register. 0: Disable 1: Enable Dead battery function only operates if the external circuit is appropriately configured. ### Bit 14 CC2VCONNEN: VCONN switch enable for CC2 0: Disable 1: Enable ### Bit 13 CC1VCONNEN: VCONN switch enable for CC1 0: Disable 1: Enable ### Bit 12 Reserved, must be kept at reset value. ### Bits 11:10 CCENABLE[1:0]: CC line enable This bitfield enables CC1 and CC2 line analog PHYs (pull-ups and pull-downs) according to ANAMODE and ANASUBMODE[1:0] setting. 0x0: Disable both PHYs 0x1: Enable CC1 PHY 0x2: Enable CC2 PHY 0x3: Enable CC1 and CC2 PHY A single line PHY can be enabled when, for example, the other line is driven by VCONN via an external VCONN switch. Enabling both PHYs is the normal usage for sink/source. # Bit 9 ANAMODE: Analog PHY operating mode The bit takes effect upon setting the UCPDx_STROBE bit of the SYS_CONFIG register. 0: Source 1: Sink The use of CC1 and CC2 depends on CCENABLE. Refer to *Table 237: Coding for ANAMODE, ANASUBMODE and link with TYPEC_VSTATE_CCx* for the effect of this bitfield in conjunction with ANASUBMODE[1:0]. RM0444 Rev 5 1333/1390 ### Bits 8:7 ANASUBMODE[1:0]: Analog PHY sub-mode Refer to Table 237: Coding for ANAMODE, ANASUBMODE and link with TYPEC_VSTATE_CCx for the effect of this bitfield. ### Bit 6 PHYCCSEL: CC1/CC2 line selector for USB Power Delivery signaling 0: Use CC1 IO for Power Delivery communication 1: Use CC2 IO for Power Delivery communication The selection depends on the cable orientation as discovered at attach. ### Bit 5 PHYRXEN: USB Power Delivery receiver enable 0: Disable 1: Enable Both CC1 and CC2 receivers are disabled when the bit is cleared. Only the CC receiver selected via the PHYCCSEL bit is enabled when the bit is set. #### Bit 4 RXMODE: Receiver mode Determines the mode of the receiver. 0: Normal receive mode 1: BIST receive mode (BIST test data mode) When the bit is set, RXORDSET behaves normally, RXDR no longer receives bytes yet the CRC checking still proceeds as for a normal message. #### Bit 3 TXHRST: Command to send a Tx Hard Reset 0: No effect 1: Start Tx Hard Reset message The bit is cleared by hardware as soon as the message transmission begins or is discarded. ### Bit 2 TXSEND: Command to send a Tx packet 0: No effect 1: Start Tx packet transmission The bit is cleared by hardware as soon as the packet transmission begins or is discarded. ### Bits 1:0 **TXMODE[1:0]**: Type of Tx packet Writing the bitfield triggers the action as follows, depending on the value: 0x0: Transmission of Tx packet previously defined in other registers 0x1: Cable Reset sequence 0x2: BIST test sequence (BIST Carrier Mode 2) Others: invalid From V1.1 of the USB PD specification, there is a counter defined for the duration of the BIST Carrier Mode 2. To quit this mode correctly (after the "tBISTContMode" delay), disable the peripheral (UCPDEN = 0). # 38.7.5 UCPD interrupt mask register (UCPD_IMR) Address offset: 0x010 Reset value: 0x0000 0000 Writing to this register is only effective when the peripheral is enabled (UCPDEN =
1). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------------|-------------|------|------------|---------|-------------|------------|--------|------|---------|------------|------------|------------|-------------|-------------|--------| | Res. FRSEVTIE | Res. | Res. | Res. | Res. | | | | | | | | | | | | | r | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | TYPECEVT2IE | TYPECEVT11E | Res. | RXMSGENDIE | RXOVRIE | RXHRSTDETIE | RXORDDETIE | RXNEIE | Res. | TXUNDIE | HRSTSENTIE | HRSTDISCIE | TXMSGABTIE | TXMSGSENTIE | TXMSGDISCIE | TXISIE | | rw | rw | | rw | rw | rw | rw | rw | | rw Bits 31:21 Reserved, must be kept at reset value. Bit 20 FRSEVTIE: FRSEVT interrupt enable 0: Disable 1: Enable Bits 19:16 Reserved, must be kept at reset value. Bit 15 TYPECEVT2IE: TYPECEVT2 interrupt enable 0: Disable 1: Enable Bit 14 TYPECEVT1IE: TYPECEVT1 interrupt enable Bit 13 Reserved, must be kept at reset value. Bit 12 RXMSGENDIE: RXMSGEND interrupt enable 0: Disable 1: Enable Bit 11 RXOVRIE: RXOVR interrupt enable 0: Disable 1: Enable Bit 10 RXHRSTDETIE: RXHRSTDET interrupt enable 0: Disable 1: Enable Bit 9 RXORDDETIE: RXORDDET interrupt enable 0: Disable 1: Enable Bit 8 RXNEIE: RXNE interrupt enable 0: Disable 1: Enable Bit 7 Reserved, must be kept at reset value. RM0444 Rev 5 1335/1390 Bit 6 TXUNDIE: TXUND interrupt enable 0: Disable 1: Enable Bit 5 HRSTSENTIE: HRSTSENT interrupt enable 0: Disable 1: Enable Bit 4 HRSTDISCIE: HRSTDISC interrupt enable 0: Disable 1: Enable Bit 3 TXMSGABTIE: TXMSGABT interrupt enable 0: Disable 1: Enable Bit 2 TXMSGSENTIE: TXMSGSENT interrupt enable 0: Disable 1: Enable Bit 1 TXMSGDISCIE: TXMSGDISC interrupt enable 0: Disable 1: Enable Bit 0 TXISIE: TXIS interrupt enable 0: Disable 1: Enable # 38.7.6 UCPD status register (UCPD_SR) Address offset: 0x014 Reset value: 0x0000 0000 The flags (single-bit status bitfields) are associated with interrupt request. Interrupt is generated if enabled by the corresponding bit of the UCPD_IMR register. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-----------|-----------|-------|----------|-------|-----------|----------|------|------|-------|----------|----------|----------------------|--|-----------------------|------| | Res. FRSEVT | TVDEC VETATE CONG.01 | _
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | TVDEO VOTATE COATA-01 | J | | | | | | | | | | | Res. | | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | TYPECEVT2 | TYPECEVT1 | RXERR | RXMSGEND | RXOVR | RXHRSTDET | RXORDDET | RXNE | Res. | QNNXL | HRSTSENT | HRSTDISC | TXMSGABT | TXMSGSENT | TXMSGDISC | TXIS | | r | r | r | r | r | r | r | r | | r | r | r | r | r | r | r | ### Bits 31:21 Reserved, must be kept at reset value. #### Bit 20 FRSEVT: FRS detection event The flag is cleared by setting the FRSEVTCF bit. 0: No new event 1: New FRS receive event occurred ### Bits 19:18 TYPEC_VSTATE_CC2[1:0]: CC2 line voltage level The status bitfield indicates the voltage level on the CC2 line in its steady state. 0x0: Lowest 0x1: Low 0x2: High 0x3: Highest The voltage variation on the CC2 line during USB PD messages due to the BMC PHY modulation does not impact the bitfield value. ### Bits 17:16 TYPEC_VSTATE_CC1[1:0]: The status bitfield indicates the voltage level on the CC1 line in its steady state. 0x0: Lowest 0x1: Low 0x2: High 0x3: Highest The voltage variation on the CC1 line during USB PD messages due to the BMC PHY modulation does not impact the bitfield value. ### Bit 15 TYPECEVT2: Type-C voltage level event on CC2 line The flag indicates a change of the TYPEC_VSTATE_CC2[1:0] bitfield value, which corresponds to a new Type-C event. It is cleared by setting the TYPECEVT2CF bit. 0: No new event 1: A new Type-C event # Bit 14 TYPECEVT1: Type-C voltage level event on CC1 line The flag indicates a change of the TYPEC_VSTATE_CC1[1:0] bitfield value, which corresponds to a new Type-C event. It is cleared by setting the TYPECEVT2CF bit. 0: No new event 1: A new Type-C event ### Bit 13 RXERR: Receive message error The flag indicates errors of the last Rx message declared (via RXMSGEND), such as incorrect CRC or truncated message (a line becoming static before EOP is met). It is asserted whenever the RXMSGEND flag is set. 0: No error detected 1: Error(s) detected ### Bit 12 RXMSGEND: Rx message received The flag indicates whether a message (except Hard Reset message) has been received, regardless the CRC value. The flag is cleared by setting the RXMSGENDCF bit. 0: No new Rx message received 1: A new Rx message received The RXERR flag set when the RXMSGEND flag goes high indicates errors in the last-received message. ### Bit 11 RXOVR: Rx data overflow detection The flag indicates Rx data buffer overflow. It is cleared by setting the RXOVRCF bit. 0: No overflow 1: Overflow The buffer overflow can occur if the received data are not read fast enough. RM0444 Rev 5 1337/1390 ### Bit 10 RXHRSTDET: Rx Hard Reset receipt detection The flag indicates the receipt of valid Hard Reset message. It is cleared by setting the RXHRSTDETCF bit. - 0: Hard Reset not received - 1: Hard Reset received ### Bit 9 RXORDDET: Rx ordered set (4 K-codes) detection The flag indicates the detection of an ordered set. The relevant information is stored in the RXORDSET[2:0] bitfield of the UCPD_RX_ORDSET register. It is cleared by setting the RXORDDETCF bit. - 0: No ordered set detected - 1: A new ordered set detected ### Bit 8 RXNE: Receive data register not empty detection The flag indicates that the UCPD_RXDR register is not empty. It is automatically cleared upon reading UCPD_RXDR. - 0: Rx data register empty - 1: Rx data register not empty - Bit 7 Reserved, must be kept at reset value. ### Bit 6 TXUND: Tx data underrun detection The flag indicates that the Tx data register (UCPD_TXDR) was not written in time for a transmit message to execute normally. It is cleared by setting the TXUNDCF bit. - 0: No Tx data underrun detected - 1: Tx data underrun detected ### Bit 5 HRSTSENT: Hard Reset message sent The flag indicates that the Hard Reset message is sent. The flag is cleared by setting the HRSTSENTCF bit. - 0: No Hard Reset message sent - 1: Hard Reset message sent ## Bit 4 HRSTDISC: Hard Reset discarded The flag indicates that the Hard Reset message is discarded. The flag is cleared by setting the HRSTDISCCF bit. - 0: No Hard Reset discarded - 1: Hard Reset discarded ### Bit 3 TXMSGABT: Transmit message abort The flag indicates that a Tx message is aborted due to a subsequent Hard Reset message send request taking priority during transmit. It is cleared by setting the TXMSGABTCF bit. - 0: No transmit message abort - 1: Transmit message abort ### Bit 2 TXMSGSENT: Message transmission completed The flag indicates the completion of packet transmission. It is cleared by setting the TXMSGSENTCF bit. 0: No Tx message completed 1: Tx message completed In the event of a message transmission interrupted by a Hard Reset, the flag is not raised. ### Bit 1 TXMSGDISC: Message transmission discarded The flag indicates that a message transmission was dropped. The flag is cleared by setting the TXMSGDISCCF bit. 0: No Tx message discarded 1: Tx message discarded Transmission of a message can be dropped if there is a concurrent receive in progress or at excessive noise on the line. After a Tx message is discarded, the flag is only raised when the CC line becomes idle. ### Bit 0 TXIS: Transmit interrupt status The flag indicates that the UCPD_TXDR register is empty and new data write is required (as the amount of data sent has not reached the payload size defined in the TXPAYSZ bitfield). The flag is cleared with the data write into the UCPD_TXDR register. 0: New Tx data write not required 1: New Tx data write required # 38.7.7 UCPD interrupt clear register (UCPD_ICR) Address offset: 0x018 Reset value: 0x0000 0000 Writing to this register is only effective when the peripheral is enabled (UCPDEN = 1). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |-------------|-------------|------|------------|---------|-------------|------------|------|------|---------|------------|------------|------------|-------------|-------------|------| | Res. FRSEVTCF | Res. | Res. | Res. | Res. | | | | | | | | | | | | | W | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | TYPECEVT2CF | TYPECEVT1CF | Res. | RXMSGENDCF | RXOVRCF | RXHRSTDETCF | RXORDDETCF | Res. | Res. | TXUNDCF | HRSTSENTCF | HRSTDISCCF | TXMSGABTCF | TXMSGSENTCF | TXMSGDISCCF | Res. | | w | W | | W | W | W | W | | | W | W | W | W | W | W | | Bits 31:21 Reserved, must be kept at reset value. Bit 20 FRSEVTCF: FRS event flag (FRSEVT) clear Setting the bit clears the FRSEVT flag in the UCPD_SR register. Bits 19:16 Reserved, must be kept at reset value. Bit 15 TYPECEVT2CF: Type-C CC2 line event flag (TYPECEVT2) clear Setting the bit clears the TYPECEVT2 flag in the UCPD SR register Bit 14 TYPECEVT1CF: Type-C CC1 event flag (TYPECEVT1) clear Setting the bit clears the TYPECEVT1 flag in the UCPD_SR register RM0444 Rev 5 1339/1390 - Bit 13 Reserved, must be kept at reset value. - Bit 12 **RXMSGENDCF**: Rx message received flag (RXMSGEND) clear Setting the bit clears the RXMSGEND flag in the UCPD_SR register. - Bit 11 **RXOVRCF**: Rx overflow flag (RXOVR) clear Setting the bit clears the RXOVR flag in the UCPD SR register. - Bit 10 **RXHRSTDETCF**: Rx Hard Reset detect flag (RXHRSTDET) clear Setting the bit clears the RXHRSTDET flag in the UCPD SR register. - Bit 9 **RXORDDETCF**: Rx ordered set detect flag (RXORDDET) clear Setting the bit clears the RXORDDET flag in the UCPD_SR register. - Bits 8:7 Reserved, must be kept at reset value. - Bit 6
TXUNDCF: Tx underflow flag (TXUND) clear Setting the bit clears the TXUND flag in the UCPD_SR register. - Bit 5 **HRSTSENTCF**: Hard reset send flag (HRSTSENT) clear Setting the bit clears the HRSTSENT flag in the UCPD_SR register. - Bit 4 **HRSTDISCCF**: Hard reset discard flag (HRSTDISC) clear Setting the bit clears the HRSTDISC flag in the UCPD_SR register. - Bit 3 **TXMSGABTCF**: Tx message abort flag (TXMSGABT) clear Setting the bit clears the TXMSGABT flag in the UCPD_SR register. - Bit 2 **TXMSGSENTCF**: Tx message send flag (TXMSGSENT) clear Setting the bit clears the TXMSGSENT flag in the UCPD_SR register. - Bit 1 **TXMSGDISCCF**: Tx message discard flag (TXMSGDISC) clear Setting the bit clears the TXMSGDISC flag in the UCPD SR register. - Bit 0 Reserved, must be kept at reset value. # 38.7.8 UCPD Tx ordered set type register (UCPD_TX_ORDSETR) Address offset: 0x01C Reset value: 0x0000 0000 Writing to this register is only effective when the peripheral is enabled (UCPDEN = 1) and no packet transmission is in progress (TXSEND and TXHRST bits are both low). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|--------|-----------|------|------|------|----|--------|-----------|----| | Res. | TXORDS | ET[19:16] | J | | | | | | | | | | | | | | rw | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | TXORDS | SET[15:0] | | | | | | | | | rw Bits 31:20 Reserved, must be kept at reset value. ### Bits 19:0 TXORDSET[19:0]: Ordered set to transmit The bitfield determines a full 20-bit sequence to transmit, consisting of four K-codes, each of five bits, defining the packet to transmit. The bit 0 (bit 0 of K-code1) is the first, the bit 19 (bit 4 of K-code4) the last. # 38.7.9 UCPD Tx payload size register (UCPD_TX_PAYSZR) Address offset: 0x020 Reset value: 0x0000 0000 Writing to this register is only effective when the peripheral is enabled (UCPDEN = 1). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|-------|----------|------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | Res. | Res. | | | | | TXPAY | 'SZ[9:0] | | | | | | | | | | | | rw Bits 31:10 Reserved, must be kept at reset value. ### Bits 9:0 TXPAYSZ[9:0]: Payload size yet to transmit The bitfield is modified by software and by hardware. It contains the number of bytes of a payload (including header but excluding CRC) yet to transmit: each time a data byte is written into the UCPD_TXDR register, the bitfield value decrements and the TXIS bit is set, except when the bitfield value reaches zero. The enumerated values are standard payload sizes before the start of transmission. 0x2: 2 bytes - the size of Control message from the protocol layer 0x6: 6 bytes - the shortest Data message allowed from the protocol layer) 0x1E: 30 bytes - the longest non-extended Data message allowed from the protocol layer 0x106: 262 bytes - the longest possible extended message 0x3FF: 1024 bytes - the longest possible payload (for future expansion) # 38.7.10 UCPD Tx data register (UCPD_TXDR) Address offset: 0x024 Reset value: 0x0000 0000 Writing to this register is only effective when the peripheral is enabled (UCPDEN = 1). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|---------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | TXDA | TA[7:0] | | | | | | | | | | | | | rw Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 TXDATA[7:0]: Data byte to transmit # 38.7.11 UCPD Rx ordered set register (UCPD_RX_ORDSETR) Address offset: 0x028 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|--------------------|------|-----------|------|---------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | RXSOPKINVALID[2:0] | | RXSOP30F4 | RX | ORDSET[| 2:0] | | | | | | | | | | | r | r | r | r | r | r | r | Bits 31:7 Reserved, must be kept at reset value. # Bits 6:4 RXSOPKINVALID[2:0]: The bitfield is for debug purposes only. 0x0: No K-code corrupted 0x1: First K-code corrupted 0x2: Second K-code corrupted 0x3: Third K-code corrupted 0x4: Fourth K-code corrupted Others: Invalid ### Bit 3 RXSOP3OF4: The bit indicates the number of correct K-codes. For debug purposes only. 0: 4 correct K-codes out of 4 1: 3 correct K-codes out of 4 ### Bits 2:0 RXORDSET[2:0]: Rx ordered set code detected 0x0: SOP code detected in receiver 0x1: SOP' code detected in receiver 0x2: SOP" code detected in receiver 0x3: SOP'_Debug detected in receiver 0x4: SOP"_Debug detected in receiver 0x5: Cable Reset detected in receiver 0x6: SOP extension#1 detected in receiver 0x7: SOP extension#2 detected in receiver # 38.7.12 UCPD Rx payload size register (UCPD_RX_PAYSZR) Address offset: 0x02C Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------------|------------|------------|------------|------------|------------|------|------|------|------|------|--------------|------|------|------|------| | Res. | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 15
Res. | 14
Res. | 13
Res. | 12
Res. | 11
Res. | 10
Res. | 9 | 8 | 7 | 6 | | 4
SZ[9:0] | 3 | 2 | 1 | 0 | Bits 31:10 Reserved, must be kept at reset value. ### Bits 9:0 RXPAYSZ[9:0]: Rx payload size received This bitfield contains the number of bytes of a payload (including header but excluding CRC) received: each time a new data byte is received in the UCPD_RXDR register, the bitfield value increments and the RXMSGEND flag is set (and an interrupt generated if enabled). 0x2: 2 bytes - the size of Control message from the protocol layer 0x6: 6 bytes - the shortest Data message allowed from the protocol layer) 0x1E: 30 bytes - the longest non-extended Data message allowed from the protocol layer 0x106: 262 bytes - the longest possible extended message 0x3FF: 1024 bytes - the longest possible payload (for future expansion) The bitfield may return a spurious value when a byte reception is ongoing (the RXMSGEND flag is low). # 38.7.13 UCPD receive data register (UCPD_RXDR) Address offset: 0x030 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|---------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | RXDA | TA[7:0] | | | | | | | | | | | | | r | r | r | r | r | r | r | r | Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 RXDATA[7:0]: Data byte received RM0444 Rev 5 1343/1390 # 38.7.14 UCPD Rx ordered set extension register 1 (UCPD_RX_ORDEXTR1) Address offset: 0x034 Reset value: 0x0000 0000 Writing to this register is only effective when the peripheral is disabled (UCPDEN = 0). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|-------|----------|------|------|------|----|-------|-----------|----| | Res. | RXSOP | (1[19:16] | | | | | | | | | | | | | | | rw | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | RXSOP | X1[15:0] | | | | | | | | | rw Bits 31:20 Reserved, must be kept at reset value. ### Bits 19:0 RXSOPX1[19:0]: Ordered set 1 received The bitfield contains a full 20-bit sequence received, consisting of four K-codes, each of five bits. The bit 0 (bit 0 of K-code1) is receive first, the bit 19 (bit 4 of K-code4) last. # 38.7.15 UCPD Rx ordered set extension register 2 (UCPD_RX_ORDEXTR2) Address offset: 0x038 Reset value: 0x0000 0000 Writing to this register is only effective when the peripheral is disabled (UCPDEN = 0). | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|-------|----------|------|------|------|----|-------|-----------|----| | Res. | RXSOP | (2[19:16] | | | | | | | | | | | | | | | rw | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | RXSOP | X2[15:0] | | | | | | | | | rw Bits 31:20 Reserved, must be kept at reset value. ### Bits 19:0 RXSOPX2[19:0]: Ordered set 2 received The bitfield contains a full 20-bit sequence received, consisting of four K-codes, each of five bits. The bit 0 (bit 0 of K-code1) is receive first, the bit 19 (bit 4 of K-code4) last. # 38.7.16 UCPD register map Table 241. UCPD register map and reset values | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | | | 21 | | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | £ | 10 | 6 | 8 | 7 | 9 | 2 | 4 | 3 | 2 | - | 0 | |--------|------------------------|--------|---------|---------|------|--------------------|--------------------|------|------|------|---------------------|----------|----------|-----------------------|---------------------|-----------------------|---------|-------------|-------------|---------------|------------|----------------------|----------------|------------|-------------------|---------------------|---------------------|------------|------------|------------------|---|-------------|-----------| | 0x000 | UCPD_CFG1 | UCPDEN | RXDMAEN | TXDMAEN | | F | RXO | RD |
SE | ΓΕΝ | [8:0 |)] | | | PSC_USBPDCLK[2:0] | | Res. | | | TRANSWIN[4:0] | | | IF | -RG | SAP | [4:0 |)] | | | HRITCI KDIVI5-01 | ַבְּיבִילְבִילִיבְיּבִילְבִייִּבְיִיבְיִבְּיִבְּיִבְיִיבְיִבְּיִבְּ | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x004 | UCPD_CFG2 | Res. WUPEN | FORCECLK | RXFILT2N3 | RXFILTDIS | | | Reset value | 0 | 0 | 0 | 0 | | 0x008 | Reset value UCPD_CFG3 | | | Res. | | TOIMS NO COADES-01 | NIMZ_NG_CC3A0[3.0] | | | | TRIM2_NG_CC1A5[4:0] | | | | TDIM2 NG CCBBD[3:0] | | | Res. | Res. | Res. | | TDIMM NIC COSANIS-01 | NIMI | | | | TRIM1_NG_CC1A5[4:0] | | | | TRIM1 NG CCRPDI3:01 | [2:3] | | | | Reset value | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x00C | UCPD_CR | Res. CC2TCDIS | CC1TCDIS | Res. | RDCH | FRSTX | FRSRXEN | DBATTEN | CC2VCONNEN | CC1VCONNEN | Res. | CCENIADI E14.01 | CCEINABLE[1.0] | ANAMODE | ANASI IBMODEL1-01 | מיין בספוווסטבוריים | PHYCCSEL | PHYRXEN | RXMODE | TXHRST | TXSEND | TXMODE[1:0] | | | | Reset value | | | | | | | | | | | 0 | | 0x010 | UCPD_IMR | Res. FRSEVTIE | Res. | Res. | Res. | Res. | TYPECEVT2IE | TYPECEVT11E | Res. | RXMSGENDIE | RXOVRIE | RXHRSTDETIE | RXORDDETIE | RXNEIE | Res. | TXUNDIE | HRSTSENTIE | HRSTDISCIE | TXMSGABTIE | TXMSGSENTIE | TXMSGDISCIE | TXISIE | | | Reset value | | | | | | | | | | | | 0 | | | | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x014 | UCPD_SR | Res. FRSEVT | TYPEC VSTATE CC211-01 | | TVDEC VSTATE CC111:01 | | TYPECEVT2 | TYPECEVT1 | RXERR | RXMSGEND | RXOVR | RXHRSTDET | RXORDDET | RXNE | Res. | TXUND | HRSTSENT | HRSTDISC | TXMSGABT | TXMSGSENT | TXMSGDISC | TXIS | | | Reset value | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | RM0444 Rev 5 1345/1390 Table 241. UCPD register map and reset values (continued) | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | စ | œ | 7 | 9 | 2 | 4 | 3 | 2 | 1 | 0 | |---------|---------------------|------|------|------|------|------|------|------|------|------|------|------|----------|------|------|------|------|-------------|-------------|------|------------|---------|-------------|------------|------|------|---------|--------------------|------------|------------|-------------|---------------|------| | 0x018 | UCPD_ICR | Res. FRSEVTCF | Res. | Res. | Res. | Res. | TYPECEVT2CF | TYPECEVT1CF | Res. | RXMSGENDCF | RXOVRCF | RXHRSTDETCF | RXORDDETCF | Res. | Res. | TXUNDCF | HRSTSENTCF | HRSTDISCCF | TXMSGABTCF | TXMSGSENTCF | TXMSGDISCCF | Res. | | | Reset value | | | | | | | | | | | | 0 | | | | | 0 | 0 | | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | | | 0x01C | UCPD_TX_ORDSET | Res. | | | | | | | T | KOF | RDS | SET | [19: | 0] | | | | | | | | | oxo i o | Reset value | | | | | | | | | | | | | 0 | | 0x020 | UCPD_TX_PAYSZ | Res. | | | TXF | PAY | SZ[| 9:0] | | | | | 0,020 | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x024 | UCPD_TXDR | Res. | | TX | DAT | ΓΑ[7 | ':0] | | | | 0.024 | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x028 | UCPD_RX_ORDSET | Res. Res | Res. | RXSOPKINVALID[2:0] | | RXSOP30F4 | | RXORDSET[2:0] | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x02C | UCPD_RX_PAYSZ | Res. | | | RXF | PAY | SZ[| 9:0] | | | | | 0.020 | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x030 | UCPD_RXDR | Res. | | RX | DAT | ΓΑ[7 | ′:0] | | | | Олосо | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x034 | UCPD_RX_
ORDEXT1 | Res. | | | | | | | F | RXS | OP. | X1[| 19:0 |)] | | | | | | | | | | Reset value | | | | | | | | | | | | | 0 | | 0x038 | UCPD_RX_
ORDEXT2 | Res. | | | | | | | F | RXS | OP. | X2[| 19:0 |)] | | | | | | | | | | Reset value | | | | | | | | | | | | | 0 | Refer to Section 2.2 on page 58 for the register boundary addresses. # 39 HDMI-CEC controller (CEC) # 39.1 Introduction Consumer electronics control (CEC) is part of HDMI (high-definition multimedia interface) standard as appendix supplement 1. It contains a protocol that provides high-level control functions between various audiovisual products. CEC operates at low speeds, with minimum processing and memory overhead. The HDMI-CEC controller provides hardware support for this protocol. # 39.2 HDMI-CEC controller main features - Complies with HDMI-CEC v1.4 specification - 32 kHz CEC kernel with 2 clock source options - HSI RC oscillator with fixed prescaler (HSI/488) - LSE oscillator - Works in Stop mode for ultra-low-power applications - Configurable signal-free time before start of transmission - Automatic by hardware, according to CEC state and transmission history - Fixed by software (7 timing options) - Configurable peripheral address (OAR) - Supports Listen mode - Enables reception of CEC messages sent to destination address different from OAR without interfering with the CEC line - Configurable Rx-tolerance margin - Standard tolerance - Extended tolerance - Receive-error detection - Bit rising error (BRE), with optional stop of reception (BRESTP) - Short bit period error (SBPE) - Long bit period error (LBPE) - Configurable error-bit generation - on BRE detection (BREGEN) - on LBPE detection (LBPEGEN) - always generated on SBPE detection - Transmission error detection (TXERR) - Arbitration lost detection (ARBLST) - with automatic transmission retry - Transmission underrun detection (TXUDR) - Reception overrun detection (RXOVR) # 39.3 HDMI-CEC functional description # 39.3.1 HDMI-CEC pin The CEC bus consists of a single bidirectional line that is used to transfer data in and out of the device. It is connected to a +3.3 V supply voltage via a 27 k Ω pull-up resistor. The output stage of the device must have an open-drain or open-collector to allow a wired-AND connection. The HDMI-CEC controller manages the CEC bidirectional line as an alternate function of a standard GPIO, assuming that it is configured as alternate function open drain. The 27 k Ω pull-up must be added externally to the microcontroller. To not interfere with the CEC bus when the application power is removed, it is mandatory to isolate the CEC pin from the bus in such conditions. This can be done by using a MOS transistor, as shown on *Figure 414*. Name Signal type Remarks CEC Bidirectional Two states: 1 = high impedance 0 = low impedance A 27 kΩ resistor must be added externally. Table 242. HDMI pin # 39.3.2 HDMI-CEC block diagram Figure 414. HDMI-CEC block diagram # 39.3.3 Message description All transactions on the CEC line consist of an initiator and one or more followers. The initiator is responsible for sending the message structure and the data. The follower is the recipient of any data and is responsible for setting any acknowledgment bits. A message is conveyed in a single frame that consists of a start bit followed by a header block and optionally an opcode and a variable number of operand blocks. All these blocks are made of a 8-bit payload - most significant bit is transmitted first - followed by an end of message (EOM) bit and an acknowledge (ACK) bit. The EOM bit is set in the last block of a message and kept reset in all others. In case a message contains additional blocks after an EOM is indicated, those additional blocks must be ignored. The EOM bit may be set in the header block to 'ping' other devices, to make sure they are active. The acknowledge bit is always set to high impedance by the initiator so that it can be driven low either by the follower that has read its own address in the header, or by the follower that needs to reject a broadcast message. The header consists of the source logical address field, and the destination logical address field. Note that the special address 0xF is used for broadcast messages. Figure 415. Message structure Figure 416. Blocks ## **39.3.4** Bit timing The format of the start bit is unique and identifies the start of a message. It must be validated by its low duration and its total duration. All remaining data bits in the message, after the start bit, have consistent timing. The high-to-low transition at the end of the data bit is the start of the next data bit except for the final bit where the CEC line remains high. Figure 417. Bit timings # 39.4 Arbitration All devices transmitting - or retransmitting - a message onto the CEC line must ensure that it has been inactive for a number of bit periods. This signal-free time is defined as the time starting from the final bit of the previous frame and depends on the initiating device and the current status as shown in the figure below. Figure 418. Signal free time Since only one initiator is allowed at any one time, an arbitration mechanism is provided to avoid conflict when more than one initiator begins transmitting at the same time. CEC line arbitration starts with the leading edge of the start bit and continues until the end of the initiator address bits within the header block. During this period, the initiator must monitor the CEC line, if whilst driving the line to high impedance it reads it back to 0. Assuming then it has lost arbitration, it stops transmitting and becomes a follower. ### Figure 419. Arbitration phase Figure 420 shows an example for a SFT of three
nominal bit periods. Figure 420. SFT of three nominal bit periods A configurable time window is counted before starting the transmission. In the SFT = 0 configuration, HDMI-CEC performs automatic SFT calculation ensuring compliance with the HDMI-CEC standard: - 2.5 data bit periods if the CEC is the last bus initiator with unsuccessful transmission - 4 data bit periods if the CEC is the new bus initiator - 6 data bit periods if the CEC is the last bus initiator with successful transmission This is done to guarantee the maximum priority to a failed transmission and the lowest one to the last initiator that completed successfully its transmission. Otherwise there is the possibility to configure the SFT bits to count a fixed timing value. Possible values are 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5 data bit periods. # 39.4.1 SFT option bit In case of SFTOPT = 0 configuration, SFT starts being counted when the start-of-transmission command is set by software (TXSOM = 1). In case of SFTOPT = 1, SFT starts automatically being counted by the HDMI-CEC device when a bus-idle or line error condition is detected. If the SFT timer is completed at the time TXSOM command is set then transmission starts immediately without latency. If the SFT timer is still running instead, the system waits until the timer elapses before transmission can start. RM0444 Rev 5 1351/1390 In case of SFTOPT = 1 a bus-event condition starting the SFT timer is detected in the following cases: - In case of a regular end of transmission/reception, when TXEND/RXEND bits are set at the minimum nominal data bit duration of the last bit in the message (ACK bit). - In case of a transmission error detection, SFT timer starts when the TXERR transmission error is detected (TXERR = 1). - In case of a missing acknowledge from the CEC follower, the SFT timer starts when the TXACKE bit is set, that is at the nominal sampling time of the ACK bit. - In case of a transmission underrun error, the SFT timer starts when the TXUDR bit is set at the end of the ACK bit. - In case of a receive error detection implying reception abort, the SFT timer starts at the same time the error is detected. If an error bit is generated, then SFT starts being counted at the end of the error bit. - In case of a wrong start bit or of any uncodified low impedance bus state from idle, the SFT timer is restarted as soon as the bus comes back to hi-impedance idleness. # 39.5 Error handling ### 39.5.1 Bit error If a data bit - excluding the start bit - is considered invalid, the follower is expected to notify such error by generating a low bit period on the CEC line of 1.4 to 1.6 times the nominal data bit period (3.6 ms nominally). ERROR BIT high impedance low impedance MS31010V1 Figure 421. Error bit timing ## 39.5.2 Message error A message is considered lost and therefore may be retransmitted under the following conditions: - a message is not acknowledged in a directly addressed message - a message is negatively acknowledged in a broadcast message - a low impedance is detected on the CEC line while it is not expected (line error) Three kinds of error flag can be detected when the CEC interface is receiving a data bit: ## 39.5.3 Bit rising error (BRE) BRE (bit rising error) is set when a bit rising edge is detected outside the windows where it is expected (see *Figure 422*). BRE flag also generates a CEC interrupt if the BREIE = 1. In the case of a BRE detection, the message reception can be stopped according to the BRESTP bit value and an error bit can be generated if BREGEN bit is set. When BRE is detected in a broadcast message with BRESTP = 1 an error bit is generated even if BREGEN = 0 to enforce initiator's retry of the failed transmission. Error bit generation can be disabled by configuring BREGEN = 0, BRDNOGEN = 1. #### 39.5.4 Short bit period error (SBPE) SBPE is set when a bit falling edge is detected earlier than expected (see Figure 422). SBPE flag also generates a CEC interrupt if the SBPEIE = 1. An error bit is always generated on the line in case of a SBPE error detection. An error bit is not generated upon SBPE detection only when Listen mode is set (LSTN = 1) and the following conditions are met: - A directly addressed message is received containing SBPE - A broadcast message is received containing SBPE AND BRDNOGEN = 1 #### 39.5.5 Long bit period error (LBPE) LBPE is set when a bit falling edge is not detected in a valid window (see Figure 422). LBPE flag also generates a CEC interrupt if the LBPEIE = 1. LBPE always stops the reception, an error bit is generated on the line when LBPEGEN bit is set. When LBPE is detected in a broadcast message an error bit is generated even if LBPEGEN = 0 to enforce initiator's retry of the failed transmission. Error bit generation can be disabled by configuring LBPEGEN = 0, BRDNOGEN = 1. The BREGEN = 1, BRESTP = 0 configuration must be avoided. Note: Figure 422. Error handling Time **RXTOL Description** ms T_s 0 Bit start event. Х 1 0.3 The earliest time for a low - high transition when T_1 indicating a logical 1. 0 0.4 The nominal time for a low - high transition when T_{n1} Х 0.6 indicating a logical 1. 0 8.0 The latest time for a low - high transition when T_2 indicating a logical 1. 1 0.9 Tns Х 1.05 Nominal sampling time. 1 1.2 The earliest time a device is permitted return to a high T_3 impedance state (logical 0). 0 1.3 The nominal time a device is permitted return to a 1.5 T_{n0} Х high impedance state (logical 0). 0 1.7 The latest time a device is permitted return to a high T_4 impedance state (logical 0). 1 1.8 1.85 1 The earliest time for the start of a following bit. T_5 0 2.05 2.4 The nominal data bit period. T_{nf} Х 0 2.75 The latest time for the start of a following bit. T_6 2.95 1 Table 243. Error handling timing parameters # 39.5.6 Transmission error detection (TXERR) The CEC initiator sets the TXERR flag if detecting low impedance on the CEC line when it is transmitting high impedance and is not expecting a follower asserted bit. TXERR flag also generates a CEC interrupt if the TXERRIE = 1. TXERR assertion stops the message transmission. Application is in charge to retry the failed transmission up to five times. TXERR checks are performed differently depending on the different states of the CEC line and on the RX tolerance configuration. Legend: TXERR Checking Window CEC initiator bit-timing Tolerance margins Tx acknowledge ← Tx arbitration bit-1 ← Tx data bit-1 ← T₁ T_{n1} T_2 T₃ T₅ T_{nf} T₆ T_{ns} T_{n0} Tx arbitration bit-0 ← Tx data bit-0 ← MS31012V1 Figure 423. TXERR detection Table 244. TXERR timing parameters | Time | RXTOL | ms | Description | |-----------------|-------|------|--| | T _s | х | 0 | Bit start event. | | т | 1 | 0.3 | The earliest time for a low - high transition when | | T ₁ | 0 | 0.4 | indicating a logical 1. | | T _{n1} | х | 0.6 | The nominal time for a low - high transition when indicating a logical 1. | | т. | 0 | 0.8 | The latest time for a low - high transition when | | T ₂ | 1 | 0.9 | indicating a logical 1. | | T _{ns} | x | 1.05 | Nominal sampling time. | | T ₃ | 1 | 1.2 | The earliest time a device is permitted return to a | | 13 | 0 | 1.3 | high impedance state (logical 0). | | T _{n0} | x | 1.5 | The nominal time a device is permitted return to a high impedance state (logical 0). | | т | 0 | 1.7 | The latest time a device is permitted return to a high | | T ₄ | 1 | 1.8 | impedance state (logical 0). | | т | 1 | 1.85 | The earliest time for the start of a following bit. | | T ₅ | 0 | 2.05 | The earliest time for the start of a following bit. | | T _{nf} | x | 2.4 | The nominal data bit period. | 4 RM0444 Rev 5 1355/1390 Table 244. TXERR timing parameters (continued) | Time | RXTOL | ms | Description | |------|-------|------|---| | т. | 0 | 2.75 | The latest time for the start of a following bit. | | 16 | 1 | 2.95 | The latest time for the start of a following bit. | # 39.6 HDMI-CEC interrupts An interrupt can be produced: - during reception if a receive block transfer is finished or if a receive error occurs. - during transmission if a transmit block transfer is finished or if a transmit error occurs. Table 245. HDMI-CEC interrupts | Interrupt event | Event flag | Enable control bit | |------------------------------|------------|--------------------| | Rx-byte received | RXBR | RXBRIE | | End of reception | RXEND | RXENDIE | | Rx-overrun | RXOVR | RXOVRIE | | Rxbit rising error | BRE | BREIE | | Rx-short bit period error | SBPE | SBPEIE | | Rx-long bit period error | LBPE | LBPEIE | | Rx-missing acknowledge error | RXACKE | RXACKEIE | | Arbitration lost | ARBLST | ARBLSTIE | | Tx-byte request | TXBR | TXBRIE | | End of transmission | TXEND | TXENDIE | | Tx-buffer underrun | TXUDR | TXUDRIE | | Tx-error | TXERR | TXERRIE | | Tx-missing acknowledge error | TXACKE | TXACKEIE | # 39.7 HDMI-CEC registers Refer to Section 1.2 on page 53 for a list of abbreviations used in register descriptions. # 39.7.1 CEC control register (CEC_CR) Address offset: 0x00 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|-----------|-----------|-------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. TXE
OM | TXS
OM | CECEN | | | | | | | | | | | | | | | rs | rs | rw | Bits 31:3 Reserved, must be kept at reset value. #### Bit 2 TXEOM: Tx end of message The TXEOM bit is set by software to command transmission of the last byte of a CEC message. TXEOM is cleared by hardware at the same time and under the same conditions as for TXSOM. 0: TXDR data byte is transmitted with EOM = 0 1: TXDR data byte is transmitted
with EOM = 1 Note: TXEOM must be set when CECEN = 1. TXEOM must be set before writing transmission data to TXDR. If TXEOM is set when TXSOM = 0, transmitted message consists of 1 byte (HEADER) only (PING message). ### Bit 1 TXSOM: Tx start of message TXSOM is set by software to command transmission of the first byte of a CEC message. If the CEC message consists of only one byte, TXEOM must be set before of TXSOM. Start-bit is effectively started on the CEC line after SFT is counted. If TXSOM is set while a message reception is ongoing, transmission starts after the end of reception. TXSOM is cleared by hardware after the last byte of the message is sent with a positive acknowledge (TXEND = 1), in case of transmission underrun (TXUDR = 1), negative acknowledge (TXACKE = 1), and transmission error (TXERR = 1). It is also cleared by CECEN = 0. It is not cleared and transmission is automatically retried in case of arbitration lost (ARBLST = 1). TXSOM can be also used as a status bit informing application whether any transmission request is pending or under execution. The application can abort a transmission request at any time by clearing the CECEN bit. 0: No CEC transmission is on-going 1: CEC transmission command Note: TXSOM must be set when CECEN = 1. TXSOM must be set when transmission data is available into TXDR. HEADER first four bits containing own peripheral address are taken from TXDR[7:4], not from CEC_CFGR.OAR that is used only for reception. RM0444 Rev 5 1357/1390 #### Bit 0 CECEN: CEC enable The CECEN bit is set and cleared by software. CECEN = 1 starts message reception and enables the TXSOM control. CECEN = 0 disables the CEC peripheral, clears all bits of CEC_CR register and aborts any on-going reception or transmission. 0: CEC peripheral is off. 1: CEC peripheral is on. # 39.7.2 CEC configuration register (CEC_CFGR) This register is used to configure the HDMI-CEC controller. Address offset: 0x04 Reset value: 0x0000 0000 Caution: It is mandatory to write CEC_CFGR only when CECEN = 0. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|-----------|--------------|-------------|------------|------------|-----------|----|----------|----| | LSTN | | | | | | | | OAR[14:0 |] | | | | | | | | rw | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. SFT
OP | BRDN
OGEN | LBPE
GEN | BRE
GEN | BRE
STP | RX
TOL | | SFT[2:0] | | | | | | | | | | rw #### Bit 31 LSTN: Listen mode LSTN bit is set and cleared by software. - 0: CEC peripheral receives only message addressed to its own address (OAR). Messages addressed to different destination are ignored. Broadcast messages are always received. - 1: CEC peripheral receives messages addressed to its own address (OAR) with positive acknowledge. Messages addressed to different destination are received, but without interfering with the CEC bus: no acknowledge sent. ### Bits 30:16 OAR[14:0]: Own addresses configuration The OAR bits are set by software to select which destination logical addresses has to be considered in receive mode. Each bit, when set, enables the CEC logical address identified by the given bit position. At the end of HEADER reception, the received destination address is compared with the enabled addresses. In case of matching address, the incoming message is acknowledged and received. In case of non-matching address, the incoming message is received only in listen mode (LSTN = 1), but without acknowledge sent. Broadcast messages are always received. Example: OAR = 0b000 0000 0010 0001 means that CEC acknowledges addresses 0x0 and 0x5. Consequently, each message directed to one of these addresses is received. ### Bits 15:9 Reserved, must be kept at reset value. ### Bit 8 SFTOP: SFT option bit The SFTOPT bit is set and cleared by software. 0: SFT timer starts when TXSOM is set by software. 1: SFT timer starts automatically at the end of message transmission/reception. ### Bit 7 BRDNOGEN: Avoid error-bit generation in broadcast The BRDNOGEN bit is set and cleared by software. 0: BRE detection with BRESTP = 1 and BREGEN = 0 on a broadcast message generates an error-bit on the CEC line. LBPE detection with LBPEGEN = 0 on a broadcast message generates an error-bit on the CEC line. 1: Error-bit is not generated in the same condition as above. An error-bit is not generated even in case of an SBPE detection in a broadcast message if listen mode is set. ### Bit 6 LBPEGEN: Generate error-bit on long bit period error The LBPEGEN bit is set and cleared by software. 0: LBPE detection does not generate an error-bit on the CEC line. 1: LBPE detection generates an error-bit on the CEC line. Note: If BRDNOGEN = 0, an error-bit is generated upon LBPE detection in broadcast even if LBPEGEN = 0. ### Bit 5 BREGEN: Generate error-bit on bit rising error The BREGEN bit is set and cleared by software. 0: BRE detection does not generate an error-bit on the CEC line. 1: BRE detection generates an error-bit on the CEC line (if BRESTP is set). Note: If BRDNOGEN = 0, an error-bit is generated upon BRE detection with BRESTP = 1 in broadcast even if BREGEN = 0. ### Bit 4 BRESTP: Rx-stop on bit rising error The BRESTP bit is set and cleared by software. 0: BRE detection does not stop reception of the CEC message. Data bit is sampled at 1.05 ms. 1: BRE detection stops message reception. ### Bit 3 RXTOL: Rx-tolerance The RXTOL bit is set and cleared by software. 0: Standard tolerance margin: - Start-bit, +/- 200 μs rise, +/- 200 μs fall - Data-bit: +/- 200 μs rise. +/- 350 μs fall ### 1: Extended tolerance - Start-bit: +/- 400 μs rise, +/- 400 μs fall - Data-bit: +/-300 μs rise, +/- 500 μs fall ### Bits 2:0 SFT[2:0]: Signal free time SFT bits are set by software. In the SFT = 0x0 configuration, the number of nominal data bit periods waited before transmission is ruled by hardware according to the transmission history. In all the other configurations the SFT number is determined by software. 0x0 - 2.5 data-bit periods if CEC is the last bus initiator with unsuccessful transmission (ARBLST = 1, TXERR = 1, TXUDR = 1 or TXACKE = 1) - 4 data-bit periods if CEC is the new bus initiator - 6 data-bit periods if CEC is the last bus initiator with successful transmission (TXEOM = 1) 0x1: 0.5 nominal data bit periods 0x2: 1.5 nominal data bit periods 0x3: 2.5 nominal data bit periods 0x4: 3.5 nominal data bit periods 0x5: 4.5 nominal data bit periods 0x6: 5.5 nominal data bit periods 0x7: 6.5 nominal data bit periods RM0444 Rev 5 1359/1390 # 39.7.3 CEC Tx data register (CEC_TXDR) Address offset: 0x8 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | | | | | | | | | | | Res. | | | TXD | [7:0] | | | | Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 TXD[7:0]: Tx data TXD is a write-only register containing the data byte to be transmitted. # 39.7.4 CEC Rx data register (CEC_RXDR) Address offset: 0xC Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | | | RXE | [7:0] | | | | | | | | | | | | | r | r | r | r | r | r | r | r | Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 RXD[7:0]: Rx data RXD is read-only and contains the last data byte that has been received from the CEC line. # 39.7.5 CEC interrupt and status register (CEC_ISR) Address offset: 0x10 Reset value: 0x0000 0000 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------------|-----------|-----------|-----------|-------|------------|------------|-------|-------|-------|-----------|-----------|-------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | TX
ACKE | TX
ERR | TX
UDR | TX
END | TXBR | ARB
LST | RX
ACKE | LBPE | SBPE | BRE | RX
OVR | RX
END | RXBR | | | | | rc_w1 ### Bits 31:13 Reserved, must be kept at reset value. #### Bit 12 **TXACKE:** Tx-missing acknowledge error In transmission mode, TXACKE is set by hardware to inform application that no acknowledge was received. In case of broadcast transmission, TXACKE informs application that a negative acknowledge was received. TXACKE aborts message transmission and clears TXSOM and TXEOM controls. TXACKE is cleared by software write at 1. #### Bit 11 TXERR: Tx-error In transmission mode, TXERR is set by hardware if the CEC initiator detects low impedance on the CEC line while it is released. TXERR aborts message transmission and clears TXSOM and TXEOM controls. TXERR is cleared by software write at 1. #### Bit 10 TXUDR: Tx-buffer underrun In transmission mode, TXUDR is set by hardware if application was not in time to load TXDR before of next byte transmission. TXUDR aborts message transmission and clears TXSOM and TXEOM control bits. TXUDR is cleared by software write at 1 ### Bit 9 TXEND: End of transmission TXEND is set by hardware to inform application that the last byte of the CEC message has been successfully transmitted. TXEND clears the TXSOM and TXEOM control bits. TXEND is cleared by software write at 1. ### Bit 8 TXBR: Tx-byte request TXBR is set by hardware to inform application that the next transmission data has to be written to TXDR. TXBR is set when the 4th bit of currently transmitted byte is sent. Application must write the next byte to TXDR within six nominal data-bit periods before
transmission underrun error occurs (TXUDR). TXBR is cleared by software write at 1. #### Bit 7 ARBLST: Arbitration lost ARBLST is set by hardware to inform application that CEC device is switching to reception due to arbitration lost event following the TXSOM command. ARBLST can be due either to a contending CEC device starting earlier or starting at the same time but with higher HEADER priority. After ARBLST assertion TXSOM bit keeps pending for next transmission attempt. ARBLST is cleared by software write at 1. ### Bit 6 RXACKE: Rx-missing acknowledge In receive mode, RXACKE is set by hardware to inform application that no acknowledge was seen on the CEC line. RXACKE applies only for broadcast messages and in listen mode also for not directly addressed messages (destination address not enabled in OAR). RXACKE aborts message reception. RXACKE is cleared by software write at 1. ### Bit 5 LBPE: Rx-long bit period error LBPE is set by hardware in case a data-bit waveform is detected with long bit period error. LBPE is set at the end of the maximum bit-extension tolerance allowed by RXTOL, in case falling edge is still longing. LBPE always stops reception of the CEC message. LBPE generates an error-bit on the CEC line if LBPEGEN = 1. In case of broadcast, error-bit is generated even in case of LBPEGEN = 0. LBPE is cleared by software write at 1. RM0444 Rev 5 1361/1390 #### Bit 4 SBPE: Rx-short bit period error SBPE is set by hardware in case a data-bit waveform is detected with short bit period error. SBPE is set at the time the anticipated falling edge occurs. SBPE generates an error-bit on the CEC line. SBPE is cleared by software write at 1. ### Bit 3 BRE: Rx-bit rising error BRE is set by hardware in case a data-bit waveform is detected with bit rising error. BRE is set either at the time the misplaced rising edge occurs, or at the end of the maximum BRE tolerance allowed by RXTOL, in case rising edge is still longing. BRE stops message reception if BRESTP = 1. BRE generates an error-bit on the CEC line if BREGEN = 1. BRE is cleared by software write at 1. #### Bit 2 RXOVR: Rx-overrun RXOVR is set by hardware if RXBR is not yet cleared at the time a new byte is received on the CEC line and stored into RXD. RXOVR assertion stops message reception so that no acknowledge is sent. In case of broadcast, a negative acknowledge is sent. RXOVR is cleared by software write at 1. ### Bit 1 RXEND: End of reception RXEND is set by hardware to inform application that the last byte of a CEC message is received from the CEC line and stored into the RXD buffer. RXEND is set at the same time of RXBR. RXEND is cleared by software write at 1. ### Bit 0 RXBR: Rx-byte received The RXBR bit is set by hardware to inform application that a new byte has been received from the CEC line and stored into the RXD buffer. RXBR is cleared by software write at 1. # 39.7.6 CEC interrupt enable register (CEC_IER) Address offset: 0x14 Reset value: 0x0000 0000 Caution: It is mandatory to write CEC IER only when CECEN = 0. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|-------------|-------------|-------------|-------------|------------|--------------|-------------|------------|------------|-------|-------------|-------------|------------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | TXACK
IE | TXERR
IE | TX
UDRIE | TXEND
IE | TXBR
IE | ARBLST
IE | RXACK
IE | LBPE
IE | SBPE
IE | BREIE | RXOVR
IE | RXEND
IE | RXBR
IE | | | | | rw Bits 31:13 Reserved, must be kept at reset value. ### Bit 12 TXACKIE: Tx-missing acknowledge error interrupt enable The TXACKEIE bit is set and cleared by software. 0: TXACKE interrupt disabled 1: TXACKE interrupt enabled # Bit 11 TXERRIE: Tx-error interrupt enable The TXERRIE bit is set and cleared by software. 0: TXERR interrupt disabled 1: TXERR interrupt enabled ### Bit 10 TXUDRIE: Tx-underrun interrupt enable The TXUDRIE bit is set and cleared by software. 0: TXUDR interrupt disabled 1: TXUDR interrupt enabled ### Bit 9 TXENDIE: Tx-end of message interrupt enable The TXENDIE bit is set and cleared by software. 0: TXEND interrupt disabled 1: TXEND interrupt enabled ### Bit 8 **TXBRIE**: Tx-byte request interrupt enable The TXBRIE bit is set and cleared by software. 0: TXBR interrupt disabled 1: TXBR interrupt enabled #### Bit 7 **ARBLSTIE**: Arbitration lost interrupt enable The ARBLSTIE bit is set and cleared by software. 0: ARBLST interrupt disabled 1: ARBLST interrupt enabled ### Bit 6 RXACKIE: Rx-missing acknowledge error interrupt enable The RXACKIE bit is set and cleared by software. 0: RXACKE interrupt disabled 1: RXACKE interrupt enabled ### Bit 5 LBPEIE: Long bit period error interrupt enable The LBPEIE bit is set and cleared by software. 0: LBPE interrupt disabled 1: LBPE interrupt enabled ### Bit 4 SBPEIE: Short bit period error interrupt enable The SBPEIE bit is set and cleared by software. 0: SBPE interrupt disabled 1: SBPE interrupt enabled ### Bit 3 BREIE: Bit rising error interrupt enable The BREIE bit is set and cleared by software. 0: BRE interrupt disabled 1: BRE interrupt enabled ### Bit 2 RXOVRIE: Rx-buffer overrun interrupt enable The RXOVRIE bit is set and cleared by software. 0: RXOVR interrupt disabled 1: RXOVR interrupt enabled ### Bit 1 RXENDIE: End of reception interrupt enable The RXENDIE bit is set and cleared by software. 0: RXEND interrupt disabled 1: RXEND interrupt enabled ### Bit 0 RXBRIE: Rx-byte received interrupt enable The RXBRIE bit is set and cleared by software. 0: RXBR interrupt disabled 1: RXBR interrupt enabled 1363/1390 # 39.7.7 HDMI-CEC register map The following table summarizes the HDMI-CEC registers. Table 246. HDMI-CEC register map and reset values | | | | | | | | | | | | | | 9 | | | | • | | | | | | | | | | | | | | | | | |--------|------------------|---------|---------|---------|---------|--------|----------|---------|--------|--------|-------|---------|---------|--------| | Offset | Register
name | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | ဗ | 2 | | 0 | | 0x00 | CEC_CR | Res. TXEOM | TXSOM | CECEN | | | Reset value | 0 | 0 | 0 | | 0x04 | CEC_CFGR | LSTN | | | • | | | | OA | .R[1 | 4:0] | | | | | | • | Res. SFTOPT | BRDNOGEN | LBPEGEN | BREGEN | BRESTP | RXTOL | SF | T[2 | :0] | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x08 | CEC_TXDR | Res. | | - | TXD | [7:0 |)] | | | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x0C | CEC_RXDR | Res. | | F | RXD |)[7:0 |)] | | | | - | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x10 | CEC_ISR | Res. TXACKE | TXERR | TXUDR | TXEND | TXBR | ARBLST | RXACKE | LBPE | SBPE | BRE | RXOVR | RXEND | RXBR | | | Reset value | | | | Ì | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0x14 | CEC_IER | Res. TXACKIE | TXERRIE | TXUDRIE | TXENDIE | TXBRIE | ARBLSTIE | RXACKIE | LBPEIE | SBPEIE | BREIE | RXOVRIE | RXENDIE | RXBRIE | | | Reset value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Refer to Section 2.2 for the register boundary addresses. # 40 Debug support (DBG) # 40.1 Overview The STM32G0x1 devices are built around a Cortex[®]-M0+ core which contains hardware extensions for advanced debugging features. The debug extensions allow the core to be stopped either on a given instruction fetch (breakpoint) or data access (watchpoint). When stopped, the core's internal state and the system's external state may be examined. Once examination is complete, the core and the system may be restored and program execution resumed. The debug features are used by the debugger host when connecting to and debugging the STM32G0x1 MCUs. One interface for debug is available: Serial wire Figure 424. Block diagram of STM32G0x1 MCU and Cortex®-M0+-level debug support - 1. The debug features embedded in the Cortex®-M0+ core are a subset of the Arm CoreSight Design Kit. - The Arm Cortex[®]-M0+ core provides integrated on-chip debug support. It is comprised of: - SW-DP: Serial wire - BPU: Break point unit - DWT: Data watchpoint trigger RM0444 Rev 5 1365/1390 It also includes debug features dedicated to the STM32G0x1: - Flexible debug pinout assignment - MCU debug box (support for low-power modes, control over peripheral clocks, etc.) Note: For further information on debug functionality supported by the Arm Cortex[®]-M0+ core, refer to the Cortex[®]-M0+ Technical Reference Manual (see Section 40.2: Reference Arm documentation). # 40.2 Reference Arm documentation - Cortex[®]-M0+ Technical Reference Manual (TRM), available from http://infocenter.arm.com - Arm Debug Interface V5 - Arm CoreSight Design Kit revision r1p1 Technical Reference Manual # 40.3 Pinout and debug port pins The STM32G0x1 MCUs are available in various packages with different numbers of available pins. # 40.3.1 SWD port pins Two pins are used as outputs for the SW-DP as alternate functions of general purpose I/Os. These pins are available on all packages. | | | 9 | | |------------------|------|-------------------------------|------------| | SW-DP pin name | | SW debug port | Pin | | SW-DF pill liame | Туре | Debug assignment | assignment | | SWDIO | I/O | Serial Wire Data Input/Output | PA13 | | SWCLK | I | Serial Wire Clock | PA14 | Table 247. SW debug port pins ## 40.3.2 SW-DP pin assignment After reset (SYSRESETn or PORESETn), the pins used for the
SW-DP are assigned as dedicated pins which are immediately usable by the debugger host. However, the MCU offers the possibility to disable the SWD port and can then release the associated pins for general-purpose I/O (GPIO) usage. For more details on how to disable SW-DP port pins, refer to Section 7.3.2: I/O pin alternate function multiplexer and mapping on page 234. # 40.3.3 Internal pull-up & pull-down on SWD pins Once the SW I/O is released by the user software, the GPIO controller takes control of these pins. The reset states of the GPIO control registers put the I/Os in the equivalent states: - SWDIO: input pull-up - SWCLK: input pull-down Having embedded pull-up and pull-down resistors removes the need to add external resistors. # 40.4 ID codes and locking mechanism There are several ID codes inside the MCU. ST strongly recommends the tool manufacturers (for example Keil, IAR, Raisonance) to lock their debugger using the MCU device ID located at address 0x40015800. Only the DEV_ID[15:0] should be used for identification by the debugger/programmer tools (the revision ID must not be taken into account). # 40.5 SWD port # 40.5.1 SWD protocol introduction This synchronous serial protocol uses two pins: - SWCLK: clock from host to target - SWDIO: bidirectional The protocol allows two banks of registers (DPACC registers and APACC registers) to be read and written to. Bits are transferred LSB-first on the wire. For SWDIO bidirectional management, the line must be pulled-up on the board (100 k Ω recommended by Arm). Each time the direction of SWDIO changes in the protocol, a turnaround time is inserted where the line is not driven by the host nor the target. By default, this turnaround time is one bit time, however this can be adjusted by configuring the SWCLK frequency. ## 40.5.2 SWD protocol sequence Each sequence consist of three phases: - 1. Packet request (8 bits) transmitted by the host - 2. Acknowledge response (3 bits) transmitted by the target - 3. Data transfer phase (33 bits) transmitted by the host or the target Table 248. Packet request (8-bits) | Bit | Name | Description | |-----|--------|---| | 0 | Start | Must be "1" | | 1 | APnDP | 0: DP Access
1: AP Access | | 2 | RnW | 0: Write Request 1: Read Request | | 4:3 | A[3:2] | Address field of the DP or AP registers (refer to <i>Table 252 on page 1370</i>) | | 5 | Parity | Single bit parity of preceding bits | | 6 | Stop | 0 | | 7 | Park | Not driven by the host. Must be read as "1" by the target because of the pull-up | Refer to the Cortex[®]-M0+ *TRM* for a detailed description of DPACC and APACC registers. The packet request is always followed by the turnaround time (default 1 bit) where neither the host nor target drive the line. Table 249. ACK response (3 bits) | Bit | Name | Description | |-----|------|------------------------------------| | 02 | ACK | 001: FAULT
010: WAIT
100: OK | The ACK Response must be followed by a turnaround time only if it is a READ transaction or if a WAIT or FAULT acknowledge has been received. Table 250. DATA transfer (33 bits) | Bit | Name | Description | |-----|-------------------|-----------------------------------| | 031 | WDATA or
RDATA | Write or Read data | | 32 | Parity | Single parity of the 32 data bits | The DATA transfer must be followed by a turnaround time only if it is a READ transaction. # 40.5.3 SW-DP state machine (reset, idle states, ID code) The State Machine of the SW-DP has an internal ID code which identifies the SW-DP. It follows the JEP-106 standard. This ID code is the default Arm one and is set to **0x0BB11477** (corresponding to Cortex[®]-M0+). Note: Note that the SW-DP state machine is inactive until the target reads this ID code. - The SW-DP state machine is in RESET STATE either after power-on reset, or after the line is high for more than 50 cycles - The SW-DP state machine is in IDLE STATE if the line is low for at least two cycles after RESET state. - After RESET state, it is mandatory to first enter into an IDLE state AND to perform a READ access of the DP-SW ID CODE register. Otherwise, the target issues a FAULT acknowledge response on another transactions. Further details of the SW-DP state machine can be found in the *Cortex*[®]-M0+ *TRM* and the *CoreSight Design Kit r1p0 TRM*. #### 40.5.4 DP and AP read/write accesses - Read accesses to the DP are not posted: the target response can be immediate (if ACK=OK) or can be delayed (if ACK=WAIT). - Read accesses to the AP are posted. This means that the result of the access is returned on the next transfer. If the next access to be done is NOT an AP access, then the DP-RDBUFF register must be read to obtain the result. The READOK flag of the DP-CTRL/STAT register is updated on every AP read access or RDBUFF read request to know if the AP read access was successful. - The SW-DP implements a write buffer (for both DP or AP writes), that enables it to accept a write operation even when other transactions are still outstanding. If the write buffer is full, the target acknowledge response is "WAIT". With the exception of IDCODE read or CTRL/STAT read or ABORT write which are accepted even if the write buffer is full. - Because of the asynchronous clock domains SWCLK and HCLK, two extra SWCLK cycles are needed after a write transaction (after the parity bit) to make the write effective internally. These cycles should be applied while driving the line low (IDLE state) This is particularly important when writing the CTRL/STAT for a power-up request. If the next transaction (requiring a power-up) occurs immediately, it fails. ## 40.5.5 SW-DP registers Access to these registers are initiated when APnDP=0 Table 251. SW-DP registers | A[3:2] | R/W | CTRLSEL bit
of SELECT
register | Register | Notes | |--------|-------|--------------------------------------|----------|--| | 00 | Read | | IDCODE | The manufacturer code is set to the default Arm code for Cortex®-M0+:
0x0BC11477 (identifies the SW-DP) | | 00 | Write | | ABORT | | Debug support (DBG) RM0444 Table 251. SW-DP registers (continued) | A[3:2] | R/W | CTRLSEL bit
of SELECT
register | Register | Notes | |--------|------------|--------------------------------------|-----------------|--| | 01 | Read/Write | 0 | DP-CTRL/STAT | Purpose is to: - request a system or debug power-up - configure the transfer operation for AP accesses - control the pushed compare and pushed verify operations. - read some status flags (overrun, power-up acknowledges) | | 01 | Read/Write | 1 | WIRE
CONTROL | Purpose is to configure the physical serial port protocol (like the duration of the turnaround time) | | 10 | Read | | READ
RESEND | Enables recovery of the read data from a corrupted debugger transfer, without repeating the original AP transfer. | | 10 | Write | | SELECT | The purpose is to select the current access port and the active 4-words register window | | 11 | Read/Write | | READ BUFFER | This read buffer is useful because AP accesses are posted (the result of a read AP request is available on the next AP transaction). This read buffer captures data from the AP, presented as the result of a previous read, without initiating a new transaction | ## 40.5.6 SW-AP registers Access to these registers are initiated when APnDP=1 There are many AP Registers addressed as the combination of: - The shifted value A[3:2] - The current value of the DP SELECT register. Table 252. 32-bit debug port registers addressed through the shifted value A[3:2] | Address | A[3:2] value | Description | |---------|--------------|--| | 0x0 | 00 | Reserved, must be kept at reset value. | | 0x4 | 01 | DP CTRL/STAT register. Used to: Request a system or debug power-up Configure the transfer operation for AP accesses Control the pushed compare and pushed verify operations. Read some status flags (overrun, power-up acknowledges) | **Address** A[3:2] value Description DP SELECT register: Used to select the current access port and the active 4-words register window. Bits 31:24: APSEL: select the current AP 0x8 10 - Bits 23:8: reserved - Bits 7:4: APBANKSEL: select the active 4-words register window on the current AP - Bits 3:0: reserved DP RDBUFF register: Used to allow the debugger to get the final result 0xC 11 after a sequence of operations (without requesting new JTAG-DP Table 252. 32-bit debug port registers addressed through the shifted value A[3:2] ## 40.6 Core debug Core debug is accessed through the core debug registers. Debug access to these registers is by means of the debug access port. It consists of four registers: operation) | Register | Description | |----------|---| | DHCSR | The 32-bit Debug Halting Control and Status Register This provides status information about the state of the processor enable core debug halt and step the processor | | DCRSR | The 17-bit Debug Core Register Selector Register: This selects the processor register to transfer data to or from. | | DCRDR | The 32-bit Debug Core Register Data Register: This holds data for reading and writing registers to and from the processor selected by the DCRSR (Selector) register. | | DEMCR | The 32-bit
Debug Exception and Monitor Control Register: This provides Vector Catching and Debug Monitor Control. | Table 253. Core debug registers These registers are not reset by a system reset. They are only reset by a power-on reset. Refer to the Cortex[®]-M0+ TRM for further details. To Halt on reset, it is necessary to: - enable the bit0 (VC_CORRESET) of the Debug and Exception Monitor Control Register - enable the bit0 (C_DEBUGEN) of the Debug Halting Control and Status Register ## 40.7 BPU (Break Point Unit) The Cortex[®]-M0+ BPU implementation provides four breakpoint registers. The BPU is a subset of the Flash Patch and Breakpoint (FPB) block available in Armv7-M (Cortex-M3 & Cortex-M4). ## 40.7.1 BPU functionality The processor breakpoints implement PC based breakpoint functionality. Refer the Armv6-M Arm and the Arm CoreSight Components Technical Reference Manual for more information about the BPU CoreSight identification registers, and their addresses and access types. ## 40.8 DWT (Data Watchpoint) The Cortex®-M0+ DWT implementation provides two watchpoint register sets. ### 40.8.1 DWT functionality The processor watchpoints implement both data address and PC based watchpoint functionality, a PC sampling register, and support comparator address masking, as described in the *Armv6-M Arm*. ### 40.8.2 DWT Program Counter Sample Register A processor that implements the data watchpoint unit also implements the Armv6-M optional *DWT Program Counter Sample Register* (DWT_PCSR). This register permits a debugger to periodically sample the PC without halting the processor. This provides coarse grained profiling. See the *Armv6-M Arm* for more information. The Cortex®-M0+ DWT_PCSR records both instructions that pass their condition codes and those that fail. ## 40.9 MCU debug component (DBG) The MCU debug component helps the debugger provide support for: - Low-power modes - Clock control for timers, watchdog and I2C during a breakpoint #### 40.9.1 Debug support for low-power modes To enter low-power mode, the instruction WFI or WFE must be executed. The MCU implements several low-power modes which can either deactivate the CPU clock or reduce the power of the CPU. The core does not allow FCLK or HCLK to be turned off during a debug session. As these are required for the debugger connection, during a debug, they must remain active. The MCU integrates special means to allow the user to debug software in low-power modes. For this, the debugger host must first set some debug configuration registers to change the low-power mode behavior: - In Sleep mode: FCLK and HCLK are still active. Consequently, this mode does not impose any restrictions on the standard debug features. - In Stop/Standby mode, the DBG_STOP bit must be previously set by the debugger. This enables the internal RC oscillator clock to feed FCLK and HCLK in Stop mode. ## 40.9.2 Debug support for timers, watchdog and I²C During a breakpoint, it is necessary to choose how the counter of timers and watchdog should behave: - They can continue to count inside a breakpoint. This is usually required when a PWM is controlling a motor, for example. - They can stop to count inside a breakpoint. This is required for watchdog purposes. For the I²C, the user can choose to block the SMBUS timeout during a breakpoint. ## 40.10 DBG registers ## 40.10.1 DBG device ID code register (DBG_IDCODE) The STM32G0x1 products integrate a device ID code identifying the device and its die revision. This code is accessible by the software debug port (two pins) or by the user software. ### DBG_IDCODE Address offset: 0x00 Only 32-bit access supported. Read-only | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|----|----|----|----|------|-----|------|----|----|----|----|----| | | | | | | | | RE | V_ID | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. | Res. | Res. | Res. | | | | | | DE' | V_ID | | | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | #### Bits 31:16 REV ID[15:0] Revision identifier This field indicates the revision of the device. Refer to Table 254. Bits 15:12 Reserved: read 0b0110. Bits 11:0 **DEV_ID[11:0]**: Device identifier This field indicates the device ID. Refer to *Table 254*. Table 254. DEV_ID and REV_ID field values | Device | DEV_ID | Revision code | Revision number | REV_ID | |--------------------------------|--------|---------------|-----------------|--------| | STM32G0B1xx and
STM32G0C1xx | 0x467 | А | 1.0 | 0x1000 | | | | А | 1.0 | 0x1000 | | STM32G071xx and
STM32G081xx | 0x460 | Z | 1.1 | 0x1000 | | | | В | 2.0 | 0x2000 | | STM32G051xx and
STM32G061xx | 0x456 | А | 1.0 | 0x1000 | Debug support (DBG) RM0444 | Device | DEV_ID | Revision code | Revision number | REV_ID | |-----------------|--------|---------------|-----------------|--------| | STM32G031xx and | 0x466 | Α | 1.0 | 0x1000 | | STM32G041xx | 0,400 | Z | 1.1 | 0x1001 | ### 40.10.2 DBG configuration register (DBG CR) This register configures the low-power modes of the MCU under debug. It is asynchronously reset by the POR (and not the system reset). It can be written by the debugger under system reset. If the debugger host does not support this feature, it is still possible for the user software to write to this register. Address offset: 0x04 POR Reset: 0x0000 0000 (not reset by system reset) Only 32-bit access supported | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |------|------|------|------|------|------|------|------|------|------|------|------|------|---------------------|--------------|------| | Res. | | | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Res. DBG_
STAND
BY | DBG_
STOP | Res. | | | | | | | | | | | | | | | rw | rw | | Bits 31:3 Reserved, must be kept at reset value. ### Bit 2 DBG_STANDBY: Debug Standby and Shutdown modes Debug options in Standby or Shutdown mode. - 0: Digital part powered. From software point of view, exiting Standby and Shutdown modes is identical as fetching reset vector (except for status bits indicating that the MCU exits Standby) - 1: Digital part powered and FCLK and HCLK running, derived from the internal RC oscillator remaining active. The MCU generates a system reset so that exiting Standby and Shutdown has the same effect as starting from reset. #### Bit 1 DBG_STOP: Debug Stop mode Debug options in Stop mode. - 0: All clocks disabled, including FCLK and HCLK. Upon Stop mode exit, the CPU is clocked by the HSI internal RC oscillator. - 1: FCLK and HCLK running, derived from the internal RC oscillator remaining active. If Systick is enabled, it may generate periodic interrupt and wake up events. Upon Stop mode exit, the software must re-establish the desired clock configuration. ## 40.10.3 DBG APB freeze register 1 (DBG_APB_FZ1) This register configures the clocking of timers, RTC, IWDG, WWDG, and I2C SMBUS peripherals of the MCU under debug: The register is asynchronously reset by the POR (and not the system reset). It can be written by the debugger under system reset. Address offset: 0x08 Power on reset (POR): 0x0000 0000 (not reset by system reset) Only 32-bit access are supported. - 1. Only significant on devices integrating I2C2, otherwise reserved. Refer to Section 1.4: Availability of peripherals. - 2. Only significant on devices integrating TIM4, otherwise reserved. Refer to Section 1.4: Availability of peripherals. - Bit 31 DBG_LPTIM1_STOP: Clocking of LPTIMER1 counter when the core is halted This bit enables/disables the clock to the counter of LPTIMER1 when the core is halted: - 0: Enable - 1: Disable - Bit 30 **DBG_LPTIM2_STOP**: Clocking of LPTIMER2 counter when the core is halted This bit enables/disables the clock to the counter of LPTIMER2 when the core is halted: - 0: Enable - 1: Disable - Bits 29:23 Reserved, must be kept at reset value. - Bit 22 DBG_I2C2_SMBUS_TIMEOUT: SMBUS timeout when core is halted - 0: Same behavior as in normal mode - 1: The SMBUS timeout is frozen - Bit 21 DBG_I2C1_SMBUS_TIMEOUT: SMBUS timeout when core is halted - 0: Same behavior as in normal mode - 1: The SMBUS timeout is frozen - Bits 20:13 Reserved, must be kept at reset value. RM0444 Rev 5 1375/1390 Debug support (DBG) RM0444 #### Bit 12 DBG_IWDG_STOP: Clocking of IWDG counter when the core is halted This bit enables/disables the clock to the counter of IWDG when the core is halted: - 0: Enable - 1: Disable #### Bit 11 DBG_WWDG_STOP: Clocking of WWDG counter when the core is halted This bit enables/disables the clock to the counter of WWDG when the core is halted: - 0: Enable - 1: Disable #### Bit 10 DBG_RTC_STOP: Clocking of RTC counter when the core is halted This bit enables/disables the clock to the counter of RTC when the core is halted: - 0: Enable - 1: Disable - Bits 9:6 Reserved, must be kept at reset value. - Bit 5 **DBG TIM7 STOP:** Clocking of TIM7 counter when the core is halted. This bit enables/disables the clock to the counter of ITIM7 when the core is halted: - 0: Enable - 1: Disable #### Bit 4 DBG_TIM6_STOP: Clocking of TIM6 counter when the core is halted This bit enables/disables the clock to the counter of TIM6 when the core is halted: - 0: Enable - 1: Disable - Bits 3:3 Reserved, must be kept at reset value. - Bit 2 DBG_TIM4_STOP: Clocking of TIM4 counter when the core is halted This bit enables/disables the clock to the counter of TIM4 when the core is halted: - 0: Enable - 1: Disable #### Bit 1 DBG_TIM3_STOP: Clocking of TIM3 counter when the core is halted This bit enables/disables the clock to the counter of TIM3 when the core is halted: - 0: Enable - 1: Disable #### Bit 0 DBG TIM2 STOP: Clocking of TIM2 counter when the core is halted This bit enables/disables the clock to the counter of TIM2 when the core is halted: - 0: Enable - 1: Disable ##
40.10.4 DBG APB freeze register 2 (DBG_APB_FZ2) This register configures the clocking of timer counters when the MCU is under debug. It is asynchronously reset by the POR (and not the system reset). It can be written by the debugger under system reset. Address offset: 0x0C POR: 0x0000 0000 (not reset by system reset) Only 32-bit access is supported. | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----------------|------|------|------|---------------|------|------|------|------|------|------|------|------|----------------|----------------|-------------------------------| | Res. DBG_TIM17_STOP | DBG_TIM16_STOP | DBG_TIM15_STOP ⁽¹⁾ | | | | | | | | | | | | | | | rw | rw | rw | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | DBG_TIM14_STOP | Res. | Res. | Res. | DBG_TIM1_STOP | Res. | rw | | | | rw | | | | | | | | | | | | ^{1.} Only significant on devices integrating TIM15, otherwise reserved. Refer to Section 1.4: Availability of peripherals Bits 31:19 Reserved, must be kept at reset value. Bit 18 DBG_TIM17_STOP: Clocking of TIM17 counter when the core is halted This bit enables/disables the clock to the counter of TIM17 when the core is halted: - 0: Enable - 1: Disable Bit 17 DBG_TIM16_STOP: Clocking of TIM16 counter when the core is halted This bit enables/disables the clock to the counter of TIM16 when the core is halted: - 0: Enable - 1: Disable Bit 16 DBG_TIM15_STOP: Clocking of TIM15 counter when the core is halted This bit enables/disables the clock to the counter of TIM15 when the core is halted: - 0: Enable - 1: Disable Bit 15 DBG_TIM14_STOP: Clocking of TIM14 counter when the core is halted This bit enables/disables the clock to the counter of TIM14 when the core is halted: - 0: Enable - 1: Disable Bits 14:12 Reserved, must be kept at reset value. Bit 11 DBG_TIM1_STOP: Clocking of TIM1 counter when the core is halted This bit enables/disables the clock to the counter of TIM1 when the core is halted: - 0: Enable - 1: Disable Bits 10:0 Reserved, must be kept at reset value. ## 40.10.5 DBG register map The following table summarizes the Debug registers. Table 255. DBG register map and reset values | Offset | Register | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 1 | 10 | 6 | 8 | 7 | 9 | 2 | 4 | က | 2 | 1 | 0 | |--------|----------------------------|-----------------|-----------------|------|------|------|------|------|------|------|-------|------------------------|------|------|----------------|------|----------------|----------------|------|------|---------------|---------------|--------------|------|------|------|------|---------------|---------------|------|-------------|----------|-----------------| | 0x00 | DBG_
IDCODE | | | | | | | | RE\ | /_IC |) | | | | | | | Res. | Res. | Res. | Res. | | | | | | | V_I[|) | | | | | | | Reset value ⁽¹⁾ | Х | Х | Х | Χ | Х | Х | Х | Х | Х | Х | Х | Χ | Χ | Х | Х | Х | 0 | 1 | 1 | 0 | Х | Х | Х | Х | Χ | Х | Х | Х | Χ | Х | Х | Χ | | 0x04 | DBG_CR | Res. DBG_STANDBY | DBG_STOP | Res. | | | Reset value | 0 | 0 | | | 0x08 | DBG_
APB_FZ1 | DBG_LPTIM1_STOP | DBG_LPTIM2_STOP | Res. _
 | DBG_I2C1_SMBUS_TIMEOUT | Res. DBG_IWDG_STOP | DBG_WWDG_STOP | DBG_RTC_STOP | Res. | Res. | Res. | Res. | DBG_TIM7_STOP | DBG_TIM6_STOP | Res. | | | , DBG_TIM2_STOP | | | Reset value | 0 | 0 | | | | | | | | 0 | 0 | | | | | | | | | 0 | 0 | 0 | | | | | 0 | 0 | | 0 | 0 | 0 | | 0x0C | DBG_
APB_FZ2 | Res. DBG_TIM17_STOP | | DBG_TIM15_STOP | DBG_TIM14_STOP | Res. | Res. | Res. | DBG_TIM1_STOP | Res. | | Reset value | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | | | | 0 | | | | | | | | | | | | The reset value is product dependent. For more information, refer to Section 40.10.1: DBG device ID code register (DBG_IDCODE). Refer to Section 2.2 on page 58 for the register boundary addresses. 1378/1390 ## 41 Device electronic signature The device electronic signature is stored in the System memory area of the Flash memory module, and can be read using the debug interface or by the CPU. It contains factory-programmed identification and calibration data that allow the user firmware or other external devices to automatically match to the characteristics of the STM32G0x1 microcontroller. ## 41.1 Unique device ID register (96 bits) The unique device identifier is ideally suited: - for use as serial numbers (for example USB string serial numbers or other end applications) - for use as part of the security keys in order to increase the security of code in Flash memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal Flash memory - to activate secure boot processes, etc. The 96-bit unique device identifier provides a reference number which is unique for any device and in any context. These bits cannot be altered by the user. Base address: 0x1FFF 7590 Address offset: 0x00 Read only = 0xXXXX XXXX where X is factory-programmed | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|------------|----|----|----|----|----|-----|---------|----|----|----|----|----|----|----| | | UID[31:16] | | | | | | | | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | UII | D[15:0] | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | Bits 31:0 UID[31:0]: X and Y coordinates on the wafer expressed in BCD format Address offset: 0x04 Read only = 0xXXXX XXXX where X is factory-programmed | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|------------|----|----|----|----|----|-----|---------|----|----|----|----|----|----|----| | | UID[63:48] | | | | | | | | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | UID | [47:32] | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | RM0444 Rev 5 1379/1390 Bits 31:8 UID[63:40]: LOT_NUM[23:0] Lot number (ASCII encoded) Bits 7:0 UID[39:32]: WAF_NUM[7:0] Wafer number (8-bit unsigned number) Address offset: 0x08 Read only = 0xXXXX XXXX where X is factory-programmed | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | |----|------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----| | | UID[95:80] | | | | | | | | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | UID[79:64] | | | | | | | | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | Bits 31:0 UID[95:64]: LOT_NUM[55:24] Lot number (ASCII encoded) ## 41.2 Flash memory size data register Base address: 0x1FFF 75E0 Address offset: 0x00 Read only = 0xXXXX where X is factory-programmed | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|----|----|---|-------|--------|---|---|---|---|---|---|---| | | | | | | | | FLASH | I_SIZE | | | | | | | | | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | r | Bits 15:0 FLASH_SIZE[15:0]: Flash memory size This bitfield indicates the size of the device Flash memory expressed in Kbytes. As an example, 0x040 corresponds to 64 Kbytes. ## 41.3 Package data register Base address: 0x1FFF 7500 Address offset: 0x00 Read only = 0xXXXX where X is factory-programmed | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|------|------|------|------|---|-----|-------|---| | Res. | PKG | [3:0] | | | | | | | | | | | | | | | r | r | r | r | #### Bits 15:4 Reserved Bits 3:0 PKG[3:0]: Package type #### For STM32G071xx and STM32G081xx: 0000: UFQFPN28 general purpose (GP) 0001: UFQFPN28 Power Delivery (PD) 0100: UFQFPN32 / LQFP32 general purpose (GP) 0101: UFQFPN32 / LQFP32 Power Delivery (PD) 1000: UFQFPN48 / LQFP48 1100: LQPF64 Others: Reserved #### For STM32G031xx and STM32G041xx, and for STM32G051xx and STM32G061xx: 0001: SO8 0010: WLCSP18 0011: TSSOP20 0100: UFQFPN28 0101: UFQFPN32 / LQFP32 0111: UFQFPN48 / LQFP48 Others: Reserved #### For STM32G0B1xx and STM32G0C1xx: 0000: LQFP100 0001: LQFP32/UFQFPN32 general purpose (GP) 0010: LQFP32/UFQFPN32 N-version 0100: LQFP48 / UFQFPN48 general purpose (GP) 0101: LQFP48 / UFQFPN48 N-version 0110: WLCSP52 0111: LQFP64 general purpose (GP) 1000: LQFP64 N-version 1010: UFBGA64 N-version 1011: LQFP80 1100: UFBGA100 Others: Reserved Revision history RM0444 # 42 Revision history Table 256. Document revision history | Date | Revision | Changes | |-------------|----------
--| | 29-Oct-2018 | 1 | Initial release. | | 17-Apr-2019 | 2 | Integration of STM32G031xx and STM32G041xx, affecting: Section Availability of peripherals Figure Memory map Table STM32G031xx and STM32G041xx memory boundary addresses (added) Section Embedded SRAM Section Boot configuration Section FLASH functional description Table Flash memory organization (title modified) Section Power control (PWR) (indication of bits not available on STM32G031xx and STM32G041xx) Figure Clock tree Section Reset and clock control (RCC) (indication of bits not available on STM32G031xx and STM32G041xx) and Section Timer clock Section System configuration controller (SYSCFG) (indication of bits not available on STM32G031xx and STM32G041xx) Section System configuration register 2 (SYSCFG_CFGR2) (clamping diode enable bits added) Section Introduction Table DMA implementation Table DMA implementation Section Interrupt and exception vectors Section Interrupt and exception vectors Section Extended interrupt and event controller (EXTI) (indication of bits not available on STM32G031xx and STM32G041xx) Figure General-purpose timer block diagram and Figure External trigger input block Section Infrared interface (IRTIM) Table USART features Table DBG APB freeze register 2 (DBG_APB_FZ2) Section Package data register | RM0444 Revision history Table 256. Document revision history (continued) | Empty check section Section 3.3.8: FLASH Main memory programming sequences User and read protection option bytes section Option byte loading section Table 19: Access status versus protection level and execution model Section 3.5.4: Securable memory area Section 3.5.4: Securable memory area Section 3.7.8: FLASH access control register (FLASH_ACR) Section 3.7.8: FLASH option register (FLASH_OPTR) (BORR_LEV swapped with BORF_LEV[1:0] Section 3.7.9: FLASH PCROP area A start address register (FLASH_PCROPTASR) to Section 3.7.14: FLASH PCROP area B address register (FLASH_PCROPTASR) to Section 3.7.14: FLASH PCROP area B address register (FLASH_PCROPTASR) to Section 3.7.14: FLASH PCROP area B address register (FLASH_PCROPTASR) to Section 1.3.15: USB PD / Dead battery support: description filled Table 48: Programmable data width and endian behavior (when PINC = MINC = 1): NDT in the first row corrected from 8 to 4 Table 62: DMAMUX: assignment of multiplexer inputs to resources: TIM16/11_TRG_COM corrected to TIM16/17_COM Section 15.2: ADC main features: VTg corrected to VSENSE Section 15.3: ADC pins and internal signals: tables and their orga (External triggers table brought to this section) Table 71: Latency between trigger and start of conversion: latency voltage - corrected from VpDA to VREF Section 20: AES hardware accelerator (AES): general update Section 21: Advanced-control timer (TIM1): general update Section 21: Advanced-control timer (TIM1): general update Figure 20: Master/slave connection example with 1 channel only to added Table 120: Output control bit for standard OCx channels updated Section 22.4: 29: TIM3 timer input selection register (TIM3_TISEL): TIM5EL[3:0] Figure 221: General-purpose timer block diagram (TIM14): updated Section 22.4: 29: Tim3 timer input selection register (Tim3_TISEL): TIM5EL[3:0] Figure 23: Capture/compare channel 1 main circuit and Figure 23: stage of capture/compare channel 1 main circuit and Figure 23: stage of aguiter/compare cha | [1:0] end odified nization ralues erence 8: Output mers removed 8: Output 4) added | |--|---| RM0444 Rev 5 1383/1390 Revision history RM0444 Table 256. Document revision history (continued) | Date | Revision | Changes | |-------------|-------------|--| | 19-May-2020 | 3
cont'd | Section 33.4: USART implementation updated - tables reorganized Section 34.3: LPUART implementation updated - tables reorganized Section 38: USB Type-C™ / USB Power Delivery interface (UCPD): general update former DAC trigger connection table renamed as Table 82: DAC interconnection and moved to Section 16.4.2: DAC pins and internal signals Table 254: DEV_ID and REV_ID field values Section 40.10.2: DBG configuration register (DBG_CR) | | 6-Oct-2020 | 4 | Updated Section 3.4.2: FLASH option byte programming. | | 20-Nov-2020 | 5 | Extension of the document scope to cover STM32G051xx, STM32G061xx, STM32G0B1xx, and STM32G0C1xx devices, with corresponding addition or update of: Section 1.1: General information Section 1.4: Availability of peripherals Section 2: Memory and bus architecture Section 3: Embedded Flash memory (FLASH) Section 4: Power control (PWR) Section 5: Reset and clock control (RCC) Section 8: System configuration controller (SYSCFG) Section 9: Interconnect matrix Section 10: Direct memory access controller (DMA) Section 11: DMA request multiplexer (DMAMUX) Section 12: Nested vectored interrupt controller (RVIC) Section 13: Extended interrupt and event controller (EXTI) Section 15: Analog-to-digital converter (ADC) Section 18: Comparator (COMP) Section 20: AES hardware accelerator (AES) Section 21: Advanced-control timer (TIM1) Section 22: General-purpose timers (TIM2/TIM3/TIM4) Section 24: General-purpose timers (TIM15/TIM16/TIM17) Section 26: Low-power timer (LPTIM) Section 32: Inter-integrated circuit (I2C) interface Section
33: Universal synchonous receiver transmitter (LPUART) Section 35: Serial peripheral interface / integrated interchip sound (SPI/I2S) Section 37: Universal serial bus full-speed host/device interface (USB) Section 41: Device electronic signature | # Index | A | CRC_POL | 341 | |----------------|--------------|------------| | ADC AMD4TD 202 | CRS_CFGR | 227 | | ADC_AWD1TR | CRS CR | 226 | | ADC_AWD2CR399 | CRS ICR | 230 | | ADC_AWD2TR394 | CRS ISR | | | ADC_AWD3CR399 | | | | ADC_AWD3TR398 | _ | | | ADC_CALFACT400 | D | | | ADC_CCR400 | DAC CCR | 435 | | ADC_CFGR1387 | DAC CR | | | ADC_CFGR2391 | DAC DHR12L1 | | | ADC_CHSELR | DAC_DHR12L2 | | | ADC_CR385 | DAC DHR12LD | | | ADC DR398 | DAC DHR12R1 | | | ADC IER383 | DAC DHR12R2 | | | ADC ISR | — | | | ADC_SMPR | DAC_DHR12RD | | | AES CR511 | DAC_DHR8R1 | | | AES DINR514 | DAC_DHR8R2 | | | AES_DOUTR515 | DAC_DHR8RD | | | AES IVR0517 | DAC_DOR1 | | | AES IVR1518 | DAC_DOR2 | | | AES IVR2518 | DAC_MCR | | | AES IVR3518 | DAC_SHHR | | | AES KEYR0516 | DAC_SHRR | | | _ | DAC_SHSR1 | | | AES_KEYR1516 | DAC_SHSR2 | | | AES_KEYR2517 | DAC_SR | | | AES_KEYR3517 | DAC_SWTRGR | 427 | | AES_KEYR4519 | DBG_APB_FZ1 | 374 | | AES_KEYR5519 | DBG_APB_FZ2 | 376 | | AES_KEYR6519 | DBG CR | 374 | | AES_KEYR7520 | DBG IDCODE | 373 | | AES_SR513 | DMA CCRx | | | AES_SUSPxR520 | DMA CMARx | | | | DMA_CNDTRx | | | C | DMA CPARx | | | | DMA IFCR | | | CEC_CFGR1358 | DMA_ISR | | | CEC_CR1357 | DMAMUX_CFR | | | CEC_IER1362 | DMAMUX_CSR | | | CEC_ISR1360 | DMAMUX_CxCR | | | CEC_RXDR1360 | DMAMUX_RGCFR | | | CEC_TXDR1360 | | | | COMP1_CSR | DMAMUX_RGSR | | | COMP2_CSR | DMAMUX_RGxCR | 310 | | CRC_CR340 | | | | CRC_DR339 | E | | | CRC IDR | EXTI EMR1 | 222 | | CRC INIT341 | | | | | EXTI_EMR2 | 333 | ## Index | EXTI_EXTICRx330 | FDCAN_XIDAM | |-----------------|----------------------| | EXTI FPR1327 | FLASH ACR100 | | EXTI FPR2330 | FLASH_CR104 | | EXTI FTSR1325 | FLASH ECCR | | EXTI FTSR2328 | FLASH_ECCR2 | | EXTI IMR1 | FLASH_KEYR 101 | | EXTI IMR2 | FLASH_OPTKEYR101 | | EXTI_RPR1326 | FLASH_OPTR108 | | EXTI RPR2329 | FLASH_PCROP1AER110 | | EXTI_RTSR1 | FLASH_PCROP1ASR110 | | EXTI_RTSR2 | FLASH_PCROP1BER | | EXTI_SWIER1325 | FLASH_PCROP1BSR | | EXTI SWIER2 | FLASH_PCROP2AER | | | FLASH_PCROP2ASR | | _ | FLASH_PCROP2BER | | F | FLASH_PCROP2BSR | | FDCAN TXBCIE | FLASH_SECR | | FDCAN CCCR1230 | FLASH_SR | | FDCAN CKDIV1257 | FLASH_WRP1AR111 | | FDCAN_CREL | FLASH_WRP1BR | | FDCAN DBTP | FLASH_WRP2AR | | FDCAN ECR | FLASH WRP2BR | | FDCAN ENDN | T LAGIT_WINF 2DIX113 | | FDCAN_HPMS1247 | | | FDCAN IE | G | | FDCAN ILE | GPIOx AFRH | | FDCAN_ILS | GPIOx AFRL | | FDCAN IR | GPIOx BRR | | FDCAN NBTP | GPIOX BSRR | | FDCAN PSR | GPIOx IDR | | FDCAN RWD1229 | GPIOx_LCKR | | FDCAN RXF0A1249 | GPIOX MODER241 | | FDCAN RXF0S | GPIOX_ODR | | FDCAN RXF1A1250 | GPIOx_OSPEEDR | | FDCAN RXF1S | GPIOx_OTYPER | | FDCAN RXGFC1245 | GPIOx_PUPDR | | FDCAN_TDCR | 01 10x_1 01 blt242 | | FDCAN TEST | | | FDCAN_TOCC | I | | FDCAN_TOCV | I2C CR1981 | | FDCAN_TSCC | I2C_CR2 | | FDCAN_TSCV | I2C_ICR | | FDCAN_TXBAR | I2C_ISR | | FDCAN_TXBC | I2C_OAR1 | | FDCAN_TXBCF | I2C_OAR2 | | FDCAN_TXBCR | I2C_PECR | | FDCAN_TXBRP | I2C_RXDR | | - | I2C_TIMEOUTR990 | | FDCAN_TXBTIE | I2C_TIMINGR989 | | FDCAN_TXBTO | I2C_TXDR | | FDCAN_TXEFA | IWDG_KR | | FDCAN_TXEFS | IWDG_PR | | FDCAN_TXFQS | IWDG_RLR | | | | **LY/** | IWDG_SR864 | RCC_APBRSTR219 |)4 | |----------------------|-----------------|------------| | IWDG_WINR865 | RCC_APBSMENR120 |)5 | | | RCC_APBSMENR220 |)8 | | L | RCC_BDCR21 | 13 | | | RCC CCIPR | | | LPTIM_ARR853 | RCC CCIPR2 | 12 | | LPTIM_CFGR848 | RCC CFGR | | | LPTIM_CFGR2854 | RCC CICR18 | | | LPTIM_CMP | RCC CIER18 | | | LPTIM_CNT | RCC_CIFR | | | LPTIM CR851 | RCC_CR | | | LPTIM ICR847 | RCC CRRCR | | | LPTIM IER | RCC_CSR | | | LPTIM ISR | | | | LPUART_BRR | RCC_ICSCR | | | LPUART_CR11114, 1117 | RCC_IOPENR | | | | RCC_IOPRSTR | | | LPUART_CR2 | RCC_IOPSMENR | | | LPUART_CR3 | RCC_PLLCFGR18 | | | LPUART_ICR | RNG_CR46 | | | LPUART_ISR1126, 1131 | RNG_DR47 | | | LPUART_PRESC1136 | RNG_SR47 | | | LPUART_RDR1135 | RTC_ALRMAR90 | | | LPUART_RQR1126 | RTC_ALRMASSR90 |)4 | | LPUART_TDR1135 | RTC_ALRMBR90 |)5 | | | RTC_ALRMBSSR90 |)6 | | P | RTC_CALR89 | | | | RTC CR89 | | | PWR_CR1143 | RTC DR89 | | | PWR_CR2144 | RTC ICSR89 | | | PWR_CR3146 | RTC MISR90 | | | PWR_CR4147 | RTC PRER89 | | | PWR_PDCRA152 | RTC_SCR90 | | | PWR_PDCRB153 | RTC_SHIFTR90 | | | PWR PDCRC154 | RTC_SR90 | | | PWR PDCRD | RTC SSR89 | | | PWR PDCRF157 | RTC_TR89 | | | PWR_PUCRA151 | | | | PWR PUCRB | RTC_TSDR90 | | | PWR_PUCRC | RTC_TSSSR90 | | | PWR PUCRD | RTC_TSTR90 | | | PWR_PUCRF156 | RTC_WPR | | | PWR_SCR151 | RTC_WUTR89 | <i>3</i> 5 | | PWR_SR1148 | | | | | S | | | PWR_SR2149 | | _ | | | SPIx_CR1118 | | | R | SPIx_CR2 | | | DCC AHREND 107 | SPIx_CRCPR119 | | | RCC_AHBENR | SPIx_DR119 | | | RCC_AHBRSTR190 | SPIx_I2SCFGR119 | | | RCC_AHBSMENR | SPIx_I2SPR119 | | | RCC_APBENR1 | SPIx_RXCRCR119 |) 1 | | RCC_APBENR2 | SPIx_SR118 | 39 | | RCC_APBRSTR1191 | _ | | RM0444 Rev 5 1387/1390 | SPIx_TXCRCR | TIM1_CCMR2 599-600 | |--------------------|---------------------| | SYSCFG_CFGR1248 | TIM1_CCMR3614 | | SYSCFG_CFGR2251 | TIM1_CCR1606 | | SYSCFG ITLINE0253 | TIM1 CCR2 | | SYSCFG ITLINE1254 | TIM1 CCR3607 | | SYSCFG ITLINE10258 | TIM1 CCR4 | | SYSCFG ITLINE11 | TIM1 CCR5 | | SYSCFG ITLINE12259 | TIM1 CCR6 | | SYSCFG ITLINE13 | TIM1 CNT | | SYSCFG ITLINE14 | TIM1 CR1 | | SYSCFG ITLINE15 | TIM1 CR2 | | SYSCFG ITLINE16 | TIM1_DCR | | SYSCFG ITLINE17 | TIM1_DER | | SYSCFG_ITLINE17 | TIM1_DIER | | SYSCFG_ITLINE10 | TIM1_DMAR | | | - | | SYSCFG_ITLINE2 | TIM1_OR1 | | SYSCFG_ITLINE20 | TIM1_PSC | | SYSCFG_ITLINE21 | TIM1_RCR | | SYSCFG_ITLINE22262 | TIM1_SMCR588 | | SYSCFG_ITLINE23263 | TIM1_SR592 | | SYSCFG_ITLINE24263 | TIM1_TISEL620 | | SYSCFG_ITLINE25264 | TIM14_ARR | | SYSCFG_ITLINE26264 | TIM14_CCMR1 733-734 | | SYSCFG_ITLINE27264 | TIM14_CCR1738 | | SYSCFG_ITLINE28265 | TIM14_CNT | | SYSCFG_ITLINE29 | TIM14_CR1730 | | SYSCFG_ITLINE3254 | TIM14_DIER731 | | SYSCFG_ITLINE30265 | TIM14_EGR732 | | SYSCFG_ITLINE31266 | TIM14_PSC | | SYSCFG ITLINE4 | TIM14 SR731 | | SYSCFG ITLINE5256 | TIM14 TISEL | | SYSCFG ITLINE6256 | TIM15 AF1802 | | SYSCFG ITLINE7256 | TIM15 ARR | | SYSCFG ITLINE8257 | TIM15 BDTR | | SYSCFG ITLINE9257 | TIM15 CCER | | | TIM15 CCMR1 789-790 | | - | TIM15 CCR1797 | | Т | TIM15_CCR2798 | | TAMP BKPxR925 | TIM15 CNT | | TAMP_CR1918 | TIM15_CR1 | | TAMP_CR2919 | TIM15_CR2 | | TAMP_FLTCR920 | TIM15 DCR | | TAMP IER921 | TIM15 DIER | | TAMP MISR923 | TIM15 DMAR801 | | TAMP SCR924 | | | TAMP_SR | TIM15_EGR | | TIM1 AF1 | | | TIM1_AF2 | TIM15_RCR | | TIM1_AF2 | TIM15_SMCR | | = | TIM15_SR | | TIM1_BDTR | TIM15_TISEL | | TIM1_CCER | TIM16_AF1 | | TIM1_CCMR1595-596 | TIM16_TISEL825 | | | | | TIM17_AF1 826 TIM17_TISEL 827 TIM2_AF1 694 TIM2_OR1 692 TIM2_TISEL 696 TIM3_AF1 695 TIM3_OR1 693 TIM3_TISEL 696 TIM4_AF1 695 TIM4_OR1 694 TIM4_TISEL 697 TIMX_ARR 689, 713, 818 TIMX_BDTR 820 TIMX_CCER 686, 815 TIMX_CCER 686, 815 TIMX_CCRR1 680, 682, 812-813 TIMX_CCRR2 684-685 TIMX_CCR1 689, 819 TIMX_CCR2 690 TIMX_CCR3 690 TIMX_CCR4 691 TIMX_CR1 687-688, 712, 817 TIMX_CR1 670, 709, 807 TIMX_CR2 671, 711, 808 TIMX_DCR 692, 823 TIMX_DIER 676, 711, 809 TIMX_DMAR 692, 823 | USART_CR3 | |--|--------------| | TIMX_DMAR | WWDG_CFR 871 | | TIMx_PSC 688, 713, 818 | WWDG_CR | | TIMx_RCR | WWDG_61(| | TIMx_SMCR | | | 71WX_GRC 077, 712, 010 | | | U | | | UCPD_CFGR1 | | | UCPD_CFGR2 | | | UCPD_CFGR3 | | | UCPD_ICR | | | UCPD_IMR1335 | | | UCPD_RX_ORDEXTR11344 | | | UCPD_RX_ORDEXTR21344 | | | UCPD_RX_ORDSETR1342 | | | UCPD_RX_PAYSZR | | | UCPD_RXDR | | | UCPD TX ORDSETR | | | UCPD_TX_PAYSZR1341 | | | UCPD_TXDR | | | USART_BRR1066 | | | USART_CR11050, 1054 | | | USART CR21057 | | RM0444 Rev 5 #### **IMPORTANT NOTICE - PLEASE READ CAREFULLY** STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2020 STMicroelectronics – All rights reserved